Imperial College London
University Of London
Department of Computing

A Rigorous Approach
To Engineering
Web Service Compositions

Howard Foster

A thesis submitted in fulfilment of the requirements for the degree of Doctor of
Philosophy in the Faculty of Engineering of the University of London, and for
the Diploma of the Imperial College of London.

January 2006

Abstract

Despite the emergence of standards to define and compose Web Services to form more
complex systems, as yet, there is little support for engineering systems composed from
multiple services. As web technology has evolved, tools have been developed that support the
design of both visual content and functional services for users. Web Services however,
concentrate on the view of systems inter-operating with other systems rather than that of
actual human actors, yet the concepts related to ease of design are still highly relevant.
However, as yet, tools which assist service design and composition provide only basic

capabilities.

The main contribution of this work is to provide a rigorous approach to specifying, modelling,
verifying and validating the behaviour of web service compositions with the goal of
simplifying the task of designing coordinated distributed services and their interaction
requirements. We address these issues through the use of rigorous software process analysis
techniques. The thesis specifies semantics for web service composition standards and

develops an accessible, mechanical tool, which automates the tasks involved.

This thesis presents a model-based approach built upon formal verification, validation and
simulation techniques, utilising scenario-based design and implementations built in service
composition standards. The work assigns the semantics of compositions through the use of
Labelled Transition Systems (LTS) in the form of Finite State Processes (FSP). A tool suite
is also presented, forming an environment to assist in undertaking the approach, and featuring
an extendable and flexible architecture for the variety of compositional standards that exist.
The approach is validated using a case study as a result of collaborative work with the UK
Police Information Technology Organisation (PITO) and through example compositions

published by the International Business Machines Corporation (IBM).

Acknowledgements

This thesis is dedicated to my family, friends and colleagues whose support has proved
invaluable to my research. Through the progress of undertaking this research, I have felt
extremely fortunate to have contributed in part to the emerging use of standards and the
application of formal modelling techniques to analyse software processes constructed in these
standards. In particular, the many varied discussions I have had surrounding the issues
associated with the validation and verification of processes for web service composition has
continually boosted my endurance to pursue new ideas and here I mention those who have

been part of this work.

In particular, I would like to thank my supervisor Jeff Magee for discussions and guidance,
who has not only been a source for academic progression, but has also provided a friendship
and understanding throughout my research. Additionally the support from Jeff Kramer and
Sebastian Uchitel also proved highly complementary to working through ideas and
considering possible solutions. Thanks are also due for Robert Chatley, who assisted in
building early prototypes of the tool described in this thesis and continuing to update the core
analyser and other plug-ins. I would also like to thank those beta testers of the tool
(potentially unknown to them that they were!) for returning comments and highlighting where

the use of the tool for the approach could be improved.

I will also fondly remember all those I met at the annual conferences on software engineering
and web service research, and particularly, the growing emphasis of service composition and

choreography reasoning playing an increasing part of their publications.

“...the best test of truth is the power of the thought to get itself
accepted in the competition of the market.”

(Oliver Wendel Homes Jnr, dissent. Abrams v. United States, 1919)

Financial Support for this thesis has been provided in part by a series of IBM Eclipse Innovation Awards (2004,
2005) and with the assistance of the Department of Computing, Imperial College London.

http://www.quotationspage.com/quote/3731.html
http://www.quotationspage.com/quote/3731.html

Table of Contents

ABSTRACT 2
ACKNOWLEDGEMENTS 3
LIST OF FIGURES 8
GLOSSARY 12
CHAPTER 1 INTRODUCTION 13
LI MOTIVATION ..ottt ettt ettt s a b a e a e a et a e a e s e a b s e s s a e ene s 13

L2 THE APPROACHcviviitiiiiiitiietict ettt sttt a e a e r e s s s s n e s ne s 17

1.3 MOTIVATING EXAMPLEc.eiutiiitiiinientieiteiteetet ettt sttt ettt st st sae ettt et et besae bt sae et et eaenneseeene e 19
1.4 CONTRIBUTIONSouiiiiiiiiiiiiieiiiti ettt 21
1.5 THESIS OUTLINEcuiiiiiiiiiiiiieiitit ettt 22
CHAPTER 2 BACKGROUND 24
2.1 EVOLUTION OF THE COMPUTING NETWORKccuiiiiiiiiiniiiiiniieiieteieniesteete s eseesetesaesee s st eneeneesaesnesuessesanan 24
2.2 EVOLUTION OF DISTRIBUTED COMPUTINGccouiiiiiiiiiiiiniiiieiieieie s ere sttt sae s s sne s 25
2.3 WEB SERVICES ARCHITECTURE......ccoouiiuiiiiiiiiiiiiiitiiteite sttt s er sttt sae s 27
2.4 WEB SERVICE BEHAVIOURcoutiiiiititintieitetet ettt sttt ettt et e ae st bt et eae et eaenae st s bt sbeeue et ensensenaensenaeas 28
2.4.1 The Problem DOMGINccocuiiiii ettt ettt ettt et eneeenaeenee e 30

2.4.2 Web SeFVICE INICTTUCES........c.eieieeie ettt ettt a et et eeeeae st eneeneens 30

2.4.3 Web SerVice COMPOSILIONScccuveiceeeerieeireesieesreesiteasseestteasiaeestseestaeensseaseesseessseessseesseessseessseensss 31

2.4.4 Web Service CROFEOZFAPIYccooeveeceiaieeiieeiieiieee ettt ettt ettt et saaesse s 33

2.4.5 The Service-Oriented Model (SOM)c.coeeieiieiieiiiiieeeeee ettt 34

2.4.6 Service Goals, Policies and OBIIGALIONS..............cc.cccoevveveioieiiieieee ettt 35

2.4.7 Goal-Oriented Requirements ENGINEEring................ccccocivoiioiioiininiiiitieiteieeese sttt 37

2.5 SOFTWARE PROCESS ANALYSIS.......coitiiiiiiiieiieiiitcieeeteeeie st s 38
2.5.1 Software Process MOAEISc.occoociiiiiieiieei ettt 39

2.5 2 T-CAICUTIUS ... ettt ettt ettt ettt 40

BT o 7 T A APPSR 41

2.5.4 FiNite SHATE PFOCESSccucieiieiiiiieit ettt ettt ettt et 42

2.5.5 COMPATISON......ceeeee et e et e et e et e et e et e e st e et e e bt e enseeeateeensaesaseesnbeesseesnseennses 42

2.6 REVIEW OF RELATED WORK.......cociiiiiiiiiiiiiiiiiiiiiicte sttt st s 43
2.6.1 Web Service SPECIfICALIONSc.ccceieiieeeiieie ettt ettt ettt ettt enee e enee e 43

2.6.2 Modelling Web Service Compositions and ChOFeographycccccucoiiceiieencianiieiieieene e 44

2.6.3 Verification and Behaviour ARGIYSIScccoccoioiioiioiiieieeieeeee ettt 47

2.6.4 Tool Support and CaSe STUAIEScc.eeeeeecieiiiesiieeeeeie st ae et ettt e sbeesbeesaseessseenenes 48

2.6.5 Summary of related work and our QPPIOACHcccccoevuiviiiiiiiiiieieeieeieee e 49

2.7 SUMMARY AND DISCUSSION.......ccoeiutritiieeeiiiiiteeeeeeeeeeeitaereeeeeeeeeaareeeeeeeeestasreeeeeeeesssarereeeesensistrereseseennrsrrerees 50

CHAPTER 3 WEB SERVICE SPECIFICATIONS 52

3.1 SPECIFYING WEB SERVICE COMPOSITIONS.......coiiiiiiiiiiiiiieiiiieieie sttt s 52
3.2 THE SCENARIO APPROACHcooiuiiiiiiiieiiitieecie ettt s e eaeas 54
3.2.1 Basic Message Sequence CRarts (BMSC)ccoooeiiieiiiiiieieeeeeee et 55
3.2.2 High Level Message Sequence Charts (RMSC)............cccooueoiioiiiiiieiieee ittt 56
3.3 MSCS, COMPOSITIONS AND CHOREOGRAPHYccuuvveiiieeieiiiiieeeeeeeeeiiisereeeseeesssssareeesessesssseesssesssmssnsseseesss 57
3.3.1 Mapping MSCs elements to Web Service Composition Behaviourc..ccocvevveeeeieeceeenenn 57
3.3.2 Web Service CompOoSitions @S MSCS...........ccccevvueiieciieieieieeiieeieeieeee et ereese et easessaeenes 57
3.3.3 Web Service Choreography as MSCScccociuiiiiiiiiiiiiieieiiee sttt 60
3.4 SYNTHESISING MSCS TO LABELED TRANSITION SYSTEMScceiiiiiiiiiiiiiiiiieiieieiesie s 61
3.5 SUMMARY AND DISCUSSION.......c.uiiiiuiitiieiiiiieeiiitieteieete ettt a e s eaens 62
CHAPTER 4 MODELLING WEB SERVICE COMPOSITIONS 64
4.1 MODELLING BPELAWS PROCESSES.......c.couiiiiiiiiiiiiiiiiitiiiiiiteeit e s 64
411 OVErview Of BPELAWSo oottt ettt ee et 64
4.1.2 BPEL4WS Processes and Business ProtOCOISccccoooiiiiiiiioiiiiiieieieeee ettt 65

4. 1.3 Private ProCeSS SIUCHUTEc.cccueouiiiiiiiiaiteeit ettt ettt ettt 66
4.1.4 Mapping BPEL4WS Processes t0 'SPc..ccccccciiiiiiiiiiiiiiiiiiiiiiieit ettt 68
4.2 MAPPING PRIMITIVE ACTIVITIESoviitiiiiiiiiiiiiiiiiiesteite sttt sttt sae e s 69
4.2.1 Label Abstraction of Web Service INteracCtions..............ccccueeeecieieiiieiieee ettt 69
4.2.2 InVoke, RECEIVE, REPIYccooeeiiieiee ettt ettt ettt ettt 70

4. 2.3 WAIt QNA EMPELY ..ottt ettt ettt ettt et 71
B2 4 TOFMUENGLE ...ttt ettt et ettt ettt 72
4.3 STRUCTURED ACTIVITIESoouiiiiiiiiiniietiitieiteteteste sttt sttt et sae st b st ese et e e s e s e b susese e st enaesnesaesnesaeeneeneen 72
4.3.1 SeGUENCES Of ACHIVILICSc.eeeiieiieiiet ettt ettt 73
4.3.2 CONCUIFENE ACHIVITIOS ...ttt et ettt ettt ettt e e it e ettt e et e ettt e eaa e et e e saneenees 73
4.3.3 LiNKed TPANSTHIOMScooeueeeieeeeee et ettt ettt ettt et e et ettt e eaeeeaeenneenneas 75
4.4 GUARDED PROCESS ACTIVITIEScouiiiuiitiieiiiiieceeieeteeeie st s s s 76
4.4.1 Variable Abstraction And GUAFASccoocueviiaiiiiiiieeieee ettt 76
G2 ASSIGI.ceeeee ettt ettt ettt et a et ne et n et s 78

G 3 WRILE ...ttt 78
G SWICH/CASE.........o ettt ettt ettt ettt 79
44,5 PICK/ONMESSAUZE ...ttt ettt ettt 82
4.5 FAULT AND COMPENSATION HANDLERSciiiiiiiiiiiiiiiitieiieietete sttt s 84
4.5.1 Modelling Fault HANAIINGccccoiiiioiiiieie ettt 84
.52 TRFOW ..ottt ettt e ettt et a e etk R ekttt ettt ae ettt et enteene et enean 84
4.5.3 Modelling Compensation Handlingc.ccooeiieiiiiiiiiiiieie ettt 85
4.6 A COMPLETE EXAMPLE ..ottt bbb 90
4.7 ASSUMPTIONS AND LIMITATIONSooiuiiiiiiiiiieiieiiientiite sttt ettt st st sa et s be et snesaesne s eneeaeen 95

4.8 SUMMARY AND DISCUSSION........ceetiutiiiiieeeeeiitieeeeeeeeeeeitaeeeeeeeeeesaeeeeeeeeeessareseseeeeesisrerteeeeeenstseseeeseeennsrerees 97

CHAPTER S MODELLING WEB SERVICE CHOREOGRAPHY 98

5.1 WEB SERVICE INTERACTIONS AND CHOREOGRAPHYccuiiuiiuiiiiiiiiiiiiiiiincic ettt 98
5.2 MODELLING WEB SERVICE INTERACTIONScccciuiiiiiiiiiiiiniiiiiiiieiesne sttt st st 100
5.2.1 S€1VICE COMVEFSALIONS..........c.eeeeeieeie ettt ettt ettt ettt e et et ete et enteese e st eneeeneeeneenes 100
5.2.2 Service Partners And ROIESccoocioiiiiiiiiiieii et 101
5.2.3 Linking CompoOSition INEFACHIONS...............cc.occeioeeiiiaiieeieee ettt 102
5.2.4 An Interaction Modelling AIGOFItRIN...............ccccccoiiiiiiieiiiieeeeeeee e 105
5.3 BUILDING INTERACTION MODELSccoiviiiiiiiiiiiiiiiiiiiiiii ittt 107
5.3.1 Composition Process INIEFACIIONScc..ceueeiieiiieeiie e ettt ettt e et e seteesseesiaeeaeeenes 107
5.3.2 BUILAING @ Set Of PFOCESSEScc.coueeiiiieiiiiieeeeeete sttt st 108
5.3.3 Messaging Port Connector MOMEIS....................cccccociuiioiioiiiiiininiiist ettt 109
5.4 SUMMARY AND DISCUSSION.......c.ccouiuiiiiiuiitiieiiiteeete sttt st se s ene e nesee e ene e 116
CHAPTER 6 ANALYSIS FOR THE SERVICE-ORIENTED MODEL 117
6.1 ANALYSIS OF WEB SERVICE COMPOSITIONS AND CHOREOGRAPHYcciiuiiiuiiiiiiiiiiiiiiiieiec e 117
6.1.1 Approach to Analysis Of the SOMccccooiioiiiiiiieieeee ettt 117
6.1.2 Techniques used in the ARALYSIS.............c..ccoeueiiieiieie ettt ettt ettt saeeese e 119
6.2 PREPARATION FOR ANALYSIS ...ttt sttt ettt ettt sttt et st ne st aesae e e s ene 121
0.2.1 Types of Preparation ACHVILIESccccueuioieriiriiieiiit ettt sttt 121
6.2.2 Preparation for Composition Abstraction and Mappings...............c..c.cccocceevveniniiniisiinienciaeieeenens 122
6.2.3 Sample Scenario for Verification and Validationc.ccocoeioieioieiiiaoiiieiieeeee e 123
6.3 REFINING COMPOSITION BEHAVIOUR MODELSccutrtiiiiiiteiieiieienientinieneeeiteitetentestesreseeeaeeeeennesensenseseeenes 124
6.3.1 Reduction of Implementation Specific ACHVITIESc..ccccuiouiieeeieeeeee ettt 124
6.3.2 Grouping Design and Implementation Activities between Modelsc..ccovvevvieviivenveennnann.. 125
6.3.3 Building an Architecture Model for ANGIYSIS............c...ccocveviiiiiieiiiieieeieeeeeeee et 126
6.4 ANALYSIS OF COMPOSITION BEHAVIOUR MODELS........ccciiiiiiiiiiiiiniiiiiiciieeeieee e 127
6.4.1 Composition Design and Implementation EQUIVALENCEccoccoevevecieciaiieiieiieieee e 128
0.4.2 Compatibility of Service Composition INIeFACHIONSc.cccooviiciiiiiiieiei e 135
0.4.3 OFNEE PPOPEITIOS ..ottt ettt ettt et e et eeaeeneeeneenaeenneenees 139
6.5 VALIDATION ANALYSIS OF BEHAVIOUR MODELSccoiiiiiiiiiiiiiiiiiiiiiiiiiieieic et 143
6.5.1 Composition Validation through ARIMALIONccovoeiiiiiiiiiiiieeeeee e 144
6.6 SUMMARY AND DISCUSSION.......ccuiiiiiiiiiiiiiiiiiiiiiiiiit ettt 147
CHAPTER 7 TOOL SUPPORT AND CASE STUDY 148
7.1 TOOL SUPPORTcuviuiitiniiniitinietc ettt ettt ettt ettt ettt ae s s et sttt easea e ene s et ene s s 148
T L1 TOOL AFCRIEECIUFE ...ttt ettt ettt sbe st e bt e e enseenae s 149
7.1.2 Initial Prototype as PIug-in for LTSAcc.ccooiiiiiiiiiie ettt 150
7.1.3 Migrating the tool to the Eclipse ERVIFORMEALcccccceiueiiiiias ettt 153
7.2 CASE STUDY: UK NATIONAL POLICE IT WEB SERVICE COMPOSITIONS.......ccocuiiiiiiiiiiiniiiieiinc e 155
7. 2.1 INEFOAUCTION ...ttt ettt ettt ettt e e 155

7.2, 2 SCOPC.c.oe et et ettt ettt ettt e bt e ettt e ta e e bt e e taeetteennaeeneeens 155

7.2.3 Issues and Our CONFIDULION.ccccovueciiiniiiiiiinieiiieeet ettt
7.2.4 ROGUITEIMENILSc..ccuiiiiiiiiiiiiiit ettt ettt et
7.2.5 SPECTIICALION. ...ttt ettt ettt n e
7.2.6 Implementation and ANGLYSISccooooiioiiiiiii ittt
7. 2.7 CROFEOGFAPIY ...ttt etttk et ettt me et e ettt et e s e e

7.2.8 SUmMmMAry ARAd DISCUSSTONcc.ooouiiiiiiiiiieee ettt ettt ettt ettt enee e

CHAPTER 8 EVALUATION AND CONCLUSIONS

8.1 EVALUATION OF APPROACHcciivimiiiiiiiiiiiiitiiiit ittt
8.1.1 On DeSign SPECIfICALIONSccveeeeeiieiiieieeeieeeie ettt ettt be et eteesbeeseesseenseensessee s
8.1.2 On Modelling IMmplementAtioNs.................ccccciiriiiiiiiiiiieieeeee ettt ettt
8.1.3 On Verification and ValidQUion.................cc.ccceviiiiiiiiiiiiiiiiiiieeeeeeee ettt
814 ON JHOFAIION. ...ttt ettt ettt et ee et een ettt et ne e

