
Measuring the Confinement of Probabilistic

Systems

Alessandra Di Pierro 1,3

Dipartimento di Informatica, Universitá di Pisa, Italy

Chris Hankin 2,3

Department of Computing, Imperial College London, United Kingdom

Herbert Wiklicky 3

Department of Computing, Imperial College London, United Kingdom

Abstract

In this paper we lay the semantic basis for a quantitative security analysis of proba-
bilistic systems by introducing notions of approximate confinement based on various
process equivalences. We re-cast the operational semantics classically expressed via
probabilistic transition systems (PTS) in terms of linear operators and we present
a technique for defining approximate semantics as probabilistic abstract interpreta-
tions of the PTS semantics. An operator norm is then used to quantify this approx-
imation. This provides a quantitative measure ε of the indistinguishability of two
processes and therefore of their confinement. In this security setting a statistical
interpretation is then given of the quantity ε which relates it to the number of tests
needed to breach the security of the system.

Key words: Security Analysis, Probabilistic Bisimulation, Probabilistic Weak
Bisimulation, Static Program Analysis, Statistical Testing.

Email addresses: dipierro@di.unipi.it (Alessandra Di Pierro),
clh@doc.ic.ac.uk (Chris Hankin), herbert@doc.ic.ac.uk (Herbert Wiklicky).
1 Alessandra Di Pierro is partly funded by Progetto MEFISTO.
2 Chris Hankin is partly funded by the EU FET project SecSafe.
3 All three authors are partly funded by the EPSRC project S77066A.

Preprint submitted to Elsevier Science 29 October 2004



1 Introduction

Since the early 1970s, when it was first raised by Lampson [1], the problem
of preventing a program P from leaking private information to unauthorised
users (also known as the confinement problem) has been extensively studied
and various approaches have been proposed for its solution. After the intro-
duction in the 1980s of the seminal notion of noninterference by Goguen and
Meseguer [2], and in the 1990s of probabilistic noninterference by Gray [3],
most of the work on confinement has been based on models which exploit the
noninterference-based formalisation of the problem: since (probabilistic) inter-
ference can be exploited by a Trojan horse to reliably leak high information to
unauthorised users, the absence of any illegal information flow will guarantee
the perfect confinement of a system. Such models ultimately depend on some
notion of process equivalence by identifying the absence of information flow
between two processes via the indistinguishability of their behaviours [4]. As
already noticed in [3] these models aim to achieve perfect security. This is in
practice hardly achievable [5]. The definition of the confinement property can
be made more usable (i.e. systems are more likely to satisfy the definition) by
weakening it so as to allow for a quantifiable amount of interference. This also
allows system developers to formally quantify the security of the system, e.g.
to precisely determine the capacity of (probabilistic) covert channels. They
are then able to trade off the security of the system with other design goals
such as performance, reliability or costs [6].

We have previously studied confinement properties in the setting of a simple
probabilistic programming language [7–9]. The main contribution of this ear-
lier work has been the development of a notion of approximate confinement
which allows for the leakage of a certain amount ε of information. Such a quan-
tity gives a measure of how hard an attacker has to work in order to breach
security. The process equivalence we have based our definition on considers
I/O observables. Moreover, this definition refers to special kinds of attackers
which can be external or internal and are equipped with a specific limited
power.

In this paper we present a significant generalisation: we cast our work in the
context of probabilistic transition systems [10]. These systems are probabilis-
tic extensions of labelled transition systems which represent a well-established
semantics for concurrent and distributed systems. Various models have been
proposed in the literature which differ in the way probability is introduced
in the underlying nondeterministic model. In the most simple extension prob-
abilistic branching completely replaces nondeterministic branching, although
transition probability distributions may depend on the occurrences of actions
in different ways. In [11] these different ways are classified in three alterna-
tive models called respectively ’reactive’, ’generative’ and ’stratified’. In other

2



probabilistic extensions some form of nondeterminism is allowed in order to
represent under-specification [12–15]. Nondeterminism can be useful for spec-
ifying the behaviour of concurrent processes , i.e. for expressing the different
interleavings in the parallel execution of concurrent probabilistic processes;
for this reason the models of probabilistic transition systems including non-
determinism are often called concurrent probabilistic systems [16].

We will adopt the purely probabilistic model concentrating in particular on
the reactive and the generative variants. The basic difference between these
two variants is that while in the reactive systems, first introduced by Larsen
and Skou in [17], each action determines a probability distribution on the
states reachable on that action, in the generative systems probability distri-
butions are defined on pairs of actions and states, thus implicitly assigning
probabilities also to the occurrences of actions. In this context we will con-
sider bisimulation and weak bisimulation as the basic process equivalences for
defining confinement both in its exact and approximate versions. The notion
of probabilistic bisimulation we will adopt is the one introduced by Larsen and
Skou in [17] for reactive systems. This is elegantly characterised by means of
a testing language so that two states are probabilistic bisimilar if and only if
they react with the same probability distribution to each test. By interpreting
tests as possible attackers, this notion immediately translates into a defini-
tion of confinement for probabilistic systems. In fact, two processes which are
probabilistic bisimilar are indistinguishable under any attack (or test). These
tests are formalised in [17] as processes in a generic language, called a testing
language, and can be used to represent different kinds of attacks. In partic-
ular, for generative systems these tests are passive as they do not determine
the probabilistic behaviour of the system. Thus, the definition of confinement
induced by probabilistic bisimulation generalises the definitions introduced in
our previous work where we consider a probabilistic language with a genera-
tive semantics and restrict to a particular kind of spies, namely passive and
memoryless spies [18,7].

One main result of this paper is the introduction of a characterisation of
probabilistic bisimulation equivalence via probabilistic abstract interpretation
[19,20]. This translates into the probabilistic setting a result that was already
established in the classical setting by Schmidt [21]. Our characterisation is
obtained via the representation of a probabilistic transition system by means
of a linear operator. The equivalence between two systems is then established
by the existence of certain linear transformations (abstractions). In the bisim-
ulation semantics, such abstractions result in a “lumped” process [22]; in fact,
as pointed out by [23], Larsen and Skou’s notion of probabilistic bisimulation
is a recasting of Kemeny and Snell’s lumpability condition. The use of linear
operators to represent relations provides us with a means to define a notion
of distance via an appropriate operator norm. In particular, we will use the
operators representing probabilistic bisimulation to define a quantity ε which

3



measures “how much” two processes are not bisimilar. We also show how these
same notions can be used to capture weak probabilistic bisimulation and its
approximate variant. Our definition of weak bisimulation for probabilistic sys-
tems is similar to the one introduced in [16] for generative systems. Because
of the presence of τ actions, a straightforward application of the technique
we use for probabilistic bisimulation is non-trivial for weak bisimulation. In
particular, the linear operator representing the abstracted system must be
defined so as to take into account possible looping on τ -transitions.

Computing an ε measure can be computationally expensive, if not infeasible;
thus we show how to establish a bound for ε which is easy to compute. Finally,
we give a statistical interpretation of ε which, in the setting of security, allows
us to relate the level of confinement to the number of tests a spy has to perform
in order to breach the system.

2 Probabilistic Transition Systems

In this paper we will consider probabilistic transition systems (PTS), that is
labelled transition systems with a probabilistic branching.

Given a set S, we call a function π : S 7→ [0, 1] a probability distribution on
S iff

∑
s∈S π(s) = 1. We call the function π a sub-probability distribution iff∑

s∈S π(s) ≤ 1. We denote by Dist(S) and SDist(S) the set of all probability
and sub-probability distributions on S, respectively. Given an equivalence re-
lation ∼ on a finite set S and a distribution π on S, the lifting of π to the
set of equivalence classes of ∼ in S, S/∼, is defined for each equivalence class
[s] ∈ S/∼ by: π([s]) =

∑
s′∈[s] π(s′). It is straightforward to show that this

is indeed a distribution on S/∼ (e.g. [10, Def 1 & Thm 1]). Analogously, we
can show that if π is a sub-probability distribution on S then its lifting is a
sub-probability distribution on S/∼.

We recall the definition of a PTS as given in [10, Def 2].

Definition 1 A probabilistic transition system is a tuple (S, A,−→, π0), where:

• S is a non-empty, countable set of states,
• A is a non-empty, finite set of actions,
• −→ ⊆ S × A×Dist(S) is a transition relation, and
• π0 ∈ Dist(S) is an initial distribution on S.

For s ∈ S, α ∈ A and π ∈ Dist(S) we write s
α−→ π for (s, α, π) ∈ −→.

By s
p:α−→ t we denote the transition to individual states t with probability

p = π(t), on action α.

4



•

1:a
oooooooooo

wwoooooooooo
1
2
:b

��
��

�

����
��

�
1
2
:b

��

1
3
:c

??
??

?

��?
??

??
2
3
:c

OOOOOOOOOO

''OOOOOOOOOO

• • • • •

Fig. 1. A Reactive Probabilistic Transition System

The above definition of a PTS is very general and allows for purely probabilis-
tic models where each transition is assigned a probability (as in e.g. [11,17,24])
as well as models where both non-deterministic and probabilistic branching
are present (as in e.g. [15,12–14]). We will consider in this paper two particu-
lar variants of this definition which correspond to the reactive and generative
models in [11]. In reactive systems each action determines a probability distri-
bution and for each state s and action α only one distribution is possible, i.e.
if s

α−→ π1 and s
α−→ π2 then π1 = π2. In the generative systems distributions

implicitly assign a probability also to the occurrences of actions. Formally we
can define the reactive and generative model as a particular case of Defini-
tion 1 where the transition relation is a partial function from the set of states
into Dist(A × S), and from the set of the pairs (state, action) into Dist(S),
respectively. More formally, we will consider the following definition.

Definition 2 A reactive system is a PTS (S, A,−→, π0), where the transition
relation is a partial function −→: S × A ↪→ Dist(S).

A generative system is a PTS (S, A,−→, π0), where the transition relation is
a partial function −→: S ↪→ Dist(S × A).

An example of a reactive PTS is depicted in Figure 1. The environment pro-
vides three possible actions a, b and c. Once an action has been chosen (or
in the terminology of [25], the experiment of pressing the associated button
succeeds) the process makes an internal state transition according to the prob-
ability distribution associated to that action.

For generative systems, the same probability distribution is used to govern
both the choice of the action and the (internal) state transition. This model,
also called fully probabilistic in [16], is more concrete than the reactive model
as all choices are now resolved probabilistically. In Figure 2 we give an example
of a generative PTS. Here it is the process which decides according to a given
probability which of the actions a, b and c provided by the environment it will
react to.

Note that the fact that in Definition 2 transition relations are partial functions
is due to the presence of terminal states, i.e. states where no transitions are
possible for any actions. While reactive systems are similar in their structure
to Markov Decision Processes where we abstract from the reward function

5



•

1
4
:a

oooooooooo

wwoooooooooo
1
8
:b

��
��

�

����
��

�
1
8
:b

��

1
3
:c

??
??

?

��?
??

??
1
6
:c

OOOOOOOOOO

''OOOOOOOOOO

• • • • •

Fig. 2. A Generative Probabilistic Transition System

[26], generative systems are effectively discrete Markov chains labelled with
actions. This will be made more clear in Section 3.4 where we will introduce
linear representations of PTS.

3 Operator Representation of Quantitative Relations

In order to provide an appropriate mathematical framework for the quantita-
tive study of non-interference and confidentiality for probabilistic processes we
will recast the common relational presentation of probabilistic transition sys-
tems in terms of linear maps and operators. To this purpose we first introduce
quantitative relations and present a general way to represent them via linear
operators; then we instantiate this method to the particular case of transition
relations which are binary, quantitative relations −→ ⊆ S×W×S on the set
S of the program states, and with “weights” taken from some appropriate set
(ring, field, etc.) W.

In the case where S is finite the framework we will consider is essentially
algebraic as linear operators on finite dimensional spaces are canonically rep-
resented by (finite) matrices. This simple finite setting is sufficient for the
treatment of terminating processes and covers also the case of processes with
infinite execution paths as long as only finitely many states are involved. In
the more general case where S is countably infinite we will need to develop ad-
ditional topological notions which go beyond basic linear algebra and require
the use of functional analytical and operator algebraic methods.

3.1 Quantitative Relations

Transition relations and probabilistic transition relations are special kinds of
quantitative relations. As already mentioned, we will consider in this paper at
most countable state spaces.

Definition 3 Given a countable set X and a set W, a quantitative relation
R over X with weights in W is a subset R ⊆ X ×W×X.

6



For numerical weights — i.e. for W being a ring, field, etc. — we can interpret
R ⊆ X ×W × X as a function R ⊆ X × X → W by adding all the weights
associated to the same pair (x, y) ∈ X ×X, i.e.

R(x, y) =
∑

(x,w,y)∈R

w.

Classical or qualitative relations are quantitative relations with W = {0, 1}
and R(x, y) ∈ {0, 1}. A probabilistic relation on a set X is a subset R ⊆
X × [0, 1]×X such that p(x) = 1 for all x ∈ X, where

p(x) =
∑
{ p | (x, p, y) ∈ R and y ∈ X} =

∑
y∈X

R(x, y).

In the case of p(x) ≤ 1, R will be called a sub-probabilistic relation.

3.2 Linear Maps and Operators

The idea of representing quantitative relations, and in particular transition
relations, as matrices is quite straightforward. By a matrix we simply mean a
(possible countably infinite) rectangular arrangement of weights (see e.g. [27,
Def 3.1.]). We associate to each classical relation R ⊆ X × X a 0/1-matrix
defined by:

(MR)xy =

 1 iff (x, y) ∈ R

0 otherwise

where x, y ∈ X, and (MR)xy denotes the entry in column x and row y in
the matrix MR. Analogously, the matrix representing a quantitative relation
R ⊆ X ×W×X is defined by:

(MR)xy =

 p iff R(x, y) = p

0 otherwise

For probabilistic (sub-probabilistic) relations we obtain a so-called stochastic
(sub-stochastic) matrix, that is a positive matrix where the entries in each row
sum up to one (are less than or equal to one).

It is well known from basic linear algebra that matrices are not just schemes
for writing down weights but also a way to specify linear maps between vector
spaces.

7



Our aim is to investigate the properties of quantitative (transition) relations
via their associated linear maps and operators. A similar approach towards
analysing the structure of (finite and infinite) graphs is at the center of so-
called algebraic graph theory, e.g. [28–30].

In order to achieve this we introduce an appropriate vector space construction:

Definition 4 The vector space V(X) over a set X is the space of formal
linear combinations of elements in X with coefficients in a field W; we can
represent the elements in V(X) as infinite vectors with coefficients in W and
indexed by X:

V(X) = { (vx)x∈X | vx ∈ W}.

We will assume in our treatment a very general set of weights, namely the
complex numbers. This allows us to embed other weight sets of interest in
a single general structure, as {0, 1} ⊆ [0, 1] ⊆ R ⊆ C. The use of C as “the
field” is also standard practice in operator theory as it avoids various technical
problems (e.g. related to the roots of polynomials).

Clearly, V(X) has indeed the algebraic structure of a vector space; multiplica-
tion with a scalar c ∈ C and vector addition can be defined component-wise
simply by:

c(vx)x∈X = (cvx)x∈X and (vx)x∈X + (wx)x∈X = (vx + wx)x∈X

while the zero vector o is given by ox = 0 for all x ∈ X. Every (sub-probability)
distribution corresponds to a vector in V(S).

For finite sets X of cardinality n, the representation of quantitative relations
on X as linear operators on V(X) is straightforward since V(X) is isomorphic
to the n-dimensional vector space Cn. The matrix representation MR of a
relation R on X defines a linear operator on V(X) which, by abuse of notation,
we also denote by MR : V(X) → V(X) and which is defined via

(MR ((vx)x∈X))y∈X =

(∑
x∈X

vx(MR)xy

)
y∈X

.

The application of MR to a vector v = (vx)x∈X ∈ V(X) is thus simply im-
plemented by vector/matrix multiplication. It is easy to see that this indeed
defines a linear operator on V(X), i.e. MR(v + w) = MR(v) + MR(w), and
MR(cv) = cMR(v) for all c ∈ C and w, v ∈ V(X). We denote the set of all
linear maps between two vector spaces V and W by L(V ,W) and the set of

8



linear operators on V by L(V) = L(V ,V). Note that L(V) is itself again a vec-
tor space with (cM)(v) = cM(v) and (M + N)(v) = M(v) + N(v). We write
MR(v) for the application of MR to v, but vMR when we consider the matrix
multiplication which implements this application. Similarly, function compo-
sition of linear maps can be implemented by (reverse) matrix multiplication:
given two linear maps M and N their composition M ◦N is represented by
the matrix we obtain as the product NM.

