
Concurrent Constraint Programming: Towards
Probabilistic Abstract Interpretation

Alessandra Di Pierro
Dipartimento di Informatica

Universitá di Pisa, Italy

dipierro@di.unipi.it

Herbert Wiklicky
Department of Computing

Imperial College, London, UK

herbert@doc.ic.ac.uk

ABSTRACT
We present a method for approximating the semantics of
probabilistic programs to the purpose of constructing seman-
tics-based analyses of such programs. The method resem-
bles the one based on Galois connection as developed in the
Cousot framework for abstract interpretation. The main
difference between our approach and the standard theory of
abstract interpretation is the choice of linear space struc-
tures instead of order-theoretic ones as semantical (concrete
and abstract) domains. We show that our method generates
“best approximations” according to an appropriate notion of
precision defined in terms of a norm. Moreover, if re-casted
in a order-theoretic setting these approximations are cor-
rect in the sense of classical abstract interpretation theory.
We use Concurrent Constraint Programming as a reference
programming paradigm. The basic concepts and ideas can
nevertheless be applied to any other paradigm. The results
we present are intended to be the first step towards a gen-
eral theory of probabilistic abstract interpretation, which
re-formulates the classical theory in a setting suitable for a
quantitative reasoning about programs.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Program
analysis; F.1.2 [Theory of Computation]: Modes of Com-
putation—Probabilistic computation

General Terms
Static analysis, probabilistic concurrent constraint program-
ming, probabilistic abstract interpretation

1. INTRODUCTION
The construction of semantics-based program analysis algo-
rithms or in general the specification and validation of the
analyses of programs finds a good formal support in the the-
ory of Abstract Interpretation, which has become very pop-

ular since it was introduced in 1977 by Patrick and Radhia
Cousot [9].

According to the classical framework an abstract interpre-
tation is obtained by replacing the concrete semantics by
an approximating abstract one. The notion of approxima-
tion is classically encoded by suitable partial orders on the
domains objects, and the correspondence between abstract
and concrete domains is expressed by means of an adjoint
framework based on the notion of a Galois connection, which
ensures the soundness of the approximation.

The ultimate aim of this work is to construct a similar the-
ory whose applications include the analysis of probabilistic
programs as well as a probabilistic analysis of standard, i.e.
(non)deterministic programs.

Probabilistic computation extends the classical notion of
computation by including quantities in the form of real num-
bers (i.e. probabilities). These quantitative aspects must
be taken into account in any semantics for programs which
perform probabilistic computation. Various approaches to-
wards the semantics of probabilistic programs have been in-
vestigated up to now, each trying to capture the probabilis-
tic feature in a suitable way. Early contributions in this area
go back to the fundamental papers of Saheb-Djahromi [34],
and Kozen [29]. More recent results are related to proba-
bilistic power-domains [25, 26, 27], probabilistic predicate
transformers [31] and stochastic process calculi [2, 15].

In [16, 17] the authors develop a probabilistic version of
concurrent constraint programming [35] called Probabilistic
Concurrent Constraint Programming (PCCP). The denota-
tional semantics of PCCP is given in terms of a space of
probability distributions on the underlying constraint sys-
tem. These distributions can be represented as vectors in
the free real vector space on the constraint system.

In the search for an appropriate domain of denotations we
regard linear spaces — much in line with Kozen’s work —
as very well suited candidates because of the natural com-
bination of quantitative and qualitative aspects implicit in
their structure. Unfortunately, the consideration of linear
spaces as semantical domains prevents the straightforward
use of the classical theory of abstract interpretation for doing
semantics-based analyses as it cannot be applied to struc-
tures which do not exhibit an explicit notion of order relation
(like vector spaces).

In this paper we show how to construct safe abstractions
of probabilistic fixpoint semantics by using the notion of an
adjoint to a linear map, namely the so-called Moore-Penrose
pseudo-inverse [7]. We argue that this notion is an adequate
alternative to Galois connections for probabilistic domains.
In fact, for a linear map representing an abstraction function
between two linear spaces, we can define its Moore-Penrose
pseudo-inverse as the corresponding concretisation function.
We show that by doing so, we can still achieve conservativ-
ity and a form of soundness for the resulting static analyses.
Moreover, the nature of linear structures allows for an ad-
ditional numerical investigation of the optimality of such an
analysis as well as the comparison of different abstractions
based on their (average) approximation error.

In order to simplify the presentation we will make through-
out the paper two basic assumptions: we will consider a
synchronisation-free sub-language of PCCP, and we will as-
sume finite constraint systems. These assumptions as well as
the choice of PCCP as the reference paradigm are not essen-
tial for the presented results, which we believe are still valid
in the general case and for other programming paradigms.

The plan of the paper is as follows: In Section 2 we briefly
recall the basic constructs of Concurrent Constraint Pro-
gramming (CCP) and its probabilistic version PCCP to-
gether with their denotational semantics. In Section 3 we
compare the structural features of Galois connections and
Moore-Penrose pseudo-inverse. In Section 4 we then instan-
tiate our framework for the case of lifted abstractions in
PCCP. The example in Section 5 illustrates our methodol-
ogy. Finally, in Section 6 we discuss some possible further
developments.

2. THE LANGUAGE
In the following we will concentrate on a particular declara-
tive programming paradigm, that is Concurrent Constraint
Programming (CCP) [35], and a probabilistic version of this
paradigm previously introduced by the authors in [16, 17],
where it is called Probabilistic Concurrent Constraint Pro-
gramming (PCCP).

2.1 Syntax
The syntax and the basic execution model of PCCP are
very similar to CCP [14, 17]. Both languages are based on
the notion of a constraint system C, defined as a complete
algebraic lattice (C,`,t, true, false). The set of constraints
C is ordered with respect to an entailment relation `; t is
the least upper bound (lub) operation, and true, false are
the least and greatest elements of C, respectively (see [35,
14] for more details). For the time being we will consider
only finite constraint systems; this assumption will allow us
to avoid the consideration of complex topological structures
for defining the domain for the denotational semantics.

It is worth mentioning that the constraint system C under-
lying the probabilistic language PCCP is the same as for
classical CCP. This distinguishes our approach from those
involving probabilistic or fuzzy constraint systems, e.g. [23]
or [6].

A CCP/PCCP program P is an object of the form D.A,
where D is a set of procedure declarations of the form p(x) :

A ::= stop successful termination

| tell(c) adding a constraint

| n
i=1 ask(ci)→ Ai choice

| ‖ni=i Ai parallelism

| ∃xA hiding, local variables

| p(x) procedure call, recursion

Table 1: The Syntax of CCP Agents

n
i=1 ask(ci)→ pi : Ai probabilistic choice

‖ni=i qi : Ai prioritised parallelism

Table 2: PCCP Agents for Choice and Parallelism

−A and A is a CCP/PCCP agent. The syntax of CCP
agents is given in Table 1. The PCCP syntax is exactly the
same as CCP except that we allow probabilities to appear
in both the choice and the parallel constructs, as shown in
in Table 2.