8.2 EVALUATION OF TOOL SUPPORTccutiuimiiiiiiiiiiiieieie sttt st s s s s s
8.2.1 EASE Of IOATTNG ...ttt ettt ettt ae et aneas
8.2.2 EQULY PAYDACKoooceoeiiiieiie ettt ettt et e et e et e et e et e e nabeensbeenaree e
B.2.3 EffICICHICY ..ottt ettt ettt a e bbb aeeeae bt
8.2.4 Incremental gain for incremental effOrt..............ccccocvvevuieciimieiieieieeie e
8.2.5 Orientation toward error dEteCtionN....................coccueeieieaiiieieeiieee ettt
8.2.0 INIEGVALEA USE ...ttt et
8.2.7 FOCUSEA ANQLYSIS ...ttt ettt ettt ettt ettt et nee e e
8.2.8 Evolutionary DEVeIODIENL...................c.occuiieiiieee ettt ettt

8.3 SUMMARY OF CONTRIBUTIONS...... .ottt sttt st

BUATFUTURE WORKoviiiiiiiiiiiiiiiiiiii it

8.5 CLOSING REMARKS ...ovvviiiiiiieiiiieeeee e e eeeette e e e eeeeate e e e e e e eeeaaaeeeeeeeeesaaaeseeeeeeesatreseeeeeeeasstaaseeeeeeeanssareeeeeeenn

BIBLIOGRAPHY

APPENDIX A — WS-*

A.1 WEB SERVICE STANDARDScotiuttttiieieiieieteeeeeeeeeesaeeeeeeessessaeseeeeesssssassseseessssisssseesessssmsssssseeesssomssssseees

APPENDIX B — FSP SEMANTICS

BT PROCESSES ... uttieiiiee ettt ee ettt e e e et ettt e e e e e eesaae e e e e e e s eeaaaaeeeeeeseasaaaeeesesseasaataeeeeesseennaaaasseessesnanaaeeeas
B.2 COMPOSITE PROCESSES.....cetiiiiiiiotieeteeeeeiieiieeeeeeeeeeeeaaeeeeeeeeeesaaeeeeeesseesaaseessesseesataeeesesseessaaaesseesssenssnreeees
B.3 COMMON OPERATORSvvviieeieeitttereeeeeeeieiaereeeeeeeeesaaeeeeseseeesitaesteeseeeaassseseseseeeanssssseeseseensissrsseseseennssrerens

B4 PROPERTIES.....cceviiiiiiiiitteeeeeeeeeeeitteeeeeeeeeeestaeeeeeseeeeesaaaeeeeeseeasataeseeeeeeasataaseeeseeeanstassseeseseenssaseseseseennsrreees

APPENDIX C — BPEL4WS TO FSP

C.1 PRIMITIVE ACTIVITIES ...vvveiiiieeiiitietteeeeeeeeiieeeeeeeeeeeeitsaeeeseeeeesissseseseeeeesesssseeeseeeaasssssseeseeseesssssseseeeensissrenes
C.2 STRUCTURED ACTIVITIES.......cetetutetteeeeeiieiteeeteeeeeseesaseeeeeesseesassessesessasssessseesssssssassseesesssssssssssseesssmmsssssees
C.3 GUARDED ACTIVITIES ..vvettieeteeetteeieeeeeeeeteeeteeeeeseeaaaeeeeeessesssasseseesessessasasseeesssssassassseesessasnnasseeeeesssssnnseeees

C.4 FAULT HANDLING ACTIVITIES ...vvvvvieieieiietieeeeeeeeeeesiaeeeeeeeseessssesssesssessssesssssssssssssseessesssmsssssssssesssmmsssesees

176

176
177
179
181
182
183
183
184
185
185
185
186
186
187
187
188
190

191

202

202

203

203
203
204
204

205

List of Figures

Figure 1-1 Web Services, Compositions and Choreography in a Police Enquiry Collaboration 15
Figure 1-2 An Approach to Rigorous Engineering of Web Service Compositions...........ccoeeeveereverieeienieneennen. 18
Figure 1-3 UK PITO Case Study — Police Enquiry Service Domain and Hierarchy.............ccocorieiiniinenennen. 20
Figure 1-4 Chapters and SUDLOPICS Of thESIScueruiruiriiitieiieiieie ettt sttt sttt saeeneene 23
Figure 2-1 Evolution of Distributed Computing Architecture Styles..........ccevieviieierienieiieiecieseee e 27
Figure 2-2 Web Services Standards StaCK..........cooviiiiiiiiiiiieeeee e 28
Figure 2-3 Web Services and Software Process EIEmentsc..cocoeiriririiieienienincninenceeeteeceseenie e 29
Figure 2-4 WSDL SEIUCTUTEeuvetiiieteeieeitetetete sttt et ettt b ettt et st b e sbe e bt sbeestebe et et e aestesbesbeeaeene 31
Figure 2-5. Elements and relationships of a Service Oriented Modelcccovieiiiiiiiiiiinieee e 35
Figure 2-6 Elements of SOM for Verification and Validation of SeIviCes.........ceeoereerieneeieiieniereeeeie e 36
Figure 2-7 Scenario of shared (printer) resource between server and client...........cooceeeeeieeieiierienieseseseseeeeene 40
Figure 2-8 A Petri-Net example for a Simplified Alternating Bit Processcocevererererieienienene e 41
Figure 2-9 FSP and LTS of a sequential process COMPOSILIONvevieriieriieiiieieniiesieeieeveeeesieesteeseeaesenesenens 42
Figure 3-1 Example service composition for a new 10an reqUeSt............ceceeierieriererineninieieeesese e 53
Figure 3-2 A Rich-Picture of viewpoints in a loan selection service COmpoSItion.........ccceeeeereeeeieneervenenenene 54
Figure 3-3 Example scenario of a loan offer service COmpOSItioncccueveviererineninineeieienieesesesie e 55
Figure 3-4 Example bMSCs for scenarios in the loan selection service composition.............cecveveveveeeieneeneeennen. 56
Figure 3-5. High Level MSC (hMSC) for Loan Selection Service composition............ccecveeereereeereesiesieneennen. 57
Figure 3-6. Basic MSCs and Web Service Composition €lements...........cccueruererereneneeieieieeseese e eeeenene 59
Figure 3-7 Basic MSC and Web Service Choreography elements forming a Collaboration Group..................... 61
Figure 3-8 Architectural Model LTS of Loan Selection COMPOSItIONccuereriereriinirieieieiene e 62
Figure 3-9 LTS for Loan Selection Service PrOCESS.cccuertiriiriiriririeiiriieeetetee ettt 62
Figure 3-10 Elements of the approach discussed in chapter 3...........cccoeoiieiiiienieiieeeeeeee e 63
Figure 4-1 Basic BPEL4WS Process Structure and ACtiVIty GIOUPS........ccevcveriereerierreerieseeneeeneeeeeseesseensesnens 66
Figure 4-2 Standard Transitional Attributes and Elements Tags of BPELAWS Activitiesccccceccveverreenieennen. 68
Figure 4-3. Basic Service Activity Labellingcccooiiuiiiiiiieiee ettt 70
Figure 4-4 Invoke, Receive and Reply constructs and mapping to FSP ... 71
Figure 4-5 Example mapping of terminate activity as LTS ProCess........ccceeveevierienerinenininieeeieeeiese e 72
Figure 4-6 Sequence construct and mapping to FSPccovooiioiiiiiiiiiiictcceeeee e 73
Figure 4-7 Flow construct and mapping to FSP for concurrent activitiesc.cceevererieienienenenieneneneneeene 74
Figure 4-8 Mapping link Semantics for part of a loan approval ProCess..........covererererireerierieneneneneneseneene 75
Figure 4-9 The Variable form in BPELAWS ... ettt 76
Figure 4-10 Read-write Models for BPEL4WS Variables. FSP (top), LTS (bottom).........cccoeceevvereerienienieenen. 77
Figure 4-11 Assign construct and FSP mMappingcooeeoueiiiiiiniiiieeeeee ettt 79
Figure 4-12 While construct and mapping t0 FSP........coiiiiiiii e 80
Figure 4-13 Switch/Case construct and mapping to FSPccoivviiiiiiiiiiiceeeeeeee e 81
Figure 4-14 FSP Code for Pick..OnMessage event model for an ATM Logon..........ccceeeveeeievieneenieenieeieneennenns 83

Figure 4-15 LTS of Fault Handler and normal eXecution actiVity SCOPE.......ccververierreereerieriiereeeeeereeeenseeneeennens 86

Figure 4-16 LTS of Throw activity model and process Synchronisation..............cceecveeeverieseereeieseeseeneeseesnenns 87

Figure 4-17 Compensation Handlers as inline (top-left) or scoped (top-right) and activity (bottom).................. 88
Figure 4-18 Compensate (inline) choice of eXeCution Pathsccoecieiirieriesiieieeie e 89
Figure 4-19 LTS of scoped compensation handler aCtiVities...........eerueeirrierienieieeie e 90
Figure 4-20 LoanApproval models (bottom) produced from Linked Receive Activity (t0p).....cccvevveervereerueennene 92
Figure 4-21 LTS for models produced from InvokeASSESSOr ACHVILYccveruerierieriiieiieeiieieieee e 92
Figure 4-22 LTS for models produced from Invoke Approver ACHVILYccecueriererereneneeeeiceee e 93
Figure 4-23 Assign activity to set reply MeSSAZE CONLENL.........ccvireierierieriieiieteeeeereesteereeseeaesraesseesseesessnesseens 94
Figure 4-24 LTS for models produced from Reply Message Assign ACIVILYc.ccvevveevieecieeierieseenieenseeaeenens 94
Figure 4-25 LTS for model produced by mapping of reply activity.......ccoeceveeriereriieiiiesiereeie e 95
Figure 4-26 Architecture Model of Loan Approval Web Service COmMPOSItION.c.ceeverververeeereeeienieneeeeeennns 96
Figure 4-27. Elements of approach discussed in chapter 4.............ccoooioiiiiiiieiieeeeceseee e 97
Figure 5-1 View of multiple service compositions interacting and choreography layerccccoeevevinieneennen. 99
Figure 5-2. Composition Interaction Analysis Sub-Action DIagramccccccerirereriiniinieieieiee e 101
Figure 5-3. Service Partners, PartnerLinks and Roles in Composition Linking..........ccccocceieniiinincninienenne 103
Figure 5-4. PartnerLinkType, PartnerLink and Partner construct formsccceccevvenenenininiinceienenenenee, 104
Figure 5-5. Flow-chart of algorithm for Modelling Composition Interactions...........cccceeevvererenerenerceeeneennen 106
Figure 5-6 Web Service Composition and Port Channelscceecveeieiinienieiieiecee e 107
Figure 5-7. View of Multiple Web Service Compositions Interacting in a Police Enquiry Scenario................. 108
Figure 5-8 Scenario and Diagram for a MarketPlace Service COmMpPOSItion.........ccoverueererrieiienienieeree e 109
Figure 5-9. FSP Code for Buyer and Seller Interactions with a MarketPlace Processccccceevveiivceneenene 110
Figure 5-10 Channels and Interaction Activities of Web Service COmMpOSItioNnsccecuereerererienereeeecenennes 110
Figure 5-11 LTS of Model for Request Only Port CONNECtOr..........ccveiierieriieriieieeieeiiesie et eve e se e ese e 111
Figure 5-12. LTS of Model for Synchronous Rendezvous Port Connector..............ccoecveeveeiereenieeneneenneneenne 112
Figure 5-13. Mapping Activities Between Port Connector and BPEL4AWS forccccoccviviiiiiiiniiiinincncnene, 113
Figure 5-14 FSP Code segments fOr Mapping aCtiVIti€s..........cuerveruierirerieeieniienieesieeteeaeseesseessesseseesseesseesseenes 114
Figure 5-15 LTS for Partial Set of Interactions between Seller, Buyer and Marketplace Compositions 115
Figure 5-16. Elements of the approach discussed in chapter 5...........ccoociiiiiiiiiiiiiie e 116
Figure 6-1 Approach to analysis of Service Specifications and Implementation Modelsccoocererinennene. 118
Figure 6-2. Behaviour Refinement through Analysis and AbStraction...........cccecueveierereneeieieeiee e 122
Figure 6-3 Example scenario of activities in a Message Auditing Service Composition...........ccceeeveveereeenennen. 123
Figure 6-4. Composition Implementation Alphabet before Reduction............cceevveiieiinienienieeee e, 124
Figure 6-5 FSP code for Refined Composition Architecture Modelcoccverieriieiiincieiienieeee e 127
Figure 6-6 Approach for Verification Analysis of Composition Modelsc.cccceverereririienenenineneneneeeen 128
Figure 6-7 bMSCs for scenarios in the echo-audit Service COMPOSITIONcc.eerereriirrierieerieiiereee e 130
Figure 6-8 hMSC of echo-audit SErvice COMPOSITIONeeueireiiriieriietieie ettt et see st sae e ee e seeeneeenes 130
Figure 6-9 LTS model for MSC scenario Echo-Audit COmMPOSItIONcceeieierieriineiieieeieeeeeieeee e 131
Figure 6-10 BPELAWS Process StruCture fOTcoiiiiiiiiiiiiieiierieett ettt et 131
Figure 6-11 LTS model for BPEL4WS Provider Service Activities in Echo-Audit Composition..................... 132
Figure 6-12 LTS model for BPEL4WS Provider Service mapped to MSC activitiescccvevveeverrereerreenennnn. 133

Figure 6-13 FSP code for equivalence verification of BPEL4WS against MSC modelscc.ccccecvevvenenenncnne. 134

Figure 6-14 Trace run example of trace equivalence of MSC and BPELAWS models........ccccoceeveeienenienenenne. 134

Figure 6-15 FSP code for equivalence verification of BPEL4WS against MSC modelscc.ccccecveveenenennenne. 134
Figure 6-16 BPEL4WS Process Structures for Services in Echo-Audit Composition Example......................... 137
Figure 6-17 FSP code for Client-Provider port connector model............ccocoerieiieiiniinieiieeeeee e 137
Figure 6-18 Port Connectors for Services in Echo-Audit Composition Exampleccccocceviininiinennnne. 138
Figure 6-19 FSP code for parallel composition of BPEL4AWS services and port connectors............c.ccceeueeenee. 138
Figure 6-20 Deadlock example of compatibility verification BPEL4WS and partnered services...................... 138
Figure 6-21 FSP code for safety property that a request to log a client is madeccocceevvevireciercieneereenneenne. 140
Figure 6-22 LTS model of a violation of a safety property in the Provider Service Composition..................... 141
Figure 6-23 FSP code for progress property that a reply to a client is always made............ccoeevevvereeriencrennenne. 142
Figure 6-24 FSP code for equivalence verification of BPEL4WS against MSC modelsccccccevveerierirennnnne. 142
Figure 6-25 Approach for Validation Analysis of Composition Models...........cccoeveriirienieiinierieceeeee e 144
Figure 6-26 A sample validation of a sequence using LTSA Animator function............ccceeeeveeieiiencenrennnnne. 145
Figure 6-27 A sample validation of alternative paths using LTSA Animator function...........cccccceeeereneneneenne. 146
Figure 6-28 The alternative paths available using LTSA Animator function...........c.coeceeereeieeeceienenese e 146
Figure 6-29. Elements of the approach discussed in chapter 6.ccceeveeriiiriiiiiiienieieeeeeee e 147
Figure 7-1 LTSA-WS Tool Component ATChItECIUIEccveruieriieiieieiieeteesie ettt eevesteesteesseessesenessaeseeesseennes 149
Figure 7-2 LTSA-MSC: EMSC ..ottt ettt et s 151
Figure 7-3 LTSA-MSC: BMSC ..ottt sttt st 151
Figure 7-4 LTSA-WS Interface and LTSA plug-in frameworkccccovieiiiiiiiinineeeee e 152
Figure 7-5 LTSA-WS: FSP ..ottt sttt b et b e 152
Figure 7-6 LTSA-WS: VerifiCation........coouieiiiiiiiiiiieieee ettt st sttt st nae e e 152
Figure 7-7 LTSA-WS: Validation and ANIMALIONccceerrieriieiiiiiieiieneesieeteeteeeesreesseeseessesssesssesseessesssessnes 153
Figure 7-8 Web Service Composition Development with LTSA-ECHPSE.....cccccvevvieiirierieiieieeiecieceeie e 154
Figure 7-9 PITO Web Services ATChiteCtUre SCOPE....uvvvirierieriieiieieeieeeiesieeteeieeeaesaesseesseensesaeseesseesseenseenes 156
Figure 7-10 A Pilot Project Scenario for Web Service Composition in PITOcccocevininininniincnicncnene, 157
Figure 7-11 Initial specification for a PITO police enquiry web service composition............cccceeveevereeeneeeneenne 158
Figure 7-12 Concurrent interactions introduced in to the PITO composition specification.............ccceceeeeneenne. 159
Figure 7-13 Partial scenario for Vehicle Enquiry reply and ANPR request constraintcccceeceveeeecencne. 160
Figure 7-14 Partial specification scenario to constrain nominal enquiry with result of insurance enquiry 160
Figure 7-15 Partial specification scenario to constrain nominal enquiry with result of vehicle enquiry............ 161
Figure 7-16 hMSC for PITO Police ENquiry COMPOSITIONeveeeveiieiierieerieeieereeeieseesseereeseeesesenesseesseessesnnes 161
Figure 7-17 PITO Police Enquiry Basic BPEL4WS Process structure (interactions only).........c.ccocceeevereenenne. 162
Figure 7-18 Partial PITO Police Enquiry Basic BPEL4WS Process with assignmentscc.ccccecvevenenenenne. 163
Figure 7-19 Partial BPEL4WS Process sequence with assignmentscoecueveerieriieienieiieneenie e 163
Figure 7-20 Graphical LTS view of Police Enquiry Composition with abstraction...........c.ccceceveeivrreneencenne. 164
Figure 7-21 Results of trace equivalence test to check BPEL4WS partially fulfils MSC specification............. 165
Figure 7-22 Results of trace equivalence test to check scenarios not covered by BPELAWS composition........ 166

Figure 7-23 Modified BPEL4WS Process to support FLOW of Vehicle Enquiry and Insurance Invocations .. 167
Figure 7-24 Trace equivalence verification to check current vehicle enquiries in BPEL4WS composition...... 167

Figure 7-25 BPEL4WS Process to support LINKED transitions of Vehicle Enquiry and Nominal Enquiry 168

Figure 7-26
Figure 7-27
Figure 7-28
Figure 7-29
Figure 7-30
Figure 7-31
Figure 7-32
Figure 7-33
Figure 7-34
Figure 7-35
Figure 7-36

Final BPELAWS process for VerifiCation.coerireriririiiiieieiesiesesie sttt 169

Final BPEL4WS process verification against MSC specificationc..cocceeverereeneeienienenennens 169
A Pilot Project Scenario for Web Service Composition in PITOccccoevininininiiiincnicncnene, 170
Overview of choreography of elaborated composition SCENArio...........ccoeeveerrereerieeieeieeeeenens 171
Specification for scenario of Vehicle, ANPR and Authorisation Enquiriesccccceecereeeneennne. 172
Police Enquiry composition in Choreography example...........ccooeieriiinienininieieieee e 172
Vehicle Enquiry composition in Choreography examplecccooiiiiiiieieienenenese e 173
ANPR Enquiry (Traffic Services) in Choreography example...........cccceeevirierienieniieieneeneesieeenns 173
Port Connector model between Police Enquiry and Vehicle Enquiry compositions 174
Deadlock example of compatibility verification BPEL4AWS and partnered compositions 174
Results of trace equivalence test to check BPEL4WS partially fulfils MSC specification............. 175

Glossary

The following glossary terms are taken from the Open Distributed Processing Reference

Model (ISO 1995), and various Web Service specifications including; (Christensen, Curbera
et al. 2001; Leymann 2001; Haas 2002; Schlimmer 2002; Christensen, Curbera et al. 2003;
Gudgin and Hadley 2003; Booth, Haas et al. 2004; Gudgin and Hadley 2004). Traditional

and more general

Term Applied To

descriptions are cross-referenced with relation to web services.