In the case of finite sets X, i.e. for finite dimensional vector spaces V(X),
there is in fact a one-to-one correspondence between matrices and linear maps,
e.g. [27, 3.2]. Furthermore, the finite dimensional case also leads to a unique
topological structure [27, 1.22] and every linear map/operator is automatically
continuous.

For countably infinite sets, however, the situation is more complicated. It is
no problem to utilise an infinite countable matrix in order to define a map in
the same way as in the finite case. However, for a general infinite matrix we
have no guarantee that

∑
x∈X vx(MR)xy exists. As an example, for vx = 1 and

(MR)xy = 1 for all natural numbers x, y ∈ N, then this results in an infinite
vector w with wx = ∞ for all x ∈ N.

Furthermore, even if we restrict ourselves to only those relations for which
their matrix representation results in a well-defined linear map we still have
the problem that the algebra of infinite matrices which we obtain this way is
topologically “unstable”. This algebra has no universal topological structure
(like in the finite dimensional case) and the notions of linearity and continuity
do not coincide. It is therefore difficult to define the limit of a sequence of
infinite matrices in a general way.

To overcome these problems, we will restrict our attention to relations which
can be represented concretely as so-called bounded linear operators on a
Hilbert space or, in other words, correspond to elements of a C∗-algebra. ¿From
a topological viewpoint C∗-algebras are particularly well behaved operator al-
gebras. The algebraic structure of a C∗-algebra allows for exactly one (norm)
topology [31, Cor. 2.1.2], and thus offers in some sense the same advantages
as the linear algebra of finite dimensional matrices.

3.3 Some Operator Theory

We assume in the following a basic knowledge of concepts in functional analysis
and operator theory, as one can find for example in [32,31,33,34].

To simplify our treatment we consider only complex vector spaces and alge-
bras, i.e. we assume, as before, that the base field is C. We denote by . the

9



complex conjugation in C, i.e. x + iy = x− iy.

3.3.1 Normed Vector Spaces

The notion of norm is essential for our treatment of the countable case and
therefore we recall here the basic definition.

Definition 5 A norm on a vector space V is a map ‖.‖ : V 7→ R such that
for all v, w ∈ V and c ∈ C:

(i) ‖v‖ ≥ 0 ,
(ii) ‖v‖ = 0 ⇔ v = o,
(iii) ‖cv‖ = |c|‖v‖,
(iv) ‖v + w‖ ≤ ‖v‖+ ‖w‖,

with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a vector space via
the distance function d(v, w) = ‖v − w‖.

Definition 6 Given a normed vector space V the operator norm for linear
operators M : V → V on V is defined by:

‖M‖ = sup
v∈V

‖M(v)‖
‖v‖

= sup
‖v‖=1

‖M(v)‖.

The operator norm, if defined, is indeed a norm on L(V) and depends on the
particular vector norm ‖.‖. Common examples of (vector) norms are:

1-norm or taxi cab-norm: ‖(vi)i‖1 =
∑

i

|vi|,

2-norm or euclidian norm: ‖(vi)i‖2 =
√∑

i

|vi|2,

∞-norm or supremum-norm: ‖(vi)i‖∞ = sup
i
|vi|.

In the case of finite dimensional vector spaces — although in general resulting
in numerically different values, all these norms induce equivalent topologies,
i.e. convergence in one norm implies convergence in any of the others. However,
for infinite dimensional vector spaces this is not any more the case.

10



3.3.2 Bounded Operators on Hilbert Spaces

In order to deal with “well-behaved” relations on countable infinite spaces we
first define a restricted vector space on X.

Definition 7 The Hilbert space `2(X) over a countable set X is the space
of formal linear combinations of elements in X with coefficients in C which
we can represent as infinite vectors with complex coefficients and indexed by
elements in X such that:

`2(X) = { (vx)x∈X | vx ∈ C and
∑
x∈X

|vx|2 < ∞}.

Clearly, `2(X) ⊆ V(X) and scalar multiplication and vector addition can
be defined in the same way as for V(X). In the finite dimensional case we
can identify V(X) ∼= `2(X). Furthermore, the standard inner product 〈., .〉 :
`2(X)× `2(X) → C defined by

〈(vx)x∈X , (wx)x∈X〉 =
∑
x∈X

vxwx

can be used to define the standard norm on `2, that is the Euclidian norm, as

‖v‖2 =
√
〈v, v〉. Well-known results show that this is indeed a norm, and that

the induced metric topology is complete, i.e. all Cauchy sequences converge.
Furthermore, one can show that every separable Hilbert space H is isomorphic
to the “standard” Hilbert space `2 = `2(N), see e.g. [35, Cor 2.2.13].

The second element of our model of “well-behaved” relations on countable
infinite spaces is a restriction to a particular class of linear operators.

Definition 8 A linear operator M ∈ L(H) on a Hilbert space H is said to
be bounded if its operator norm is bounded, i.e. if ‖M‖ < ∞. We denote by
B(H) the set of bounded linear operators on H.

Obviously we have B(H) ⊆ L(H) and that B(H) is a vector space, i.e. the
vector space operations inherited from L(H) do not lead out of B(H). Fur-
thermore, we can define an algebra product between elements in B(H) as the
function composition.

It is straightforward to show that a linear operator M on H is continuous if
and only if it is bounded, e.g. [33, Prop 1.1]. This means that as in the finite
dimensional case linearity and continuity coincide for operators in B(H).

11



3.3.3 C∗-Algebras

In the following we will utilise operators in B(`2(X)) as our model of “well-
behaved” quantitative relations on a countable infinite space X. The domain
B(`2(X)) is important as it provides the standard example of a so-called C∗-
algebra. We recall some of the basic definitions and results from the theory of
C∗-algebras.

An algebra is a vector space A together with a map A×A → A denoted by
(a, b) 7→ a · b = ab, which is bi-linear — i.e. a(αb) = αab, (za)b = zab for
z ∈ C, and (a + b)c = ac + ab, a(b + c) = ab + ac — such that a(bc) = (ab)c.
An algebra with a norm (as a vector space) which is also sub-multiplicative,
i.e. ‖ab‖ ≤ ‖a‖‖b‖, is called a normed algebra. A normed algebra which is
complete is called a Banach algebra. An involutive algebra or a *-algebra is an
algebra A together with a conjugate-linear — i.e. (za)∗ = za∗ for z ∈ C, and
(a + b)∗ = a∗ + b∗ — map A 7→ A denoted by a 7→ a∗, such that a∗∗ = a and
(ab)∗ = b∗a∗. A Banach *-algebra is a complete, normed, involutive algebra
such that ‖a∗‖ = ‖a‖. A C∗-algebra is then defined as follows, e.g. [31, p36].

Definition 9 A C∗-algebra is a Banach *-algebra such that:

‖a∗a‖ = ‖a‖2.

A simple example of a C∗-algebra is the set M(n) of complex, finite dimen-
sional n×n matrices. The scalar multiplication, addition and algebra product
are the usual ones for matrices. The unique C∗-norm of a ∈ Mn is given by
the square root of the spectral radius — i.e. the largest eigenvalue — of a∗a:
‖a‖2 = ρ(a∗a).

Other examples of C∗-algebras include C the complex numbers, C(X) the al-
gebra of continuous functions on a compact space X with pointwise operations
and B(H) the algebra of bounded linear operators on Hilbert spaces H. In fact
C∗-algebras are all isomorphic to a sub-algebra of B(H) (e.g. [34, Thm 2.2.1
& 5.4.1]).

Proposition 10 (Gelfand-Naimark) Any C∗-algebra is isometrically *-iso-
morphic to a C∗-subalgebra of some B(H), i.e. C∗-algebra of bounded, linear
operators on a Hilbert space H. If the C∗-algebra is separable then H can be
taken to be separable.

All infinite dimensional, separable C∗-algebras can therefore be represented
as C∗-subalgebras of B(`2). It is common to distinguish between abstract
C∗-algebras which we denote by A, B, etc. with elements a, b, . . . ∈ A and
concrete C∗-algebras, i.e. C∗-algebras which are given as C∗-subalgebras of
some B(H) and whose elements are linear bounded operators denoted by

12



A,B, . . . ∈ B(H).

The C∗-algebraic setting allows the investigation of properties of linear opera-
tors independently of their concrete representation. For example, one can use
an abstract characterisation to define certain types of operators, such as an
(orthogonal) projection operator P which has to fulfill the conditions P2 = P
and P∗ = P.

Although C∗-algebras have a unique C∗-norm, there are several important
(in the infinite dimensional case non-equivalent) topologies on the concrete
C∗-algebra B(`2), e.g. [36, Sect I.6], in particular:

norm or uniform topology: a sequence (An)n in B(`2) converges uniformly
if there exists an operator A ∈ B(`2) such that limn→∞ ‖An −A‖ = 0.

strong operator topology: a sequence (An)n in B(`2) converges strongly if
there exists an A ∈ B(`2) such that for all x ∈ `2: limn→∞ ‖Anx−Ax‖ = 0.

We write limAn for the uniform limit and s-limAn for the strong limit. The
strong operator topology is weaker than the uniform or norm topology, i.e.
convergence in the norm implies convergence in the strong topology but not
vice versa.

3.4 Representation of Probabilistic Transition Systems

We now return to the issue of how we will represent probabilistic transition
systems on at most countably infinite state spaces.

Our aim is to establish whether transition relations for generative and reactive
PTS’s are “well-behaved”, i.e. if they are represented by bounded linear oper-
ators on `2(S). We will not address the general problem of when a transition
relation can be represented by a bounded operator but only aim to establish a
simple criterion which guarantees that a given transition relation corresponds
to an operator in B(`2(S)).

Definition 2 implies that for both generative and reactive PTS if we fix a α ∈ A
the relation

α−→ is a partial function S ↪→ SDist(S). In particular, while for
reactive systems this function always results in a distribution whenever is de-
fined, for generative systems it gives in general a sub-probability distribution.
We now show that for PTS satisfying a certain condition, relations

α−→ can
be represented by bounded linear operators.

For a state s in a generative or reactive PTS (S, A,−→, π0) we denote by

13



out-deg(s) the number of successors of s, i.e. the cardinality of the set:

{t ∈ S | ∃α ∈ A and p 6= 0 : s
p:α−→ t}

and by in-deg(s) the number of predecessors of s, i.e. the cardinality of the
set:

{t ∈ S | ∃α ∈ A and p 6= 0 : t
p:α−→ s}.

Proposition 11 Let S be a countable set and −→: S ↪→ SDist(S) such that
sups∈S in-deg(s) < ∞ and sups∈S out-deg(s) < ∞. Then the matrix M−→
defines a bounded linear operator M(−→) ∈ B(`2(S)).

PROOF. In the following we will denote M−→ by M. We show that for all
v = (vs)s∈S ∈ `2(S)) such that ‖v‖2 = 1, we have ‖M(v)‖2 < ∞. We have
that

‖M(v)‖2
2 =

∞∑
j=1

(
∞∑
i=1

Mijvi)
2.

Let m = sups∈S in-deg(s) and n = sups∈S out-deg(s). This means that in each
column i of M there are at most m(i) ≤ m non-zero entries Mf1(i)i, Mf2(i)i,
. . .Mfm(i)i. The functions f1, . . . , fm are functions picking out the non-zero
entries in each column i in decreasing order, i.e. we assume that vf1(i) ≥
vf2(i) ≥ . . . ≥ vfm(i)(i). Since Mij ≤ 1 for all i, j, we get:

‖M(v)‖2
2 =

∞∑
j=1

(
m(j)∑
i=1

Mfi(j)jvfi(j))
2 ≤

∞∑
j=1

(
m(j)∑
i=1

vfi(j))
2 ≤

∞∑
j=1

(mvf1(j))
2

Since sups∈S out-deg = n < ∞, we have that for every row k the number of
i’s such that f1(i) = k cannot be greater than n. We therefore have:

‖M(v)‖2
2 ≤ m2

∞∑
j=1

v2
f1(j) ≤ m2n

∞∑
k=1

v2
k = nm2‖v‖2

2

Therefore, ‖M‖2 = sup‖v‖2=1 ‖M(v)‖2 ≤ nm2 < ∞. 2

This result is closely related to a well-known theorem regarding the so-called
adjacency operator in the algebraic theory of non-oriented infinite graphs, e.g.
[29, Thm 3.1] or [30].

14



Note that the condition in Proposition 11 is indeed only a sufficient condition.
There are simple infinitely branching PTS’s which also give rise to bounded
linear operators on `2(S), for example:

•

1
2
:a

oooooooooo

wwoooooooooo
1
4
:a

��
��

�

����
��

�
1
8
:a

��

···
BB

BB
BB

  B
BB

BB
BB

1
2n :a

PPPPPPPPPP

((PPPPPPPPPP ···
UUUUUUUUUUUUUUUU

**UUUUUUUUUUUUUUU

• • • . . . • . . .

For computational purposes, infinite-dimensional matrices, even when they
represent a bounded linear operator in B(`2(S)) are anything but easy to
handle. However, it is possible to define an approximating sequence for an
operator M ∈ B(`2(S)) as a sequence of finite dimensional approximations.

Given an operator M ∈ B(`2), consider a sequence of (orthogonal) projections
Pn : `2 → `2 onto the first n coordinates of `2, that is operators such that
P2

n = Pn = P∗
n. We call Mn = PnMPn a finite section of M. It corresponds

effectively to taking the n×n sub-matrix in the upper left corner of the matrix
representing M. The sequence (Mn)n is an approximating sequence for M in
the sense that M is the strong limit of this sequence, i.e. M = s-limMn =
s-limn→∞PnMPn (see e.g. [37, Sect 2.1]. This so called finite section method
plays an important role in the numerical analysis of general operators. We will
adopt this method in the case of PTS’s with countable infinite state spaces.

Knowing that we can represent the partial transition relations
α−→ of genera-

tive and reactive PTS by bounded linear operators on `2(S) we can now define
the representation of a PTS.

Definition 12 Given a (generative or reactive) PTS p = (S, A,−→, π0), we
define its matrix or operator representation (M(X),M(π0)) as the direct sum
of the operator representations of the transition relations

α−→ for each α ∈ A:

M(p) =
⊕
α∈A

M(
α−→),

and |A| copies of the vector π0 representing π0: M(π0) =
⊕

α∈A π0.

We recall that for a set {Mi}k
i=1 of ni ×mi matrices, the direct sum of these

15



A : •1 1
2
:bff

1
2
:a

��
•2

B : •1

1
2
:a

��

1
2
:b

��@
@@

@@
@@

@@
@@

@@

•2 •3

1
2
:a

��

1
2
:b

  A
AA

AA
AA

AA
AA

AA

•4 •5

1
2
:a

��

1
2
:b

!!C
CC

CC
CC

CC
CC

CC
C

. . . . . .

Fig. 3. Two Probabilistic Transition System

matrices is defined by the (
∑k

i=1 ni)× (
∑k

i=1 mi) matrix:

M =
⊕

i

Mi =



M1 0 0 . . . 0

0 M2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Mk



This definition extends in the obvious way to countable infinite matrices, and
it is the case that if the Mi represent bounded linear operators on some space
`2(Si) then

⊕
i Mi represents a bounded linear operator on `2(S1×S2× . . . Sk).

Given a PTS p = (S, A,−→, π0) and a state s ∈ S, we denote by Rs ⊆ S the
set of all states reachable from s, by T (s) the transition system induced on
the restricted state space Rs, and by M(s) the matrix representation of T (s).

3.4.1 Examples

Example 13 Consider the simple finite PTS A in Figure 3. The matrix rep-
resentation of this PTS is given by:

M(A) = Ma(A)⊕Mb(A) =

 0 1
2

0 0

⊕
 1

2
0

0 0



Example 14 We can also represent an infinite PTS as a bounded linear op-
erator. Consider for example the PTS B in Figure 3. This infinite process

16



requires an infinite dimensional matrix, i.e. an operator, to describe it. Utilis-
ing the finite section method we can approximate this operator via a sequence
of finite-dimensional operators, i.e. matrices in M(2n) of the form:

(
M2n

a (B)
)

ij
=


1/2 for i = 2k − 1 ∧ j = 2k

with k = 1 . . . n

0 otherwise

(
M2n

b (B)
)

ij
=



1/2 for i = 2k − 1 ∧ j = 2k + 1

with k = 1 . . . n− 1 and

for i = 2n− 1 ∧ j = 2n− 1

0 otherwise

Then we can represent the infinite PTS B by the strong limit of this sequence,

M(B) = s- lim
n→∞

(M2n
a (B)⊕M2n

b (B)).