2.2 Intuitive Semantics
The operational semantics of CCP is described by means of
a transition system [14]. For PCCP we take the same tran-
sition system but we extend it by associating to each transi-
tion a probability [19, 16]. Such a probability expresses the
likelihood that a transition takes place. Therefore, while
for deterministic transitions the probability is 1, for the
choice and the parallel constructs the transition probabil-
ity has to be defined according to the distributions pi and
qi respectively. This can be seen as restricting the origi-
nal non-determinism by imposing some requirements on the
frequency of choices.

The operational meaning of the probabilistic choice con-
struct is as follows: First, check whether constraints ci are
entailed by the store. Then we have to normalise the prob-
ability distribution by considering only the enabled agents,
i.e. those agents whose guard ci is entailed. This means
that we have to re-define the probability distribution so as
only enabled agents have non-zero probabilities and the sum
of these probabilities is one. In general, this can be done
by considering for enabled agents the normalised transition
probability,

p̃i =
pi∑
`cj pj

,

where the sum
∑
`cj pj is over all enabled agents. Finally,

one of the enabled agents is chosen according to the new
probability distribution p̃i.

The intuitive semantics of the prioritised interleaving is very
similar. Again we replace the (implicit) non-determinism of
the scheduler, which has to decide in the interleaving se-
mantics which agent has to be executed first, by a proba-
bilistic version. This selection has to be made among all

those agents Ai which are active, i.e. can make a transi-
tion. Then we have to normalise the priorities qi of the
active agents. This normalisation is done in the same way
as described above for the probabilistic choice. Finally, the
scheduler chooses one of the active agents according to the
new probability distribution q̃i.

As another simplifying assumption, we will ignore for the
time being the aspects related to concurrency, whose treat-
ment would require more complicated structures. There-
fore, we will concentrate on a synchronisation free version
of both CCP and PCCP, that is the sub-languages where
the choice constructs are of the form:

n
i=1 ask(true) → Ai

and
n
i=1 ask(true) → pi : Ai, respectively. This syntac-

tic restriction implies that all agents in a choice are always
enabled.

2.3 Denotational Semantics
In this section we will briefly recall some basic aspects of
the denotational semantics for CCP and PCCP. For more
details we refer to [14] for the semantics of CCP, and to [17]
for the semantics of PCCP.

The basic idea of the denotational semantics is to associate
to every agent a mathematical description of its computa-
tional behaviour. One aspect of a computation one is often
interested in is the input/output behaviour. This can be
described for CCP by a set of constraints representing the
possible final stores after the execution of the agent. For
PCCP the input/output observables can be represented by
probability distributions on the constraint system, that is
sets of pairs 〈c, p〉, where c is a result and p is the proba-
bility of computing that result. For the synchronisation-free
languages, such observables can be described composition-
ally in a simple way.

2.3.1 Semantics of CCP
The denotational semantics of the synchronisation-free ver-
sion of CCP has an elegant formulation in terms of a Smyth
power-domain construction on the constraint system C [14,
24, 30].

The basic construction of the semantics considers interpre-
tations, that is maps from agents into some special subsets
of C describing the results of the agent computation, and a
fixpoint operator Φ̃ on the set of interpretations. A seman-
tics is obtained by iteratively applying Φ̃ starting from the
initial interpretation ĩ0 which assigns to each agent the set
{true}. The definition of Φ̃ is given in Table 3, where the
operation

⊙
is defined for sets ĩj of constraints by:⊙

j

ĩj =

{⊔
j

dj | dj ∈ ĩj

}
.

The semantics of an agent is the fixpoint of Φ̃ obtained as
the limit, lim Φ̃, of the sequence

ĩ0, Φ̃(̃i0), Φ̃2(̃i0), . . .

2.3.2 Free Vector Space on C
The denotational semantics of the synchronisation-free sub-
language of PCCP was defined in [17]. The construction

Φ̃(̃i)(stop) = {true}
Φ̃(̃i)(tell(c)) = {c}
Φ̃(̃i)(

n
i=1 true → Ai) =

⋃n
i=1 Φ̃(̃i)(Ai)

Φ̃(̃i)(‖ni=1 Ai) =
⊙n

i=1 Φ̃(̃i)(Ai)

Φ̃(̃i)(∃xA) = {∃xc | c ∈ Φ̃(̃i)(A)}
Φ̃(̃i)(p(x)) = ĩ(A) p(y) : −A ∈ D

Table 3: The Definition of Φ̃ for CCP.

is very similar to the classical one for CCP [14], but inter-
pretations are now probability distributions. We will rep-
resent probability distributions as vectors in the free real
vector space V(C) on the constraint system C. This space
is constructed as the set of all formal linear combinations of
constraints:

V(C) =
{∑

xcc | xc ∈ R, c ∈ C
}
.

For finite constraint systems this space is isomorphic to the
standard real vector space Rn, where n is the cardinality of
C. We can denote a vector in V(C) equivalently either as a
formal sum

~x =
∑
c∈C

xcc,

or (once we fix an enumeration of C) as an n-tuple

~x = (xc)c∈C ,

or as a set of pairs

~x = {〈c, xc〉}c∈C .

We can introduce a number of standard structures on V(C)
which we inherit from Rn. We can define for example for
vectors ~x ∈ V(C) a p-norm by:

‖~x‖p = ‖(xc)c∈C‖p =

(∑
c∈C

|xc|p
)1/p

which can be used to define a norm topology on V(C).

Another standard structure given on finite dimensional vec-
tor spaces which we will utilise on V(C) is the notion of an
inner product:

〈~x, ~y〉 = 〈(xc)c∈C , (yc)c∈C〉 =
∑
c∈C

xcyc.

This notion provides an alternative characterisation of the
2-norm, namely

‖~x‖2 =
√
〈~x, ~x〉.

This highlights the special role of the 2-norm among the
other p-norms. It is often referred to as the standard Eu-
clidean distance and we will use it later in order to define a
notion of “precision” for abstract interpretations.

Every norm on a vector space defines a topology on the
vector space [20]. In the finite dimensional case all p-norm

topologies are equivalent, i.e. if a sequence converges with
respect to one norm it also converges with respect to all the
other p-norms [20]. Therefore, we can refer to the topology
of V(C) for all the topological notions we will use in the
following without specifying any particular norm.

The inner product also allows us to define the unique adjoint
α∗ of a linear map α : V(C) 7→ V(C) via [33]:

〈α(~x), ~y〉 = 〈~x, α∗(~y)〉 .

If α is represented in the usual way by a matrix A, the
matrix corresponding to α∗ is given by its transpose At,
i.e. the matrix obtained from A by exchanging rows and
columns (aij)

t = aji.

The effective domain we need to consider is actually only a
subset of V(C) corresponding to the so called simplex, that
is the subset of all vectors whose coordinates sum up to one,
namely those vectors whose 1−norm is one:

S = {~x ∈ V(C) | xi ≥ 0 and ‖~x‖1 = 1} .

Note that, because of the assumption of finite constraint
systems, we can identify the simplex with the space of mea-
sures on C as these can be represented by distributions [4].
This assumption also guarantees that S is a bounded and
closed (therefore compact), and convex subset of V(C).

2.3.3 Fixpoint Operator for PCCP
We will construct the semantics of PCCP by following the
standard method in denotational semantics. We define the
meaning of PCCP agents compositionally via a set of re-
cursive equations over the free vector space. The intuition
behind these equations is as follows.