Definition

Web Services

Behaviour

Choreography

Composition

Interface

Orchestration

Problem Domain

Service

A web service’s behaviour is defined by the set of activities behind that service and
mapping those activities to message exchanges.

Choreography describes the collective message exchange among interacting Web Services,
providing a global, message-oriented view of the interactions (observing and controlling a
many to many relationship).

A web service composition consists of an orchestration of web service interactions defined
in a local process (itself potentially a service). Static web service compositions are those
which use services known at design time and are bound to a composition at design time.
Dynamic web service compositions those which define web service interactions where the
services are not known at design time, and which are discovered or their properties
resolved based upon a criteria process set at design time.

A service interface is the abstract boundary that a service exposes. It defines the types of
messages and the message exchange patterns that are involved in interacting with the
service, together with any conditions implied by those messages. A web service’s interface
describes the operations provided by that service and biographical information about where
the service may be referenced (e.g. network address).

Describes the definition and the implementation of processes that drives the message
exchanges between one or more web services. = The BPEL4WS standard refers to
participating services as composition Partners. Interaction is seen between one process and
many services (i.e. one to many).

The functional area of interest, or under control, by individual or groups of (web) services
hosted on the internet and accessible either locally or globally (to other service groups) to
fulfil a task or a series of tasks within the function area.

A web service is a software application identified by a URI, whose interfaces and binding
are capable of being defined, described and discovered by XML artefacts and supports
direct interactions with other software applications using XML based messages via

Internet-based protocols.

Chapter 1

Introduction

“...the inherent complexity of a sofiware system is related to the problem it is trying to solve. The actual

complexity is related to the size and structure of the software system as built.” (Kevin Henney, 1999)

1.1 Motivation

Distributed software systems, and the interactions between components within these systems,
can exhibit a high level of complexity and lead to difficulty in the assessment of what system
behaviour is possible in multiple scenarios (Hogg and Huberman 1991). Constraining such a
system requires us to fully understand the behaviour of the system and place controls on
which sets of activities a system can perform. A distributed software system also encourages
system evolution, by offering reusable services so that other systems may also include
components from each other without reengineering solutions. Web Services (components
interfaced using XML and standard internet protocols) are one such software architecture to
exhibit this need for control, combining the flexibility and reach of the internet, the principles

of reusability, with that of conventional distributed systems engineering practices.

The effect of using earlier distributed architecture styles has been prone to issues of semantic
failure (where processes fail to achieve a goal due to transaction failures) and difficulties in
providing the necessary distributed compensation handling sequences (Bukhres and Crawley
1996). There have also been difficulties attributed to the strict binding of compositions with
specific technologies. Where previously designers of compositions had to work very closely

with the developers of a technical solution, there is now a mechanism to support technology

14 Chapter 1. Introduction

independent software component invocation through the standards used in Web Service
architectures. This provides opportunity for software designers to concentrate on the exact
processes required from the services without hindrance from limitations of technical
possibilities or great effort required to implement them. As web technology has evolved, the
emphasis has been placed on providing ease of design and implementation, with the desirable
“what-you-see-is-what-you-get - WYSIWYG” (Johnson, Roberts et al. 1989) now the normal
rather than the exception for rapidly building web served applications. This is equally
applicable to the domain of web services. Even though the web services concept focuses on a
view of systems to systems rather than actual human actors, the concepts of ease of design

and implementation for system interactions are highly related.

Web Services exhibit many similarities to traditional software components that amongst
which resemble hosted objects which have a simple, well-defined interface, and that are
designed with the expectation of reuse. In fact, the notions and ideas behind constructing
reusable software components are highly applicable to web services, as they could simply be
viewed as a type of software component architecture but with the addition of yielding a
standard communication model. Some problems of component composition have been

reported in (Fowler 2003) as:

e Identifying the appropriate components to implement the desired functionality
e Determining and resolving gaps between desired functionality and the component’s
functionality

e Specifying the component interactions

These issues are equally applicable to web service components. As web service deployment
and use becomes more widespread, the notion of managing the composition of web services
to integrate software processes together is being highlighted with concerns within research
and the adopted standards (Yang and Papazoglou 2003). Web Service compositions focus on
a group of services offering functional roles and activities to achieve a goal. An
“orchestration” of services is assembled to achieve a collaborative effort between this group
of services. The difference with web service compositions over that of traditional software
component compositions is that web services compositions focus on the “autonomic open
system”; in that they are designed to exhibit a service for varied client use and these can be

reused without significant changes incurred to the design, potentially by any interested party.

Chapter 1. Introduction 15

They also exhibit some operational differences where run-time binding is loosely coupled
assisting dynamic service invocation. If a web service or web service composition (a process
interacting with one or more web services) is offered, the interests lie in who will use the
service, how they will use the service and what they will expect to be invoked when
requesting the service. These issues encourage us to consider how the analysis and
verification of service offerings are incorporated into a service-oriented development
approach, and specifically how prior to deployment, modelling and behaviour analysis can
assist in determining the impact of solution given, and thus providing reassurance that the
services are constrained appropriately. As an introduction to the domains covered in this
thesis, the architecture of a web services solution with multiple compositions collaborating in
a theoretical Police Enquiry services environment, illustrates how complex compositions

could become (Figure 1-1).

Problem Domain 2
Choreography Domain

=~ T | = T T
Web Server | Composition Composition Web Server

Web E : E
Service We.b
Service

]
1
Police Enquiry :
:
[

BPEL4WS

//

|
|
|
Vehicle Movement :
I
I
|

<receive>
A T 1

|
Web Server Web Server
Wweb N | |l N2\ fH—r—_—_,—_,—,—,—,——— e
E ------------------------
Fingerprint ‘
Enquir r i
BPEL4WS BPEL4WS
Web Server Process <invoke Process

<receive i ivel Web Server
\ []

Web
| Service
| \\
|

N\

Web
Service

/I/ Composition Composition R
_______________ 1 S S |

&

Figure 1-1 Web Services, Compositions and Choreography in a Police Enquiry Collaboration

This example, of four compositions collaborating to fulfil a set of police officer enquiry
scenarios, illustrates how the layers of a services architecture firstly, communicate from basic

invoke, request and reply actions (4), are orchestrated in a common process through standard

16 Chapter 1. Introduction

web service composition languages such as the Business Process Execution Language for
Web Services (BPEL4WS) (3), and are kept consistent for transactional and process state
purposes through Choreography (2). Brought together, these elements form a view of the

problem domain (1) that we consider in the web services architecture.

An approach to service process modelling and behaviour analysis of these software
architectures can be constructed to assist in providing a solution to some of the difficulties
inherent in these types of architectures (Magee, Kramer et al. 1999). Whilst process
behaviour analysis has been used for various themes of verification and validation, including
analysing systems for deadlock, safety and progress properties (Holzmann 1997; Magee,
Kramer et al. 1997), the core of these approaches can be seen in forming process models for
analysis from a given specification or implementation. Aligned with these models, we can
explore an approach of tasks for web service composition analysis that can be summarised

using the analysis terms of:

e Verification (checking specified properties of the model, individually or against design
specifications)
e Validation (simulation to validate requirements against design or implementation)

e Compatibility (that service compositions can cooperatively carry out shared tasks)

The motivation in collaborative web service engineering is similar to those efforts applied in
UML for software process models (Jiang, Mair et al. 2003). The model may also be used in
the design and implementation steps to derive service compositions from models of
specifications. This promotes a collaborative distributed system design as specifications may
be built locally and then compiled as composite processes. However, there is a need to
explore how process modelling, and its formal background, can assist in these areas. The

theme of this thesis therefore also considers the related areas of;

e Composition Architecture (building a model representation of service components)
e Role-based Decomposition (decomposing a model into one or more web service

compositions based upon the roles and domains of service hosts and processes).

Chapter 1. Introduction 17

The motivation for this work also aligns closely with similar goals formed by the web service
standards community on web service compositions and choreography, such as in the criteria
of OASIS (OASIS 1993) and the W3C (W3C-Org 1994) focus groups, which provides greater
confidence in the reasoning behind this area of work. At the time of writing this thesis, their
work is under review but clearly indicates the need for early design verification as part of a

standards based process for developing web service composition behaviour.
1.2 The Approach

Web service composition architectures aim to provide a technology independent means of
integration, the ability to verify workflows is inherently not a technology issue but of state,
behaviour and identity (Hruby 1998). A process has behaviour in the way in which it
responds to a certain set of conditions, persistent state which is not visible to the client and
persistent identity which is visible through explicit user defined operations (OMG-CORBA
2002). Web service compositions (as a set of service processes) equally hold these
characteristics. An approach therefore is required to provide steps to analyse each of these
characteristics, but without limitations imposed from the underlying technologies involved.
The approach therefore considers analysis of a web service composition process from two
viewpoints. Firstly, process model verification can be used to identify parts of the process
behaviour that have been implemented incorrectly, or perhaps have unforeseen property
results. Whilst there have been other attempts to use model-checking techniques for reliable
web service verification (Nakajima 2002; Narayanan and Mcllraith 2002), they have
concentrated on property specifications in domain specific language notations (e.g. Promela,
the implementation language of SPIN). Our verification approach is from an abstract
behavioural specification using the Message Sequence Chart (MSC) (ITU 1996) notation.
The approach uses the UML (OMG 2002) style design of these sequences away from a
technical implementation, and evaluates their transitional state and behaviour locally before
deploying any parts of the workflow, and realizing the true effect of the process flow. The
verification side of the approach aims to provide a mechanism to support such questions as;
can the implementation fulfil the interaction requirements and did we build the process

interactions correctly?

The second viewpoint is from that of validation. The focus of validation is clarifying the

understanding of requirements against that of the web service composition implementation.

18 Chapter 1. Introduction

Some questions help us identify the validation areas that the approach can assist in with this.
For example, has the implementer understood the needs of all expected clients, their intended
use of the process and in all possible contexts? Ultimately, the result of validation is to ensure
that the right process was built. Validation allows the designers and also prospective users of
the process to step through the model and determine whether the design is fit for their
requirements. Validation of web service composition specification models are a useful step
prior to verification of implemented web service compositions, such that designers and users
can evaluate a modal aimed at representing an equal view of their requirements. The
approach for this is built from a series of steps undertaken by service designers, implementers
(BPEL4WS engineers), those who deploy the services and clients (partners) of the service.
Figure 1-2 illustrates the approach taken to verification and validation of web service

compositions.

Requirements

|5
A

validation results Tool
validation traces } l
Designers Construct | Composition . i i
— P Spe c?fi cation~<scs Model Generation Validation
Web — ereaws | £ | = Sl
; Reference | Composition |Specificatio S =1 a o) models Analysis
Service |—m———r—»p : 4‘ = I I i
Standards Semantics AN o lgl8|% ohoee
BPE\;n\a\\O“C » g g @
Construct> Composition ynp\e! [Z] . .
Implementers Processes Verification
P verification properties N
N |4 I
L —
/' verification results
Service
Verified and
Interfaces Request
Valldated q
Serwces Web Services
Deployers Clients

Figure 1-2 An Approach to Rigorous Engineering of Web Service Compositions

The approach is undertaken as follows; a designer, given a set of web service requirements,
specifies a series of MSCs to describe how the services will be used and to model how each
service requests or receives a reply in a series of service scenarios. The resulting set of

scenarios is synthesized to generate a behavioural model, in the form of a state transition

Chapter 1. Introduction 19

system. The service implementation is undertaken by a BPEL4WS engineer, who builds the
BPEL4WS process from either specification or requirements. The BPEL4WS specification is
used to generate a second behavioural model (transition system) by a process of abstracting
the BPEL4WS, with respect to data, to yield a model of interaction. Validation and
verification consists of comparing and observing states of these two transition systems. The
approach can assist in determining whether the implementation contains all the specified
scenarios and whether any additional scenarios implied by the implementation are acceptable
to the end-user. In addition, checks can be made on the models with respect to desirable
general global properties such as absence of deadlock and liveness (using model-checking).
Feedback to the user is in the form of UML style MSCs. The aim is to hide the underlying
Labelled Transition System (LTS) representations and let the user view only the BPLE4WS
implementations and the MSCs as a simple intuitive and visual formalism accessible to most

engineers (Uchitel and Kramer 2001).
1.3 Motivating Example

Web Service compositions aim to fulfil the requirement of a standards based coordinated and
collaborative service invocation specification to support multi-stake holder, multi-service
application transactions (Hall 2003). This is seen as an important element of making the web
services architecture viable for wide spread use, and to provide a closer representation of
business transactions in cross-enterprise domains. One language which aims to consolidate
previous efforts of specifying a composition language is the Business Process Language for
Web Services (BPEL4WS) (Curbera, Goland et al. 2002). BPEL4WS is mostly the result of
work undertaken previously by industry to build such specifications, such as that from the
XLANG (Microsoft Corporation) specification and Web Service Flow Language (WSFL) by
International Business Machines Corporation (IBM). Whilst BPEL4WS provides an
orchestration of web service interactions at a local (single party) viewpoint, it does not
provide a level of coordination between processes or manage long-running transactions
(LRTs). This additional level of specification is encompassed in the term Choreography.
Related specifications for this are still in an early stage of design, however, the Web Service
Choreography Description Language (WS-CDL) (Kavantzas, Burdett et al. 2004) and Web
Service Choreography Interface (WS-CI) (Cabrera, Copeland et al. 2002) are being marketed

as a response to this requirement.

20 Chapter 1. Introduction

At the time of writing this thesis, BPEL4WS has been voted in as a standard service
composition language by OASIS and has been positioned in a standards stack for clarification
and consensus of where it is related with other emerging standards. The momentum of
BPEL4WS is seen through case studies and industry BPEL engine implementations
suggesting that BPEL4WS will be the standard of choice for coordinated web service
composition implementations. Of the BPEL4WS examples used in this thesis, one is of the
UK Police IT Organisation project (detailed in Chapter 7). Their UK national web services
project is spread across heterogeneous systems including varied enquiry services (Finger

Print, Vehicle etc) and centrally to the UK Police National Criminal Database (PNCD).

A series of web services, such as those scoped in the PITO project (Figure 1-3), clearly
requires management and coordination. If this coordination is implemented as a process in
BPEL4WS or other web service orchestration language, then the implementation needs to be
constructed for a series of differing scenarios and verified and validated thoroughly for
desirable execution paths in each. The use of web technology for services provides an
example of how flexible distributed system computing has become. From a specification
perspective, the focus is on appropriate service interaction, yet it is important to compose the
web service workflow correctly for all service actors and more importantly, verify this flow
before deployment is undertaken. This issue is particularly important in sensitive and critical

system domains such as civil, emergency and other national infrastructure services.

Fingerprint | Palice Enquiry
Enquiry 0

Web ©

Service | @80 &
Service Composition)] :]
]] ehide Moverrent Enquiry | | Vehide Enquiry
Nominal Motor |
Enquiry J Insuranc) /\ *\A
| .‘We_b 5\/ a We_b \/5 >
o . i Service @8 London Sootfand | | Nemes Enguiry | | Insurance Enquiry

Vehicle
ANPR W * . .
SZ:{::: - Service :‘ me Enqary
m e L @ ®

Figure 1-3 UK PITO Case Study — Police Enquiry Service Domain and Hierarchy

Chapter 1. Introduction 21

1.4 Contributions

To focus on the goals of undertaking this work we constructed the following statement. This
statement was established at an early stage to guide the research to a common goal and to

form the basis to address the areas discussed previously.

“The main objective of this work is to provide a rigorous approach to
specifying, modelling, verifying and validating the behaviour of web service
compositions with the goal of simplifying the task of designing coordinated

distributed services and their interaction requirements. “

This thesis aims to satisfy the objective. We address the issues in designing web service
compositions by modelling the required processes in an accessible and concise notation which
can then be used to verify, not only web service workflows but behaviour over cross-domain
services. In this thesis an approach is presented which specifically addresses adding semantic
representation to the BPEL4WS compositions and extends a tool to support a mechanical aid
for verification and validation of these processes. The approach has been illustrated both
from constructing workflows from a specification, modelling and transformation perspective,
and by translating existing BPEL4WS processes to produce models for verification.
Furthermore, by automating the process specified in this thesis, a framework can be added to
the web service engineering life cycle to support modelling, verification, validation and
implementation in the notation of choice. We have chosen BPEL4WS to use as an example,
yet verification and validation of other web service workflow specifications may be
undertaken using the same approach. The approach also provides scope to enhance the
specification of BPEL4WS with availability, reliability and service performance
consideration. With a medium such as the Internet, these are becoming increasingly
important to verify before deployment of services is undertaken. It is our goal that the
approach, combined with an extensive analysis tool will provide both academic and industrial
areas with a rigorous tool for design and implementation analysis. Indeed, there are already
references to this approach and the tool set being used for the education of BPEL4WS (Austin
2004) and as part of distributed system engineering lectures. Additionally, references have
been made for industry community web sites focusing on BPEL (Foster 2004b), and in other

service design and verification projects (Maghrabi 2004).

22 Chapter 1. Introduction

The work presented in this thesis is based upon, and extends, several papers and reports that
have been published in the last three years (Foster, Uchitel et al. 2003a; Foster 2003b; Foster,
Uchitel et al. 2004a; Foster, Uchitel et al. 2005; Foster, Uchitel et al. 2005). Work on tool
support for the approach was also carried out as part of an IBM Eclipse Innovation Award
(IBM 2004; IBM 2005). This thesis however, should be regarded as the definitive account of

this work.