3.4.2 Properties of PTS Representations

We recall that a matrix is called stochastic if the elements of every row sum
up to 1; it is called sub-stochastic if this sum is less than or equal to 1.

The matrix representation of reactive systems will always lead to a direct sum
of a special kind of sub-stochastic matrices. More precisely, for every action
α the corresponding factor Mα in the direct sum is such that the sum on the
sth row is 1 if the state s is not terminal and 0 otherwise.

For generative systems the factors in the direct sum
⊕

α Mα are sub-stochastic
matrices. However, as one intuitively expects, the sum of all factors always
results in a matrix

∑
α Mα which is stochastic but for the terminal states.

This is due to the fact that the combined probabilities for all actions leaving
a non-terminal state s define a distribution in Dist(A× S) which corresponds
to the sth row in

∑
α Mα.

Consider the simple generative process in Example 13. The sum

Ma(A) + Mb(A) =

 0 1
2

0 0

+

 1
2

0

0 0

 =

 1
2

1
2

0 0



is not row-normalised in the second row, corresponding to the terminal state

17



2. We can nevertheless overcome this technical difficulty and associate to a
generative process a stochastic matrix. One way is to introduce a silent τ
transition on terminal states.

Example 15 Consider again Example 13 and extend the execution tree as
follows:

•1 1
2
:bff

1
2
:a

��
•2

−→ •1 1
2
:bff

1
2
:a

��
•2 1:τ
xx

The extended linear operator representation of A does now correspond to a
stochastic matrix:

Ma(A) + Mb(A) + Mτ (A) =

 0 1
2

0 0

+

 1
2

0

0 0

+

 0 0

0 1

 =

 1
2

1
2

0 1

 .

In the following, we will always assume such a stochastic extension for termi-
nating processes, even if we omit to mention explicitly the silent moves on the
terminal states.

4 Probabilistic Abstract Interpretation

In Section 5 we will present a technique for defining approximate versions of
process semantics and ultimately of security properties which makes use of the
framework of Probabilistic Abstract Interpretation (PAI). This was introduced
in [20,19] as a probabilistic version of the classical Abstract Interpretation (AI)
framework by Cousot & Cousot [38,39].

Classical abstract interpretation provides general techniques for the analysis of
programs which are based on the construction of safe approximations of the
concrete semantics of programs via the (order-theoretic) notion of a Galois
connection [40,41].

Probabilistic abstract interpretation re-casts these techniques in a probabilistic
setting where linear spaces replace the classical order-theoretic domains, and
the notion of the so-called Moore-Penrose pseudo-inverse of a linear operator
replaces the classical notion of a Galois connection. The abstractions we get
this way are close approximations of the concrete semantics. Thus, closeness

18



is a quantitative replacement for classical safety which does not require any
approximation ordering.

The definition of a probabilistic abstract interpretation is given in terms of
probabilistic domains. A probabilistic domain is essentially a space which
represents the distributions Dist(S) on the state space S of a PTS, i.e. in
our setting the Hilbert space `2(S). For finite state spaces we can identify
V(S) ' `2(S).

Definition 16 Let C an D be two probabilistic domains. A probabilistic ab-
stract interpretation is a pair of bounded linear operators A : C → D and
G : D → C, between (the concrete domain) C and (the abstract domain) D,
such that G is the Moore-Penrose pseudo-inverse of A, and vice versa.

A simple method for constructing a probabilistic abstract interpretation which
we will use in this paper is as follows: Given a linear operator Φ on some
Hilbert space V expressing the probabilistic semantics of a concrete system,
and a linear abstraction function A : V 7→ W from the concrete domain into an
abstract domain W , we compute the Moore-Penrose pseudo-inverse G = A†

of A. The abstract semantics can then be defined as the linear operator on
the abstract domain W :

Ψ = A ◦ Φ ◦G.

We will now introduce in some more detail the central notion of Moore-Penrose
pseudo-inverse.

4.1 Moore-Penrose Pseudo-Inverse

For an abstract C∗-algebra we can define the notion of a Moore-Penrose
pseudo-inverse purely algebraically [37, Sect 4.7] (see also [42, Def 1.1.1] and
[43, 8.43]). This is sufficient for the finite-dimensional setting, while for dealing
with the infinite-dimensional case we will need some topological considerations
which we will use for a more concrete definition.

Definition 17 An element a ∈ A in a C∗-algebra A is said to be Moore-
Penrose invertible if there exists an element b ∈ A such that:

(i) aba = a,
(ii) bab = b,
(iii) (ab)∗ = ab,
(iv) (ba)∗ = ba.

19



If an element a ∈ A is Moore-Penrose invertible then there exists a unique
element b = a†, the Moore-Penrose pseudo-inverse of a, which fulfills the above
conditions [37, Prop 4.20].

An alternative but equivalent definition for concrete C∗-algebras is given in
[43, 8.43] (see also [42, Def 1.1.2]).

Definition 18 Let C and D be two Hilbert spaces and A : C 7→ D a bounded
linear map between them. A bounded linear map A† = G : D 7→ C is the
Moore-Penrose pseudo-inverse of A iff

(i) A ◦G = PA, and
(ii) G ◦A = PG,

where PA and PG denote orthogonal projections onto the ranges of A and G.

For finite-dimensional C∗-algebras — in particular for matrix algebras M(n)
— every operator is Moore-Penrose pseudo-invertible [44,42,37,43].

For operator algebras over infinite dimensional Hilbert spaces things are a bit
more complicated. In the case of concrete C∗-algebras, i.e. of A ∈ B(H),
the answer is given by the following result which also states how we can
“construct” the Moore-Penrose Pseudo-Inverse [37, Thm 4.24].

Proposition 19 An operator A ∈ B(H) is Moore-Penrose invertible if and
only if it is normally solvable, i.e. the range {Ax | x ∈ H} is closed. In this
case A∗A+P — with P the orthogonal projection of H onto the kernel of A,
i.e. onto {x ∈ H | Ax = o} — is invertible and

A† = (A∗A + P)−1A∗.

It is easy to see that if the range of an operator is finite dimensional then it
is normally solvable.

For the finite dimensional case, various algorithms are known for the con-
struction of the Moore-Penrose pseudo-inverse [42]. A general technique for
computing the Moore-Penrose pseudo-inverse of infinite operators is via finite
sections. For an operator A with an approximating sequence (An)n we can
construct the Moore-Penrose pseudo-inverse as established by the following
proposition [37, Cor 4.34].

Proposition 20 Let H be a separable Hilbert space, A ∈ B(H) and An a
sequence of finite dimensional operators An ∈M(n) with supn ‖A‖ < ∞ and
such that An → A and A∗

n → A∗ strongly. Then A is normally solvable and
A†

n → A† strongly.

20



In other words if we can approximate A by a sequence (An)n and the sequence
(A†

n)n of Moore-Penrose pseudo-inverse converges in the strong operator topol-
ogy then A† exists and is identical to the limit of (A†

n)n.

4.2 Special Classes of Abstraction Operators

In this section we introduce the definition and the properties of some particular
operators which we will use in Section 5 to define different abstractions of the
PTS semantics into various process equivalences. We will also use these special
operators to define approximate versions of the process equivalences and their
corresponding confinement properties.

4.2.1 Permutation Operators

The first class of operators we consider represents very simple abstractions
consisting of the permutation of the system’s states.

Definition 21 An n × n-matrix S is called a permutation matrix if there
exists a permutation π : {1, . . . , n} → {1, . . . , n} such that

Sij =

 1 if j = π(i)

0 otherwise.

In other words, S is the matrix representation of a relation on {1, . . . , n} which
is a bijection. This notion can be extended to infinite structures as follows.

Definition 22 A bounded linear operator S ∈ B(H) on a Hilbert space is
called a permutation operator iff there exists a sequence of permutation ma-
trices Sn such that s-limSn = S and s-limS∗n = S∗.

We denote by S(n) the set of all n×n permutation matrices and by S(H) the
set of permutation operators on H; obviously we have S(n) = S(Cn).

Proposition 23 For any permutation matrix S ∈ S(n) the following holds:

S−1 = S∗ = ST = S†,

i.e. inverse, adjoint, transpose, and pseudo-inverse coincide.

21



4.2.2 Classification Operators

Definition 24 We call an n×m-matrix K a classification matrix iff K rep-
resents a surjective function κ : {1, . . . , n} → {1, . . . ,m}, i.e.

Kij =

 1 if j = κ(i)

0 otherwise.

Again we can generalise this notion to the infinite case.

Definition 25 A bounded linear operator K ∈ B(H) on a Hilbert space is
called a classification operator iff there exists a sequence of classification ma-
trices Kn such that s-limKn = K and s-limK∗

n = K∗.

We denote by C(n,m) the set of all n × m-classification matrices, and by
C(H1,H2) the set of classification operators; again we have C(n, m) = C(Cn, Cm).

Classification matrices are stochastic matrices corresponding to a particular
type of abstraction which stems from an equivalence relation. For a finite set
X we can show that there is a one-to-one correspondence between equivalence
relations ≈ on X and classification operators on the vector space V(X).

Proposition 26 Let X be a finite set. Then for every equivalence relation ≈
on X there exists a classification operator K ∈ C(n,m) ' C(`2(X), `2(X/≈))
and vice versa.

PROOF. The characteristic map χ≈ : X 7→ X/≈ which associates to each
x ∈ X its equivalence class [x] ∈ X/≈ is a surjective function and therefore
has a matrix representation (as a relation χ≈ ⊆ X ×X/ ≈) in C(n,m). Vice
versa, by definition a classification matrix K ∈ C(n, m) induces a partition
(and therefore an equivalence relation) on the set of its row indices. 2

In the infinite case we can show that:

Proposition 27 Let X be a countable set and ≈ an equivalence relation on
X such that X/≈ is finite. Then there exists a classification operator K ∈
C(`2(X), `2(X/≈)) which represents ≈.

PROOF. Firstly, we observe that K defines a ∞ × n matrix. This maps
every x ∈ `2(X) with ‖x‖ = 1 into a vector ‖K(x)‖ < ∞. Thus we have
K ∈ B(`2(X), `2(X/≈)).

22



Secondly, K is the strong limit of a sequence of finite-dimensional classification
matrices Kn; to see this simply take an enumeration of X and Kn = πnKπn

(cf. finite section method [37]). 2

Obviously, every permutation matrix is also a classification matrix: S(n) ⊆
C(n, n). As a consequence, every permutation operator is a classification op-
erator: S(H) ⊆ C(H,H).

4.2.3 Moore-Penrose Pseudo-Inverse of Classification Operators

Although a classification operator K represents a classical function, i.e. cor-
responds to an (infinite) 0/1-matrix, the pseudo-inverse will in general not be
an (infinite) 0/1-matrix. This is because it is normalised. The normalisation
operation N is defined for a matrix A by

N (A)ij =


Aij

aj
if aj =

∑
i Aij 6= 0

0 otherwise.

Proposition 28 The pseudo-inverse of a classification operator K corresponds
to its normalised transpose or adjoint:

K† = N (KT ) = N (K∗).

PROOF. Show by computation that N (K) fulfills the Moore-Penrose con-
ditions of Definition 17 or Definition 18. 2

4.2.4 Probabilistic Abstract Interpretation of Stochastic Matrices

For a stochastic matrix M and any abstraction A with Moore-Penrose pseudo-
inverse G we can in general not guarantee that the abstract operator GMA
induced by A is also a stochastic matrix.

Example 29 Consider the following stochastic matrix:

M =


1
2

1
2

0

1
3

1
3

1
3

0 0 1



23



together with abstraction and concretisation maps represented by:

A =


1 0 0

1 0 0

1 0 0

 G = A† =


1
3

1
3

1
3

0 0 0

0 0 0

 .

A simple calculation shows that

GMA =


1 0 0

0 0 0

0 0 0



which is not a stochastic matrix. Similarly, if we take

A =


2

1

1

 G = A† =
(

1
3

1
6

1
6

)

we get as induced operator the following 1× 1 matrix:

GMA =
(

8
9

)

which again is not a stochastic matrix.

For classification matrices however, we can show the following.

Proposition 30 For any stochastic matrix M and classification matrix K we
have that K†MK is again a stochastic matrix.

PROOF. By Proposition 28 we know that K† is a stochastic matrix as it is
(row) normalised. The same is true for K (by definition) and M (by hypoth-
esis). Thus K†MK is stochastic since the product of stochastic matrices is
stochastic. 2

24



5 Approximating Process Equivalences

Several notion of process equivalences have been proposed in the literature on
concurrency theory, each one defining a different process semantics. A com-
parative study of most of these semantics can be found in [45]. The purpose
of this section is to present a technique for approximating process equiva-
lences by using probabilities as numerical information for quantifying such an
approximation. This provides us with a quantitative measure of the indistin-
guishability of the process behaviour (according to a given semantics), that is
in a security setting a measure of their propensity to leak information. There-
fore, for each semantics we are able to measure the confinement of a given
system according to the notion of behavioural equivalence established by the
given semantics. In order to numerically estimate such a measure we first
re-formulate each process equivalence in terms of linear operators using the
PAI framework introduced in Section 4. Then we use an appropriate notion
of operator norm to calculate the closeness of two processes.

We illustrate this technique for three behavioural equivalences, namely tree
equivalence, bisimulation and weak bisimulation, but the method can be ex-
tended to deal with all the other semantics in a similar way.

5.1 Graph Isomorphism

To illustrate our basic strategy for approximating process equivalences let us
first look at the strongest — in some sense too strong [45, Fig 1] — notion of
process equivalence, that is tree equivalence. Following [45, Def 1.3] the graph
associated to a process p of a labelled transition system with actions A is a
directed graph rooted in p whose edges are labelled by elements in A. Two
processes are tree equivalent if their associated graphs are isomorphic. Graph
isomorphism is defined as follows (e.g. [45, Def 1.3,Def 1.4], [46, p2], [47, p3]):

Definition 31 An isomorphism between directed graphs (V1, E1) and (V2, E2)
is a bijection ϕ : V1 7→ V2 such that 〈v, w〉 ∈ E1 ⇔ 〈ϕ(v), ϕ(w)〉 ∈ E2.

In the usual way, we define the adjacency operator A(G) of a directed graph
G = (V, E) as an operator on `2(V ) representing the edge-relation E [29].
Then the notion of isomorphism between (finite graphs) can be re-stated in
terms of permutation matrices.

We have the following result [46, Lemma 8.8.1]:

Proposition 32 Let G1 = (V, E1) and G2 = (V, E2) be two directed graphs on
the same set of nodes V . Then G1 and G2 are isomorphic if and only if there is

25



a permutation operator S such that the following holds: STA(G1)S = A(G2).

By using these notions and the operator representation of (probabilistic) tran-
sition systems (cf. Definition 12) we can reformulate tree-equivalence of pro-
cesses as follows.

Proposition 33 Given the operator representations p and q of two probabilis-
tic transition systems p = (S, A,−→, s0) and q = (S ′, A,−→′, s′0) with |S| =
|S ′|, then p and q are tree-equivalent iff there exists S ∈ P(`2(S)) = P(`2(S ′)),
such that:

STM(p)S = M(q),

i.e. for all α ∈ A we have STM(
α−→)S = M(

α−→′
).

Therefore, tree equivalence of two systems p and q corresponds to the exis-
tence of an abstraction operator (the operator S) which induces a probabilistic
abstract interpretation p of q.

5.1.1 Approximate Graph Isomorphism

In the case where there is no S which satisfies the property in Proposition 33,
i.e. p and q are definitely not isomorphic, we could still ask how close p and q
are to being isomorphic. The most direct way to define a kind of “isomorphism
defect” would be to look at the difference M(p)−M(q) between the operators
representing p and q and then measure in some way, e.g. using a norm, this
difference.

Obviously, this is not the idea we are looking for: It is easy to see that the
same graph — after enumerating its vertices in a different ways — has different
adjacency operators; it would thus have a non-zero “isomorphism defect” with
itself. To remedy this we have to allow first for a reordering of vertices before
we measure the difference between the operators representing two probabilistic
transition systems. This is the underlying idea behind the following definition.