The agent stop can only produce an empty store with prob-
ability 1, thus we get:

~i(stop) = {〈true, 1〉}.

Analogously, tell(c) always adds c to the store with proba-
bility 1, which results in the equation

~i(tell(c)) = {〈c, 1〉}.

The probability 1 expresses the fact that these basic con-
structs are deterministic.

For the choice construct
n
i=1 true → pi : Ai we note that

all the agents Ai are always enabled (because of the absence
of synchronisation); therefore the meaning of a probabilistic
choice agent is the linear combination of the vectors associ-
ated to each alternative Ai:

~i(
n
i=1 true → pi : Ai) =

n∑
i=1

pi ·~i(Ai)

that is their sum weighted by the corresponding probabilities
pi’s.

The parallel agent ‖ni=1 qi : Ai produces a constraint c =⊔
i di which is the conjunction (least upper bound) of some

constraints produced by each of the agents Ai; the probabil-
ity is the product p =

∏
i pi of the probabilities associated

~Φ(~i)(stop) = {〈true, 1〉}
~Φ(~i)(tell(c)) = {〈c, 1〉}
~Φ(~i)(

n
i=1 true → pi : Ai) =

∑n
i=1 pi · ~Φ(~i)(Ai)

~Φ(~i)(‖ni=1 qi : Ai) =
⊗n

i=1 qi · ~Φ(~i)(Ai)
~Φ(~i)(∃xA) = ∃∃x~i(A)
~Φ(~i)(p(x)) = ~i(A)

Table 4: The Definition of ~Φ for PCCP.

to each of such constraints. Formally,

~i(‖ni=1 qi : Ai) =

n⊗
i=1

qi ·~i(Ai),

where
⊗

is the tensor product. This is defined for vectors
~xj ∈ V(C) by:⊗

j

~xj =

{〈⊔
j

dj ,
∏
j

pj

〉
| 〈dj , pj〉 ∈ ~xj

}
.

Hiding is modelled by means of the operator ∃∃x defined for
a generic interpretation {〈ci, pi〉}i by:

∃∃x {〈ci, pi〉}i = {〈∃xci, pi〉}i .

Intuitively, the constraints computed by ∃xA are the con-
straints of A with the variable x hidden from the other
agents:

~i(∃xA) = ∃∃x~i(A)

The last equation defining the meaning of the procedure call
p(x) is obvious: The semantics of a procedure call is given
by the semantics of the agent in the body of its definition
p(y) : −A ∈ D, i.e.

~i(p(x)) =~i(A)

We abstract here from the technicalities needed to model
the parameters passing and we assume that this has been
correctly done before replacing p(x) by its definition (see
[14] for more details).

The semantics of a PCCP agent is then described by a fix-
point operator ~Φ on the set of interpretations on V(C), which

encodes these equations. The definition of ~Φ is given in Ta-
ble 4. The operator ~Φ can be shown to be linear, thus con-
tinuous. Moreover it leaves the simplex invariant, i.e. for all
~i ∈ S its image ~Φ(~i) ∈ S.

The construction of a fixpoint for Φ mimics the classical
fixpoint construction: Starting with the initial interpreta-
tion ~i0 assigning to each agent A the distribution ~i0(A) =
{〈true, 1〉}, we iteratively apply Φ in order to construct the
sequence of interpretations

{~in}n =~i0,Φ(~i0),Φ2(~i0), . . . ,Φn(~i0), . . .

This sequence converges pointwise, and the continuity of
~Φ ensures that lim ~Φ is a fixpoint of ~Φ. Moreover we can
show that this semantics captures the operational notion of
probabilistic input/output observables [17].

2.3.4 Relationship between CCP and PCCP
Probabilistic nondeterminism is a particular case of pure
nondeterminism, where the choice is not completely arbi-
trary but is governed by some established probability distri-
bution. Therefore, while it is immediate to retrieve the CCP
semantics from the PCCP one (by just ignoring the informa-
tion about probabilities), the reverse operation necessarily
involves a restriction on the nondeterministic scheduler. In
order to make these considerations more formal we introduce
the following operations:

Given a vector ~x = {〈ci, pi〉} ∈ V(C), we define the support
set, supp(~x) of ~x as the set

supp(~x) = {ci | 〈ci, pi〉 ∈ ~x and pi 6= 0} .

Vice versa for a set x̃ = {ci} ∈ P(C), we define a (uniform)
distribution vector

vec(x̃) =

{〈
ci,

1

|x̃|

〉}
where |x̃| denotes the cardinality of x̃.

The operation supp allows us to retrieve the semantics of a
CCP agent from the semantics of the corresponding PCCP
agent. In particular, the following relations hold for the se-
mantical equations of the choice and the parallel constructs
in CCP and PCCP:⋃

i

supp(~xi) = supp

(∑
i

qi~xi

)
and ⊙

i

supp(~xi) = supp

(⊗
i

qi~xi

)
,

whenever for all i the weights qi 6= 0.

In general, it can be shown that for finite computations the
semantics of a CCP agent (e.g. its input/output observables
or equivalently its denotation in terms of the fixpoint opera-
tor Φ̃), can be retrieved by taking the support set of the dis-
tribution representing the corresponding PCCP agent. This
translation can be seen as an abstraction of the PCCP se-
mantics.

As for the operation vec, it allows us to translate a CCP
agent into a PCCP one by assuming a uniform distribution
on the choice. In fact, the operations vec and supp could
be seen as a kind of abstraction/concretisation pair which
one could use to define the CCP semantics as an abstract
interpretation of the PCCP one (see Section 6).

3. ABSTRACT INTERPRETATION
Abstract Interpretation — as introduced by Cousot in the
late 1970s [10] — is a theory which provides systematic
methods to design abstract semantics that correctly approxi-
mate some given concrete semantics. It represents a unifying
framework for designing and then validating static analyses
of programs. This approach is essentially based on qualita-
tive notions such as the one of partially ordered domains.
Our aim is to transfer this general theory to a quantitative
setting as we encounter it in the semantics of probabilistic
languages, and in particular of PCCP.

3.1 Approximations
The basic idea behind abstract interpretation is to analyse a
program not in terms of its standard or concrete semantics,
but rather in terms of an appropriately simplified approxi-
mated or abstract semantics, which only registers aspects of
the program which are of relevance with respect to a spe-
cific analysis (cf. [11, 1, 32]). Typically these aspects are
encoded in the definition of an abstract domain, which is
usually structured, like the concrete domain, as a complete
partially ordered set.

The ordering on these domains expresses the notion of ap-
proximation, i.e. relative precision of the domain values:
x ≤ y means that x is more precise than y. Note that in the
domains of the standard denotational semantics the ordering
is usually interpreted in a dual way: x ≤ y means here that
x is an approximation of y. In the following we will denote
the order on a domain D by ≤D. On an abstract domain, ab-
stract operations are defined which simulate the behaviour
of their concrete counterparts. Thus, given a concrete se-
mantic operation f : C 7→ A, an abstract interpretation is
defined by specifying corresponding abstract domains D and
B and an abstract function fD : D 7→ B.