1.5 Thesis Outline

This thesis presents an approach which considers the issues of designing web service
compositions (outlined in earlier sections) by providing a mechanism to support verification,
validation and generally greater understanding of the behaviour of compositions created. In
chapter 2 we describe a background to web services and the efforts in progress towards
compositions and other standards to evolve web services for reliable and critical service
configurations. Furthermore, a review of modelling software processes and other work in
modelling web service compositions is discussed. Chapter 3 details building design
specifications, in the form of MSCs for compositions and their choreography, and how
interaction models are synthesised from these specifications. Chapter 4 provides a guide to
modelling BPEL4WS compositions in the Finite State Process (FSP) notation. BPEL4WS
semantics are described by way of FSP models and Labelled Transition Systems (LTS) used
to illustrate these models graphically. Chapter 5 extends the approach to include models of
service choreography with multiple interacting web service compositions, from the
perspective of a collaborative distributed composition development environment. The process
of behaviour analysis moves from a single local process to that of modelling and analysing
the behaviour of multiple processes across composition domains. In chapter 6, the
verification and validation steps are described, and utilising the models of design
specifications (from chapter 3), modelling BPEL4WS processes (from chapter 4) and
elaboration of these models for choreography (from chapter 5), examples are given to
implement, translate and generate complete system models for checking with properties
specified for verification. Furthermore, validation is illustrated in the form of animated and
interactive process models represented back to designers and implementers of the process.
Chapter 7 describes an example implementation of the approach steps in a tool, providing
mechanical automation of the steps, and linking these steps with results back to designers,

implementers and users of the process. Chapter 7 also considers how the approach has been

Chapter 1. Introduction

23

applied to a service development life cycle through a sample case study. The result of this

case study is used in a discussion and evaluation on the findings and contributions contained

within this thesis. Finally, Chapter 8 provides a conclusion on our work carried out, a view of

anticipated future work and closing remarks. Overall consideration is also given how the

contribution of this thesis aids in the broader areas of related research, and how it is believed

further research will evolve and in which directions this may take. Figure 1-4 outlines the

chapters and subtopics of this thesis.

1. Introduction
(Concepts)

2. Background
(Review)

3. Web Service
Specifications

4. Modeling
Web Service
Compositions

- Motivation and Example
- Approach
- Thesis Outline

- History of Web Services
- Standards
- Modeling Software Processes

- Requirements

- Message Sequence Charts
- Compositions

- Choreography

- Specification Models

- BPEL4WS

-FSP

- Mapping BPEL4WS to FSP
Models

5. Modeling
Web Service
Choreography

6. Analysis for the
Service-Oriented
Model

7. Tool Support
and Case Study

8.Evaluation and
Conclusions

- Web Service Interactions
- Analysis of interactions

- Interaction Algorithm

- Port Connector Models

- Methods

- Preparation

- Verification Analysis
- Validation Analysis

- Prototype Tool
- Community Tool
- Case Study

- Evaluation

- Summary

- Future Work

- Closing Remarks

Figure 1-4 Chapters and subtopics of thesis

Chapter 2

Background

"By examining the history of distributed computing, we can see how web services

are a consequence of a natural evolution.”" (Wrox 2003)

In this chapter, we describe the evolution of distributed computing and give an account of
web services, their compositions, choreography and modelling distributed systems in
general. We focus in more detail on the issues in what these systems are, how we analyse
such systems and describe the areas of research that this work builds upon. Related work is

also reviewed as part of a background to this topic area.

2.1 Evolution of the Computing Network

In the early 1990s, few had heard of Tim Berners-Lee's World Wide Web (Berners-Lee
2000), and, of those that had, many fewer appreciated its significance. However, since the
1970s computers had been increasingly connected to the Internet, and transferring specific
data loads among computers was commonplace amongst Defence and Academic IT
infrastructure (Leiner, Cerf et al. 2002). Yet the Web brought something really new: the
perspective of viewing the whole Internet as a single information space, where users
accessing information could move seamlessly and transparently from machine to machine by
following related information links. A similar shift in perspective is currently underway, but
the focus now is with application programs. Although distributed computing has been in use
for as long as there have been computer networks (Roberts and Wessler 1970), it's only

recently that applications that draw upon many interconnected machines as one vast

Chapter 2. Background 25

computing medium are being deployed on a large scale. The basis for making this possible
are new standards for protocols of distributed computing built upon existing internet
standards and that are designed for programs interacting with programs, rather than for
people interacting with browsers. The move away from an environment where applications
are deployed on individual machines or Web application server, is to a world where
applications are composed of pieces (called services) and that are spread across many
different machines, where the services are aimed at interacting seamlessly and transparently
to produce an overall solution. While the consequences of this change could appear not
dramatic, it's also possible that they could be as profound as the introduction of the Web. The
computing industry is introducing new Web service frameworks that exploit this new
architecture. Sun Microsystem’s SUNOne (Sun 2001) and Microsoft's .NET (Microsoft
2001) are two such frameworks. In this work we concentrate on how this shift of focus
highlights the need to have concrete methods to verify and validate solutions built for this
new application architecture style. We begin to consider what aspects this involves by

looking at the history of distributed computing and architecture styles.

2.2 Evolution of Distributed Computing

Distributed Computing become popular with the difficulties of centralised processing in
mainframe use. With mainframe software architectures all components are within a central
host computer. Users interact with the host through a terminal that captures keystrokes and
sends that information to the host. In the last decade however, mainframes have found a new
use as a server in distributed client/server architectures (Edelstein 1994). The original PC
networks (which have largely superseded mainframes) were based on file sharing
architectures, where the server transfers files from a shared location to a desktop
environment. The requested user job is then run (including logic and data) in the desktop
environment. File sharing architectures work well if shared usage is low, update contention
is low, and the volume of data to be transferred is low. In the 1990s, PC LAN (local area
network) computing changed because the capacity of the file sharing was strained as the
number of online users grew and graphical user interfaces (GUIs) became popular (making

mainframe and terminal displays appear out of date).

The next major step in distributed computing came with separation of software architecture

into 2 or 3 tiers. With two tier client-server architectures, the GUI is usually located in the

26 Chapter 2. Background

user's desktop environment and the database management services are usually in a server that
is a more powerful machine that services many clients. Processing management is split
between the user system interface environment and the database management server
environment. The two tier client/server architecture is a good solution for locally distributed
computing when work groups are defined as a dozen to 100 people interacting on a LAN
simultaneously. However, when the number of users exceeds 100, performance begins to
deteriorate and the architecture is also difficult to scale. The three tier architecture (also
referred to as the multi-tier architecture) emerged to overcome the limitations of the two tier
architecture. In the three tier architecture, a middle tier was added between the user system
interface client environment and the database management server environment. There are a
variety of ways of implementing this middle tier, such as transaction processing monitors,
messaging middleware, or application servers. The middle tier can perform queuing,
application execution, and database queries. For example, if the middle tier provides
queuing, the client can deliver its request to the middle layer and disengage because the
middle tier will access the data and return the answer to the client. In addition the middle
layer adds scheduling and prioritization for work in progress. The three-tier client/server
architecture has been shown to improve performance for groups with a large number of users

(in the thousands) and improves flexibility when compared to the two tier approach.

Whilst three tier architectures proved successful at separating the logical design of systems,
the complexity of collaborating interfaces was still relatively difficult due to technical
dependencies between interconnecting processes. Standards for Remote Procedure Calls
(RPC) were then used as an attempt to standardise interaction between processes. As an
interface for software to use it is a set of rules for marshalling and un-marshalling parameters
and results, a set of rules for encoding and decoding information transmitted between two
processes; a few primitive operations to invoke an individual call, to return its results, and to
cancel it; provides provision in the operating system and process structure to maintain and
reference state that is shared by the participating processes. RPC requires a communications
infrastructure to set up the path between the processes and provide a framework for naming
and addressing. There are two models that provide the framework for using the tools. These
are known as the computational model and the interaction model. The computational model
describes how a program executes a procedure call when the procedure resides in a different
process. The interaction model describes the activities that take place as the call progresses.

A marshalling component and a encoding component are brought together by an Interface

Chapter 2. Background 27

Definition Language (IDL). An IDL program defines the signatures of RPC operations. The
signature is the name of the operation, its input and output parameters, the results it returns
and the exceptions it may be asked to handle. RPC has a definite model of a flow of control
that passes from a calling process to a called process. The calling process is suspended while
the call is in progress and is resumed when the procedure terminates. The procedure may,
itself, call other procedures. These can be located anywhere in the systems participating in

the application.

Figure 2-1 summarises the evolution of Distributed Computing architecture styles discussed.
Web Services have repositioned the distributed computing architecture from further splitting
the architecture into a domain of separate standards for remote procedure calls (RPC),
interface definitions, and component technology, limiting the definitions and messages
exchanges to be used only by that of XML specifications. These are marketed as a service-

oriented, interaction based, architecture.

Mainframe 2Tler €9 STier CS rovs_ || App y Applications
> w »| Thick || Thin XML
View Client || Client
Data Model Model — A Web Services
File » RpPC Script f—y Components
1 !
Sharing N Data Data R Dot -, S

Figure 2-1 Evolution of Distributed Computing Architecture Styles

2.3 Web Services Architecture

A Web Service Architecture (WS-A) is a web component architecture that aims to address
the service oriented requirements mentioned previously. A commonly used definition of a
Web Service is taken from the W3C official Description Working Group specification
(W3C-WS 2002) is; “A web service is a software application identified by a URI, whose
interfaces and binding are capable of being defined, described and discovered by XML
artefacts and supports direct interactions with other software applications using XML

based messages via Internet-based protocols.”

At a conceptual level, Web Services are pieces of functionality, hosted on internet enabled

application servers that have the ability to be invoked for and respond to instructions carried

28 Chapter 2. Background

out in compliance with an XML messaging standard. The basis for web services is that they
provide easily accessible interfaces to methods contained within application resources, and
correspondingly identified uniquely on that hosted system by a uniform resource identifier
(URI) (Berners-Lee, Fielding et al. 1998). Each resource offers one or more methods to be
called upon by a message handler. The handlers receive messages as documents of
instructions or parameters (depending on the web service messaging standard used), detailing
which resource and data should be passed in order for that method to carry out its
responsibilities. At a physical level, Web Services are built from a stack of emerging
standards, some of which are specified in (Box, Ehnebuske et al. 2000; Arkin, Askary et al.
2002; Curbera, Goland et al. 2002; W3C-WSCI 2002; Christensen, Curbera et al. 2003). An
example stack is illustrated in Figure 2-2. The layers cover descriptions for web service
data, format, messages, interface, orchestration (compositions), transactions and coordination
(choreography). Each W3C or OASIS standard is an implementation of an XML Schema for
a set of permissible elements for defining each of the layers. As each standard is merely a
“template” for describing web service implementations and their partners, an actual

implementation engine is required in each case to support execution or interpretation of the

XML implemented.

Layer Standards (W3C/OASIS)

@ Policy WS-Policy, XACML

% Choreography WS-CDL, WS-CI

é— Transactions WS-Transaction

3 Orchestration BPEL, WSCI
Interface WSDL

_é Message SOAP

§ Format XML Schemas

Data XML

Figure 2-2 Web Services Standards Stack

2.4 Web Service Behaviour

Whilst Web Services themselves are components with a clearly defined interface (based
upon the standards mentioned in 2.3), the architecture lacks verification and validation of
process behaviour in the composition and coordination of these services to the requirements
and behaviour of users (or clients) of these services. This is in a similar way to that of

analysing the impact of customisation and personalisation of web sites, in which the main

Chapter 2. Background 29

problems associated with reusable web sites is that they are written without significant
analysis of the potential use-cases and the needs of various clients (Bonett 2001). We
describe what constitutes a web service’s behaviour as; “A web service’s behaviour is
defined by the set of activities behind that service and mapping those activities to message

exchanges.”

Web Service behaviour analysis consists of analysing two aspects of web service architecture
style. The web service formally exhibits its identity and permissible interactions through
definition in the Web Service Description Language (WSDL), which we describe in 2.4.2.
However, within the implementation for a web service the behaviour of its interactions is
defined. The coordination of a service’s behaviour is formed from the basic operations of
service invocation, replying to a service or receiving the reply from a service and this forms
the basis for service analysis for its interaction behaviour. Standards elaborate the
specification of how, what and when these interactions can occur. These standards can be

aligned with that of software process analysis areas, as illustrated in Figure 2-3

Layer Standards (W3C/OASIS) Software Process
. : Verification
@ Policy WS-Policy, XACML (Properties)
o
E= Choreography WS-CDL, WS-CI
o - .
g Transactions WS-Transaction Be(gtaa\:‘l;))ur
S <
o Orchestration BPEL, WSCI %_:__
QO
Interface WSDL =
0 Identity >
8 Message SOAP
§ Format XML Schemas
Input and Output
Data XML

Figure 2-3 Web Services and Software Process Elements

In essence, to analyse web services we must consider what is defined by and behind the
service interface, and consider those activities that comprise the process that the service
offers. Web Service Behaviour Analysis can be described as; “Web Service Behaviour
Analysis considers analysing the set of activities behind a service (a composition), and
together with service interactions (choreography), provides an end-to-end view that models
the role of each individual process in the choreography and the activities performed by

each role.” The theme of Web Service behaviour is used throughout our work, and is the

30 Chapter 2. Background

basis for understanding what may be observable from a web service implementation and a
partnered composition process. The behaviour aspect of web services also encourages a

view of the problem domain for the web services architecture.
2.4.1 The Problem Domain

In Chapter 1, we scoped our work given a particular problem domain. An appropriate
definition of problem domains for web service compositions needs to address both local and
global service requirements. A definition of a conventional problem domain is given in
(Subramanian 1993) as “A problem domain is given by a set of possible states of a physical
world, and a set of actions that can be executed sequentially to change the state of that
world”. As we are interested in describing problem domains with respect to web services to
support a problem domain for one or many user requirements, our definition for a web
service problem domain extends the conventional definition by specifically stating that the
domain consists of services and that multiple interested groups are interested in or have
control over these services. A web service problem domain can be therefore be described as;

“A web service problem domain is the functional area of interest, or under control, by

individual or groups of (web) services hosted on the internet and accessible either locally
or globally (to other service groups) to fulfil a task or a series of tasks within the function

area”.
2.4.2 Web Service Interfaces

The web service interfacing standard is called the Web Services Description Language
(WSDL). The W3C WSDL group defines WSDL as “...an XML format for describing
network services as a set of endpoints operating on messages containing either document-
oriented or procedure-oriented information. The operations and messages are described
abstractly, and then bound to a concrete network protocol and message format to define an
endpoint.” (Christensen, Curbera et al. 2001). WSDL is the interface description for any
service that follows the Simple Object Access Protocol (SOAP) (Box, Ehnebuske et al.
2000) using HTTP GET/PUT or MIME standards. At the time of writing this work, the
W3C Web Services Description Working Group has released two revised Working Draft
specifications for WSDL 2.0. “Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language" describes the Web Services Description Language (WSDL) Version
2.0, an XML language for describing Web services. It defines the core language which can

be used to describe Web services based on an abstract model of what the service offers. It

Chapter 2. Background 31

also defines criteria for a conformant processor of this language. “Web Services Description
Language (WSDL) Version 2.0 Part 2: Message Exchange Patterns” (Gudgin, Lewis et al.
2004) defines patterns that are intended for use with WSDL. "WSDL message exchange
patterns define the sequence and cardinality of abstract messages listed in an operation.
Message exchange patterns also define which other nodes send messages to, and receive
messages from, the service implementing the operation. WSDL patterns are described in
terms of the WSDL component model, specifically the Label and Fault Reference

components." The structure of a basic WSDL document is illustrated in Figure 2-4.

PortType —type—p Binding
Ly " |
3 s &
2 «° 3
T) =3
/S

Input . . .
“»typs—% Message output Operation Port endpoint Service

Figure 2-4 WSDL Structure

WSDL complements a service composition by providing an abstract process representation
in terms of its interface. WSDL is broken down into seven parts, providing a declaration of
an interface for message types, messages, operations (methods in traditional component
terminology), port types and ports, and bindings. The topmost layer of a WSDL service
description is the “service” element. WSDL is not limited to these basic elements and
extensions can be specified by providing suitable element reference types to include in a
document. The basic elements however, must be included as part of every WSDL document.
WSDL builds on the SOAP specification for binding a service interface and operation to an

actual endpoint service.
2.4.3 Web Service Compositions

Web Service Compositions are formed from a singular problem domain which is “local” to
problem domain owner. This has traditionally been a clearly marked boundary for a
development project to work to. The difference in terms of structured and anarchic systems
is described by (Chandy and Rifkin 1996). In structured system domains, the design

proceeds from a specification, and there is a single entity that is ultimately responsible for

32 Chapter 2. Background

the design and implementation of the system. Anarchic systems on the other hand are
collaborative application developments on the Internet which comprise many program units
developed by different groups of people. For such distributed systems, no single agency
assumes overall responsibility for reliability control. They define the difference in terms of
ownership of the design implemented, and thus this ownership is either local or global as part
of the deployment of the implementation. Our thoughts are towards this issue in relation to
web service compositions, as compositions can be built locally yet aim to conform to global
compositional constraints through the use of choreography and orchestration rules. This rule
base is significantly involved in standard ways of both communication and domain
understanding. There is currently industry work however, in having a global description
language for local web service compositions. Fronting these language specifications is the
Business Process Execution Language for Web Services (BPEL4WS) for process
orchestration and handling fault tolerance or compensation actions. There are two themes of
composition, being static and dynamic. Both static and dynamic web service compositions
can collectively be described as; “4 web service composition consists of orchestrated web
services through a local process, itself potentially a service. Static web service
compositions are known at design time and are bound to a composition at design time.
Dynamic web service compositions are one or many compositions in which web services
are not known at design time, and which are discovered or their properties resolved based

upon a criteria process set at design time.”