Definition 34 Let p = (S, A,−→, π0) and q = (S ′, A,−→′, π′0) be probabilistic
transition systems over the same set of actions A, and let M(p) and M(q) be
their operator representations. We say that p and q are ε-graph equivalent,
denoted by p ∼ε

i q, iff

inf
S∈P

‖STM(p)S−M(q)‖ = ε

where ‖.‖ denotes an appropriate norm.

26



Note that, in the case of finite probabilistic transition systems, for ε = 0 we
recover the original notion of (strict) graph equivalence, i.e. ∼i=∼0

i .

Proposition 35 An ε-isomorphism for ε = 0, i.e. ∼0
i , of finite transition

systems is an isomorphism.

PROOF. Observe that there are only finitely many S ∈ P(n), n < ∞. Thus
the inf can be replaced by min. That means that there exists a permutation
operator S ∈ P(n) such that ‖STM(p)S − M(q)‖ = 0. The properties of
the norm then imply that STM(p)S − M(q) = O, the null operator, i.e.
STM(p)S = M(q). 2

5.2 Bisimulation

The finest process equivalence after graph equivalence is bisimulation equiv-
alence [25,45]. Bisimulation is a relation on processes, i.e. states of a labelled
transition system. Alternatively, it can be seen as a relation between the tran-
sition graphs associated to the processes.

The classical notion of bisimulation equivalence for labelled transition systems
can be stated as follows [45, Def 12]:

Definition 36 A bisimulation is a binary relation ∼b on states of a labelled
transition system satisfying for all α ∈ A:

p ∼b q and p
α−→ p′ ⇒ ∃q′ : q

α−→ q′ and p′ ∼b q′,

p ∼b q and q
α−→ q′ ⇒ ∃p′ : p

α−→ p′ and q′ ∼b p′.

Given two processes p and q, we say that they are bisimilar if there exists
a bisimulation relation ∼b such that p ∼b q. Bisimulations are equivalence
relations [45, Prop 8.1].

The standard generalisation of this notion to probabilistic transition systems,
i.e. probabilistic bisimulation, is due to [17, Def 4], where it is defined for
reactive systems.

Definition 37 A probabilistic bisimulation is an equivalence relation ∼b on
states of a probabilistic transition system satisfying for all α ∈ A:

p ∼b q and p
α−→ π ⇒ q

α−→ % and π ∼b %.

27



The same definition can be given also for generative systems with the only
difference that in this case π and % are sub-probability distributions.

This definition is equivalent to the characterisation of probabilistic bisimula-
tion given in [17] in terms of “button pressing” tests. Such tests are formally
defined by means of a language which specifies the syntactical structure of
algorithms for experimenting on a process (i.e. which button to press when).
The same button pressing interpretation can be given also in the case of gen-
erative systems but for the way experiments are performed: here the observer
may attempt to depress more than one button at a time and it is the process
which decides which action to react to according to a given probability distri-
bution. In our security setting these tests represent possible interferences by
a spy, and observing the probabilistic result of an experiment corresponds to
establishing whether a system is confined (the spy is not able to distinguish
the processes in the system) or not. The first case corresponds to a system
whose processes are probabilistic bisimilar. This is intuitively the idea behind
the following definition of probabilistic confinement for processes specified by
a PTS.

Note that in the case of generative systems tests represent passive spies, in the
sense that it is not possible for an observer to actively interfere in the process
internal behaviour by deciding which action has to be chosen.

Definition 38 Let T = (S, A,→, π0) be a probabilistic transition system and
let T (p) and T (q), with p, q ∈ S, represent two processes in a probabilistic
language modelled by T . Then we say that p and q are probabilistically confined
iff they are probabilistic bisimilar.

It is easy to see that a probabilistic bisimulation equivalence ∼ on a PTS T =
(S, A,→, π0) defines a probabilistic abstract interpretation of T . In fact, by
Proposition 27, there is a classification operator K ∈ C(`2(S), `2(S/∼)), which
represents ∼. If M(T ) is the operator representation of T then K†M(T )K is
the abstract operator induced by K. Intuitively, this is an operator which ab-
stracts the original system T by encoding only the transitions between equiv-
alence classes instead of the ones between single states.

Consider now two processes p, q ∈ S and their operator representations M(p)
and M(q). The restrictions of K to these two sets of nodes, which we call Kp

and Kq, are the abstraction operators for the two processes p and q and allow
us to express exactly the condition for the probabilistic bisimilarity of p and
q:

Proposition 39 Given the operator representation M(p) and M(q) of two
probabilistic processes p and q, then p and q are probabilistic bisimilar iff there
exists a Kp ∈ C(`2(Rp), `

2(S)) and Kq ∈ C(`2(Rq), `
2(S)) for some set S such

28



that

K†
pM(p)Kp = K†

qM(q)Kq.

PROOF. We assume in the following that there is an enumeration of the
processes {pi}np

i=1 = Rp and {qj}nq

j=1 = Rq. Therefore, Mα(p) is a np × np

matrix, and i.e. Mα(q) is a nq × nq matrix, for each α ∈ A.

(only if) Suppose that there is a probabilistic bisimulation relation ∼ be-
tween processes p and q. This relation determines a partition on Rp as well
as on Rq such that |Rp/∼| = |Rq/∼|. Define S as the set of all the ∼-
equivalence classes with a given enumeration {[rk]}m

k=1 = Rp/∼ = Rq/∼,
with m = |S|.

Let us define the two matrices

(Kp)ik =

 1 if pi ∈ [rk]

0 otherwise,

for all pi ∈ Rp,[rk] ∈ S, and

(Kq)jk =

 1 if qj ∈ [rk]

0 otherwise,

for all qj ∈ Rq, [rk] ∈ S.
We have that Kp ∈ C(`2(Rp), `

2(S)) and Kq ∈ C(`2(Rq), `
2(S)). We now

show that for every base vector xk ∈ `2(S) representing an equivalence class
[rk] the following holds:

xkK
†
pM(p)Kp = xkK

†
qM(q)Kq.

Then by linearity we can conclude that the above equation holds for all
x ∈ `2(S) .
• xkK

†
p and xkK

†
q are two (row) vectors in V(Rp) and V(Rq) respectively

which represent uniform distributions on all those processes in Rp and Rq

belonging to the equivalence class [rk]:

(xkK
†
p)i =


1

nk
p

if pi ∈ [rk]

0 otherwise,

(xkK
†
p)j =


1

nk
q

if qi ∈ [rk]

0 otherwise,

29



where nk
p and nk

q represent the number of processes in Rp and Rq belonging
to [rk].

• The application of Mα(p) and Mα(q) (for each α ∈ A) to these vectors
gives us a distribution on those processes in Rp and Rq which can be
reached from a state belonging to the equivalence class [rk] in one step:

(xkK
†
pMα(p))i′ =

∑
pi ∈ [rk]

pi
α−→π pi′

π(pi′)

nk
p

,

(xkK
†
qMα(q))j′ =

∑
qj ∈ [rk]

qj
α−→π qj′

π(qj′)

nk
q

.

• The classification of these vectors via Kp ∈ C(np, m) and Kq ∈ C(nq, m)
gives us the distributions over equivalence classes:

(xkK
†
pMα(p)Kp)k =

∑
pi, pi′ ∈ [rk]

pi
α−→π pi′

π(pi′)

nk
p

,

and

(xkK
†
qMα(q)Kq)k =

∑
qj , qj′ ∈ [rk]

qj
α−→π qj′

π(qj′)

nk
q

,

which must be the same since by hypothesis ∼ is a probabilistic bisimu-
lation.

(if) Suppose that we have Kp ∈ C(np, m) and Kq ∈ C(nq, m) such that
K†

pM(p)Kp = K†
qM(q)Kq. Define a relation ∼K between processes in Rp

and processes in Rq as follows:

pi ∼K qj iff piKp = qjKq.

In order to show that ∼K is a probabilistic bisimulation we have to show
that ∼K satisfies for all α ∈ A, p ∈ Rp and q ∈ Rq:

p ∼K q and p
α−→ π ⇒ q

α−→ % and π ∼K %

or, equivalently

[p]K = [q]K and p
α−→ π ⇒ q

α−→ % and π ∼K %.

30



A : •1

1
3
:a

��~~
~~

~~
~~

~~
~~

~

1
3
:a

��

1
3
:a

��@
@@

@@
@@

@@
@@

@@

•2

1:b

��

•3

1:b

��

•4

•5 •6

B : •1

2
3
:a

��~~
~~

~~
~~

~~
~~

~
1
3
:a

��@
@@

@@
@@

@@
@@

@@

•2

1:b

��

•3

•4

Fig. 4. Two Reactive Probabilistic Transition Systems

We will use the notation [πα
p ]K = [%α

q ]K to indicate the condition above.
For processes pi ∈ Rp and qj ∈ Rq belonging to the same equivalence class
[rk] = [pi]K = [qj]K we know that

piKp = qjKq.

Since by hypothesis K†
pM(p)Kp = K†

qM(q)Kq, we then conclude that [πα
p ]K =

[%α
q ]K . Thus ∼K is a probabilistic bisimulation.

2

Corollary 40 Let M(p) and M(q) be the matrix representations of two pro-
cesses p and q. If p and q are probabilistic bisimilar then there exists a PTS x
which is the probabilistic abstract interpretation of both p and q.

PROOF. Consider the PTS with states in Rp ∪ Rq and the classification
operator associated to the relation ∼K constructed in the proof of Proposi-
tion 39. 2

Example 41 Consider the two reactive processes A and B in Figure 4 taken
from [17, Fig.4]. The corresponding matrices are:

M(A) = Ma(A)⊕Mb(A) =



0 1
3

1
3

1
3

0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


⊕



0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



31



and

M(B) = Ma(B)⊕Mb(B) =



0 2
3

1
3

0

0 0 0 0

0 0 0 0

0 0 0 0


⊕



0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



Consider the classification operators KA and KB, and their pseudo-inverses
defined by:

KA =



1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1


K†

A =



1 0 0 0 0 0

0 1
2

1
2

0 0 0

0 0 0 1 0 0

0 0 0 0 1
2

1
2



and KB and K†
B are simply 4× 4 identity matrices. We then get:

K†
AMa(A)KA =Ma(B)

K†
AMb(A)KA =Mb(B)

which shows that A and B are probabilistic bisimilar.

By Corollary 40 we can therefore construct a system which abstracts both A
and B. Since A and B are probabilistic bisimilar we can define an equivalence
relation on the union T of the two PTS’s in Figure 4 which is compatible with
KA and KA. This is given by the classification operator

K =

KA

KB



We can then see that K†M(T )K is a system which abstracts both A and B.
In fact, given that M(T ) = M(A)⊕M(B), and that

K† =
(

|A|
|A|+|B|K

†
A

|B|
|A|+|B|K

†
B

)
,

32



where |A| (|B|) is the cardinality of the set of states in the PTS for A (B),
we have that

K†M(T )K=K†(M(A)⊕M(B))K

=K†(M(A)⊕O)K + K†(O⊕M(B))K

=

(
|A|

|A|+ |B|
K†

AM(A)KA +
|B|

|A|+ |B|
K†

BOKB

)
+(

|A|
|A|+ |B|

K†
AOKA +

|B|
|A|+ |B|

K†
BM(B)KB

)

=
|A|+ |B|
|A|+ |B|

K†
BM(B)KB =

|A|+ |B|
|A|+ |B|

K†
AM(A)KA

=K†
BM(B)KB = K†

AM(A)KA

where we denote by O the null matrix of the appropriate dimensions.

Example 42 It is easy to see that the two generative processes A and B in
Example 13 and 14 are probabilistic bisimilar. To show that these processes
are bisimilar we construct an operator K such that:

Ma(A) =K†Ma(B)K

Mb(A) =K†Mb(B)K,

and then we simply take KA = I and KB = K.

We need to construct again an infinite operator K as a sequence of 2 × 2n-
matrices:

(
K2n

)
ij

=


1 for i = 2k − 1 ∧ j = 1 and

for i = 2k ∧ j = 2 with k = 1 . . . n

0 otherwise

with their 2n× 2 pseudo-inverses:

(
K2n

)†
ij

=


1
n

j = 2k − 1 ∧ i = 1 and

j = 2k ∧ i = 2 with k = 1 . . . n

0 otherwise

We therefore have that

K = s- lim
n→∞

K2n and K† = s- lim
n→∞

(K2n)†

33



and from Example 14 we know that:

M(B) = s- lim
n→∞

(M2n
a (B)⊕M2n

b (B)).

The operator multiplication is in general not strongly continuous, but it is if
one of the factors is restricted to a bounded set, see e.g. [35, 2.5.10] or [36,
I.6]. Clearly, all the K2n and (K2n)† are from a bounded set, therefore we have:

K† ·M(B) ·K= (s-lim(K2n)†) · (s-limM2n(B)) · (s-limK2n)

= s-lim((K2n)† ·M2n(B) ·K2n)

=M(A).

The matrix formulation of (probabilistic) bisimulation makes it also easy to
see how graph and bisimulation equivalence are related. As P(n) ⊂ C(n, n)
we have:

Proposition 43 If p ∼i q then p ∼b q.

5.2.1 Approximate Bisimulation

In the case in which it is not possible to find a bisimulation equivalence for
two states p and q of a PTS T , we can still identify them although only
approximately. In order to do so, we introduce an ε-version of probabilistic
bisimilarity. The intuitive idea is to find a classification operator K which is
the closest one to a bisimulation relation in which p and q are equivalent. The
difference between the abstract operators induced by K for the two processes
will give us an estimate of the non-bisimilarity degree of p and q. By Defini-
tion 38, this will also be an estimate of the confinement of the system formed
by the two processes p and q, which tells us how much the system is actually
secure.

Definition 44 Let T = (S, A,−→, π0) be a probabilistic transition system and
let p and q be two states in S with operator representations M(p) and M(q).
We say that p and q are ε-bisimilar, denoted by p ∼ε

b q, iff

inf
Kp,Kq∈C

‖K†
pM(p)Kp −K†

qM(q)Kq‖ = ε

where ‖.‖ denotes an appropriate norm.

Note that it is possible to use this definition also to introduce an approximate
version of the classical notion of bisimulation. Furthermore, for ε = 0 we

34



A : •1 1
2
:bff

1
2
:a

��
•2

B : •1

1
4
:a

��

3
4
:b

��@
@@

@@
@@

@@
@@

@@

•2 •3 1
2
:bff

1
2
:a

��
•4

C : •1

1
2
:a

��

1
2
:b

��@
@@

@@
@@

@@
@@

@@

•2 •3 49
100

:bff

51
100

:a

��
•4

Fig. 5. Three Generative Probabilistic Transition Systems

recover partially the original notion of strict (probabilistic) bisimulation:

Proposition 45 An ε-bisimulation with ε = 0, i.e. ∼0
b , is a (probabilistic)

bisimulation for finite (probabilistic) transition systems.

PROOF. By hypothesis there are only finitely many Kp and Kq. Thus inf can
be replaced by min. That means that there exist classification operators Kp

and Kq such that ‖K†
pM(p)Kp−K†

qM(q)Kq‖ = 0. This implies K†
pM(p)Kp−

K†
qM(q)Kq = O, i.e. K†

pM(p)Kq = K†
qM(q)Kq. 2

However, for infinite PTS the concepts 0-bisimulation and (probabilistic) bisim-
ulation will differ in general.

Example 46 Let us compare the three, obviously somehow “similar” PTS’s
in Figure 5. These processes are not probabilistic bisimilar. However one can
try to determine how similar they are. The matrix A = M(A) is the same as
in the previous Example 13; for the others we get:

B = M(B) = Ma(B)⊕Mb(B) =



0 1
4

0 0

0 0 0 0

0 0 0 1
2

0 0 0 0


⊕



0 0 3
4

0

0 0 0 0

0 0 1
2

0

0 0 0 0



C = M(C) = Ma(C)⊕Mb(C) =



0 1
2

0 0

0 0 0 0

0 0 0 51
100

0 0 0 0


⊕



0 0 1
2

0

0 0 0 0

0 0 49
100

0

0 0 0 0



35



The problem is to find a KA,KB, and KC ∈ C such that the norm of the
difference between K†

AAKA and K†
BBKB or K†

CCKC is minimal. There is
only a finite (though exponentially growing) number of possible classification
operators K ∈ C. A brute force approach looking at all possible K allows us to
determine the ε-bisimilarity of A and B, and of A and C. Interestingly, the
optimal K = KB = KC is coincidentally the same in both cases:

K =



1 0

0 1

1 0

0 1


K† =

 1
2

0 1
2

0

0 1
2

0 1
2

 ,

while for KA we can take the identity.