The translation between the concrete and the abstract se-
mantics of a program is achieved via pairs of adjoint maps,
called Galois connections (see Section 3.2). Such pairs re-
late the domains C and D and A and B respectively and
each of them consists of an abstraction function α and a
concretisation function γ. The first function associates to
each concrete element in C (or A) its abstract denotation in
D (or B), while the second assigns to abstract elements in
D (or B) their concrete values in C (or A).

It is common in programming languages to define the con-
crete semantics via a fixpoint operator Φ on some particular
(concrete) domain C, e.g. as explained in Section 2.3 for
CCP and PCCP. For our treatment we will concentrate on
this case of fixpoint semantics. Then an abstract interpre-
tation is specified by an abstract domain D and an abstract
operator Ψ on D which reflects in some appropriate way
what is happening in the concrete domain.

3.2 Galois Connections
In the standard Cousot and Cousot theory, the correctness
of an abstract interpretation is guaranteed by ensuring that
the pair of functions α and γ forms a Galois connection:

Definition 1. Let C = (C,≤C) and D = (D,≤D) be two
partially ordered set. If there are two functions α : C 7→ D
and γ : D 7→ C such that for all c ∈ C and all d ∈ D:

c ≤C γ(d) iff α(c) ≤D d,

then (C, α, γ,D) forms a Galois connection.

The intended meaning is that an abstract element d ap-
proximates a concrete one c if c ≤C γ(d) or equivalently (by
adjunction) if α(c) ≤D d. Therefore, the concrete value cor-
responding to an abstract denotation d is γ(d), while the
adjunction guarantees that α(c) is the best possible approx-
imation of c in D (because whenever d is a correct approxi-
mation of c, then α(c) ≤D d).

An alternative characterisation of a Galois connection is as
follows:

Theorem 1. Let C = (C,≤C) and D = (D,≤D) be two
partially ordered set together with two functions α : C 7→ D
and γ : D 7→ C. Then (C, α, γ,D) form a Galois connection
iff

1. α and γ are order-preserving,

2. α ◦ γ is reductive (i.e. for any d ∈ D, α ◦ γ(d) ≤D d),

3. γ ◦ α is extensive (i.e. for any c ∈ C, c ≤C γ ◦ α(c)).

A further important property of Galois connections guar-
antees that the approximation of a concrete semantics by
means of two functions α and γ related by a Galois connec-
tion is not only safe but also conservative in as far as re-
peating the abstraction or the concretisation gives the same
results as by a single application of these functions. This
property is expressed by the following proposition:

Proposition 1. Let (C, α, γ,D) be a Galois connection.
Then α and γ are quasi-inverse, i.e.

1. α ◦ γ ◦ α = α, and

2. γ ◦ α ◦ γ = γ.

3.3 Correctness and Completeness
Like for any approximation technique, correctness is a basic
requirement for an abstract interpretation. In the scenario
described in Section 3.1, an abstract function fD : D 7→ B
is a correct approximation of a concrete function f : C 7→ A
if

α ◦ f ≤A fD ◦ α,

where by abuse of notation we indicate by α both the ab-
straction function from A to B on the left hand side of the
relation, and the abstraction function from C to D on the
right hand side of the relation.

In the typical situation in which the concrete semantics is
given in terms of a fixpoint operator Φ on the concrete do-
main C, the correctness of an abstract interpretation defined
by (D,Ψ) is expressed by the following condition which is
often referred to as fixpoint correctness [22]:

α ◦ fix(Φ) ≤D fix(Ψ) ◦ α,

where fix denotes a fixpoint of the semantical operator. It
is well known that any abstract domain D induces the so-
called best correct approximation of Φ [10] defined by

Ψ = α ◦ Φ ◦ γ. (1)

Note that the choice of the best correct approximation of a
function does not guarantee that the results of an abstract
computation are best approximations of the corresponding
concrete ones. Whenever this happens then the abstract
interpretation is complete.

Unlike the correctness condition, completeness is not an es-
sential requirement, but rather an ideal situation which does
not occur very often in practice. In the literature it is often
also referred to as exactness [8] or optimality [13].

Completeness means for an abstract interpretation that in
the above relations for correctness the equality holds, so that
the abstraction results in no loss of information. It is a dual
notion to correctness; in particular fixpoint completeness is
dual to fixpoint correctness and is expressed by

α ◦ fix(Φ) = fix(Ψ) ◦ α

A basic result of the abstract interpretation theory ensures
that a (fixpoint) complete abstract semantic operator can
always be defined whenever the best correct approximation
of the operator is (fixpoint) complete. This means that for
a Ψ defined as in (1) we get a fixpoint complete abstract
interpretation if and only if

α ◦ fix(Φ) = α ◦ fix(Φ) ◦ γ ◦ α,

that is if and only if γ ◦ α is the identity function.

3.4 Generalised Inverse
In a vector space there is no obvious natural order, there-
fore it is not possible to directly translate Galois connec-
tions into the context of a denotational semantics based on
distributions. In this section we introduce the notion of a
generalised inverse (or pseudo-inverse) of a linear mapping,
and we show that it is an appropriate substitute for Galois
connections in the probabilistic setting. The properties of
the pseudo-inverse are best explained in terms of the notion
of projection.

Definition 2. Given a finite dimensional vector space V,
a linear map π : V 7→ V is called a projection if π2 = π◦π =
π. A projection is orthogonal iff π = π∗, where .∗ denotes
the adjoint.

Projections allow for a unique “decomposition” of every vec-
tor in V [33, Sect. 25]:

Proposition 2. Let π be a projection on V. Then every
vector ~x ∈ V can be represented uniquely as ~x = ~x⊥ + ~x‖
with π(~x⊥) = ~o and π(~x‖) = ~x‖.

There is a one-to-one correspondence between orthogonal
projections and sub-spaces of a vector space V: For every
sub-space W ⊆ V there is a (unique) orthogonal projection
πW whose image is W, and vice versa.

A property of orthogonal projections, which is very impor-
tant in our context, is expressed by the following proposition
[7, Corr 2.1.1]:

Proposition 3. Let πW be the orthogonal projection on
a finite dimensional vector space V. Then for every vector
~x ∈ V its image πW(~x) is the unique vector in W such that
‖~x− πW(~x)‖2 is minimal.

By recalling that the 2-norm is the standard norm express-
ing in a finite dimensional vector space the Euclidean dis-
tance among the points of the space, Proposition 3 says that
the orthogonal projection πW(~x) of any vector ~x in V is the
unique vector in W which is the “closest” one to ~x. This
suggests that projections are good candidates for represent-
ing what in the classical abstract interpretation is called the
best approximation of a concrete object c, namely the most
precise among all the abstract objects that correctly approx-
imate c.

We can now introduce the notion of pseudo-inverse which
we will use as a probabilistic analogue of Galois connections.
Penrose’s definition of pseudo-inverse from the 1950s comes
from the following theorem [7, Def. 1.1.3].

Theorem 2. Let C and D be two finite dimensional vec-
tor spaces. For a linear map α : C 7→ D there exists a unique
map γ : D 7→ C such that:

1. α ◦ γ ◦ α = α,

2. γ ◦ α ◦ γ = γ,

3. (α ◦ γ)∗ = α ◦ γ,

4. (γ ◦ α)∗ = γ ◦ α.