Static web service compositions appear currently the most used web service composition
style in both industry and academia (Haas 2002). They are formed by identifying manually
(i.e. by human assessment) the applicability of a web service to a particular problem domain.
The composition is therefore limited to the web services encompassed in the design. Static
compositions are represented by known paths, known data representations and expected
results as part of a formal and technical link with the web service. Dynamic web service
compositions form the basis for discovery and flexibility in web service invocations. WSDL
goes some way to detail the technical interface and to locate a given service (Christensen,
Curbera et al. 2001), yet it does not identify what that service does, what function(s) it
performs in order to fulfil the request, and neither does it suggest what level of service it will
provide. Technically, dynamic interactions can be achieved through utility layers, such as
the Web Services Invocation Framework (WSIF) (Duftler, Mukhi et al. 2001) which
complements WSDL by providing the layer of invocation once discovering WSDL

Chapter 2. Background 33

documents. The aim is to be able to build a semi-automated service discovery and execution
mechanism. If the scope of a web service composition is to include dynamic discovery and
invocation, it must do so by considering how these services would be used in such an

anarchic developed system and within a particular problem domain.
2.4.4 Web Service Choreography

Whereas Web Service Compositions describe the local process of service orchestration, Web
Service Choreography describes the observable interactions between services and their users.
Choreography in general terms, and by dictionary definition, explores the wider aspects of
interactions, often referenced by a similarity to arranging dance or ballet group sequences.
The W3C Web Services Architecture group describe general choreography as “...the
sequence and conditions under which multiple cooperating independent agents exchange
messages in order to perform a task to achieve a goal state.” Whereas compositions are
focused from a single service viewpoint and its interactions, choreography of a group of
related services is the interaction to complete a broader scenario. Web Service
Choreography is more formally described by the W3C Web Services Choreography Working

group as; ¢

‘....the external observable behaviour across multiple clients (which are
generally Web Services but not exclusively so) in which external observable behaviour is
defined as the presence or absence of messages that are exchanged between a Web Service
and it's clients” (Austin 2004). In a series of scenarios, the messages that flow between web
services and clients (which may be web services, but also applications or even human
beings) may require a specific set of interactions to occur and to group these interactions for
transactional or compensational reasons. Choreography is typically initiated by an external
source (a client or service) and ends with a target service or a reply to the source. Such
interactions during this choreography poses questions such as; can messages be sent and
received in any order?, what are the rules governing the sequencing of messages? And can

a global view of the overall exchange of messages be drawn? (i.e. can we verify, modify and

monitor the behaviour)?

As BPEL4WS is aimed at addressing the interactions from a local process workflow and
fault tolerance perspective, it does not exhibit observable state by which other web service
compositions can respond to for a global service responsibility. The element in question is
that of impact of state in wider composition invocations. If the composition is invocated

from a local “master” controller (as currently modelled by the BPEL4WS invocation engine)

34 Chapter 2. Background

state is not transferred between composition engines. The efforts necessary for effective
workflow system analysis (Bolcer and Taylor 1998), the exploration of engineering these
compositions is troublesome. In addition to state, the impact of introducing dynamic service
selection in choreography increases the impact on complex engineering decisions at design
time. For example, in a local problem domain, a dynamic discovery of an “Order Books
Service” may be satisfied. Yet the same service hosted globally may not take into account
local composition behaviour, or indeed, even synchronize with data managed by the local
service. These are issues that should be recognized as a web service design compositional
constraints and verified appropriately. Implementations for choreography standards are
currently in the form of the Web Service Choreography Description Language (WS-CDL)
(Kavantzas, Burdett et al. 2004) and the Web Service Choreography Interface (WSCI)
(Arkin, Askary et al. 2002). Both of these specifications have been introduced as part of a

service-oriented model aligned with the same W3C working groups.
2.4.5 The Service-Oriented Model (SOM)

The Service-Oriented Model (SOM), illustrated in Figure 2-5, is a relationship model
described by the W3C Web Services Architecture Group as created “...to explicate the
relationships between an agent and the services it provides and requests” and that this is
the base layer for building service architectures (Booth, Haas et al. 2004). The fundamental
elements in the model are that of goal state (states of some service or resource that is
desirable from some person or organization's point of view), service (an abstract resource
that represents a capability of performing tasks), task (an action or combination of actions
that is associated with a desired goal state), role (defines a set of related tasks carried out
and identified by message properties) and agents (which are capable of and empowered to
perform the actions associated with a service on behalf of its owner). The model also serves
to exhibit the relationships between elements, such as a service’s relationship to provider,
tasks, semantics and goal states. It also links these elements with web service choreography
(described previously) and how web service activities are formed from and with the purpose

of actions and state “goals”.

The SOM model serves as a useful reference map in considering the elements of service
oriented architecture and a rigorous approach to engineering them. Our focus and interests
however, lay closely with the properties defined by goal state elements and its relationships

to service, interface, semantics and choreography. Choreography is clearly a key part in the

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#poo#poo

Chapter 2. Background 35

service architecture model yet what is more interesting in this model is that a goal state is

bridged between service task and action and does not have a direct link with choreography.

is an OWnNs
(is an
\

resource requester agent provider agent

5 a \ realizes ~ OWNS

Person or
organization

establishes

service description provides

establishes

Service applies to

describes adapts
describes Performs
L abstracts
F

applies to
service task

achieves
T Gopal State

pertains to

executes 3
. about
\ choreography \ r?ﬂts ‘Il'i/
defines part of

\. processes — action
message results in

service interface

- uses

Figure 2-5. Elements and relationships of a Service Oriented Model

At a broader level this model poses questions such as does the architecture form a complete
goal or a series of goals? Additional elements linked in the SOM include that of policy. A
policy is a constraint on the behaviour of agents as they perform actions or access resources.
The SOM policies are described as either permissions or obligations. We describe the

service obligations at a later stage of our work.
2.4.6 Service Goals, Policies and Obligations

A subset of the SOM related to our approach is illustrated in Figure 2-6. This subset is
essentially built around a core set of policies which are monitored by agents in the

architecture to support service security requirements and constrain the use of a service

36 Chapter 2. Background

through interaction rules, being pre-requisite and post-requisite actions to comply with a

service’s use.

policy
applies
to
* applies
© Goal St
defines service oal State
| A
performs results in
|
semantics |—aboutP| service task [executes action
pertains to resuits is
defines choreography part of—p» message

Figure 2-6 Elements of SOM for Verification and Validation of Services

A policy is applied to a goal state and a service. Policies are considered into two categories;
that of service permissions and obligations. Permissions are a type of policy that prescribes
the allowed actions and states of an agent or resource. A permission policy refers mainly to
security aspects of a service model, as it is presented as more of a technical constraint rather
than behavioural requirement. We therefore concentrate on the obligation category of
policies as the focus of our analysis context. There appear differing definitions of an
obligation in earlier work. In the PONDER language (Damianou, Dulay et al. 2001) an
obligation is summarised as “...the actions that must be performed by managers within the
system when certain events occur and provide the ability to respond to changing
circumstances”, whilst the W3C (WS-A SOM) defines obligations in terms of the goal
states. For example, when a service provider (or agent in W3C terminology) has an
obligation to perform some action, then it is required to perform that action. When the action
is performed successfully, then the agent can be said to have satisfied its obligations. Not all
obligations relate to actions. For example, an agent providing a service may have an
obligation to maintain a certain state of readiness (quality of service policies are often
expressed in terms of obligations). Such an obligation is typically not discharged by any
one of the obligee's actions; although a triggered event (such as a certain time period
expiring) may discharge the obligation either before (pre) or after (post) an activity in the

service model. An obligation may continue to exist after its requirements have been met (for

Chapter 2. Background 37

example, an obligation to maintain a particular credit card balance), or it may be discharged
by some action or event. The policy is established by implementers and results in goals and
goal states from the actions in service compositions. Obligations in the services architecture
may not be mandatory for every interaction scenario, yet through service analysis we are
interested in the assurance that an obligation may be satisfied in a series of compositions and
their choreography, if it is expected in a particular scenario. Obligations therefore become
the basis for the general properties in our approach, implemented as either a safety or

progress property type (which we elaborate upon in Chapter 6).
2.4.7 Goal-Oriented Requirements Engineering

Goal-oriented requirements engineering has become an increasingly researched topic. There
are differing definitions of goals and their related states (Lamsweerde 2001). Lamsweerde
describes goals as the objectives of a system to be constructed. They are declarative
statements that refer to intended properties to be assured of the system. Whilst the WS-A
includes this broader definition in its standards based objectives, it currently describes goals
broadly as those which complement non-functional policies (such as security, safety and
other permission based roles of a policy). The goals we are particularly interested in for
verification are those which are more functionality based (such as objectives of providing
suitable service behaviour to its users). The W3C goal states are related to object states in
these goal related works. An object state is something that an agent or other resource is
interested in or exhibits; likewise a goal state is reached by the undertaking of a service’s
task and is monitored or reacted to by another service or agent. An example goal is that of a
book ordering service, which may have a goal state in which a book has been purchased by a
legitimate customer. It is important to establish the meaning of a goal state in the web
services context and relate this to other goal-oriented requirements engineering definitions.
The WS-A group elaborate on a goal (state) as “a state of some service or resource that is
desirable from some person or organization's point of view. Goal states are associated with
tasks. Tasks are the unit of action associated with services that have a measurable meaning.
Typically measured from the perspective of the owner of a service, a goal state is
characterized by a predicate that is true of that state”. In this way we build upon goal
oriented requirements engineering principles by applying these concepts to web service goal
verification. Our issue is to identify these goals, yet also assume a suitable representation for
these goal properties to be used as input to an analysis process (Levi and Arsanjani 2002).

We now consider expressing goal states and policy obligations of web service compositions,

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#poo#poo
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#service#service

38 Chapter 2. Background

seeking to describe the properties used in our approach after consideration of preparing web
service composition models for verification and validation analysis. Formal software

process analysis is a set of techniques we discuss for this analysis.
2.5 Software Process Analysis

So far, we have described a web service composition as that which is constructed from a
series of references to web services, hosted either locally or by other parties. Within a
service composition is a coordinated and orchestrated workflow of service calls, replies,
decision points, and data manipulation. One goal of such compositions is to provide a
process implementation language without the technical challenge of writing bespoke service
connection handlers or providing differing interfaces to different users (Srivastava and
Koehler 2003). With this independence however, comes an increased difficulty in concisely
determining the behaviour of a web service composition as the focus is on interoperability
rather than process semantics. There have also been varied efforts to leverage a Model-
Driven Architecture (MDA) to constructing web service compositions, such as flow-chart
specifications (Sherman, Shaffer et al. 2002), or by using the Unified Modelling Language
(UML) (Hruby 1998; Gardner 2003; Iyengar 2003; Siegel 2003). With this work however,
the process is modeled from a single composition, with interactions only visible from the
local process perspective, and vagueness on how compositions over multiple processes may
be assured. The assumption with the MDA approach to service compositions is also that the
resulting implementation is assured to up-hold behaviour properties (being for example, that
a reply will always be made to a partner of the service or that the result of a concurrent
invocation of several services will all be synchronized once completed) (Soley 2003). This
assumption however, does not provide formal evidence for a confident deployment of the
composition in all scenarios. A more rigid approach is required, to assist in decomposition
of system specifications where distributed compositions are organized on the basis of
ownership over a particular domain of the system (Hall 2003). Basic synthesis of web
service compositions from these models does not appear to provide a concrete behavioral
representation that would give confidence to the implementers that once deployed, these
processes are error free. A further series of steps in the web service engineering life cycle is

desirable.

Chapter 2. Background 39

2.5.1 Software Process Models

In (Osterweil 1987) it was asserted that “software processes are software too”, and thus
could (and should) be developed, analyzed, and managed using the same software
engineering methods and techniques that are applied to software. This idea implies there is a
software service life-cycle that resembles the software life-cycle, involving analysis, design,
implementation, and maintenance of software processes (Scacchi 2000). In contrast to
software life cycle models, service process models represent a networked sequence of
activities, objects, transformations, and events that embody strategies for service evolution
(such as accommodating for varied interaction sequences). Service process models can be
used to develop more precise and formalized descriptions of service life cycle activities.
Their power emerges from their utilization of a sufficiently rich notation, syntax, or

semantics, often suitable for computational processing.

Traditionally, software process models can be viewed as representing multiple
interconnected task chains (Kling and Scacchi 1982; Garg and Scacchi 1989). Task chains
represent a non-linear sequence of actions that structure and transform available
computational objects (resources) into intermediate or finished products. Non-linearity
implies that the sequence of actions may be non-deterministic, iterative, accommodate
multiple/parallel alternatives, as well as partially ordered to account for incremental
progress. Task actions in turn can be viewed as non-linear sequences of primitive actions
which denote atomic units of computing work, such as a user's selection of a command or
menu entry using a mouse or keyboard. Winograd and others have referred to these units of
cooperative work between people and computers as "structured discourses of work"
(Winograd and Flores 1986), while task chains have become popularized under the name of
"workflow" (Bolcer and Taylor 1998). The main reason to use formal description techiques,
or formal methods, is that they give us tools to analyze protocol models and other systems of
interest, and find facts and errors in them, both at the specification level and at the

implementation level.

One of the difficulties of using formalisms is perhaps in choosing the formalisms to use and
the abstraction level of the model (Ross-Talbot 2004) (Aalst 2004), (Basten 1998). A few of
the more commonly referenced software process modelling formalisms are in the form of

Petri-Nets, n-calculus, and other process algebras (such as LOTOS (Bolognesi and Brinksma

40 Chapter 2. Background

1987), CCS (Milner 1980), CSP (Hoare 1985) and FSP (Magee and Kramer 1999)) . We
briefly compare m-calculus, Petri-Nets and FSP notations as representative formalisms for

modelling service compositions.
2.5.2 m-calculus

The n-calculus is a mathematical model of processes whose interconnections change as they
interact (Bergstra, Ponse et al. 2001). The basic computational step is the transfer of a
communication link between two processes; the recipient can then use the link for further
interaction with other parties. This makes m-calculus particularly suitable for representing
where accessible resources vary over time. (Milner, Parrow et al. 1992) present an example
of this through a simple resource sharing communication and transition with a server, client

and a printer resource (Figure 2-7).

Server (S) Client

A

Printer (P)

Figure 2-7 Scenario of shared (printer) resource between server and client

A server controls access to a printer and that a client wishes to use it. In an initial state only
the server itself has access to the printer, represented by a communication link a. After an
interaction with the client along some other link b this access to the printer has been

transferred through the links ¢ and d. In the n-calculus this is expressed as follows:
ba.S| b(c).cdP — S|adP

Where S is the server and P is the printer. The notation specifies “.” for sequence and “|” for
parallelism. The server that sends a along b is ba.S; the client that receives some link along
b and the uses it to send data along it is b(c).cd.P. In this example a, b, ¢ and d are all just
names which intuitively represent access rights. One constraint posed by this example model

is that after the interaction occurs between server and client (providing access to the printer)

Chapter 2. Background 41

nothing else may access the printer. For this reason the m-calculus is also known as a

calculus of “mobile” processes.
2.5.3 Petri-Nets

Petri-Nets (Petri 1966) is a graphical directed net, and can be described in a formal
mathematic language (Murata 1989), which is also suitable for modelling systems with
concurrency. Petri nets provide a tool for describing systems that are characterized as being
concurrent, asynchronous, distributed and nondeterministic. In graphical form, Petri Nets
can be used as a visual communication aid in a similar way to that of structured design
notations from traditional systems analysis and design methodologies. The language of Petri
Nets however, provides a sold mathematical basis for the description and analysis of
equations of state, algebraic and other mathematical models. This yields a practical notation
for describing the behaviour of systems processes, such as that given for a simplified

alternating bit (Paananen 1995) illustrated in Figure 2-8.

ready ready bo
bsend send 0 buffer FeCeive
lose O received
senk 4,
send ack
ack i M
received re-:l:{ewe in ket ack sert
ac

Figure 2-8 A Petri-Net example for a Simplified Alternating Bit process

Additionally, a planning-based role for Petri-net interaction models has now been suggested
for commercial environments (Castilho, Kunzle et al. 2004). The rationale for plan-based
models to describe software processes is associated with the reasoning that process enacting
choices are based upon existing conditions within the current state of a process’s execution
(Huff and Lesser 1989). Having instantiated a project plan, role interaction nets can be used
as a method of coordinating the routing of artefacts among interacting roles and as a method
of tracking progress by the completion of interactions among roles. That is, this formalism

can be used as an underpinning for coordinating activities in a process-driven environment.

42 Chapter 2. Background

2.5.4 Finite State Process

The Finite State Process (FSP) notation (Magee, Kramer et al. 1997; Magee and Kramer
1999) is designed to be easily machine readable, and thus provides a preferred language to
specify abstract workflows. FSP is a textual notation (technically a process calculus) for
concisely describing and reasoning about concurrent programs. The constructed FSP can be
used to model the exact transition of workflow processes through a modelling tool such as
the Labelled Transition System Analyzer (LTSA) (Magee and Kramer 1999), which provides
compilation of an FSP into a state machine and provides a resulting LTS. LTSA is a tool
which provides a means to construct and analyse complex models of finite state process
specifications. This tool, which is fully explained in (Magee and Kramer 1999), provides us
with an opportunity to model workflows prior to implementation and deployment testing,
and with an MSC editor and synthesis extensions (S.Uchitel and Kramer 2001) to easily
model a scenario-based design specification, which can increase the expectation that process
composition will provide the necessary path of invocation in all states specified (e.g. reliably
by eliminating deadlock situations). With process animator extensions, the tool can also
provide a facilitator in simulating workflow specifications. An example FSP for a parallel
composition of concurrent invoke and receive transitions in a process is given in Figure 2-9.

The composed Labelled Transition system for this system is also illustrated.

INVOKE = (invoke activity->END). rvoke_actrvity
RECEIVE= (receive activity->END).
|[PSEQ = (INVOKE || RECEIVE).

recelve_acthvity iwoke actTvity

recelve_acthvity

Figure 2-9 FSP and LTS of a sequential process composition

2.5.5 Comparison

In (Ross-Talbot 2004) a comparison between several process algebras is given with a focus
on the requirements for web service process modelling. The aim of this comparison is to
provide criteria for modelling web service choreography (including state of resources etc)
through a notation. In this article the author considers completeness (a complete set of
semantics and maturity of notation), compositionality (providing process composition

operators and modelling), and parallelism (a key aspect of formalism which must be fulfilled

Chapter 2. Background 43

for accurately modelling web service choreography). Our view is closely related to views of
Ross-Talbot in that comparison; however, we distinguish our comparison by the additional
need to have extensive tool support and experience available to support implementations of
web service compositions in that formalism (away from any specific web service standard).
We also do not place as strong an emphasis on resource modelling capabilities. Whilst this
may be useful for future work, our initial requirements place value on completeness,
compositionality, parallelism and extendable tool sets. As the FSP model is formalised,
provides the necessary operators for composition behaviour (in similar set of operations to
business workflow processes) and is supported by an easily extendable plug-in framework
we therefore believe that FSP models provides a sufficient process formalism to support our

requirements for this work.