Measuring the difference (by means of the operator norm) leads to the following
result:

inf
K∈C

‖A−K†BK‖ =
1

8
, inf

K∈C
‖A−K†CK‖ =

1

200
.

In a security setting, this result allows us to conclude that although both the
systems {A, B} and {A, C} are not probabilistic confined, the latter is “more
secure” than the former in the sense that the chances of an information leak
by observing the system are much smaller.

5.3 Weak Bisimulation

Several authors have argued that bisimulation, although weaker than graph
isomorphism, is still a too strong requirement for many purposes and suggested
a number of variations (see [45] for a detailed account).

Weak bisimulation was introduced in [25] as a bisimulation which abstracts
from internal computation by considering transitions of the form ⇒ α−→⇒,
where ⇒ is the transitive, reflexive closure of

τ−→, and τ is an internal action
representing some invisible computation.

Various probabilistic extensions of weak bisimulation have been proposed by
several authors in the context of fully probabilistic systems [16], as well as for
a generalisation of reactive systems [14], for probabilistic systems which allow
for both nondeterministic and probabilistic branching [48], and for generative-
reactive models [49]. In a language-based setting, a notion of probabilistic

36



weak bisimulation has been introduced in [23] for a multi-threaded language
modelled via discrete Markov chains. Applications to the problem of secure
information flow are considered in [23] and [49].

At the base of a weak bisimulation semantics for probabilistic systems is the
problem of determining the probability with which a weak transition ⇒ α−→⇒
may take place. In a fully probabilistic model such as the generative one, all the
necessary information is available to compute such a probability, as all actions
including τ are governed by some internally chosen probability distribution
[16]. It is also possible to determine the probability of weak transitions in
models which also includes some form of nondeterminism, provided all nonde-
terminism is first resolved according to criteria which depend on the particular
model [14,48]. However, it is hard to imagine how such a probability can be
established in a purely probabilistic model such as the reactive model, unless
one reserves a different treatment to the internal action τ , thus effectively
constructing a mixed reactive-generative model [49].

Based on this argument, we have chosen to exclude the reactive model from our
treatment of the weak bisimulation semantics, and to apply linear operator
based techniques similar to those we have used for bisimulation to re-cast
the probabilistic weak bisimulation notion introduced in [16] for generative
systems. As a first step we will show how we can represent the relation

τ−→∗ α−→
τ−→∗

in terms of the transition matrices introduced in Section 3.4.

The probability of reaching a state or a certain class of states by sequences
of actions or traces is defined in [16] for strings in a generic language Λ ⊂ A∗

recursively as follows:

P(s, Λ, C) = 1 if s ∈ C and ε ∈ Λ

P(s, Λ, C) =
∑

(a,t)∈A×S

P (s, a, t) · P(t, Λ/a, C) otherwise

where Λ/a denotes the set of all strings λ such that aλ ∈ Λ, and ε denotes
the empty string.

By considering the language Λ = τ ∗aτ ∗ ∪ ε, the notion of probabilistic weak
bisimulation can be defined as follows.

Definition 47 A weak bisimulation is an equivalence relation ∼w on S such
that for all s ∼w s′ and all α ∈ A\{τ}∪ε and all equivalence classes C ∈ S/ ∼w

we have:

P(s, τ ∗ατ ∗, C) = P(s′, τ ∗ατ ∗, C)

We observe that the base case in the recursive definition of P(s, Λ, C) ensures

37



the uniqueness of the solution of the second equation in the definition by
forcing the consideration of only the minimal trace in Λ leading from s to C;
all extensions of this minimal trace the language may contain and which also
reach the target class do not contribute to P(s, Λ, C).

We will now show how to define a linear operator F with entries (F)sC corre-
sponding to the probabilities P(s, τ ∗aτ ∗, C) for all s ∈ S and C ∈ S/ ∼w.

The first step towards the definition of a linear operator expressing the prob-
abilistic weak bisimulation relation introduced above is to look at the reach-
ability of a state from another state via a single trace. In particular we are
interested in traces of the form τnατm, with n,m ∈ N, n, m ≥ 0.

It is well known that iterating a transition matrix n times gives the probability
of reaching state s from t in exactly n steps. This is sometimes known as the
Chapman-Kolmogorov equations, e.g. [50, Thm 6.1.7]. Generalising this idea
slightly leads us to introduce the following operators Eα(p)(n, m).

Definition 48 Given the operator representation M(p) of a probabilistic pro-
cess p with A = {α, β, . . . , τ}, then we define, for all α ∈ A

Eα(p)(n,m) = Mτ (p)nMα(p)Mτ (p)m.

We denote by E(p)(n,m) the direct sum
⊕

α∈A Eα(p)(n,m).

It is easy to show the following result:

Proposition 49 Given the operator representation M(p) of a probabilistic
process p, then for all states s, s′ ∈ S,

(Eα(p)(n, m))s,s′ = P(s, τnατm, s′).

The next step is to look at the probability of reaching a state from any other
state by any trace in τ ∗ατ ∗. The straightforward idea is to determine this
probability by summing up all the probabilities for reaching a state t from s
by ε, a, τα, ατ, τατ , etc., i.e. via the operator

Eα(p) =
∞∑

n,m=0

Eα(p)(n, m),

for all α ∈ A.

Unfortunately, for essentially the same reasons explained for the recursive
definition of P , this simple solution does not work. The problem is that some
“reaching probabilities” are counted too often, in particular those associated

38



to traces which are extensions of the minimal trace leading from a given state
s to a target state t. The following example illustrates this problem.

Example 50 Consider the following simple PTS with only one action a:

•2

1
2
:a

yy

1
2
:a

@@
@@

@

��@
@@

@@

•1 1
2
:a //

1
2
:a

99

•3 1:aff

In order to calculate the probabilities P(s, a∗, {t}), we construct the operators:

Ma =


0 1

2
1
2

1
2

0 1
2

0 0 1

 lim
n→∞

Mn
a =


0 0 1

0 0 1

0 0 1


∞∑
i=0

Mi
a =


4
3

2
3
∞

2
3

4
3
∞

0 0 ∞



This result is obviously not reflecting the probabilities we would expect. In fact,
the entries in

∑∞
i=0 Mi

a are not probabilities at all.

In order to obtain a correct result we have to compute the probability of
reaching a state t the first time, i.e. along the minimal trace leading to t. This
means we have to “block” out all contributions which come from paths which
already passed through t before.

We can achieve this by projecting out all transitions from t in the operator
Mα(p). We define a projection into t as a diagonal matrix which contains a
single entry 1 at the position (t, t), and its “negation”, i.e.

(Pt)ij =

 1 for i = j = t

0 otherwise
(P⊥

t )ij =

 1 for i = j 6= t

0 otherwise

If we thus consider the modified transition operator

Mα,¬t(p) = P⊥
t Mα(p)

we get the same transitions as in Mα(p) except that all transitions from t are
cancelled out — as the matrix Mα,¬t(p) is identical to Ma(p) except for the
fact that the row t contains only zeros.

If we consider now the column t in Mn
α,¬t(p) we obtain for each state s the

probability of reaching t in exactly n steps without passing through t, i.e. for

39



the first time. We can extract this t column by multiplying with the projection
Pt, i.e.

(P⊥
t Mα(p))n ·Pt = (Mα,¬t(p))n ·Pt.

The probability of getting from any state s to t via the minimal trace in at
most n steps is then given by:

n∑
i=0

(P⊥
t Mα(p))i ·Pt =

n∑
i=0

(Mα,¬t(p))i ·Pt

This operation avoids the pitfalls of our previous attempt: Once we have a
trace from a state s reaching state t the first time, all its extensions are ignored
as in Mα,¬t(p) there is no transition which leaves the state t again.

By combining this information for all states t we obtain for all α ∈ A the
matrix

∑
t∈S

(
n∑

i=0

(P⊥
t Mα(p))i ·Pt

)
=
∑
t∈S

(
n∑

i=0

(Mα,¬t(p))i ·Pt

)

Example 51 Consider again the simple process in Example 50. The projec-
tion operators for t = 2 are:

P2 =


0 0 0

0 1 0

0 0 0

 P⊥
2 =


1 0 0

0 0 0

0 0 1

 ,

and the corresponding modified a-transition operator

Ma,¬2 = P⊥
2 Ma =


1 0 0

0 0 0

0 0 1




0 1

2
1
2

1
2

0 1
2

0 0 1

 =


0 1

2
1
2

0 0 0

0 0 1



The second column of the nth iteration of Ma,¬2 then gives us the probabilities
that we get from any state to the second state in exactly n steps the first time:

M0
a,¬2P2 =


0 0 0

0 1 0

0 0 0

 M1
a,¬2P2 =


0 1

2
0

0 0 0

0 0 0

 M2
a,¬2P2 =


0 0 0

0 0 0

0 0 0

 . . .

40



The first iteration means that if we start in the second state we “reach” it
in zero steps, but there is no other state from which we can reach it in zero
steps. The second iteration tells us that we reach the second state in one step
only from the first one with probability 1/2. After that all iterations indicate
that there is no path of length larger than one reaching the second state (the
first time). Obviously there is, for example, a three step path from state one
to two back to one and then again to two: The probability of this path is
1/2 · 1/2 · 1/2 = 1/8, however it is ignored in this construction as it visits the
state twice.

We can combine the information on the probability of reaching all states in
i steps in the operator

∑
t∈S Mi

a,¬tPt, whose iteration results in the following
sequence of transition matrices:

1 0 0

0 1 0

0 0 1

 ,


0 1

2
1
2

1
2

0 1
2

0 0 0

 ,


0 0 1

4

0 0 1
4

0 0 0

 ,


0 0 1

8

0 0 1
8

0 0 0

 ,


0 0 1

16

0 0 1
16

0 0 0

 , . . .

Finally we can compute the probability of reaching a state from any other by
any string in the language a∗ by

∑
t∈S

( ∞∑
i=0

Mi
a,¬tPt

)
=

∞∑
i=0

(∑
t∈S

Mi
a,¬tPt

)
=


1 1

2
1

1
2

1 1

0 0 1

 .

Proposition 52 Given the operator representations M(p) of a probabilistic
transition system p = (S, A,−→, s0) then for all α ∈ A:

P(s, α∗, {t}) =

( ∞∑
i=0

(∑
t∈S

Mi
α,¬t(p)Pt

))
st

.

The example above suggests that in order to compute the probabilities of
reaching a given state with traces in the language τ ∗ατ ∗, we first have to
appropriately modify the operator Eα(p)(n, m) in Definition 48.

Definition 53 Given the operator representations M(p) of a probabilistic
transition system p = (S, A,−→, s0) with A = {a, b, . . . , τ}, then we define
for all α ∈ A:

Fα(p)(n, m) =
∑
t∈S

Mτ (p)n ·Mα(p) · (P⊥
t Mτ (p))m ·Pt.

41



We denote by F(p)(n, m) the direct sum
⊕

α∈A Fα(p)(n,m) of all Fα(p)(n, m).

Note that we treat the final τ ’s in a trace differently from the initial ones (and
from the α transition as well). We allow repeated visits in the initial phase,
while in the final phase we again “block out” multiple visits to the terminal
state. This asymmetry is due to the fact that until the α transition has been
performed we cannot terminate our path, only in the second part of a word in
τ ∗ατ ∗ will we terminate our attempt to find a trace connecting two states as
soon as we reach the intended target. This is also reflected in the definition of
P(s, τ ∗ατ ∗, {t}): we can invoke the rule for the base case only once removing
the initial actions from all words in Λ, i.e. when Λ/a, results in a language
containing the empty trace ε. No removal of an initial τ can achieve this, only
once the α step has happened is this possible.

The operator Fα(p)(n,m) encodes the probabilities of reaching a state by the
trace τnατm, for some fixed n, m ∈ N. The extension to the language τ ∗ατ ∗

can be achieved by the operator

Fα(p) =
∞∑

n,m=0

Fα(p)(n, m)

which gives us the probabilities for any string in τ ∗ατ ∗. More precisely we
have:

Proposition 54 Given the operator representation M(p) of a probabilistic
transition system p = (S, A,−→, s0) then for all α ∈ A:

P(s, τ ∗ατ ∗, {t}) = (Fα(p))st

The last step towards the definition of a linear operator representing the prob-
abilistic weak bisimulation equivalence in Definition 47 is to introduce projec-
tion operators on classes of states. Let C ⊆ S be a set of states, then the
projection on C and its negation are defined by

(PC)ij =

 1 for i = j ∧ i ∈ C

0 otherwise
(P⊥

C)ij =

 1 for i = j ∧ i 6∈ C

0 otherwise

As recalled in Section 4.2.2, an equivalence relation R has a linear represen-
tation given by a classification matrix KR. If K is the classification matrix
associated to a probabilistic weak bisimulation equivalence on a state space
S, then we can use it to construct the projection operators PCi

and P⊥
Ci

for
all classes Ci in the partition of the state space S =

⋃
i Ci induced by that

relation. We denote by K.,i the ith column of K, corresponding to class Ci.

42



Then PCi
can be constructed as the diagonal matrix diag(K.,i) with the ith

column of K as diagonal, and P⊥
Ci

as I − PCi
= I − diag(K.,i) with I the

identity matrix.

Definition 55 Given the operator representation M(p) of a probabilistic tran-
sition system p = (S, A,−→, s0) with A = {a, b, . . . , τ}, and a partition
C = {Ci}i of S represented by a classification matrix K then we define for
all α ∈ A:

Fα(p,K)(n, m) =
∑

Ci∈C
Mτ (p)n ·Mα(p) · (P⊥

Ci
Mτ (p))m ·PCi

.

We denote by F(p,K)(n, m) the direct sum
⊕

α∈A Fα(p,K)(n,m), and

Fα(p,K) =
∞∑

n,m=0

Fα(p,K)(n, m).

This operators “blocks” out all repeated visits to the same class in essentially
the same way as discussed in Section 5.3. We therefore have, as expected, the
following result:

Proposition 56 Given the operator representations M(p) of a probabilistic
transition systems p = (S, A,−→, s0) and a partition C = {Ci}i of S repre-
sented by a classification matrix K then for all α ∈ A:

P(s, τ ∗ατ ∗, C) = (Fα(p,K) ·K)sC .

The following proposition gives a necessary and sufficient condition for two
processes being probabilistic weak bisimilar.

Proposition 57 Given the operator representations M(p) and M(q) of two
probabilistic transition systems p = (S, A,−→, s0) and q = (S ′, A,−→′, s′0)
then p and q are probabilistic weak bisimilar iff there exist classification ma-
trices Kp ∈ C(|S|, n) and Kq ∈ C(|S ′|, n) for some n ≥ 1 such that

K†
p · F(p,Kp) ·Kp = K†

q · F(q,Kq) ·Kq,

i.e. for all α ∈ A we have K†
p · Fα(p,Kp) ·Kp = K†

q · Fα(q,Kq) ·Kq.

When there are no terminal τ loops in a transition graph, we obviously have
(P⊥

Ci
Mτ (p))m · PCi

= Mτ (p)m. Thus, in this case we can use E in place of F
in order to decide whether two processes are probabilistic weak bisimilar.

43



•11
3
:τ 88

1
3
:a //

1
6
:a
��@

@@
@@

@@
@@

@@
@@

1
6
:τ

��

•3 1:aff

•2
1
3
:a

//

2
3
:a

??~~~~~~~~~~~~~
•4 1:aff

•A
2
3
:a //

1
3
:a

  A
AA

AA
AA

AA
AA

AA
•B 1:ahh

•C 1:ahh

•1
1
3
:a //

1
6
:a
��@

@@
@@

@@
@@

@@
@@

1
6
:τ

��

•3 1:aff

•2
1
2
:a

//

1
2
:a

??~~~~~~~~~~~~~
•4 1:aff

Fig. 6. Three Generative Probabilistic Transition Systems: P , Q and R

5.3.1 Approximate Weak Bisimulation

An approximative version of this notion allows us to capture how close two
processes are to being weakly bisimilar.

Definition 58 Given the operator representations M(p) and M(q) of two
probabilistic transition systems p = (S, A,−→, s0) and q = (S ′, A,−→′, s′0),
we say that p and q are probabilistic ε-weak bisimilar, denoted by p ∼ε

w q, if

inf
Kp,Kq∈C

‖K†
p · F(p,Kp) ·Kp −K†

q · F(q,Kq) ·Kq‖ = ε

where ‖.‖ denotes an appropriate norm.

