Non-Existence of Entities (Sci.American 1980s)

There are objects/entities which one can describe but which can't exist (maybe because their description is "faulty"), one example:

Describe really large numbers, using n symbols, e.g. n=3. Maybe this could be 999, better 9^{99} , or (hexadecimal) F^{FF} , ...

LARGEST $n \in \mathbf{N}$ DESCRIBED BY AT MOST 43 SYMBOLS

$$7+3+9+2+2+4+2+7=36 \text{ + } 7 \text{ spaces} \Rightarrow \text{43 symbols}$$

Thus, we can't have the largest number described with 45 symbols:

LARGEST $n \in \mathbf{N}$ DESCRIBED BY AT MOST 45 SYMBOL S+1

Halting Problem for Register Machines

Definition. A register machine H decides the Halting Problem if for all $e, a_1, \ldots, a_n \in \mathbb{N}$, starting H with

$$R_0 = 0$$
 $R_1 = e$ $R_2 = \lceil [a_1, \dots, a_n] \rceil$

and all other registers zeroed, the computation of H always halts with R_0 containing 0 or 1; moreover when the computation halts, $R_0=1$ if and only if

the register machine program with index e eventually halts when started with $R_0=0, R_1=a_1,\ldots,R_n=a_n$ and all other registers zeroed.

Theorem No such register machine \boldsymbol{H} can exist.

Slide 1

Proof of the theorem

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

ullet Let H' be obtained from H by replacing $START{
ightarrow}$ by

$$START
ightharpoonup \boxed{Z ::= R_1}
ightharpoonup \left| egin{array}{c} push \ Z \\ to \ R_2 \end{array} \right|
ightharpoonup$$

(where Z is a register not mentioned in H's program).

- Let C be obtained from H' by replacing each HALT (& each erroneous halt) by $\longrightarrow R_0^- \longrightarrow R_0^+$.
 - HALT
- Let $c \in \mathbb{N}$ be the index of C's program.

Proof of the theorem

C started with $R_1 = c$ eventually halts

Assume we have a RM H that decides the Halting Problem and derive a contradiction, as follows:

if and only if
$$H' \text{ started with } R_1=c \text{ halts with } R_0=0$$
 if and only if
$$H \text{ started with } R_1=c, R_2=\lceil [c] \rceil \text{ halts with } R_0=0$$
 if and only if
$$prog(c) \text{ started with } R_1=c \text{ does not halt}$$
 if and only if

C started with $R_1=c$ does not halt **Contradiction!**

Slide 4

Enumerating computable functions

For each $e \in \mathbb{N}$, let $\varphi_e \in \mathbb{N} \rightarrow \mathbb{N}$ be the unary partial function computed by the RM with program prog(e). So for all $x, y \in \mathbb{N}$:

 $arphi_e(x)=y$ holds iff the computation of prog(e) started with $R_0=0,R_1=x$ and all other registers zeroed eventually halts with $R_0=y.$

Thus

 $e \mapsto \varphi_e$

defines an **onto** function from $\mathbb N$ to the collection of all computable partial functions from $\mathbb N$ to $\mathbb N$.

Notice that the collection of all computable partial functions from $\mathbb N$ to $\mathbb N$ is countable. So $\mathbb N o \mathbb N$ (uncountable, by Cantor) contains uncomputable functions.

An uncomputable function

Let
$$f\in\mathbb{N}$$
— \mathbb{N} be the partial function $\{(x,0)\mid \varphi_x(x)\uparrow\}$. Thus $f(x)=\begin{cases} 0 & \text{if } \varphi_x(x)\uparrow\\ undefined & \text{if } \varphi_x(x)\downarrow \end{cases}$

Slide 6

f is not computable, because if it were, then $f=arphi_e$ for some $e\in\mathbb{N}$ and

- ullet if $arphi_e(e){\uparrow}$, then f(e)=0 (by def. of f); so $arphi_e(e)=0$ (by def. of e),
- ullet if $arphi_e(e)\!\!\downarrow$, then $f(e)\!\!\uparrow$ (by def. of e); so $arphi_e(e)\!\!\uparrow$ (by def. of f)

Contradiction! So *f* cannot be computable.

(Un)decidable sets of numbers

Slide 7

Given a subset $S\subseteq\mathbb{N}$, its characteristic function $\chi_S\in\mathbb{N}{
ightarrow}\mathbb{N}$ is given by: $\chi_S(x) \triangleq \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \notin S. \end{cases}$

(Un)decidable sets of numbers

Definition. $S \subseteq \mathbb{N}$ is called (register machine) **decidable** if its characteristic function $\chi_S \in \mathbb{N} \to \mathbb{N}$ is a register machine computable function. Otherwise it is called **undecidable**.

Slide 8

So S is decidable iff there is a RM M with the property: for all $x \in \mathbb{N}$, M started with $R_0 = 0$, $R_1 = x$ and all other registers zeroed eventually halts with R_0 containing 1 or 0; and $R_0 = 1$ on halting iff $x \in S$.

Basic strategy: to prove $S \subseteq \mathbb{N}$ undecidable, try to show that decidability of S would imply decidability of the Halting Problem.

For example...

Claim: $S_0 \triangleq \{e \mid \varphi_e(0)\downarrow\}$ is undecidable.

Proof (sketch): Suppose M_0 is a RM computing χ_{S_0} . From M_0 's program (using the same techniques as for constructing a universal RM) we can construct a RM H to carry out:

Slide 9

```
let e = R_1 and \lceil [a_1, \dots, a_n] \rceil = R_2 in
R_1 ::= \lceil (R_1 ::= a_1) ; \dots ; (R_n ::= a_n) ; prog(e) \rceil ;
R_2 ::= 0 ;
run M_0
```

Then by assumption on M_0 , H decides the Halting Problem. Contradiction. So no such M_0 exists, i.e. χ_{S_0} is uncomputable, i.e. S_0 is undecidable.

Claim: $S_1 \triangleq \{e \mid \varphi_e \ total \ function\}$ is undecidable.

Proof (sketch): Suppose M_1 is a RM computing χ_{S_1} . From M_1 's program we can construct a RM M_0 to carry out: blue

let
$$e = R_1$$
 in $R_1 ::= \lceil R_1 ::= 0$; $prog(e) \rceil$;
run M_1

Then by assumption on M_1 , M_0 decides membership of S_0 from previous example (i.e. computes χ_{S_0}). Contradiction. So no such M_1 exists, i.e. χ_{S_1} is uncomputable, i.e. S_1 is undecidable.