2.6 Review of Related Work

Related work on defining specifications, composition implementations and verification and
validation for web services has followed closely with the advancements of recent standards
in describing such web compositions. Although specifications have emerged with little
formal explanation of their underlying semantic representations (Aalst, Dumas et al. 2003),
the research community has focused its attention on modelling web service processes and
conversations. The methods of modelling fall into two categories, firstly using a design
notation (such as features of UML) and to then generate a composition skeleton in the form
of a BPEL4WS process and WSDL (interface) documents. Secondly, process algebras have
been used to model the processes and interactions of service compositions and their
choreography specifications. Here we describe the related work to ours, and where our work

is positioned alongside these.
2.6.1 Web Service Specifications

In (Papazoglou and Yang 2002) a general basis for service (component) specifications is
stated as being that it describes all interfaces of a set of operations that are available to the
service client for invocation. Although the service standards are rapidly changing and
evolving, with respect to their interfaces and operations, there is some common ground on
requirements-driven design specifications of web service compositions and equally some
varied methods of building these process specifications. The common ground appears to be

formally specifying the business requirements of the composition process required, such that

44 Chapter 2. Background

it captures the requirements for both the actors of the services and also the features of the
web service interactions. In (Gardner 2003; Iyengar 2003; Mantell 2003) the authors
describe an approach to specifying business processes through a subset of the UML profile
(driven from a process class with attributes and methods). The behaviour of the interacting
process classes is given using an activity graph. Whilst these works show partnered
processes working together, it is unclear how multiple scenarios of each process would be
specified In (S.J.Woodman, D.J.Palmer et al. 2004) however, the authors provide examples
in UML Sequence Diagrams and Activity graphs, yet refer back to building requirements in
a process algebra (in this case the m-calculus) to represent the concurrent and alternative
paths possible in a composite web service specification. Additional work, acting as a bridge
between model-driven based approaches (such as UML) and directly being specified in a
process algebra, has been discussed in (Pistore, Roveri et al. 2004). The authors use an
extended version of the TROPOS methodology, featuring a modelling framework proposed
in (Yu 1997) to capture business requirements and then generate BPEL4WS source code
from these requirements. In (Hamadi and Benatallah 2004; Yi and J.Kochut 2004; Yi and
Krys.J.Kochut 2004) Petri net-based models are used to specify the semantics of web service
specifications, their compositions and the communication between services. A direct
mapping is mentioned between service and Petri-net yet no examples were given for this.
With these works however, the key point that appears to be a disadvantage is that of
alternative scenarios of the service specifications in design. For example, in each of these
works it is possible to design abstract specifications yet they appear to represent single
scenario processes only. A wider view of the alternative behaviours of the process must also

be captured to gain greater assurance of a compositions use once deployed.
2.6.2 Modelling Web Service Compositions and Choreography

The second set of research in the analysis of web service compositions has been undertaken
by modelling these implementations directly in a process algebra. One of the earlier
proposals for formal analysis of composition implementations was given in (Nakajima
2002). In this the author suggests that due to the nature of the software assets (the
compositions in this case) being deployed to the internet, that the risk of a bug in such a
composition impacts are much greater than that of conventional system deployments. The
author of this work has also provided analysis of compositions in terms of those
implemented in the Web Service Flow Language (WSFL) (Leymann 2001), which is one of

a group of specifications that have been used to create BPEL4WS, and implements a

Chapter 2. Background 45

mapping between WSFL and Promela (the language of the SPIN tool) (Nakajima 2002).
The work provides a useful reference point on mapping XML schemas (as web service
specifications are defined in XML). Since the BPEL4WS specification has only recently
become a standard (at the time of writing this thesis), one of the earlier works attempted on
mapping BPEL4WS to a process calculus was reported in (Koshkina 2003) . The author
introduces an extended process calculus, named “BPE-Calculus” which aims at concisely
describing BPEL4WS processes in a notation similar to that of other process calculus, such
as CCS (Milner 1980; Milner 1989). The calculus is then compiled into a Labelled
Transition system (LTS). The authors of the BPEL-Calculus state that the disadvantages of
other methods to model BPEL4WS are that their reported results are difficult to trace in the
end tool. This point is useful to consider how our approach can cater for usability of results
back to the end-user from that of the common mechanisms used by formal verification
toolsets. In (Ferrara 2004; Salaun, Ferrara et al. 2004) web service specifications are
described in the Language of Temporal Ordering Specifications (LOTOS). The authors
extend the common mapping theme between the algebra and BPEL4WS by providing rules
for a two-way process. They also confirm however, that due to the expressive and flexible
structure of LOTOS, the mapping from LOTOS to BPEL4WS clearly does not preserve the
structure of a process. We can learn from this that the abstraction necessary to perform
modelling is not compatible in a two-way style, and that to perform this, additional resources
(such as a resource map) would need to be included to “fill” the gaps between process
algebra and implementation specification. Alternatively, (Hamadi and Benatallah 2004; Yi
and J.Kochut 2004; Y1 and Krys.J.Kochut 2004) use Petri net-based models to represent web
service composition flows. In (Hamadi and Benatallah 2004) the work also defines a “web
service algebra” (a grammar in BNF-like notation). However, there is a little coverage of
how this maps to current standard web service composition languages (such as BPEL4WS or

WS-CDL).

There has been some work on providing formal semantics for web service composition
languages. In (Ankolekar, Burstein et al. 2002), the mark-up and semantics for DAML-S
(another web service composition specification proposal) is described. They describe the
notion of a “semantic web” as a series of Web resources that provide services, which effect
some action or change in the world, such as the sale of a product or the control of a physical
device. The semantic web should enable users to locate, select, employ, compose, and

monitor Web-based services automatically. Whilst in (Duan, Bernstein et al. 2004)

46 Chapter 2. Background

BPEL4WS abstract processes (to describe the interface between processes) are analysed and
semantics given on the construction of BPEL4WS implementations behind this. BPEL4WS
and DAML-S are similar attempts at a standard for workflow of services, however,
BPEL4WS focuses more on business web service orchestration whilst DAML-S is more
generic in terms of any web based service or object (Seeley 2003). Additionally in
(Woodman, Palmer et al. 2004) the authors present an extension to the WSDL specification
(discussed in section 2.4.2), to describe the interactions between web services. This is then
in turn mapped to m-calculus processes and sequencing formed using its operators. Tasks are
represented as processes and dependencies linking the tasks, represented by channels
(representing data dependencies in conditional linking). As BPEL4WS extends WSDL with
an abstract process (which we describe further in Chapter 4), this mapping is aimed more at

the choreography level (where the inner process of a service is not directly observed).

In terms of choreography and web service conversations, work on asynchronous web service
communication has been described in (Fu, Bultan et al. 2004; Fu 2004d), with an example
focus on the BPEL4WS specification reported in (Fu, Bultan et al. 2004b). A formal
specification framework is described to analyse the conversations proposed by the
asynchronous communication channels utilized on the internet. Interestingly, we shall show
later in this thesis, that BPEL4WS provides a pseudo-asynchronous interaction model
(whereby an invocation is sent, and then a separate receive activity formulates the link of call
and reply). The technique proposed appears more useful for modelling general web service
communication, rather than that of compositional specifics. Both the work on asynchronous
and BPEL4WS interaction modelling is achieved through the use of Guarded Finite State
Automata (GFSA) which enables data dependencies to be modeled alongside process
transitions. In (Brogi, Canal et al. 2004) the authors describe an approach to formalizing
conversations, by way of mapping the WSCI standard (as discussed in section 2.4.4) to CCS
for web service choreography descriptions. The technique is similar to that of formalizing
compositions by way of mapping each of the actions and data parameters between two or
more partnered services in choreography. The conversation is traced by modelling the web
service invocations with that of the receive and reply actions of the partnered service. The
authors call for a common view of representing both composition and choreography models,
such that fluid design and maintenance of individual specifications is not detrimental to the
development effort. They additionally claim that other work in this area, including our work

in (Foster, Uchitel et al. 2003a) does not provide support for channel adaptors (those which

Chapter 2. Background 47

link services interactions together). This was the case until we published our port connector
work in (Foster, Uchitel et al. 2004a). Unfortunately, at the time of writing this thesis the
WSCI specification work appears to have ceased, whilst the work on WS-CDL has continued
with support from academia (Carbone, Honda et al. 2005; Carbone, Honda et al. 2005) in

modelling the choreography specifications (in this case, in m-calculus).
2.6.3 Verification and Behaviour Analysis

Compositional verification of concurrent systems has been explained in many articles
including (Lynch and Tuttle 1987; Abadi and Lamport 1993; De-Leon and Grumberg 1993;
Clarke, Grumberg et al. 1994a; Clarke, Grumberg et al. 1994b; Abadi and Lamport 1995;
Hailpern and P.Santhanarn 2002). In most of these works a model of the behaviour
exhibited by concurrent systems is created. However, the verification context is defined in
different terms depending on the work reviewed. For example in (Hailpern and
P.Santhanarn 2002) the context is very much on equivalence verification of implementations
against that which is specified in requirements and their design specifications. The list of
related work for verification of process models is extensive; therefore we concentrate on web

service verification work in this thesis.

In (Koshkina 2003), which was also described previously in terms of modelling, the authors
discuss verification of compositions for checking the existence of deadlocks, livelocks (i.e. a
test of liveness) and sequencing constraints in service conversations. This is just one
example of the general themes for properties used in web service composition and
choreography verification. Some variations exist between web service verification works,
largely focusing in the modelling notation used for mapping and the context at which the
end-user is interested in verification of the service offerings. For example, for web service
conversations, the approach to verification is to have two sets of conversation protocols (Fu,
Bultan et al. 2004b). Alongside our work, the implementation protocol concentrates on
BPEL4WS, whilst the design representation is different being modelled in a Guarded Finite
State Automata (GFSA). The approach translates the BPEL4WS to GFSA and then both sets
of GFSA to the Promela language. Intermediate analysis is performed on the BPEL4WS for
synchronisation compatibility (a Cartesian product) on conversation appropriateness of
interacting BPEL4WS processes. Whilst in (Fu 2004d) the same authors discuss a
verification method of asynchronous communication for the broader web service

conversations patterns (where there are long lasting, decoupled interactions between

48 Chapter 2. Background

services). The authors use data dependencies to check the possible values and alternative
paths of execution by a form of message analysis (using the interface descriptions for the
message document types being passed between partners). This is quite a different approach
to other work which abstracted data dependencies out of the implementations and enumerate
possible values that effect reasoning of conditional execution paths in a composition. In
(Hamadi and Benatallah 2004) the analysis approach again consists of describing both the
actual business process and equivalent specification. However, the defined web services
algebra is used to specify both, and as such limits the use for practical purposes against
actual standard implementations. In (Pistore, Roveri et al. 2004) verification is considered

against a business requirements model, represented in the Tropos language.

Aside from deadlock checking, there have been some attempts to reason about the behaviour
of web services in terms of compatibility (a sub-set of analysis of choreography
specifications). In (Foster, Uchitel et al. 2004a) we described the synchronisation of
interactions between partnered web service compositions using the notion of port connectors.
We described an algorithm that constructed these port connectors and provided models
which could be checked to detect if the necessary interactions had been specified to fulfil a
certain property of the services requirements. Additionally in (Brogi, Canal et al. 2004) a
similar reasoning is undertaken but for web service choreography specifications by
considering the local and global choices (which relates to the local and global problem
domains discussed in section 2.4.1) of web service choreographies in interactions. This work
does not consider the broader choreography properties (such as verifying transaction,
compensation or fault tolerance behaviour) of partnered services, and as such is therefore

similar to those described which focus on interaction compatibility.
2.6.4 Tool Support and Case Studies

Several tools have been reported as part of the formalising and modelling work discussed in
previous sections. In (Fu, Bultan et al. 2004), a tool for analysing and verifying interactions
among web services is supported. The mechanism is based upon conversation modelling
(interactions of messages passing between processes) using both BPEL4WS and a formal
conversation representation (in the form of GFSA) to describe verification properties to be
analysed. The GFSA is then translated to the Promela language, which can then be verified
in the SPIN tool (Holzmann 1997; Holzmann 2003). In (Koshkina 2003) the BPE-Calculus
is incorporated into the Concurrency WorkBench (CWB) tool, a tool which is fully described

Chapter 2. Background 49

in (Cleaveland, Parrow et al. 1993; Stevens 1999). The CWB presents a new view to analyse
the compositions specified the BPE-Calculus. We believe that the end-user (i.e. the web
service engineer) would ideally require that the view of the verification tool or process
algebra compilation is hidden from the development process, which encourages us to
develop the verification toolset to support automated, background compilation of BPEL4WS
processes and present findings back in the way in which design specifications were

constructed (e.g. in MSC form).

To this date, our research in verification and validation of web service compositions has not
yet encountered many real-world projects that have adopted the principles set out in these
works, although we present one such case study in Chapter 7. There are some adoptions
however; in the modelling of specifications whilst these specifications are being agreed (for
example the W3C Choreography Working Group has adopted an adapted form of n-calculus
to reason about WS-CDL descriptions). We believe that real-world examples and testing of
these approaches will provide the necessary confidence in tools and support for undertaking

the verification and validation techniques proposed.
2.6.5 Summary of related work and our approach

As with some, but not all of the related work, our approach builds on two representations for
the design and implementation of web service composition and provides a single framework
for both verification and validation of the compositions. If the verification is performed
using just one representation of the web service composition (i.e. either design specification
or implementation) then there is naturally a limited offering of assurance in terms of if the
behaviour was deployed without an equivalence check. A preferred approach is to offer both
validation and verification at any time in the engineering of the service compositions, such
that sufficient analysis results are determined by the nature of the changes in either design or
implementation. We believe that both of these brought together, provides the level with

which to assure compositions prior to deployment.

Our choice of MSCs for the design specification of web service interactions aims at
providing a sufficient notation to describe the synchronised interactions between web service
compositions. The implementation is assumed to be in BPEL4WS (due to it being a standard
and with commitment from several leading industry organisations) and translated to an

intermediate representation. The design representation is also synthesised to an intermediate

50 Chapter 2. Background

representation, on the basis of the behaviour modelling work described in (Uchitel and
Kramer 2001). We believe this is easier for designers to construct the various scenarios of
the system without learning a complex algebra or other process oriented language to specify
this in. The design and implementation representations are then translated into the Finite
State Process (FSP) notation to provide behaviour models for trace equivalence analysis, and
to check further model properties by way of either safety or liveness queries. With a pair of
behaviour models, verification can be performed on equivalence, and checked using safety or
liveness properties. Validation can also be measured by animated or simulated process
executions. In the LTSA tool, the FSP process algebra can be compiled into an LTS. With
this further representation, other verification and validation modules can be reused. For
example, in (Chatley, Kramer et al. 2003) the LTSA tool is extended to support a web-based

interactive (step-by-step) process simulation.
2.7 Summary and Discussion

In this chapter we have described a background to web service architectures and how the
principles of software process modelling can assist web service engineers to verify that web
service compositions are an accurate implementation of specifications (given as a set of
properties or obligations of interest). We have described how the Service-Oriented Model
(SOM) specifies aspects of web services architecture that provide a framework for us to
consider the verification and validation of web service composition scenarios. By
application of policies between services and goal states (in the form of obligations), we have
the necessary basic information to check these obligation properties of models in service
compositions. There is a clear need to support engineering tasks for web service
compositions, by applying semantic checking and simulated workflow animation to validate
workflow semantics prior to deployment. BPEL4WS currently lacks the ability to test or
simulate the correctness of workflow sequences. It is desirable that a composition
framework should include checks that for example, a composition actually terminates and
that the required execution path (end to end) is possible in all defined scenarios
(Karamanolis, D.Giannakopoulou et al. 1999). These checks provide greater assurance
before deploying one or many compositions in a local global domain which is connected to a
wider, global, domain of partnered clients and services. To begin our approach to providing
this assurance; the first consideration is focused on the need to specify the design of such

compositions thoroughly and in a method easily accessible to non-system implementers. In

Chapter 2. Background 51

the next chapter, we discuss our approach to designing web service compositions using a

scenario-based technique.

Chapter 3

Web Service Specifications

“I don’t paint things, I paint only the difference between things..." (Matisse 1908)

It is an interesting concept that Henri Matisse approached his work not by centralising on
objects in view, but on how these objects interacted with each other in the scene being
depicted. A similar view can be taken with the services of a web services architecture.
Through modelling their interactions from the perspective of multiple interaction scenarios, a
complete view of components behaviour can be specified in different sequences. In this
chapter, we describe how to model a series of interacting web service compositions using
Message Sequence Chart (MSC) standards and a scenario-based approach to describing

multiple use-cases for services.

3.1 Specifying Web Service Compositions

In section 2.4.3, it was discussed that a web service composition orchestrates a series of web
service interactions, whilst also carrying out some internal functions for a service goal.
Specifying these interactions means defining a local process (in similar way to building a
system workflow) but limiting compositions to service interactions and without detailing the
human interaction as part of wider system goals. As an illustration of a composition, we

describe a scenario whereby a process for selecting the “lowest loan offer” is selected from

Chapter 3. Web Service Specifications 53

two loan providers. A credit rating is also obtained as part of an initial decision making step.
Figure 3-1 illustrates this process and service composition. Three services are partnered with

this composition, being; a credit rating service and two loan provider services.

Loan Providdr|

Credit Rating Service

Return
Offer

New Loan
Request

Select lowest
offer

Handle negative

rating Get Loan Offer

. Sub-
() Terminal <> process
Loan Providér [) State
—— Transition =5 .
.
Choice

Figure 3-1 Example service composition for a new loan request

The example composition above is relatively simple to analyse by human observation, yet
larger, more complex compositions, encourage an analysis of how different scenarios are
catered for in the complete system model (Magee and Kramer 1997). For example, if a
credit rating is obtained which does not provide a positive result then an alternative path of
execution is undertaken to that of if a positive result is obtained. The implications of
designing a process given such situations encourages a designer to explore such requirements
from a wider perspective, possibly using techniques such as the Soft Systems Methodology
(SSM) (Checkland 1982; Checkland 1990). Using SSM, a “rich picture” is built to consider
all aspects of Clients (beneficiaries of the system), Actors (those who “play” out a series of
scenes), Transformations (actions of Actors, transformations and process that take place),
World-view (influences from within and outside the environment), Owners (those of own the
domain of interest) and lastly the Environment (political, legal, technical and other aspects of
the process domain). A Rich Picture for the loan service example, illustrated in Figure 3-2,
highlights some of these aspects of the wider impact of a composition implementation.
These aspects are difficult to represent in a single process design diagram. Consider each of
the viewpoints of the actors in the service composition (such as client or provider) and how
the behaviour exhibited by the process. Emerging from this picture is a set of scenarios, or
“outlines or models of an expected or supposed sequence of events” from the perspective of

each actor. It is worthy to note that whilst previous compositional work (using traditional

54 Chapter 3. Web Service Specifications

distributed component techniques) has also considered sequencing of components in this
way — web service compositions emphasise a more global nature of exposure through
standard techniques in discovery, interoperability and interfacing. We now consider how the
use of a scenario approach aids elaboration towards a rigorous method of specifying Web

Service composition models.

Is the process

You must check rating
before calling service...

Call my service and
I will get back to you...

| offer a similar
process...