For ε = 0 we recover the original notion of strict probabilistic weak bisimula-
tion:

Proposition 59 For finite probabilistic transition systems, a probabilistic ε-
weak bisimulation for ε = 0, i.e. ∼0

w, is a probabilistic weak bisimulation.

Example 60 We consider here a slightly modified version of an example taken
from [23] where the setting is a multi-threaded language with a Markov chain
semantics. The processes P , Q and R are described by the transition graphs
in Figure 6. Their matrix representations are given by:

Ma(P ) =



0 0 1
3

1
6

0 0 2
3

1
3

0 0 1 0

0 0 0 1


Mτ (P ) =



1
3

1
6

0 0

0 0 0 0

0 0 0 0

0 0 0 0


Ma(Q) =


0 2

3
1
3

0 1 0

0 0 1



Ma(R) =



0 0 1
3

1
6

0 0 1
2

1
2

0 0 1 0

0 0 0 1


Mτ (R) =



0 1
2

0 0

0 0 0 0

0 0 0 0

0 0 0 0



44



Partitioning the states in three classes and using the classification matrix KP

and its Moore-Penrose pseudo-inverse K†
P

C1 = {s1, s2}

C2 = {s3}

C3 = {s4}

KP =



1 0 0

1 0 0

0 1 0

0 0 1


K†

P =


1
2

1
2

0 0

0 0 1 0

0 0 0 1



allows us to compute the transition probabilities P(si, τ
∗aτ ∗, Cj) and the ab-

stracted system:

Fa(P,KP ) ·KP =



0 2
3

1
3

0 2
3

1
3

0 1 0

0 0 1


K†

P · Fa(P,KP ) ·KP =


0 2

3
1
3

0 1 0

0 0 1



Processes P and Q are thus probabilistic weak bisimilar as we have K†
P ·Fa(P )·

K = Ma(Q), (we can use the trivial abstraction KQ = K†
Q = I for the process

Q). It is interesting to note that in this example the “naive” approach based
on the operator E gives the same result, i.e. Ea(P ) · KP = Fa(P,KP ) · KP

and thus:

K†
P · Ea(P ) ·KP = K†

P · Fa(P,KP ) ·KP

This is due to the fact that in this example there are no τ loops or cycles
possible after a has happened.

When we compare processes P and R we see that they are not weakly bisimilar.
However, we can look for abstractions which make the difference between them
minimal. Coincidentally, these are given by exactly the same classification
matrices as before. For KQ = KR and KQ = I we obtain a minimal distance
between Q and R which we calculate by using the supremum norm as:

‖K†
R · Fa(R,KR) ·KR −Ma(Q)‖ =

∥∥∥∥∥∥∥∥∥∥∥


0 13

24
11
24

0 1 0

0 0 1

−


0 2
3

1
3

0 1 0

0 0 1



∥∥∥∥∥∥∥∥∥∥∥
=

1

4

Example 61 Consider the probabilistic transition system P in Figure 7 taken

45



•1

0.5:τ

��

0.5:τ // •2

0.6:τ

��

0.4:τ

��@
@@

@@
@@

@@
@@

@@

•3 0.5:b //

0.1:a

��

0.4:b





•4 0.5:τ //

0.1:a

��

0.4:b





•5

0.2:a

��

0.8:b




•60.5:τ 88

0.5:τ ** •7

1:τ

jj •8
1:τ

oo

Fig. 7. A Generative Probabilistic Transition System

from [16]. Its matrix representation is given by Ma(P )⊕Mb(P )⊕Mτ (P ):



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 .1 0 0

0 0 0 0 0 0 .1 0

0 0 0 0 0 0 0 .2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



⊕



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 .5 0 .4 0 0

0 0 0 0 0 0 .4 0

0 0 0 0 0 0 0 .8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



⊕



0 .5 .5 0 0 0 0 0

0 0 0 .6 .4 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 .5 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 .5 .5 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0



.

In [16] a probabilistic weak bisimulation relation on the states of p is computed
which consists of four classes. The classification operator KP corresponding
to this relation and its Moore-Penrose pseudo-inverse K†

P are as follows:

C1 = {s1}

C2 = {s3}

C3 = {s2, s4, s5}

C4 = {s6, s7, s8}

KP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1



K†
P =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1
3

0 1
3

1
3

0 0 0

0 0 0 0 0 1
3

1
3

1
3



46



The resulting abstract system is given by

K†
PFa(P )KP =



0 0 0 0.15

0 0 0 0.10

0 0 0 0.20

0 0 0 0.00


K†

PFb(P )KP =



0 0 0.25 0.60

0 0 0.50 0.40

0 0 0.00 0.80

0 0 0.00 0.00



is obviously probabilistic weak bisimilar to P .

Note that the use of the operators Ea(P ) and Eb(P ) would give in this case
an incorrect result:

K†
PEa(P )KP =



0 0 0 ∞

0 0 0 ∞

0 0 0 ∞

0 0 0 0


K†

PEb(P )KP =



0 0 0.38 ∞

0 0 0.75 ∞

0 0 0.00 ∞

0 0 0.00 0



We can now measure how much states s2 and s3 are not equivalent with respect
to KP by comparing the associated reduced abstract systems

K†
s2
Fa(s2,Ks2)Ks2 =



0 0 0 0.0

0 0 0 0.0

0 0 0 0.2

0 0 0 0.0


K†

s2
Fb(s2,Ks2)Ks2 =



0 0 0 0.0

0 0 0 0.0

0 0 0 0.8

0 0 0 0.0



K†
s3
Fa(s3,Ks3)Ks3 =



0 0 0 0.0

0 0 0 0.1

0 0 0 0.2

0 0 0 0.0


K†

s3
Fb(s3,Ks3)Ks3 =



0 0 0.0 0.0

0 0 0.5 0.4

0 0 0.0 0.8

0 0 0.0 0.0



By using again the supremum norm we get

‖K†
s2
· F(s2,Ks2) ·Ks2 −K†

s3
· F(s3,Ks3) ·Ks3‖ = 0.9,

which gives us an upper bound to the measure ε in Definition 58.

47



6 Bounds for ε

It is in general not an easy task to determine the infimum over all possi-
ble classification matrices in order to calculate ε. For finite processes we at
least know that we have only finitely many classification matrices, but their
number is increasing exponentially with the number of states. A brute force
approach is therefore not computationally feasible. The complexity for decid-
ing if two processes are probabilistically bisimilar (i.e. the case ε = 0) gives a
lower bound for the complexity of the more general problem of determining a
possibly non-zero ε.

One of the main advantages of an approximative approach towards the vari-
ous security notions based on process equivalences is that in practical circum-
stances it might be sufficient to determine an upper bound for ε. This means
that instead of trying to prove the perfect similarity of two processes, e.g.
(weak) bisimilarity, our aim is to determine a bound for their dis-similarity as
this gives us a bound for the possible or expected chances of a security breach.
Such a conservative approximation is closely related to the approach taken in
static program analysis.

6.1 One Dimensional Abstractions

A very crude but computationally cheap way to obtain a rough estimate —
or more precisely an upper bound — for ε is to compare the one-dimensional
abstractions of two processes. That is, we can consider a classification matrix
which maps all states into one single abstract state. If process p has n states
and process p has m states then Kp is a n×1 matrix and Kq is a m×1 matrix,
both of which contain 1’s for each entry. The corresponding Moore-Penrose
pseudo-inverses are given by K†

p an 1× n matrix containing 1
n

for each entry
and K†

q an 1×m matrix containing 1
m

for each entry.

Kp =



1

1
...

1


Kq =



1

1
...

1


K†

p =
(

1
n

1
n

. . . 1
n

)

K†
q =

(
1
m

1
m

. . . 1
m

)

This allows us to construct one-dimensional abstractions of both processes
which we can compare in oder to obtain a “most general approximation”

48



P : •1

2
3
:a

��~~
~~

~~
~~

~~
~~

~
1
3
:b

��@
@@

@@
@@

@@
@@

@@

•2

1:b

��

•3

1:a

YY

•4

1:a

YY

Q : •1

1
3
:a

��~~
~~

~~
~~

~~
~~

~

1
3
:a

��

1
3
:b

��@
@@

@@
@@

@@
@@

@@

•2

1:b

��

•3

1:b

��

•4

1:a

YY

•5

1:a

YY •6

1:a

YY

R : •1

1
12

:a

wwooooooooooooooooooooooo

1
4
:a
��~~

~~
~~

~~
~~

~~
~

1
4
:a

��
1
12

:a
  A

AA
AA

AA
AA

AA
AA

1
3
:b

''PPPPPPPPPPPPPPPPPPPPPPPP

•2

1:b

��

•3

1:b

��

•4

1:b

��

•5

1:b

��

•6

1:a

YY

•7

1:a

YY •8

1:a

YY •9

1:a

YY •10

1:a

YY

Fig. 8. Three Generative Probabilistic Transition Systems: P , Q and R

which we call ε>.

Definition 62 Given two probabilistic processes p and q, let Kp and Kq be
their one dimensional abstraction operators. Then we define

ε>(p, q) = ‖ K†
pM(p)Kp −K†

qM(q)Kq ‖.

As ε is defined to be the infimum over all possible differences between abstrac-
tions of p and q we have that if p ∼ε

b q, then ε ≤ ε>(p, q). In other words, ε>
gives us a safe upper bound for the approximation ε.

Example 63 Consider the processes P , Q and R in Figure 8 which are vari-
ations of the example [17, Fig.4]. These processes are represented by the fol-
lowing matrices:

M(P ) =



0 2
3

0 0

0 0 0 0

0 0 1 0

0 0 0 1


⊕



0 0 1
3

0

0 0 0 1

0 0 0 0

0 0 0 0



49



M(Q) =



0 1
3

1
3

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



⊕



0 0 0 1
3

0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



M(R) =



0 1
12

1
4

1
4

1
12

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



⊕



0 0 0 0 0 1
3

0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



It is easy to see that these three processes are probabilistically bisimilar, the
common abstraction for all three being the process P . However, it is not always
so easy to determine the optimal abstractions. In this case one can determine
upper bounds for ε by constructing the one dimensional abstractions. If we
denote by KP , KQ and KR the classification matrices we get:

K†
PM(P )KP =

(
2
3

)
⊕
(

1
3

)
K†

QM(Q)KQ =
(

11
18

)
⊕
(

7
18

)
K†

RM(R)KR =
(

17
30

)
⊕
(

13
30

)
,

from which we can calculate (using the supremum norm) ε>(P, Q) = 1
18

,
ε>(P, R) = 1

10
and ε>(Q, R) = 2

45
, and conclude that

50



P ∼ε
b Q with ε ≤ 1

18

P ∼ε
b R with ε ≤ 1

10

Q ∼ε
b R with ε ≤ 2

45
.

In other words, we have calculated correct over-approximations for the optimal
ε; as we know that all processes are bisimilar, ε = 0 is optimal for all three
processes.

¿From Proposition 30 we know that the abstraction of any stochastic matrix
using classification matrices gives us again a stochastic matrix. As there is
only a single one-dimensional stochastic matrix, namely M1 = (1), one might
expect that all the one-dimensional abstractions K†

pM(p)Kp result in M1 and
that therefore ε>(p, q) = 0 for all processes p and q.

However, unless we have only a single action a, the linear representations
M(p) of generative processes are in general not stochastic (only the sum of
their factors gives a stochastic matrix). It thus makes sense to compare the
one-dimensional abstractions of processes in order to obtain ε>, as in the above
example where we have:

K†
PM(P )KP 6= K†

QM(Q)KQ 6= K†
RM(R)KR.

6.2 On Transitivity

Consider the situation in which we have three processes p, q and r, and we
know that p ∼ε1

b q and q ∼ε2
b r. If ε1 = ε2 = 0, then we can conclude that

p ∼ε
b r with ε = 0 (since probabilistic bisimulation is an equivalence relation).

What can we say about the number ε (without concretely computing it) in
the general case where ε1 6= 0 or ε2 6= 0?

Let us first assume that the abstractions of p and r which we use to determine
the values for ε1 and ε2 are of the same dimension.

Proposition 64 Consider the processes p, q and r such that p ∼ε1
b q and q ∼ε2

b

r, i.e. there exist classification matrices Kp,Kq,Kq and Kr such that

‖K†
pM(p)Kp −K†

qM(q)Kq‖ = ε1 and ‖K†
qM(q)Kq −K†

rM(r)Kr‖ = ε2.

Assume also that the dimensions of K†
qM(q)Kq and K

†
qM(q)Kq are the same.

51



Define δ = ‖K†
qM(q)Kq −K

†
qM(q)Kq‖. Then

p ∼ε
b r with ε ≤ ε1 + ε2 + δ.

PROOF.

ε = inf
K1,K2

‖K†
1M(p)K1 −K†

2M(r)K2‖

≤‖K†
pM(p)Kp −K†

rM(r)Kr‖
= ‖K†

pM(p)Kp −K†
qM(q)Kq + K†

qM(q)Kq)−

K†
rM(r)Kr + K

†
qM(q)Kq −K

†
qM(q)Kq)‖

= ‖(K†
pM(p)Kp −K†

qM(q)Kq) +

(K
†
qM(q)Kq −K†

rM(r)Kr) +

(K†
qM(q)Kq −K

†
qM(q)Kq)‖

≤‖K†
pM(p)Kp −K†

qM(q)Kq‖+

‖K†
qM(q)Kq −K†

rM(r)Kr‖+

‖K†
qM(q)Kq)−K

†
qM(q)Kq‖

= ε1 + ε2 + δ. 2

Note that in the case where Kq = Kq we have: ε ≤ ε1 + ε2, i.e. the triangular
inequality applies in this case.

Suppose now that the dimension of the abstractions of p and r and the one
for q and r which we use to determine the minimal ε1 and ε2 are different.
The intuitive idea is to “fill up” the smaller one in order to obtain a similar
upper bound for ε as in the previous case.

We first state a number of properties of the direct sum of operators [42,
Thm 3.4.1]. Let A be a m1 × n1 matrix, B be a m2 × n2 matrix, C be a
m3 × n3 matrix, D be a m4 × n4 matrix, then the following holds:

(i) (A⊕B)† = A† ⊕B†,
(ii) (A⊕B)+ (C⊕D) = (A+C)⊕ (B+D) if m1 = m3, n1 = n3, m2 = m4,

and n2 = n4,
(iii) (A⊕B) · (C⊕D) = (A ·C)⊕ (B ·D) if n1 = m3, and n2 = m4,
(iv) ‖A⊕O‖ = ‖A‖ for any null matrix O.

Suppose that K†
qM(q)Kq is an n × n matrix while K

†
qM(q)Kq is an m ×m

matrix and n > m. In order to allow for a comparison between K†
qM(q)Kq

and K
†
qM(q)Kq we “fill up” the smaller one with zero entries by constructing

52



the matrix K
†
qM(q)Kq ⊕ On−m, where Ok indicates the k-dimensional null

matrix, that is the k × k matrix with only zero entries.

Operationally this means that we consider K
†
qM(q)Kq as a process which

operates on the same number of abstract states (classes) as K†
qM(q)Kq but

without any transitions between the “extra” states.

Proposition 65 Suppose we have three processes p, q and r such that p ∼ε1
b q

and q ∼ε2
b r for some classification matrices Kp,Kq,Kq and Kr. Assume that

the dimension of K†
qM(q)Kq is m and that the dimension of K

†
qM(q)Kq is n

with n > m. Then we have that

p ∼ε
b r with ε ≤ ε1 + ε2 + δ′,

where δ′ = ‖K†
qM(q)Kq −K

†
qM(q)Kq ⊕On−m‖.

PROOF. The proof is essentially the same as in the previous case, making
use of the properties listed above. For a k×l1 matrix A with k ≥ l1 and l2 ≥ l1
we denote by (A|Ol2−l1) a k × l2 matrix where the first 1, . . . , l1 columns are
identical with A and the columns l1 + 1, l1 + 2 . . . , l2 are filled with zeros.