The map γ is called the Moore-Penrose pseudo-inverse and
is usually denoted by α†. An alternative characterisation of
the Moore-Penrose pseudo-inverse corresponds to Moore’s
original definition and dates back to the 1930s. It is given
by the following theorem [7, Def. 1.1.2]:

Theorem 3. Let C and D be two finite dimensional vec-
tor spaces and α : C 7→ D a linear map between them. A
linear map γ : D 7→ C is the unique Moore-Penrose pseudo-
inverse of A iff

1. α ◦ γ = πα, and

2. γ ◦ α = πγ .

where πα : C 7→ C is the orthogonal projection into the range
of α and πγ : D 7→ D is the orthogonal projection into the
range of γ.

It can be shown that the two definitions are equivalent [7,
Thm. 1.1.1]. They are often presented in terms of matrices
A and A† = Γ representing the linear maps α and α† = γ;
in this case A∗ is simply the transpose of the matrix A.
However, the “functional” formulation is more convenient
in our case as it allows for an easier comparison with Galois
connections.

4. CONSTRUCTION OF PROBABILISTIC
ABSTRACT INTERPRETATIONS

We now show how to construct an abstract interpretation
starting from a concrete (denotational) semantics in the con-
text of constraint programming. For PCCP programs we

will obtain a semantics based on vector spaces. The same
construction applied to the standard semantics of CCP pro-
grams will result in a power set construction.

4.1 Lifting
4.1.1 Power-Set Lifting
Given a monotone extraction function α : C 7→ D we can
define an abstraction function between the power sets P(C)
and P(D) by:

α̃({c1, c2, . . .}) = {α(c1), α(c2), . . .} .

Obviously the power sets P(C) and P(D) carry a natural
order structure stemming from set inclusion. This allows
us to instantiate the Galois framework for abstract inter-
pretation as described above, i.e. starting from the lifted
abstraction α̃ : (P(C),⊆) 7→ (P(D),⊆) we can construct the
unique concretisation γ̃ : (P(D),⊆) 7→ (P(C),⊆) such that
α̃ and γ̃ form a Galois connection. For details on this type
of construction in a constraint programming framework see
e.g. [21].

4.1.2 Vector Space Lifting
An obvious way to lift an extraction function α : C 7→ D to
a function from the vector space V(C) into V(D) is to define
it as a linear map:

~α(p1 · c1 + p2 · c2 + . . .) = pi · α(c1) + p2 · α(c2) . . .

We can now construct the unique concretisation ~γ : V(D) 7→
V(C) such that ~α and ~γ are Moore-Penrose pseudo-inverse
to each other. We will call the linear maps ~α probabilistic
abstraction functions and refer to an abstract interpretation
defined via a pair (~α, ~α†) as a probabilistic abstract interpre-
tation.

It is easy to see the relation between α̃ and ~α constructed
from the same extraction function α : C 7→ D: For all subsets
x̃ of C:

supp(~α(vec(x̃))) = α̃(x̃).

4.2 Pseudo-Inverse and Safe Abstractions
Given a probabilistic abstraction function α, the property
(1) and (2) in Theorem 2 of α and its pseudo-inverse γ cor-
respond to the properties of Galois connections in Proposi-
tion 1 and makes the corresponding probabilistic abstract
interpretation conservative.

Correctness can be formulated in our setting in terms of pro-
jections. In particular, as already mentioned in Section 3.4,
orthogonal projections allow us to define the “best” approx-
imation in the sense of the vector whose distance from the
concrete one is minimal. In fact, for an abstract fixpoint
operator defined as Ψ = α ◦ Φ ◦ γ we can conclude that
whenever α and γ are Moore-Penrose pseudo-inverse, the
approximation defined by the abstract operator Ψ is the
closest correct approximation of Φ in the sense that for all
~d ∈ D the distance

‖γ ◦ fix(Ψ)(~d)− γ ◦ α ◦ fix(Φ) ◦ γ(~d)‖2

is minimal (by Theorem 3 and Proposition 3).

For a probabilistic abstraction we can also show its sound-
ness in the classical sense. In fact, the following proposition
shows that a probabilistic abstract interpretation is “safe”
with respect to the inclusion order on the support sets of
vectors.

Proposition 4. Let ~α be a probabilistic abstraction func-
tion and let ~γ be its Moore-Penrose pseudo-inverse. Then
~γ ◦~α is extensive with respect to the inclusion on the support
sets of vectors in V(C), i.e. ∀~x ∈ V(C),

supp(~γ ◦ ~α(~x)) ⊇ supp(~x).

Proof: Let us first look at the effect of ~γ ◦ ~α on just the
base vectors in V(C), i.e. on ~ci. We claim that the support
of ~γ ◦ ~α(~ci) is larger than the support of ~ci. If we assumed
that ~ci is “perpendicular” to the projection ~γ ◦ ~α, i.e. it
is mapped to the null vector ~o, than this would imply that
~α(~ci) = ~α ◦ ~γ ◦ ~α(~ci) = ~α(~o) = ~o. Each base vector ~ci must
therefore have a non-zero “parallel” component, i.e. it can
be written as ~ci = ~ci⊥ + ~ci‖ with ~ci‖ 6= ~o or equivalently
~ci‖ = ~ci−~ci⊥. The projection of ~ci under ~γ ◦ ~α is ~γ ◦ ~α(~ci) =
~γ ◦ ~α(~ci⊥ +~ci‖) = ~γ ◦ ~α(~ci‖) = ~ci‖. As we know that ~ci‖ can
be represented (uniquely) as ~ci‖ = ~ci + . . ., we know that ci
must be in the support set of ~ci‖ and thus of ~γ ◦ ~α(~ci). We
conclude that for all base vectors the projection ~γ ◦ ~α can
only increase the support set, i.e.

supp(~γ ◦ ~α(~ci)) ⊇ supp(~ci)

which by linearity can be extended to all vectors:

supp(~γ ◦ ~α(~x)) = supp(~γ ◦ ~α(
∑
i

xi · ci)) ⊇ supp(~x)

Analogously, we can show that ~α◦~γ is reductive. Therefore,
(~α,~γ) form a Galois connection with respect to the support
sets of the vectors in V(C) and V(D), ordered by inclusion.

4.3 Comparison of Abstractions
The Moore-Penrose pseudo-inverse method gives us the pos-
sibility to measure the quality of a probabilistic abstract
interpretation. The key idea is to look at the difference be-

tween the two distributions: γ◦fix(Ψ)(~d) and γ◦α◦fix(Φ)◦
γ(~d). This difference is obviously determined by the “size”
of the map (or matrix) γ ◦ α describing the approximation
error. We are actually only interested in normalised vectors
which represent distributions, i.e. vectors whose 1-norm is
exactly one. Thus, we can use the corresponding operator
norm to obtain a measure for the (worst) approximation
error. This norm is defined for an operator α as:

‖α‖1 = sup
‖x‖1=1

‖α(x)‖1,

i.e. as the length of the “longest” vector a unit vector may be
mapped to. Note that when γ ◦α is the identity matrix (i.e.
the abstract interpretation is complete) its norm is 1. This
can be interpreted as the fact that in this case we get 100%
precision. We refer to [18] for a more detailed treatment of
this issue.