©)

Rating
Service

nalyst
Designer

Does the process handle

asynchronous -

Can | validate my R
design with clients? |- Developers

Interactions? |-
Figure 3-2 A Rich-Picture of viewpoints in a loan selection service composition

3.2 The Scenario Approach

The scenario based design approach has been a popular technique to capture user
requirements by way of story telling (Jacobson, Rumbaugh et al. 1999). This method
provides a concise yet simple tool for “painting a picture” of how actors (clients),
components and messages are composed together to complete one or more system goals. It
has commonly been used in the past for actual interaction by system users (Graubmann
2003), the actors can also represent any agent or service that interacts with the system being
described by way of activities. For clarity, an example initial requirement of one textual
representation of the Rich-Picture illustrated previously could be as described in Figure 3-3.
Scenario based design has aids in the form of various system design modelling standards.
The messages and their sequences that pass between components in a process can be
described by way of a Message Sequence Chart (MSC) (ITU 1996) or similarly Sequence
Charts in the Unified Modelling Language (UML) (OMG 2002). MSCs are part of building
a set of scenarios of partial system behaviour (Uchitel 2003). The ITU MSC specification as

Chapter 3. Web Service Specifications 55

defined in (ITU 1996), forms MSCs as being part of two structures, that of Basic Message
Sequence Charts (bMSCs) and High-Level Message Sequence Charts (hMSCs). Scenarios
can be expressed in terms of positive scenarios (those messages which are expected) and
negative scenarios (those messages which are not expected) in a composition. Here we use

only the former for positive scenarios, to illustrate scenarios of web service compositions.

A loan selection service accepts a request for a new loan. The loan selection service first
checks whether the credit rating of the client applying is suitable. If the rating is suitable,
then the loan selection service contacts at least two loan providers. Each loan provider
provides a rate and the loan selection service determines the lower rate of the two replies.
Only when both loan provider replies are made, does the service calculate the lowest offer

and then return this to the client.

Figure 3-3 Example scenario of a loan offer service composition

3.2.1 Basic Message Sequence Charts (bMSC)

Basic MSCs (bMSCs) are useful for describing compositional activities, illustrating partial
system behaviour by defining sequences of messages between components, and providing
information of interaction state. Messages are passed between the “actors” (known as
components in MSC terminology) of the objects that interact in the scenario arena. When
diagramming a description of a concurrent or distributed system, we list the interactions
between the system's environment and external systems, labelling the interactions scenario-
by-scenario. Two terms are important here: interaction and interaction scenario. An
interaction refers to a specific sequence of events that happens among participating entities.
For example, one interaction might be a temperature gauge (an external system) sending a
message to a system controller. The message would be one interaction. At more detailed
levels, interactions involving internal components (subsystems) of the system are also
included in the system description. An interaction scenario, on the other hand, details a
specific group of interactions that form an episode (one of the parts into which a scenario is
divided) and often stands for the possible event sequences in that episode. For example, a
series of interaction scenarios would be the acceptable interactions between a pressure
gauge, controller, and a valve that make the valve open when the pressure is too high. Each
interaction scenario is often classified as either desirable or undesirable. Ideally, the

implemented system should meet all the desirable interaction scenarios and none of the

56 Chapter 3. Web Service Specifications

undesirable ones. Figure 3-4 illustrates a set of example scenarios for the loan selection

service composition example.

Cliert Loanseryi... CreditChe. .. Provwicler

Client LoanSeryi... CreditChe... Provider

request_check

request check_ok

a) Client Request b) Request Credit — OK

Client LoanServi... CreditChe... Provicher Clierit LoanSeryi... Provider CreditChe. .
request_check gedloanoffer_1
check_fail replyloanoffer
request_fail
¢) Request Credit — Failed d) Get Loan Offer from a Provider

Figure 3-4 Example bMSCs for scenarios in the loan selection service composition

3.2.2 High Level Message Sequence Charts (hMSC)

The bMSC and similar UML sequence charts are sufficient to describe the interactions of
Web Service Composition designs. In web service composition design, the scenario based
approach provides a suitably detailed notation to establish a specification of the required
interactions in a series of scenarios for a given problem domain. We can use this notation to
provide an abstract description of what the required behaviour of the web service
compositions should be and leverage this into the specification approach such that individual
service interaction models may be synthesised. Prior to this synthesis however, a set of
scenarios for a web service composition requires further sequence detail as to how the
individual scenarios may be composed. A higher contextual level of interaction may be

specified using the hMSc (high level Message Sequence Chart) technique.

A hMSC is a collection of nodes connected to each other through transitions. Each node is
either a start symbol, an end symbol, a rectangle enclosing a reference to a bMSC or another
hMSC, a hexagon enclosing a condition, a small empty circle denoting a connection point, or
a parallel frame containing two or more hMSCs that act in parallel. To focus on the
choreography aspects, components are not shown in an hMSC as they have no meaning to
the high-level sequence. Conditions in an hMSC are global in the sense that they apply to all

the entities and indicate a global system state. This technique links together the basic

Chapter 3. Web Service Specifications 57

(scenario) message sequence charts and prescribes the expected possible paths in execution
of one or more compositions. Figure 3-5 depicts a high level message sequence chart for the
scenario given earlier. Whilst this is a simple example, it illustrates how a series of bMSCs
may form the possible paths of sequence through a composition of possible message

sequence scenarios.

Provider1

LoanReply

CreditOK

[Start j—bﬁ_oanRequest

Provider2 [' End

CreditFail

Figure 3-5. High Level MSC (hMSC) for Loan Selection Service composition

3.3 MSCs, Compositions and Choreography

3.3.1 Mapping MSCs elements to Web Service Composition Behaviour

A web service composition design can be seen as a composed process consisting of various
scenarios which when combined together, provides a complete set of sequence paths
describing all possible paths through a service composition design. We relate the concepts
of scenarios to web service compositions using a mapping between the elements of message
sequence charts and those in building standards based web service composition. Each of the
elements of the MSC (defined by ITU) is described in relation to elements of web service
compositions and web service choreography (defined by OASIS for BPEL4WS and W3C for
WS-CDL respectively). Table 3-1 lists each of the MSC elements as they relate to these two

standards.
3.3.2 Web Service Compositions as MSCs

A Message Sequence Chart describes the message flow between instances and partners of
the composition. One message flow describes a partial behaviour of a system.

Table 3-1. Web Service Compositions and Choreography as MSC Elements

58 Chapter 3. Web Service Specifications
MSC ITU Definition Web Service Composition Web Service Choreography
Element
hMSC Describes high level | Links several compositions or | Defines sequence of

sequence of partial | episodes together to form complete | compositions and overall
behaviour (bMSCs). system behaviour. system behaviour in wider
context.

bMSC Describes a partial | A Composition MSC is used to | A Choreography bMSC is
behaviour of a system | describe a single participant view | used to describe a multi-
between instances. of the overall message exchange. | participant view of the overall

This provides a” skeleton | web service collaboration and
template” for the composition as a | message exchange.

workflow process, as seen from

one participant.

Instance Name blocks, processes | Partners of composition, as seen | Partners in choreography.
or services of a system from the local process perspective. | Local Partner services or

Specific process name may also be | compositions are created upon
included in the instance title. a signified request.

Messages A relation between an | Communication between | Communication between all
instance output and an | composition “partners” or internal | “partners” in choreography.
instance input. message | process activities. Messages are | Messages are related directly
exchange can be split into | mapped to activities in the local | to an abstract process of web
two messages for input | composition. (e.g. service | service calls between services
and output events. invocation, conditional branching). | and the compositions as a

service.

Conditions Restrict the traces that an | A web service composition may | A web service choreography
MSC can take. Setting | sequence its events to only be | may allow interaction only if a
conditions describe global | allowed if its current state permits | current state permits this. The
or non-global conditions. | this. The composition therefore | composition therefore imposes
Guarding Conditions | imposes a guarded condition on the | a guarded condition on the
restrict behaviour | process activities. partner interactions.
depending on event
values.

Gates and | Gates represent interface | All interactions in web service | Choreography tracks the

Environment | between MSC and its | compositions are through standard | sequence of messages
environment. web service calls. Thus, gates are | involving multiple parties,

another form of instance in this | where no one party truly
case. "owns" the conversation

Instance Creation of a instance in | Creation of service process or | Instance creation of

creation message sequence chart | interaction. Creation may also | choreographed services is

scenario

represent the lifetime of a unique
instance of a composition.

determined by the instance
creation of local services or
compositions

Instance stop

Termination of an
instance in current
scenario (by itself)

Termination of service process or
end of interaction. Invocation may
be asynchronous; therefore the
partner process has control of
termination.

Services are potentially long-
running instances however, a
service process has clearly
defined start and end markers

The message sequence chart is limited to describe only interactions and activities in a web

service composition; therefore the chart can form a skeleton for the interaction constructs in

a web service composition process generation. Figure 3-6 illustrates the mapping of message

sequence chart elements to web service composition elements.

Chapter 3. Web Service Specifications 59

Instances may be blocks, processes or services of a system. In addition to service name, the
specific instance process name may also be included. In a web service composition,
instances are referred to as partners of the composition. Partners may be clients or other web

services.

......................... Components have a

Components clearly defined role

: represent services or .+ within the

: partners of " composition :

: composition . ‘.. ..' *
Client Loan Service Loan Provider 1 Loan Provider 2

request loan |

I
|

N I
request rate :

."reqdeét rate
R
DU

loan rate 2

The sequence of :
messages defines : .

the orderin :

composition :

loan rate 1 T, seeeseressnees frovessns .

: Messages represent
*: service invocations or
 replies |

“"best loan rate

TTTTN

-
.

The composi{ion is
........ : central view df

: interaction ! :

*esceannscacans In

: Activation shows
. composition instance :
: creation and stop

.
-

Figure 3-6. Basic MSCs and Web Service Composition elements

Partners can interact either by consuming service messages, in the form of SOAP operations,
or by actively requesting within one or more compositions. Messages represent the relation
between an instance output and an instance input. Additionally, MSCs can specify messages
from the environment (via a gate) or be found. For web service compositions, a gate is
assumed to always be a partner of the composition (a client or service). Additionally,
messages may also represent events (timed) or other internal process. Conditions can be
used to restrict the traces that an MSC can take, or the way in which they are composed into
hMSCs. There are two types of condition: setting and guarding conditions. Setting
conditions set or describe the current global system state (global condition), or some local
state (conditions). In the latter case the condition may be local, i.e. attached to just one
instance. Guarding conditions restrict the behaviour of an MSC by only allowing the
execution of events in a certain part of the MSC depending on their values. This part, which
is the scope of the condition, is either the complete MSC or the innermost operand of an

inline expression or a branch of an hMSC. Web Service compositions can equally impose

60 Chapter 3. Web Service Specifications

conditions on sequence of interactions with partners, and locally in the flow of execution in
its process. Gates (points of interacting with the Environment) and Environment elements of
Message Sequence Charts are not required in a mapping to web service compositions.
Whilst they hold value for the environment specification in an MSC chart, standard links in a
services environment is always undertaken by messages (i.e. interacting with other
instances). The Instance creation and stop element of MScs represent that a service has a
finite duration. Instance creation can be achieved by another instance. Whereas
conventionally no messages or events may be made on an instance which has not been
created, messages between service components may create an instance of that service
composition. If not directly specified, it is assumed that an instance is created on activation
of the entire scenario. Alternatively, an instance may terminate, although an instance may
only terminate itself. It is assumed in web service compositions that services will be
available (and thus created) prior to any scenario being carried out. However, a web service
composition may listen for a creation message (to start a given scenario) which may

indirectly create another instance of a composition process.
3.3.3 Web Service Choreography as MSCs

In section 3.3.2, we described how message sequence charts can be used to describe web
service compositions and the mapping of elements between them. Web Service
choreography extends the use of using bMSCs in specifying the web service behaviour by
considering how to elaborate for multiple web service compositions or services interacting in
a wider enterprise scenario. The compositional view can still be used, however rather than
concentrating on a single service the story of multiple services (or compositions) is
described. Figure 3-7 illustrates how a bMSc may be used to describe elements of WS
Choreography. As choreography describes interactions based upon multiple-viewpoints it is
therefore also related to the using higher level message sequence charts to specify the
sequence of interactions in various scenarios of Choreography interfaces Describing the
collective flow of scenarios (specified in bMSCs) also forms part of the choreography
design. Although designing web service choreography using MSCs is similar to building
web service compositions, the subtle difference is that of coordination across multiple

compositions and scenarios.

Chapter 3. Web Service Specifications 61

........................ : Choreography : : The choreography of :
. Components : i specified as overall : . all services is central &
: represent services or 71 interaction : i view of interaction ;*
partners in 2 S P PP
. choreography
Client Loan Service Loan Provider 1 Loan Provider 2 Credit Rating Service
| requestloan !

.

1
1
I
: request rate
1
I
l

N

| I
I 1"
| 1
I I
| |
I NI
i .
I
|
|

request rate I

|

]
I

| .

: : request rate
I

I

I

|

I

........................ ! request rating
The sequence of ; |
! Doy ’ T
messages deflqes e client credit rating
service interaction : : 5 i
choreography : loan rate 2 I
....................... | -
I I *
i loan rate 1 i S TIIIIIIIIIIL IIIIED -
: : : -, « Messages represent :
I best loan rate I I % service invocations or :
K | 1 .
) I I
I I

! replies

Figure 3-7 Basic MSC and Web Service Choreography elements forming a Collaboration Group

3.4 Synthesising MSCs to Labeled Transition Systems

MSCs are visual aids to design requirements specifications for web service compositions, yet
their combined behaviour (as a set of partial stories in a complete composition behaviour
model) is still difficult to analyse by human observation. The process of synthesising these
MSC scenarios to Labelled Transition Systems (described in 2.5) provides a way to
computationally and mechanically analyse these scenarios to determine whether the
behaviour specified is desirable given a complete system behaviour model. A formal syntax
and semantics for MSCs is described in (Uchitel and Kramer 2001; Uchitel 2003), whilst a
corresponding algorithm to synthesise MSCs to a LTS based upon these definitions is

described in (Uchitel, J.Magee et al. 2001).

In theoretical computer science, a state transition system is an abstract machine used in the
study of computation. The machine consists of a set of states and transitions between states.
State transition systems differ from finite state automata in several ways: In a state transition
system the set of states is not necessarily finite, or even countable. In a state transition
system the set of transitions is not necessarily finite, or even countable. In a state transition
system, transitions do not form a function, but a relation between the states, and therefore,
there may be zero or more than one transition out of a given state, with the same input. State

transition systems with a finite number of states and transitions can be represented as

62 Chapter 3. Web Service Specifications

directed graphs. There are at least two basic types of state transition systems: “labelled” (or
LTS for labelled transition system) or unlabelled. The net result of performing this synthesis
of MSCs to an LTS is to “help correct, elaborate and refine scenario-based specifications by

b

way of experiments and replaying them...”. The algorithm we reuse in this work takes as
input a series of MSC scenarios, and builds an LTS for each of the components involved.
An intermediate step is performed, building finite state machine models in the FSP notation,

which are in turn compiled to a architectural LTS model (Figure 3-8).

check_ok getloanoffer 2

enddotion

request_fail getloanoffer 1 replyloanoffer]l reply_offer

ArchitectureModel

enddotion

Figure 3-8 Architectural Model LTS of Loan Selection Composition

Represented as LTSs, the web service compositions built in the scenario approach appear
quite different. The model produced in this synthesis provides a complete view of a system
modal process, providing concise inspection of all possible paths and thus behaviour of the
composition. Equally, from an abstract view, each of the actors in the process can be
analysed for interaction. For example, to see the steps of activities that the Loan Service

process exhibits we can compile only the Loan Service into an LTS and similarly analyse.

getloanoffer_1 request_fail replyloanoffer2

request recuest_check

LoanService

reply_offer

Figure 3-9 LTS for Loan Selection Service Process

3.5 Summary and Discussion

In this chapter we have described the notion and practical steps to designing web service

compositions and choreography by means of using a scenario based approach. The

Chapter 3. Web Service Specifications 63

technique uses Message Sequence Charts to describe the interactions both within and outside
the local process environment, depending on the viewpoint taken. The synthesis of these
Message Sequence Chart scenarios provides a model of the complete system interaction
design. Initial analysis can be performed on the design to ensure that different scenarios are
catered for, but also to provide a sufficient analysis specification as input to verification
against a process implementation. We consider the implementation of these design
specifications in the following chapter. In terms of the approach discussed in section 1.2, we

have introduced the highlighted parts as illustrated in Figure 3-10.

l validation results Tool
validation traces Y l
|4
Designers Construct . | Composition X i i
> pf. ; Msc, tion Validation
pecitca |0n”\ Synthesis
BPELaWS | & |\, ToFsP 3
We_b Reference Composition Specification =) Q models Analysis
Service |—m———r—»p . 5 3 Choice
Semantics o) T.
Standards 0. 3
w

Implementers

Processes

LANS :
gPEV fong)
°°“S"“°t’ Composition &
Verification

verification properties N
4 |

verification results

Verified and
Vahdated Request
Web Services

Serwces
Deployers Clients

Figure 3-10 Elements of the approach discussed in chapter 3.

Chapter 4

Modelling Web Service Compositions

“Nothing goes by luck in composition. It allows of no tricks. The best you can write,

will be the best you are.” (Henry D. Thoreau, 1817-1862)

In Chapter 3 we discussed an approach to specifying web service compositions for the
purpose of design and synthesising these design specifications to software process models.
In this chapter we present a mapping of web service composition implementations (in the
form of BPEL4WS processes) to that of processes described in the Finite State Process (FSP)
notation. The mapping is required to provide explicit process representation behind that of
the BPEL4WS constructs activities and other process definitions. The specification of
BPEL4WS is analysed and each construct, and their related formations, described by way of
the FSP semantics. To further illustrate the mapping described here, we utilise (by way of
graphical representation) the corresponding Labelled Transition Systems (LTS) for each FSP

model generated.

4.1 Modelling BPEL4WS Processes

4.1.1 Overview of BPEL4WS

The Business Process Language for Web Services (BPEL4WS) (Curbera, Goland et al.
2002) is a standard for specifying and executing service orchestration processes against a
domain of web services. The ability to develop a standards based process execution notation
emerged from earlier efforts of several competing specifications including the Web Service
Flow Language (WSFL) (Leymann 2001), XLANG (Thatte 2001) and BPML (Arkin 2002).