ε = inf
K1,K1

‖K†
1M(p)K1 −K†

2M(r)K2‖

≤‖K†
pM(p)Kp − (Kr|On−m)†M(r)(Kr|On−m)‖

= ‖K†
pM(p)Kp −K†

rM(r)Kr ⊕On−m‖
= ‖K†

pM(p)Kp −K†
qM(q)Kq + K†

qM(q)Kq −

K
†
qM(q)Kq ⊕On−m + K

†
qM(q)Kq ⊕On−m −K†

rM(r)Kr ⊕On−m‖
≤‖K†

pM(p)Kp −K†
qM(q)Kq‖+

‖K†
qM(q)Kq −K

†
qM(q)Kq ⊕On−m‖+

‖K†
qM(q)Kq ⊕On−m −K†

rM(r)Kr ⊕On−m‖
= ε1 + ε2 + δ′. 2

The construction of safe bounds for ε is consistent with our overall conceptual
approach in which we aim in a quantification of the behavioural “similarity”
of processes as a means for establishing a “confidentiality level”. As we will
see in the next section, the value of ε corresponds to the distinguishability of
processes via certain statistical tests. This is proportional to the information
leakage and can be interpreted as a measure which is indirectly proportional
to the minimal effort (number of tests/attacks) an attacker needs in order to

53



obtain some confidential information (e.g. the identity of processes). A safe
upper bound for ε thus gives us a safe lower bound for this effort, and thus a
minimal guaranteed “confidentiality level”.

7 The Meaning of ε

Given two processes p and q of which we know that p ∼ε
b q: What property

of the two processes, or their difference does ε actually describe in a security
context? We will investigate this question in the case of ε-bisimilarity and finite
systems; for ε-weak bisimilarity and other approximate similarity notions as
well as for infinite systems corresponding arguments can easily be developed
along similar lines.

7.1 Process Similarity and Operator Norm

We have already seen that ε in some way describes how (bi)similar the two
processes are: In the case that ε = 0 we know that they are indistinguishable in
the sense of a bisimulation semantics. Otherwise, we know that two “optimal”
abstractions of p and q exists such that

‖K†
pM(p)Kp −K†

qM(q)Kq‖ = ε.

In general the norm of a matrix defined as ‖A‖ = sup‖x‖=1 ‖xA‖ describes the
maximal “stretching factor” of normalised vectors. The exact numerical value
depends, of course, on the vector norm used (e.g. Euclidean or supremum
norm).

The ε value which determines the similarity of p and q thus describes how
much the effect of applying K†

pM(p)Kp and K†
qM(q)Kq differ in the worst

case. In other words, ε is a measure for how much the abstractions of p and q
differ in a single step. If p and q are bisimilar, i.e. for ε = 0, there is a single,
common abstraction of both processes p and q and we thus obtain the same
“trace of distributions”.

If we utilise the 1-norm, then the value of ε has a direct interpretation as the
(positive) unitary vectors are exactly distributions (over abstract equivalence
classes). As K†

pM(q)Kp and K†
qM(q)Kq are positive matrices the norm of their

difference describes exactly the maximal difference between the (abstract)
distributions we obtain in one step (executing K†

pM(p)Kp or K†
qM(q)Kq).

54



Restricting to the case of finite-dimensional matrices, i.e. considering proba-
bilistic transition systems with finitely many states, allows us to replace the
supremum in the definition of an operator norm by the maximum, i.e. there
is always a vector (distribution) x with ‖x‖ = 1 for which the norm difference
between xK†

pM(p)Kp and xK†
qM(q)Kq is maximal.

Proposition 66 Given two stochastic n× n-matrices S and T then

max
‖x‖1=1

‖xS− xT‖1

is obtained for an extremal vector x = (0, . . . , 0, 1, 0, . . . , 0), i.e. xi = 1 for
exactly one i = 1, . . . , n, and xj = 0 for j 6= i.

PROOF. Consider the case n = 2. The general case can be shown analo-
gously (by induction).

Suppose that x = (x1, x2) is the maximal vector with ‖x‖1 = 1, i.e. ‖xS−xT‖1

is maximal. Without loss of generality assume that 1 ≥ xi ≥ 0. We therefore
have ‖x‖1 = |x1|+ |x2| = x1 + x2 = 1. The 1-norm of x(S−T) is given by:

‖x(S−T)‖1 =

= ‖((S11 −T11)x1 + (S12 −T12)x2, (S21 −T21)x1 + (S22 −T22)x2)‖1

= |(S11 −T11)x1|+ |(S12 −T12)x2|+ |(S21 −T21)x1|+ |(S22 −T22)x2|
= |S11 −T11|x1 + |S12 −T12|x2 + |S21 −T21|x1 + |S22 −T22|x2

= (|S11 −T11|+ |S21 −T21|)x1 + (|S12 −T12|+ |S22 −T22|)x2

We know that S and T are stochastic matrices, i.e. all 1 ≥ Sij ≥ 0 and
1 ≥ Tij ≥ 0, as well as S11 + S12 = 1, etc. We therefore know that for all
absolute values in this expression we have: 0 ≤ |S11 − T11| ≤ 1, etc. We also
know that in each row of S − T one entry is positive and that the other is
negative, and that the sum of the entries in the first row is the negative of the
entries in the second row. There are now the following possible cases:

(i) S = T in which case we get ‖S−T‖1 = 0 and thus any vector, in particular
extremal ones, are maximal.

(ii) One row of S − T is zero, e.g. the first one. Then either |S21 − T21| >
|S22 − T22| or vice versa. In the first case, any increase of x1 (up to the
maximal value x1 = 1 results in a larger 1-norm of ‖x(S − T)‖1, i.e. the
maximum is achieved for an extremal vector.

(iii) None of the absolute values in the above expression vanishes. If we
increase either x1 or x2 the above expression increases too, except when

55



|S11−T11|+ |S21−T21| = |S12−T12|+ |S22−T22| which can never happen
(except in the two cases above). 2

This means that it is sufficient to check how much xK†
pM(p)Kp and xK†

qM(q)Kq

differ by looking at all the extremal (basis) vectors ei.

7.2 A Statistical Interpretation

Our basic approach towards confidentiality and non-interference is based on
the concept of identity confinement [18]. According to this notion, the problem
for an attacker or spy is to distinguish between several processes; the “secret”
which should be protected in this setting is therefore the “identity” of the
processes running. It is easy to translate the traditional notion of confiden-
tiality (where the value of some “high level variable” constitutes the relevant
“secret”) into this essentially behavioural framework and vice versa.

Given now the role of ε for distinguishing two processes p and q — namely
as single-step divergence factor — the question arise how one can make use
of this information in order to describe how vulnerable some processes are
against an attack. To simplify the arguments we only consider the problem of
two processes p and q with p ∼ε

b q.

Using standard statistical methods we can analyse the question of how many
tests are needed to distinguish two processes which are ε-bisimilar with a
certain confidence α. The framework of so-called hypothesis testing (see e.g.
[51]) provides a simple way to estimate these parameters α and n.

7.2.1 Identification by Testing

Let us consider the situation where we have two processes p and q which we
assume to be ε-bisimilar, for some ε ≥ 0. In order to simplify the situation,
we assume that there is only a single label a. We can identify some abstract
state s, i.e. equivalence class of states [s] and a point distribution (extremal
vector) xs representing s such that:

max
‖x‖1=1

‖xK†
pM(p)Kp − xK†

qM(q)Kq‖1 = ‖xsK
†
pM(p)Kp − xsK

†
qM(q)Kq‖1

Following the standard interpretation of probabilities as “long-run” relative
frequencies [52], we can expect that the number of times a certain class of
states [t] is reached (via a transition labelled by a) from s is given exactly
by the corresponding coordinates in xsK

†
pM(p)Kp and xsK

†
qM(q)Kq. This

56



means that if we execute p or q “infinitely” often we can determine ps,t =
(xsK

†
pM(p)Kp)t and qs,t = (xsK

†
qM(q)Kq)t as the limit of the frequencies

with which we obtain a successor state in [t].

In fact, for any unknown process x we can attempt do determine xs,t exper-
imentally by executing x over and over again in state s. Assuming that x is
actually the same as either p or q we know that the xs,t we obtain must be
either ps,t or qs,t. We thus can easily determine this way if x = p or x = q, i.e.
reveal the identity of x (if ε 6= 0), simply by testing x in state s.

The above described experimental setup is unfortunately only of theoretical
value; we have no way to repeat this experiment — as required — infinitely
often. For practical purposes we need a way to distinguish p and q by finite
executions of p and q. If we execute p and q only a finite number of — say n
— times, we can observe a certain experimental frequency pn

s,t and qn
s,t. Each

time we repeat a finite sequence of n tests we may get different values for pn
s,t

and qn
s,t (only the infinite experiments will eventually converge to the same

constant values ps,t and qs,t).

Analogously, we can determine the frequency xn
s,t for an unknown process x

by testing, i.e. by looking at n executions of x. We can then try to compare
xn

s,t with pn
s,t and qn

s,t or with ps,t and qs,t in order to find out if x = p or
x = q. Unfortunately, there is neither a single value for either xn

s,t, pn
s,t or qn

s,t

(each experiment may give us different values) nor can we test if xn
s,t = pn

s,t or
xn

s,t = qn
s,t nor if xn

s,t = ps,t or xn
s,t = qs,t.

For finite experiments we can only make a guess about the true identity of x,
but never definitely reveal its identity. The confidence we can have in our guess
or hypothesis about the identity of an unknown agent x — i.e. the probability
that we make a correct guess — depends obviously on two factors: The number
of tests n and the difference ε = ‖xsK

†
pM(p)Kp − xsK

†
qM(q)Kq‖1.

7.2.2 Hypothesis Testing

The problem we are faced with is to determine experimentally if an unknown
process x is one of two known processes p and q. The only way we can obtain
information about x is by executing it in state s. In this way we can get an
experimental estimate for the xs,t. We then can compare this estimate with
ps,t and qs,t.

In other words, based on the outcome of some finite experiments (involving
an unknown process x) we formulate a hypothesis H about the identity of
x, namely either that “x is p” or that “x is q”. Our hypothesis about the
identity of x will be formulated according to a simple rule: depending if the
experimental estimate for xs,t is closer to ps,t or to qs,t we will identify x with

57



p or q respectively.

More precisely, the method to formulate the hypothesis H about the identity
of the unknown process x consists of the two following steps:

(1) We execute x in s exactly n times in order to obtain an experimental
approximation, i.e. an average, xn

s,t.
(2) Depending if xn

s,t is closer to the observables ps,t or qs,t we formulate the
hypothesis

H :


x = p if ‖(xn

s,t)t − (ps,t)t‖ ≤ ‖(xn
s,t)t − (qs,t)t‖ or

if ‖(xn
s,t)t − xsK

†
pM(p)Kp‖ ≤ ‖(xn

s,t)t − xsK
†
qM(q)Kq‖

x = q otherwise.

The question is now whether the guess expressed by the hypothesis H about
the true identity of the black box x, which we formulate according to the
above procedure, is correct; or more precisely: What is the probability that the
hypothesis H holds? To do this we have to distinguish two cases or scenarios:

x is actually p: What is the probability (in this case) that we formulate
the correct hypothesis H =”x is p” and what is the probability that we
formulate the incorrect hypothesis H =”x is q”?

x is actually q: What is the probability (in this case) that we formulate
the correct hypothesis H = “x is q” and what is the probability that we
formulate the incorrect hypothesis H =”x is p”?

Clearly, in each case the probability to formulate a correct hypothesis and the
probability to formulate an incorrect hypothesis add up to one. Furthermore,
it is obvious that both scenarios “x is actually p” and “x is actually q” are
symmetric (just exchange the “names” of the processes p and q). We will
therefore investigate only one particular problem: Suppose that x is actually
process p, what is the probability that — according to the above procedure
— we formulate the — in this case — correct hypothesis H =”x is p”.

In the following we use the notation xs,t and xn
s,t to denote the probability

assigned to t in the distribution representing the transitions from s according
to the theoretical behaviour of x and in the experimental average, respectively.
Furthermore, we look at a simplified situation where we are considering only
a single state t. Let us assume without loss of generality that ps,t < qs,t as in
the diagram below:

0 1
ps,t qs,t

-� ε
-�-�

“x is p” ‘x is q”

58



If the experimental value xn
s,t = pn

s,t we obtained in our test is anywhere to the
left of ps,t + ε/2 then the hypothesis H we formulate (based on pn

s,t) will be
the correct one: “x is p”; if the experimental value is to the right of ps,t + ε/2
we will formulate the incorrect hypothesis: “x is q”.

Under the assumption that “x is actually p” the probability P(H) that we
will formulate the correct hypothesis “x is p” is therefore:

P
(
pn

s,t < ps,t +
ε

2

)
= 1−P

(
ps,t +

ε

2
< pn

s,t

)
.

To estimate P(H) we have just to estimate the probability P(pn
s,t < ps,t+ε/2),

i.e. that the experimental value pn
s,t will be left of ps,t + ε/2.

7.2.3 Confidence Estimation

The confidence we can have in the hypothesis H we formulate is true can be
determined by various statistical methods. These methods allow us to estimate
the probability that an experimental average Xn — in our case pn

s,t — is within
a certain distance from the corresponding expectation value E(X) — here ps,t

— i.e. the probability P (|Xn − E(X)| ≤ ε) for some ε ≥ 0. These statistical
methods are essentially all based on the central limit theorem, e.g. [53,52,51].

The type of tests we consider here to formulate a hypothesis about the iden-
tity of the unknown agent X are described in statistical terms by so called
Bernoulli Trials which are parametric with respect to two probabilities p and
q = 1− p. The central limit theorem for this type of tests [52, Thm 9.2] gives
us an estimate for the probability that the experimental value Sn = n · Xn

after n repetitions of the test will be in a certain interval [a, b]:

lim
n→∞

P(a ≤ Sn ≤ b) =
1√
2π

b∗∫
a∗

exp

(
−x2

2

)
dx

where a∗ = a−np√
npq

and b∗ = b−np√
npq

.

Unfortunately, the integral of the so called standard normal density on the
right hand side of the above expression is not easy to obtain. In practical
situations one has to resort to numerical methods or statistical tables, but it
allows us — at least in principle — to say something about P(H).

Identifying Sn with n · pn
s,t we can utilise the above expression to estimate the

probability P(ps,t + ε/2 ≤ pn
s,t) which determines P(H). In order to do this

we have to take: a = ps,t + ε
2
, b = ∞, p = ps,t and q = 1− ps,t. This allows us

59



— in principle — to compute the probability:

lim
n→∞

P
(
ps,t +

ε

2
≤ pn

s,t ≤ ∞
)

.

Approximating — as it is common in statistics — P(ps,t + ε/2 ≤ pn
s,t) by

limP(ps,t + ε/2 ≤ pn
s,t) we get:

P(H) = 1−P
(
ps,t +

ε

2
≤ pn

s,t

)
≈ 1− lim

n→∞
P
(
ps,t +

ε

2
≤ pn

s,t

)

= 1−
∞∫

a0

exp

(
−x2

2

)
dx

with a0 = nε
2

1√
npq

= ε
√

n
2
√

pq
= ε

√
n

2
√

ps,t(1−ps,t)
.

We see that the only way to increase the probability P(H), i.e. the confidence
that we formulate the right hypothesis about the identity of x, is by minimising
the integral. In order to do this we have to increase the lower bound a0 of the
integral. This can be achieved — as one would expect — by increasing the
number n of experiments.

We can also see that for a smaller ε we have to perform more tests n to reach
the same level of confidence, P(H): The smaller the n the harder it is to
distinguish p and q experimentally. Note that for ε = 0, the probability of
correctly guessing which of the agents p and q is in the black box is 1

2
, which is

the best blind guess we can make anyway. In other words, for ε = 0 we cannot
distinguish between p and q.

8 Conclusion and Related Work

We have investigated probabilistic transition systems (PTS) in a quantita-
tive setting based on linear spaces and linear operators. We have argued that
Hilbert spaces are suitable domains for representing countable infinite state
spaces, and we have defined a linear operator semantics for probabilistic pro-
cesses which encode their operational meaning via bounded linear operators
on the Hilbert space of the set of processes.

Based on the framework of Probabilistic Abstract Interpretation, previously
introduced in [20,19] in a finite dimensional setting and then extended in [54]
to the infinite case, we also presented a formulation of various (probabilistic)

60



process equivalences in terms of linear operators. This formulation has a very
strong resemblance to notions of similarity in mathematical control theory, e.g.
[55, Def 4.1.1]. The relation between abstract interpretation and (bi)simulation
has been recognised before in the classical Galois Connection based framework
([56,21]), but this appears to be the first investigation of such a relation in a
probabilistic setting.