5. AN EXAMPLE
We give here an example of an abstract interpretation for a
simple probabilistic program which generates natural num-
bers. The approximation is aimed at representing the par-
ity of the numbers generated by the program. We will first
present a detailed description of the construction of the ab-
stract interpretation, and then we give some results of nu-
merical calculations on finite matrices representing the in-
volved linear mappings in a truncated version of the program
semantics.

5.1 Counting in CCP and PCCP
We illustrate our methodology by means of a simple example
of analysis of a probabilistic program. The program consists
of a simple procedure which outputs natural numbers with
some probability calculated during the execution of a prob-
abilistic choice. We will compare the probabilistic analysis
of such a program with the classical analysis of a nondeter-
ministic version of the program. The analysis is based on an
abstraction which ignores the actual value of the generated
numbers and only considers their even/odd property.

Note that the constraint system is not finite in this example.
We can nevertheless guarantee that all semantical construc-
tions for the finite case still hold for this particular case.

A purely nondeterministic version of a number-generator
program, can be realised by means of the following CCP
procedure:

nat(x) : − true → tell(x = 0)
true → ∃y(tell(x = s(y))

‖ nat(y))

A probabilistic version of this program can be written in
PCCP as follows:

pnat(x) : − true → 1
2

: tell(x = 0)
true → 1

2
: ∃y(1

2
: tell(x = s(y))

‖ 1
2

: pnat(y))

5.1.1 Concrete Denotational Semantics
The denotational semantics of these two programs can be
constructed as described in Section 2.3 by means of the fix-
point operator Φ̃, for the nondeterministic version, and ~Φ,
for the probabilistic version. We will use the following short-
hand notation for the constraints involved.

x = 0 ≡ 0
x = s(0) ≡ 1

x = s(s(0)) ≡ 2
. . .

∃yx = s(y) ≡ ∗

It is then straightforward to see that we get the following
approximation sequence for the denotational semantics of
nat, starting with ĩ0 = {true}:

Φ̃1({true})(nat) = {0, ∗}
Φ̃2({true})(nat) = {0, 1, ∗}
Φ̃3({true})(nat) = {0, 1, , 2, ∗}
Φ̃4({true})(nat) = {0, 1, , 2, 3, ∗}

.

and therefore the fixpoint of Φ as:

lim Φ̃ = {0, 1, 2, . . . , ω} .

Likewise, for the probabilistic version of the counting pro-
gram we get — starting with ~i0 = {〈true, 1〉} — the follow-
ing sequence:

~Φ1({〈true, 1〉})(pnat) =
{〈

0, 1
2

〉
,
〈
∗, 1

2

〉}
~Φ2({〈true, 1〉})(pnat) =

{〈
0, 1

2

〉
,
〈
1, 1

4

〉
,
〈
∗, 1

4

〉}
~Φ3({〈true, 1〉})(pnat) =

{〈
0, 1

2

〉
,
〈
1, 1

4

〉
,
〈
2, 1

8

〉
,
〈
∗, 1

8

〉}
~Φ4({〈true, 1〉})(pnat) = {

〈
0, 1

2

〉
,
〈
1, 1

4

〉
,
〈
2, 1

8

〉
,
〈
3, 1

16

〉
,〈

∗, 1
16

〉
}

.

and thus the fixpoint:

lim ~Φ = {〈0, 1/2〉 , 〈1, 1/4〉 , 〈2, 1/8〉 , . . .}

5.1.2 An Abstraction
The following mapping describes an abstraction which ig-
nores which number is indeed computed and is only inter-
ested in whether the result of a computation is even or odd.

α(true) = t
α(2k) = e

α(2k + 1) = o
α(∗) = ?

α(false) = f

The mapping α is defined between the concrete constraint
system C, into an abstract, descriptional constraint system
D. Where C contains all numbers and the non-ground term
∗ as well as true and false as bottom and top element; D
contains only 5 elements: t and f as bottom and top and e,
even, and o, odd, as well as ? to abstract from ∗.

5.1.3 Abstraction of the Concrete Semantics
We now lift the abstraction α to the denotational domains.
The abstract sequence of denotations are as follows. For the
purely qualitative case:

α̃Φ̃0 {true} (nat) = {t}
α̃Φ̃1 {true} (nat) = {e, ?}
α̃Φ̃2 {true} (nat) = {e, o, ?}
α̃Φ̃3 {true} (nat) = {e, o, ?}
α̃Φ̃4 {true} (nat) = {e, o, ?}

.

and for the quantitative case:

~α~Φ0 {〈true, 1〉} (pnat) = {〈t, 1〉}
~α~Φ1 {〈true, 1〉} (pnat) =

{〈
e, 1

2

〉
,
〈
?, 1

2

〉}
~α~Φ2 {〈true, 1〉} (pnat) =

{〈
e, 1

2

〉
,
〈
o, 1

4

〉
,
〈
?, 1

4

〉}
~α~Φ3 {〈true, 1〉} (pnat) =

{〈
e, 5

8

〉
,
〈
o, 1

4

〉
,
〈
?, 1

8

〉}
~α~Φ4 {〈true, 1〉} (pnat) =

{〈
e, 5

8

〉
,
〈
o, 5

16

〉
,
〈
?, 1

16

〉}
.

Therefore, the corresponding fixpoints in the abstract se-
mantics are for the operator α̃Φ̃:

α̃(lim Φ̃) = {e, o, ?} ,

which basically tells us that this program computes even
and odd numbers or eventually nothing at all (because it
does not terminate).

For ~α~Φ the situation is quite different as we get as the limit
distribution on D:

~α(lim ~Φ) =

{〈
e,

2

3

〉
,

〈
o,

1

3

〉}
which tells us not only that the probability of non-termina-
tion vanishes (in the long run) but also that even and odd
numbers are by no means generated equally likely (basically
because the even zero is the result of already half the runs).

The probabilities 2
3

for e and 1
3

for o are the infinite sums

1

2
+

1

8
+ . . . =

∞∑
k=0

1

22k+1
, and

1

4
+

1

16
+ . . . =

∞∑
k=1

1

22k
,

respectively. One can easily see that these sums are two
geometric series with common ratio between 0 and 1 and
therefore convergent. In particular, we have for e

∞∑
k=0

1

22k+1
=

∞∑
k=0

1

2
· 1

4k
,

that is the geometric series with constant 1
2

and ratio 1
4
,

while for o we have

∞∑
k=1

1

22k
= (

∞∑
k=0

1

4k
)− 1,

that is the geometric series with constant 1 and ratio 1
4
.

5.2 Numerical Experiments
In order to study the relation between concrete and abstract
semantics in greater detail we simplify the above example by
looking at only the first six iteration steps, i.e. we look at
a finite C. This will allow us to represent all the involved
linear maps by means of finite matrices, thus making the
calculations more feasible.

Let us assume that the elements in the reduced constraint
system C are enumerated in the following way:

true, ∗, 0, 1, 2, 3, 4, 5, false

and that the elements in D occur in the sequence:

t, ?, e, o, f.

5.2.1 The Abstraction
We will consider the same extraction function α as in the
above infinite example. Based on these base vectors for the
finite dimensional vector spaces V(C) and V(D) we can rep-
resent the lifted mapping ~α explicitely by a matrix A of the
following form:

A =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0
0 0 1 0 0 0 0 0 1

The Moore-Penrose pseudo-inverse Γ = A† of A is then given
by the following matrix:

A† = Γ =

1 0 0 0 0
0 1 0 0 0
0 0 1

3
0 0

0 0 0 1
3

0
0 0 1

3
0 0

0 0 0 1
3

0
0 0 1

3
0 0

0 0 0 1
3

0
0 0 0 0 1

With these two matrices representing the two linear trans-
formations ~α and ~γ we can easily compute the abstraction or
concretisation of vectors or distributions in V(C) and V(D),
respectively — simply by multiplication. This way we get
for example:

~α(0, 0, 1, 0, 0, 0, 0, 0, 0) = (0, 0, 1, 0, 0)

reflecting the fact that concrete constraint 0 is mapped into
the abstract constraint e. Similarly,

~α(0, 0,
1

2
, 0,

1

2
, 0, 0, 0, 0) = (0, 0, 1, 0, 0)

reflecting that the set {0, 2}, or to be precise the uniform
distribution on the elements 0 and 2 in C is also mapped
into e, and finally

~α(0, 0, 0, 1, 1, 0, 0, 0, 0) = (0, 0,
1

2
,

1

2
, 0)

i.e. the set {1, 2} is mapped into a half e and half o. If we
look at the pseudo-inverse, we get the following interesting
transformations:

~γ(0, 0, 1, 0, 0) = (0, 0,
1

3
, 0,

1

3
, 0,

1

3
, 0, 0)

and

~γ(0, 0, 0, 1, 0) = (0, 0, 0,
1

3
, 0,

1

3
, 0,

1

3
, 0)

which is reflecting the simple fact that once we abstracted
the concrete number to even and odd it is impossible to
reverse this. The best we can do is to distribute evenly
among all even, respectively odd, numbers.

5.2.2 Concrete Semantics
The matrix representation of a concrete fixpoint operator
Φ : V(C) 7→ V(C) for the finite counting semantics is as
follows:

Φ =

0 1
2

1
2

0 0 0 0 0 0
0 1

2
1
2

0 0 0 0 0 0
0 0 1

2
1
2

0 0 0 0 0
0 0 1

2
0 1

2
0 0 0 0

0 0 1
2

0 0 1
2

0 0 0
0 0 1

2
0 0 0 1

2
0 0

0 0 1
2

0 0 0 0 1
2

0
0 0 1

2
0 0 0 0 1

2
0

0 0 0 0 0 0 0 0 1

As expected, we get the following sequence of vectors start-
ing with the initial distribution ~i = (1, 0, 0, 0, 0, 0, 0, 0, 0):

Φ1(~i) = (0, 1
2
, 1
2
, 0, 0, 0, 0, 0, 0)

Φ2(~i) = (0, 1
4
, 1
2
, 1
4
, 0, 0, 0, 0, 0)

Φ3(~i) = (0, 1
8
, 1
2
, 1
4
, 1
8
, 0, 0, 0, 0)

Φ4(~i) = (0, 1
16
, 1
2
, 1
4
, 1
8
, 1
16
, 0, 0, 0)

.

5.2.3 Abstract Semantics
Using these matrix representations it is then easy to com-
pute the (matrix representation of the) abstract fixpoint op-
erator Ψ : V(D) 7→ V(D) as:

Ψ = A · Φ · Γ =

0 1

2
1
2

0 0
0 1

2
1
2

0 0
0 0 1

2
1
2

0
0 0 5

6
1
6

0
0 0 0 0 1

If this Ψ is applied to an initial abstract distribution ~d =
(1, 0, 0, 0, 0) we get:

Ψ1(~d) = (0, 1
2
, 1
2
, 0, 0)

Ψ2(~d) = (0, 1
4
, 1
2
, 1
4
, 0)

Ψ3(~d) = (0, 1
8
, 5
8
, 1
4
, 0)

Ψ4(~d) = (0, 1
16
, 5
8
, 5
16
, 0)

.

In the limit these two sequences (computing the concrete
and the abstract semantics) get very close. More precisely
we get:

lim
n→∞

Φn(~i) = (0, 0,
1

2
,

1

4
,

1

8
,

1

16
,

1

32
,

1

32
, 0)

and therefore

lim
n→∞

~α(Φn(~i)) = (0, 0,
21

32
,

11

32
, 0)

as compared to

lim
n→∞

Ψn(~d) = (0, 0,
20

32
,

12

32
, 0).

Note that the matrix Γ·A is the identity matrix. This implies
that the probabilistic abstract interpretation is complete.

6. CONCLUSIONS
We presented a first outline of an abstract interpretation
methodology which refers to a probabilistic semantics in-
stead of a more standard order-theoretic one. Such method-
ology is thus immediately viable for analysing probabilistic
programs. It can also be used for a probabilistic analysis of
classical programs. The key element of the work presented
is the definition of a “connection” between linear spaces:
To express the relationship between the concrete and the
abstract domains we use two linear maps, representing the
abstraction function α, and the concretisation function γ, re-
spectively. The latter is constructed as the Moore-Penrose
pseudo-inverse of α. While the structural similarities be-
tween the two notions of Moore-Penrose pseudo-inverse and
Galois connection ensures conservativity and safety features

of a resulting probabilistic static analysis, the nature of lin-
ear structures additionally allows for a quantitative investi-
gation of different abstractions with respect to their approx-
imation error.

To compute a pseudo-inverse can be an expensive task. For-
tunately, there exist several algorithms to effectively com-
pute the pseudo-inverse of a matrix iteratively, e.g. by
Grenville or Ben-Israel [7]. It might be also worth men-
tioning that computing the Moore-Penrose pseudo-inverse
is at the heart of learning in neural networks [28]. For actu-
ally constructing pseudo-inverses, an alternative could be to
develop methods for constructing the abstract semantics in
a more direct way. This would mean to transfer some of the
systematic design techniques used in the classical framework
— like sequential composition, tensor product, etc. [32, 11]
— into the vector space setting.

Our presentation was based on the (concurrent) constraint
programming paradigm which allows for a nice and clean
separation between qualitative and quantitative aspects of
computation. Also we considered here finite structures stem-
ming from the assumption that the constraint systems un-
derlying the language were finite. It seems nevertheless pos-
sible to extend this approach to other programming para-
digms as well as to infinite structures. In particular, the
notion of a pseudo-inverse can be transferred to a setting
involving infinite-dimensional Banach and Hilbert spaces [3].

Within the constraint programming framework it would be
interesting to compare our results with the work on abstrac-
tions in the context of fuzzy or soft constraint systems [5].
Another direction of future research will be devoted to the
development of efficient and/or incremental ways to com-
pute the Moore-Penrose pseudo-inverse and methods of con-
structing an abstract probabilistic semantics directly, with-
out explicitly computing the Moore-Penrose pseudo-inverse.

Finally, we plan to investigate a kind of hybrid approach
in which the abstraction and concretisation functions relate
domains which can be either cpo’s or vector spaces. This
would allow us for example to formulate the relationship
between the semantics of CCP and PCCP — described in
Section 2.3.4 — in terms of abstract interpretation, in line
with the work on comparative semantics [12, 8].