More precisely, we have shown how to represent process equivalences via spe-
cial linear operators corresponding to some probabilistic abstract interpre-
tation of the PTS semantics. For example, the abstraction resulting in the
probabilistic bisimulation of Larsen and Skou is a linear operator satisfying
Kemeny and Snell’s lumpability condition for Markov chains, while the prob-
abilistic weak bisimulation of Baier and Hermanns can be obtained by an es-
sentially similar technique extended so as to take into account possible looping
on τ -transitions.

This formulation made it possible to weaken strict process equivalences to ap-
proximate ones which identify two processes up to a quantity ε. This quantity
is defined via the norm of an appropriate operator representing the behavioural
difference of the two processes according to the given semantics. This norm
defines a distance on the set of processes. Other approaches to the definition
of such a distance have been proposed in the literature, starting from the
work by Giacalone et al. who first suggested the use of a metric to weaken the
notion of probabilistic bisimulation. In fact, as far as we are aware, all the ap-
proaches which have been proposed since then rely on constructions involving
metric spaces. Among them we mention the metrics for probabilistic processes
introduced in [57], although it is mainly inspired by semantical considerations
and is not meant for approximation purposes. The approach in [58,59] is more
similar in its motivation to our work; their technique uses coalgebraic con-
structions on the category of metric spaces and nonexpansive maps and is
applied to probabilistic bisimulation only. The pseudometric defined in [60] is
also motivated by a weakening of the notion of bisimulation and is based on
the logical characterisation of bisimulation for labelled Markov processes in
[61]. More recently, this pseudometric has been extended to consider internal
nondeterminism and weak bisimulation in [62].

Although the use of different mathematical structures makes it difficult a di-
rect comparisons with these works, the measure for the distance resulting in
our approach seems to be substantially the same: it is zero exactly when pro-
cesses are (weak) bisimilar. A more important difference is in the methodology
used to define process equivalences. In our approach these result in probabilis-
tic abstract interpretations of the underlying Markov chain: two processes
are equivalent if there exists a probabilistic abstraction of both. Moreover, as
shown in [9], we are able to give a meaning to the quantity measuring the
distance between two processes in terms of the number of tests an external

61



observer needs to perform in order to distinguish them. This statistical inter-
pretation comes from a straightforward application of standard methods in
mathematical statistics. This interpretation also makes our approach closer to
the extensional trend in traditional testing theory [63,64], where systems can
be distinguished on the base of their interaction with external observers (i.e.
tests).

We argued that our notions of approximate similarity have a natural appli-
cation in security where they can be fruitfully employed for the definition of
non-interference based properties. We have shown this use via the notion of
approximate confinement, which was previously investigated in [7] in a pro-
gramming language setting. The quantity ε which defines the approximation
represents a quantitative measure of the confinement of a system which from
a practical viewpoint offers a more meaningful parameter for evaluating the
security of a system. Aldini et al.[49] have adopted a similar approach to study
probabilistic non-interference in a CSP-like calculus modelled via a generative-
reactive transition system. In their work a notion of probabilistic weak bisim-
ulation with ε-precision is introduced, which allows to identify processes with
a small difference in their probabilistic behaviour. This difference is defined in
terms of the probabilities on the transitions on each action. As shown in [65],
computing this difference corresponds in our approach to taking the supremum
norm of a vector encoding the difference between the transition probabilities
of two processes for each action.

The statistical interpretation of the number ε mentioned above corresponds in
the security context to the number of tests needed to a spy to disclose hidden
information. In a previous paper [9] we used very similar arguments for the
approximation of probabilistic input-output observables. The difference to the
current setting is in the nature of tests we allow for. In [9] we were observing
the final results in a certain computational context (i.e. a spy); in the current
setting we test in each computational step the chances of reaching a certain
(equivalence) class of states, depending on the initial state. Other options
can be investigated in order to quantify the difference between two processes
on the basis of some (observable) probability distributions — be it the final
results as in [9] or the single-step distributions as in the current setting — are
to consider their mutual information [66] or their Kullback-Leiber information
divergence [67].

We expect that our linear operator approach towards process equivalences may
lead also to efficient implementations. A brute force approach (e.g. checking
for all possible classification matrices) is prohibitively expensive. Given that
the matrix representations of PTS’s are typically very sparse, it seems nev-
ertheless possible to combine efficient numerical algorithms — in particular
in the area of linear optimisation — and graph based algorithms in order to
develop fast algorithms for checking, for example, if two processes are weakly

62



bisimilar. A similar hybrid approach appears to have been successfully applied
to probabilistic model checking [68].

References

[1] B. Lampson, A Note on the Confinement Problem, Communications of the
ACM 16 (10) (1973) 613–615.

[2] J. Goguen, J. Meseguer, Security Policies and Security Models, in: IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, 1982, pp.
11–20.

[3] J. Gray, III, Towards a mathematical foundation for information flow security,
in: Proceedings of the 1991 Symposium on Research in Security and Privacy,
IEEE, Oakland, California, 1991, pp. 21–34.

[4] P. Ryan, S. Schneider, Process algebra and non-interference, Journal of
Computer Security 9 (1/2) (2001) 75–103, special Issue on CSFW-12.

[5] P. Ryan, J. McLean, J. Millen, V. Gilgor, Non-interference, who needs it?,
in: Proceedings of the 14th IEEE Computer Security Foundations Workshop,
IEEE, Cape Breton, Nova Scotia, Canada, 2001, pp. 237–238.

[6] H. Cavusoglu, B. Mishra, S. Raghunathan, A model for evaluating IT security
investments, Communications of the ACM 47 (7) (2004) 87–92.

[7] A. Di Pierro, C. Hankin, H. Wiklicky, Approximate non-interference, in:
Proceedings of CSFW’02, IEEE, Cape Breton, Canada, 2002, pp. 3–17.

[8] A. Di Pierro, C. Hankin, H. Wiklicky, Approximate confinement under uniform
attacks, in: Proceedings of SAS’02, Vol. 2477 of Lecture Notes in Computer
Science, Springer Verlag, 2002, pp. 310–325.

[9] A. Di Pierro, C. Hankin, H. Wiklicky, Approximate Non-Interference, Journal
of Computer Security 12 (1) (2004) 37–81.

[10] B. Jonsson, W. Yi, K. Larsen, Probabilistic Extentions of Process Algebras,
Elsevier Science, Amsterdam, 2001, Ch. 11, pp. 685–710, see [?].

[11] R. van Glabbeek, S. Smolka, B. Steffen, Reactive, generative and stratified
models of probabilistic processes, Information and Computation 121 (1995)
59–80.

[12] M. Vardi, Automatic verification of probabilistic concurrent finite-state
programs, in: Proceedings of FOCS’85, 1985, pp. 332–344.

[13] H. Hansson, Time and probability in formal design of distributed systems, Ph.D.
thesis, Uppsala University (1994).

63



[14] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes, in:
Proceedings of CONCUR 94, Vol. 836 of Lecture Notes in Computer Science,
Springer Verlag, 1994, pp. 481–496.

[15] B. Jonsson, W. Yi, Compositional testing preorders for probabilistic processes,
in: Proceedings of LICS’95, 1995, pp. 431–443.

[16] C. Baier, H. Hermanns, Weak bisimulation for fully probabilistic processes, in:
Proceedings of the 9th Int. Conference on Computer Aided Verification, Vol.
1254 of Lecture Notes in Computer Science, Springer Verlag, 1997, pp. 119–130.

[17] K. Larsen, A. Skou, Bisimulation through probabilistic testing, Information and
Computation 94 (1991) 1–28.

[18] A. Di Pierro, C. Hankin, H. Wiklicky, Probabilistic confinement in a declarative
framework, in: Declarative Programming – Selected Papers from AGP 2000 –
La Havana, Cuba, Vol. 48 of Electronic Notes in Theoretical Computer Science,
Elsevier, 2001, pp. 1–23.

[19] A. Di Pierro, H. Wiklicky, Measuring the precision of abstract interpretations,
in: Proceedings of LOPSTR’00, Vol. 2042 of Lecture Notes in Computer Science,
Springer Verlag, 2001, pp. 147–164.

[20] A. Di Pierro, H. Wiklicky, Concurrent Constraint Programming: Towards
Probabilistic Abstract Interpretation, in: Proceedings of PPDP’00, ACM,
Montréal, Canada, 2000, pp. 127–138.

[21] D. Schmidt, Binary relations for abstraction and refinement, in: Workshop on
Refinement and Abstraction, Amagasaki, Japan, 1999.

[22] J. G. Kemeny, J. L. Snell, Finite Markov Chains, D. Van Nostrand Company,
1960.

[23] G. Smith, Probabilistic noninterference through weak probabilistic
bisimulation, in: Proceedings of the 16th Computer Security Foundations
Workshop (CSFW’03), IEEE, 2003, pp. 3–13.

[24] A. Z. R. Cleaveland, S. Smolka, Testing preorders for probabilistic processes,
in: Proceedings of ICALP 92, Vol. 623 of Lecture Notes in Computer Science,
Springer Verlag, 1992, pp. 708–719.

[25] R. Milner, A Calculus of Communicating Systems, Vol. 92 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin – New York, 1980.

[26] E. Feinberg, A. Shwartz (Eds.), Handbook of Markov Decision Processes,
Kluwer, Dordrecht, 2002.

[27] W. Greub, Linear Algebra, 3rd Edition, Vol. 97 of Grundlehren der
mathematischen Wissenschaften, Springer Verlag, New York, 1967.

[28] N. Biggs, Algebraic Graph Theory, 2nd Edition, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1993.

64



[29] B. Mohar, W. Woess, A survey on spectra of infinite graphs, Bulletin of the
London Mathematical Society 21 (1988) 209–234.

[30] W. Woess, Random Walks on Infinite Graphs and Groups, Vol. 138 of
Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge,
2000.

[31] G. Murphy, C∗-Algebras and Operator Theory, Academic Press, San Diego,
1990.

[32] K. Yosida, Functional Analysis, Springer Verlag, Berlin – Heidelberg – New
York, 1980.

[33] J. Conway, A Course in Functional Analysis, 2nd Edition, Vol. 96 of Garduate
Texts in Mathematics, Springer Verlag, New York, 1990.

[34] P. Fillmore, A User’s Guide to Operator Algebras, John Wiley & Sons, New
York — Chicester, 1996.

[35] R. Kadison, J. Ringrose, Fundamentals of the Theory of Operator Algebras:
Volume I – Elementary Theory, Vol. 15 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, Rhode Island, 1997, reprint from
Academic Press edition 1983.

[36] K. Davidson, C*-Algebras by Example, Vol. 6 of Fields Institute Monographs,
American Mathematical Society, Providence, Rhode Island, 1996.

[37] A. Böttcher, B. Silbermann, Introduction to Large Truncated Toeplitz Matrices,
Springer Verlag, New York, 1999.

[38] P. Cousot, R. Cousot, Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints,
in: Proceedings of POPL’77, Los Angeles, 1977, pp. 238–252.

[39] P. Cousot, R. Cousot, Systematic Design of Program Analysis Frameworks, in:
Proceedings of POPL’79, San Antonio, Texas, 1979, pp. 269–282.

[40] P. Cousot, R. Cousot, Abstract Interpretation and Applications to Logic
Programs, Journal of Logic Programming 13 (2-3) (1992) 103–180.

[41] F. Nielson, H. R. Nielson, C. Hankin, Principles of Program Analysis, Springer
Verlag, Berlin – Heidelberg, 1999.

[42] S. Campbell, D. Meyer, Generalized Inverse of Linear Transformations,
Constable and Company, London, 1979.

[43] F. Deutsch, Bet Approximation in Inner Product Spaces, Vol. 7 of CMS Books
in Mathematics, Springer Verlag, New York — Berlin, 2001.

[44] F. Beutler, The operator theory of the pseudo-inverse, Journal of Mathematical
Analysis and Applications 10 (1965) 451–470,471–493.

[45] R. van Glabbeek, The Linear Time - Branching Time Spectrum I. The
Semantics of Concrete, Sequential Processes, Elsevier Science, Amsterdam,
2001, Ch. 1, pp. 3–99, see [?].

65



[46] C. Godsil, G. Royle, Algebraic Graph Theory, Vol. 207 of Graduate Texts in
Mathematics, Springer Verlag, New York – Heidelberg – Berlin, 2001.

[47] R. Diestel, Graph Theory, Vol. 173 of Graduate Texts in Mathematics, Springer
Verlag, New York – Heidelberg – Berlin, 1997.

[48] I. L. A. Philippou, O. Sokolsky, Weak bisimulation for probabilistic processes,
in: Proceedings of CONCUR 2000, Vol. 1887 of Lecture Notes in Computer
Science, Springer Verlag, 2000, pp. 334–349.

[49] A. Aldini, M. Bravetti, R. Gorrieri, A process algebraic approach for the analysis
of probabilistic non-inetrference, Journal of Computer Security To appear.

[50] G. Grimmett, D. Stirzaker, Probability and Random Processes, 2nd Edition,
Clarendon Press, Oxford., 1992.

[51] J. Shao, Mathematical Statistics, Springer Texts in Statistics, Springer Verlag,
New York – Berlin – Heidelberg, 1999.

[52] C. Grinstead, J. Snell, Introduction to Probability, second revised Edition,
American Mathematical Society, Providence, Rhode Island, 1997.

[53] P. Billingsley, Probability and Measure, 2nd Edition, Wiley & Sons, New York,
1986.

[54] A. Di Pierro, C. Hankin, H. Wiklicky, Quantitative relations and approximate
process equivalences, in: R. Amadio, D. Lugiez (Eds.), Proceedings of CONCUR
2003 – 14th International Conference on Concurrency Theory, Vol. 2761 of
Lecture Notes in Computer Science, Springer Verlag, 2003, pp. 508–522.

[55] E. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional
Systems, Vol. 6 of Texts in Applied Mathematics, Springer Verlag, New York –
Heidelberg – Berlin, 1990.

[56] D. Dams, R. Gerth, O. Grumberg, Abstract interpretation of reactive systems,
ACM Transactions on Programming Languages and Systems 19 (2) (1997) 253–
291.

[57] E. de Vink, J. Rutten, Bisimulation for probabilistic transition systems: A
coalgebraic approach, Theoretical Computer Science 221 (1999) 271–293.

[58] F. van Breugel, J. Worrell, An algorithm for quantitative verification of
probabilistic transition systems, in: Proceedings of CONCUR’01, Vol. 2154 of
Lecture Notes in Computer Science, Springer Verlag, 2001.

[59] F. van Breugel, J. Worrell, Towards quantitative verification of probabilistic
transition systems, in: Proceedings of ICALP’01, Vol. 2076 of Lecture Notes in
Computer Science, Springer Verlag, 2001, pp. 421–432.

[60] J. Desharnais, R. Jagadeesan, V. Gupta, P.Panangaden, Metrics for labeled
Markov systems, in: Proceedings of the 10th Int. Conference on Concurrency
Theory, Vol. 1664 of Lecture Notes in Computer Science, Springer Verlag, 1999,
pp. 258–273.

66



[61] J. Desharnais, A. Edalat, P. Panangaden, Bisimulation for labelled Markov
processes, Information and Computation 179 (2002) 163–193.

[62] J. Desharnais, R. Jagadeesan, V. Gupta, P.Panangaden, The metric analogue
of weak bisimulation for probabilistic processes, in: Proceedings of LICS’02,
IEEE, Copenhagen, Denmark, 2002, pp. 413–422.

[63] R. De Nicola, M. Hennessy, Testing equivalences for processes, Theoretical
Computer Science 34 (1983) 83–133.

[64] M. C. B. Hennessy, Algebraic theory of processes, MIT Press, 1988.

[65] A. Aldini, A. Di Pierro, A quantitative approach to noninterference for
probabilistic systems, in: M. Bravetti, G. Gorrieri (Eds.), Electronic Notes
in Theoretical Computer Science, Vol. 99, Elsevier Science Publishers, 2004,
proceedings of the MEFISTO Project 2003, Formal Methods for Security and
Time.

[66] D. Applebaum, Probability and Information – An Integrated Approach,
Cambridge University Press, Cambridge, 1996.

[67] J. Whittaker, Graphical Models in Applied Multivariate Statistics, John Wiley
& Sons, Chicester – New York, 1990.

[68] M. Kwiatkowska, G. Norman, D. Parker, PRISM: Probabilistic Symbolic Model
Checker, in: TOOLS 2002, Vol. 2324 of Lecture Notes in Computer Science,
Springer Verlag, 2002, pp. 200–204.

[69] J. Bergstra, A. Ponse, S. Smolka (Eds.), Handbook of Process Algebra, Elsevier
Science, Amsterdam, 2001.

67