7. REFERENCES
[1] S. Abramsky and C. Hankin, editors. Abstract

Interpretation of Declarative Languages.
Ellis-Horwood, Chichester, England, 1987.

[2] C. Baier and M. Kwiatkowska. Model checking for a
probabilistic branching time logic with fairness.
Technical Report CSR-96-12, School of Computer
Science, University of Birmingham, June 1996.

[3] F. J. Beutler. The operator theory of the
pseudo-inverse. Journal of Mathematical Analysis and
Applications, 10:451–470,471–493, 1965.

[4] P. Billingsley. Probability and Measure. Wiley & Sons,
New York, 2nd edition, 1986.

[5] S. Bistarelli, P. Codognet, Y. Georget, and F. Rossi.
Abstracting soft constraint. In K. Apt, T. Kakas,

E. Monfroy, and F. Rossi, editors, Proceedings of the
ERCIM/COMPULOG Workshop on Constraints,
Pahos, Cyprus, 1999. University of Cyprus.

[6] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based constraint satisfaction and
optimization. Journal of the ACM, 44(2):201–236,
1997.

[7] S. L. Campbell and D. Meyer. Generalized Inverse of
Linear Transformations. Constable and Company,
London, 1979.

[8] P. Cousot. Constructive design of a Hierarchy of
Semantics of a Transition System by Abstract
Interpretation. In S. Brooks and M. Mislove, editors,
13th International Symposium on Mathematical
Foundations of Programming Semantics (MFPS97),
volume 6 of Electronic Notes in Theoretical Computer
Science, Amsterdam, 1997. Elsevier.

[9] P. Cousot and R. Cousot. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
Symposium on Principles of Programming Languages
(POPL), pages 238–252, Los Angeles, 1977.

[10] P. Cousot and R. Cousot. Systematic Design of
Program Analysis Frameworks. In Symposium on
Principles of Programming Languages (POPL), pages
269–282, San Antonio, Texas, 1979.

[11] P. Cousot and R. Cousot. Abstract Interpretation and
Applications to Logic Programs. Journal of Logic
Programming, 13(2-3):103–180, July 1992.

[12] P. Cousot and R. Cousot. Inductive Definitions,
Semantics and Abstract Interpretation. In 19th ACM
Symposium on Principles of Programming Languages
(POPL’92), pages 83–94, 1992.

[13] D. Dams, R. Gerth, and O. Grumberg. Abstract
Interpretations of Reactive Systems. ACM Trans.
Program. Lang. Syst., 19(2):253–291, 1997.

[14] F. S. de Boer, A. Di Pierro, and C. Palamidessi.
Nondeterminism and Infinite Computations in
Constraint Programming. Theoretical Computer
Science, 151(1):37–78, 1995.

[15] J. Desharnais, V. Gupta, R. Jagadeesan, and
P. Panangaden. Approximating continuous markov
processes. In LICS2000, 2000.

[16] A. Di Pierro and H. Wiklicky. An operational
semantics for Probabilistic Concurrent Constraint
Programming. In P. Iyer, Y. Choo, and D. Schmidt,
editors, ICCL’98 – International Conference on
Computer Languages, pages 174–183. IEEE Computer
Society Press, 1998.

[17] A. Di Pierro and H. Wiklicky. Probabilistic
Concurrent Constraint Programming: Towards a fully
abstract model. In L. Brim, J. Gruska, and
J. Zlatuska, editors, MFCS’98 – Mathematical
Foundations of Computer Science, volume 1450 of
Lecture Notes in Computer Science, pages 446–455,
Berlin – New York, August 1998. Springer Verlag.

[18] A. Di Pierro and H. Wiklicky. On the Precision of
Abstract Interpretations. In Tenth International
Workshop on Logic-based Program Synthesis and
Transformation (LOPSTR 2000), pages 36–44,
London, UK, 2000.

[19] A. Di Pierro and H. Wiklicky. Quantitative
observables and averages in Probabilistic Constraint
Programming. In K. Apt, A. Kakas, E. Monfroy, and
F. Rossi, editors, New Trends in Constraints, volume
1865 of Lecture Notes in Artificial Intelligence.
Springer Verlag, 2000.

[20] R. Engelking. General Topology, volume 6 of Sigma
Series in Pure Mathematics. Heldermann Verlag,
Berlin, 1989.

[21] M. Falaschi, M. Gabrielli, K. Marriott, and
C. Palamidessi. Compositional analysis for concurrent
constraint programming. In IEEE Symposium on Logic
in Computer Science, (LICS), pages 210–221, 1993.

[22] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making
Abstract Interpretations Complete. Journal of the
ACM, 47(2):361–416, 2000.

[23] V. Gupta, R. Jagadeesan, and P. Panangaden.
Stochastic programs as concurrent constraint
programs. In Symposium on Principles of
Programming Languages (POPL). ACM, 1999.

[24] R. Jagadeesan, V. Saraswat, and V. Shanbhogue.
Angelic non-determinism in concurrent constraint
programming. Technical report, Xerox Park, 1991.

[25] C. Jones. Probabilistic Non-Determinism. PhD thesis,
University of Edinburgh, Edingburgh, 1993.

[26] C. Jones and G. Plotkin. A probabilistic powerdomain
of evaluations. In Symposium on Logic in Computer
Science (LICS), pages 186–195. IEEE Computer
Society Press, 1989.

[27] A. Jung and R. Tix. The troublesome probabilistic
powerdomain. In A. Edalat, A. Jung, K. Keimel, and
M. Kwiatkowska, editors, Third Workshop on
Computation and Approximation, volume 13 of
Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers B.V., 1998. 23 pages.

[28] T. Kohonen. Self-Organization and Associative
Memory. Springer-Verlag, Berlin, 3 edition, 1989.

[29] D. Kozen. Semantics for probabilistic programs.
Journal of Computer and System Sciences,
22:328–350, 1981.

[30] M. Kwiatkowska. Infinite Behaviour and Fairness in
Concurrent Constraint Programming. In J. W.
de Bakker, W. P. Roever, and G. Rozenberg, editors,
Semantics: Foundations and Applications, volume 666
of Lecture Notes in Computer Science, pages 348–383,
Beekbergen The Nederland, June 1992. REX
Workshop, Springer Verlag.

[31] C. Morgan, A. McIver, K. Seidel, and J. Sanders.
Probabilistic predicate transformers. Technical Report
PRG-TR-4-95, Programming Research Group, Oxford
University Computing Laboratory, 1995.

[32] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Aanalysis. Springer Verlag, Berlin –
Heidelberg, 1999.

[33] V. V. Prasolov. Problems and Theorems in Linear
Algebra, volume 134 of Translation of Mathematical
Monographs. American Mathematical Society,
Providence, Rhode Island, 1994.

[34] N. Saheb-Djahromi. CPO’s of measures for
nondeterminism. Theoretical Computer Science,
12:19–37, 1980.

[35] V. Saraswat, M. Rinard, and P. Panangaden.
Semantics foundations of concurrent constraint
programming. In Symposium on Principles of
Programming Languages (POPL), pages 333–353.
ACM, 1991.