The desire is to form a standard way of coordinating a uniformed and collaborative

Chapter 4. Modelling Web Service Compositions 65

mechanism to support multi-service interactions for a business or other process. This is seen
as a critical element of making web services viable for wide spread use. The BPEL4WS
standard is based on XML and is defined as being a layer above the WSDL (described in
section 2.4.2). As we have discussed in previous chapters, distributed systems integration
requires more than the ability to conduct simple interactions by using standard protocols. The
potential of Web Services as an integration platform will be better achieved when
applications and business processes are able to integrate their complex interactions by using
a standard process integration model. The interaction model that is directly supported by
WSDL is essentially a stateless model of synchronous or uncorrelated asynchronous
interactions. Models for business interactions typically assume sequences of peer-to-peer
message exchanges, both synchronous and asynchronous, within state enabled, long-running

interactions involving two or more parties.
4.1.2 BPELA4WS Processes and Business Protocols

To define such business interactions, a formal description of the message exchange protocols
used by business processes in their interactions can be implemented for BPEL4WS as a
public process and added to the WSDL document. The definition of such public business
protocols involves precisely specifying the mutually visible message exchange behaviour of
each of the parties involved in the protocol, without revealing their internal implementation.
There are two good reasons to separate the public aspects of business process behaviour from
internal or private aspects. One is that businesses may not wish to reveal all their internal
decision making and data management to their business partners. The other is that, even
where this is not the case, separating public from private process provides the freedom to
change private aspects of the process implementation without affecting the public business
protocol. The viewpoint of interaction analysis in this work however, is aimed at the
designers and implementers of the compositions and it is therefore necessary to analyse the
private process and how its logical parts define the behaviour of what the composition
execution may actually perform. A private process is implemented in BPEL4WS using a
series of XML constructs (described later in this chapter) for basic logic, structural and
concurrent activities in a separate document. This document forms the executable process
which we use as source for private process modelling. In the later stages of analysis in our
work, both public and private processes are collated to support a complete interaction

analysis.

66 Chapter 4. Modelling Web Service Compositions

4.1.3 Private Process Structure

A basic process in BPEL4WS 1.1 is defined as a root element, consisting of one or more
child elements describing partners, variables, correlationsets, faultHandlers,

compensationHandlers and core process sub-activities (as illustrated in Figure 4-1).

Process

/ A A A A /
o o] o o

Correlation- Fault- Compensation
sets Handlers -handlers

v v

Partners Variables Activity

Catch/

Activity CatchAll

Figure 4-1 Basic BPEL4WS Process Structure and Activity Groups

A BPEL4WS document is split into five areas of process definitions. The first area of
process elements covers process declarations. These do not directly influence the behaviour
of the process, but are used to declare process wide declarations (such as partners, data
containers used by the process etc). The declarations are used as reference in later stages of
our modelling approach to associate interaction models between processes and its partners.
The other areas of a BPEL4WS process specify the actual workflow of the process (e.g.
interactions, conditional logic etc). Firstly, a set of constructs are used to specify basic
interactions in the process (such as service invocation or receiving a request from a partnered
service). We describe these activities as “primitive” in that they perform basic operations on
behalf of the process. The second set of constructs defines the order in which activities are
carried out. Such activities provide sequences of execution or concurrent activity execution.
The remaining sets of activities are formed from the traditional structured programming
language concepts (such as structured sequencing, iteration etc) and for specifying specific
fault tolerance and compensation handling activities. We specifically group the conditional
constructs of BPEL4WS, which we name “guarded process activities”, as they utilise a
similar representation to that of guarded transitions in process algebras. Guards define the
flow of control in a computation, and how they may be translated under refinement is central

to the formal treatment of models in model-checking techniques (Pavlovic and Smith 2002).

Chapter 4. Modelling Web Service Compositions 67

The areas of a BPEL4WS process discussed here and associated activities are summarised in

Table 4-1.

Table 4-1 BPEL4WS Process Definitions, Activity Sets and Activity Constructs

Element Description Section
Common Process Declarations 4.1
Process Root process element — marks the start of process 4.1.1
Partners The “actors” in the process 4.1.2
Variables Specify variables for message data 4.12
Correlation sets Correlating activities between partner and process execution 4.1.3
Primitive Activities and Constructs 4.2
Invoke Messages sent to partner services 4.2.1
Receive Messages received from partners 4.2.1
Reply Messages conveyed back to partners 4.2.1
Wait Wait for specified period 422
Empty No actual operation, used for synchronisation of activities 422
Terminate End process at place in process 423
Structured Activities 4.3
Sequence Sequential execution of activities 4.3.1
Flow Concurrent message transitions 432
Links Transitional conditions between constructs 433
Guarded Activities and Variable Abstraction 4.4
Assign Message data that requires manipulation or evaluation 442
While Process iterations 443
Switch...Case Test and branch conditions 444
Pick (OnMessage) Event driven selection of transitions 445
Fault Tolerance and Compensation Handlers 4.5
Scope Scope sub-process of activities for compensation 4.5
FaultHandlers Define either global or scope fault handling 4.5.1
Throw Throw a specific fault at point in process 452
Compensate Force compensation of scope or enclosing scopes 453

BPEL4WS also has a structure for standard-attributes and standard-elements for all activities
used in a process. Standard-attributes are provided to give each element instance a name,
whether an activity join condition is applicable in this instance and whether a join failure is
suppressed for this activity or not. The Standard-Elements are related to links — in that target
and source link elements can be used to designate respective link origin or destination. A

simplified structure representation of each of these constructs is illustrated in Figure 4-2.

68 Chapter 4. Modelling Web Service Compositions

suurceI—transitinnCnnditiun| narne

targetl—linkName| standard-attributes jDinCDnditiDn|

standard-elements}{

SuppreaaninFailure|

Figure 4-2 Standard Transitional Attributes and Elements Tags of BPEL4WS Activities

4.1.4 Mapping BPEL4WS Processes to FSP

To analyse these processes, we firstly use the FSP notation to build a model of the semantics
of a BPEL4WS process. Although we could build representations in Labelled Transition
Systems (LTS) directly, we have already discussed (in Chapter 3) how these representations
work well with few states and that they become impractical when defining larger LTSs. For
this reason, (Magee, Kramer et al. 1997; Magee and Kramer 1999) proposed a simple
process algebra notation called Finite State Processes (FSP) to textually specify LTSs. FSP is
a specification language with well-defined semantics in terms of LTSs, which provides a
concise way of describing LTSs. Each FSP expression £ can be mapped onto a finite LTS.
FSP introduces several operators, including an action prefix, choice, recursion, an end state,
sequential and parallel composition and equivalence minimisation (a more detailed list is

given in Appendix A). A summary of the semantics for FSP are listed below.

If x and y range over actions, and P and Q range over FSP processes, FSP introduces the
following operators:

e Action prefix “->": (x->P) describes a process that initially engages in the action x and
then behaves as described by the auxiliary process P.

e Choice “|”: (x->P|y->0Q) describes a process which initially engages in either x or vy,
and whose subsequent behaviour is described by auxiliary processes P or Q, respectively.

e Recursion: the behaviour of a process may be defined in terms of itself, in order to express
repetition.

e End state “END”: describes a process that has terminated successfully and cannot perform
any more actions.

e Sequential composition “;”: (P;Q) where P is a process with an END state, describes a
process that behaves as P and when it reaches the END state of P starts behaving as the
auxiliary process Q.

e Parallel composition “| |”: (P| |Q) describes the parallel composition of processes P and

Q.

Chapter 4. Modelling Web Service Compositions 69

o Trace equivalence minimisation “deterministic” deterministic P describes
the minimal trace equivalent process to P. If no terminating traces are proper prefixes of
other traces, then it also preserves END states.

e Strong semantic equivalence minimisation “minimal”: minimal P describes the

minimal strong semantic equivalent process to P.

4.2 Mapping Primitive Activities

The basic activities in the BPEL4WS specification are formed from the constructs of Invoke,
Receive, Reply, Terminate, and Wait. The Receive, Reply and Wait activities are basic
transition activities without additional complexity, however, the Invoke and Terminate
activities hold additional properties, whereby invocations can be designated with either an
expected reply or without. Terminate is used to abruptly end a process, and is specified with

an “eventual” end to running activities once initiated.
4.2.1 Label Abstraction of Web Service Interactions

In BPEL4WS, an activity consists of a parent element name and a series of attribute
elements. The activity that is modelled can be formed using a representative activity label
structure associated with the transition of the activity in a model. There are differences
however in the elements that are used to build meaningful activity labelling depending on
whether it is an interaction activity or an interaction dependency activity (such as links,
conditional activities or fault/compensation handling). The basic structure used for the
activity process in our modelling is firstly the construct name (e.g. invoke), secondly the
partner name (i.e. from the role designated in process) and thirdly the operation name (e.g.
“getOrders”). The three main interaction activities of invoke, receive and reply for message
communication are equally modelled, in that activities are labelled with the same syntax but
with different corresponding construct name. This labelling structure is illustrated in Figure
4-3. Other constructs in BPEL4WS also have a scheme applied to constructing appropriate
labelling. However, we shall see that this naming convention changes when we introduce
connectivity between interacting partners and their processes in section 5.2.1. Further
elaboration is also required to synchronise these interaction activities between compositions,

which is discussed in chapters 5 and 6.

70 Chapter 4. Modelling Web Service Compositions

2 | rpartner

Service Interaction Activities Labels:
31l .
: fﬁﬁﬂﬂm@ﬂ <constructname partner operation>
mattributes - -
1 —inputvariable e Invoke construct.
: . invoke buyer neworder
|mﬂ:|ke|- —outputvariable - -

e Receive construct.
—correlations l—currelatiun|

receive seller neworder

_M e Reply construct.
—camhgu| reply seller confirmation

Figure 4-3. Basic Service Activity Labelling

4.2.2 Invoke, Receive, Reply

The invoke activity specifies that a request message is to be sent to a designated partner of
the process. The style of invocation can differ depending on whether the activity is specified
to be completed with a reply (i.e. a reply from a partner service operation), or is expected to
be invoked without a operation reply (commonly known as a “request only invocation”™).
The latter provides scoping the invocation only for the additional fault or compensation
handling actions. We consider the difference in invocation style, in terms of service
choreography, in Chapter 5. The invoke activity may also contain optional correlation, fault

tolerance and compensation activities. These are also discussed separately in a later section.

The Receive activity specifies that a message is to be received from a designated partner of
the service. The receive activity has an optional “createinstance” attribute which, if set to
true, sets a process creation point on the message received, as a form of process trigger. The
semantics of this are unclear in the BPEL4WS specification, as the result of having multiple
process creation points is highly non-deterministic. In our work, we are concentrating on
static analysis of these interactions and therefore assume that the process is created at the

first activity specified in the process document.

The Reply activity specifies that a reply message is to be sent back to a designated partner of
the service. This is specified on the assumption that a receive activity has successfully been
carried out earlier in the process. We discuss compatibility checking of the interaction
between invoke, receive and reply activities, and process partners in detail in Chapter 5. The

forms of invoke, receive and reply activities are illustrated in Figure 4-4. The semantics of

Chapter 4. Modelling Web Service Compositions 71

invoke, receive and reply can be represented in FSP using a simple process transition. In
FSP a transition is represented by a process name and a labelled transition followed by an
END process marker. The synchronisation and concurrency of these basic activities enriches
the semantics of how these activities affect process execution. We consider this enrichment
in section 4.3. To illustrate the semantic mapping of these activities we present each in

Figure 4-4, as BPEL4WS forms, FSP and graphically as a series of LTS processes.

partner —M rpartner
operation Faperation Foperation
inputvariable —aﬁributes|~—variahle —attrihutes|--variah|e|
irWDkE|‘ outputariable receive|- —createlnstance| repl\,r|~ Ffaulttlame

rattributes

—correlatinnsl—correlation| “standard-attributes “standard-attributes
reateh ~standard-elements —standard—elements|
~catohall| - carrelations —correlation| - correlations correlation|
BASIC ACTIVITY BPEL4WS BASIC ACTIVITY FSP
<invoke partner="pl” operation="o0l" /> INVOKE = (invoke pl ol -> END).
<receive partner="p2” operation=”02” /> RECEIVE = (receive p2 02 -> END).
<reply partner="pl” operation”ol” /> REPLY = (reply pl ol-> END).
BASIC ACTIVITY LTS

INVOKE irrvoke_pl_ol RECEIVE recefve pd ol REPLY reply_pl ol

Figure 4-4 Invoke, Receive and Reply constructs and mapping to FSP

4.2.3 Wait and Empty

The wait activity specifies that a process be suspended for a duration or until a certain
expression is satisfied (for example a date or time has passed). Valid expressions are
evaluated as either Boolean (true or false), as a duration (counter), a deadline (date and time)
or the result of an assignment expressions. Our semantics concentrate on static analysis and
we translate the duration and deadline types of conditions to literal values. The empty
activity is used as a “placeholder” to provide activity linking synchronisation. The semantics
for this are elaborated upon in section 4.3.3. Therefore both the wait and empty activities
can also be represented in FSP with a process transition as with the other basic activities

discussed previously.

72 Chapter 4. Modelling Web Service Compositions

4.2.4 Terminate

The terminate activity specifies that a process be immediately terminated. As specified in
BPEL4WS, a terminated event in a process has varying effects on the activities currently
being executed. In this mapping, we have assumed that a termination will cause an
immediate “STOP” state of the process. Therefore, the terminate activity in BPEL4WS can
be semantically mapped in FSP by using process composition, synchronised on a choice of
either performing an activity of a set, or the terminate activity itself. Figure 4-5 illustrates
this mapping with an example of a concurrent execution of terminate with two other

activities. At any point in the process, a process termination may occur.

TERMINATE BPEL4WS TERMINATE FSP
<flow> INVOKELl = (invoke pl ol->END).
<invoke partner="pl” INVOKEZ2 = (invoke p2 02->END) .
operation="0l1" /> | IFLOW1l = (INVOKEl || INVOKEZ2).
<invoke partner="p2” set ACTSET = {invoke pl ol,invoke p2 02}
operation="02" /> TERMS = (ACTSET->TERMS | terminate->END).
<terminate /> | | TERMINATE = (FLOW1l|| TERMS) .
</flow>
TERMINATE LTS
irvoke pl ol

irmeoke p2 ol

Figure 4-5 Example mapping of terminate activity as LTS process

Note that in BPEL4WS, the sequence and flow constructs are used to denote these scopes yet

are considered to be activities in their own right.

4.3 Structured Activities

In this section of the semantics mapping between BPEL4WS and FSP, we consider the
transition of activities scoped within a sequence or concurrent order of execution. In
modelling terms, these are known as sequential or parallel compositions. Modelling the
possible paths of execution in sequential or parallel compositions provide rich details of the

behaviour that the activities carried out could be undertaken in when the process is executed.

Chapter 4. Modelling Web Service Compositions 73

4.3.1 Sequences of Activities

The sequence activity construct is used to scope a sequence of activities in the order they
given in that sequence scope. For example, a BPEL4WS sequence form (illustrated in
Figure 4-6) defines a sequence of activities that firstly invokes a partner service, receives a
message from a partner service and then replies to the partner in sequence. A sequence of
activities in FSP is described using the notion of a sequence composition. This is
represented between the activities of the sequence using the ; operator. The sequence
activity may include any other BPEL4WS activity (including other sequence or flow
activities). For example, the sequence mapping from the form illustrated in the figure
previously, is illustrated in Figure 4-6. The mapping to FSP generates three processes (in
this case invoke, receive and reply activities) and a process defines the sequence of these

activities using the FSP sequence operator.

SEQUENCE Construct
partner
—invokeH
aperation
par‘tnerl
SEQUEHCEF_FECEiVEH:
Dperationl
parther
—repI\,rH
Dperationl
SEQUENCE BPEL4WS SEQUENCE FSP
<sequence> INVOKE1l = (invoke pl ol -> END).
<invoke partner="pl” operation="0l1"> RECEIVEl= (receive p2 o2 -> END).
<receive partner="p2” operation="02”> REPLYl = (reply pl ol -> END).
<reply partner="pl” operation="0l"> SEQUENCE = INVOKEl; RECEIVEl;
</sequence> REPLY1; END.
SEQUENCE LTS

irvoke pl ol recelve_p2 ol reply pl ol

Figure 4-6 Sequence construct and mapping to FSP
4.3.2 Concurrent Activities
Concurrent activities in BPEL4WS are scoped using the flow construct. The semantics for

the scope are defined as that the flow completes when each activity contained within the

flow scope has completed. Each activity is executed concurrently; however, both the flow

74 Chapter 4. Modelling Web Service Compositions

and any activity within the flow scope may have external dependencies outside of the flow
scope, specified in the links section of each activity. The construct of the flow activity is
formed as illustrated in Figure 4-7. A flow activity creates a set of concurrent activities
directly nested within it. It further enables expression of synchronization dependencies
between activities that are nested directly or indirectly within it. The link construct is used
to express these synchronization dependencies. As with most other constructs in BPEL4WS
a link has a name attribute, although in a flow this attribute name is used to identify the link
in other parts of the process. All the links of a flow activity must be defined separately
within the flow activity. Source and target elements of an activity are used to link two
activities. We consider the semantic mapping of Linked transitions in the next section of this
chapter. The basic flow activity in FSP is represented using the parallel composition
operator, which is ||. Parallel composition in FSP is defined as: If P and Q are processes
then (P || Q) represents the concurrent execution of P and Q. This satisfies the concurrent
execution of activities in the BPEL4WS flow construct. Figure 4-7 provides an illustrated

example of a concurrent set of BPEL4WS activities for invoking, receiving and replying.

FLOW Construct
—aﬁrihutea|—5tandard-aﬁributea
—standard-elements|
ﬂuw|‘
-Iinksl—linl{
—activity
FLOW BPEL4WS FLOW FSP
<flow> INVOKE1l = (invoke pl ol -> END).
<invoke partner="pl” operation="o0l"> RECEIVEl= (receive p2 o2 -> END).
<receive partner="p2” operation="02”> REPLYl = (reply pl ol -> END).
<reply partner="pl” operation="o0l"> || FLOW = (INVOKE]! || RECEIVE]1 ||
</flow> REPLY1)..
FLOW LTS

imvoke pl ol

recefve_pd ol

recelve_pd 02 ke pl ol

recelve_p2d_ol recelve_p2d_od

reply_pl_ol reply_pl_ol reply_pl_ol

Figure 4-7 Flow construct and mapping to FSP for concurrent activities

Chapter 4. Modelling Web Service Compositions 75

4.3.3 Linked Transitions

Linked transitions are pre and post activity execution conditions. They are used to determine
when activity transitions can be made given the requirement that other activities have
successfully completed. The source of a link must provide a source element specifying the
link's name and the target of the link must specify a target element specifying the link's
name. The source activity may also specify a transition condition through the
transitionCondition attribute of the source element. If the transitionCondition attribute is
omitted, it is deemed to be present with a value of "true". Every link declared within a flow
activity MUST have exactly one activity within the flow as its source and exactly one
activity within the flow as its target. The source and target of a link MAY be nested
arbitrarily deeply within the (structured) activities that are directly nested within the flow,
except for the boundary-crossing restrictions. Target and source links are represented in FSP
as transition processes that are sequenced prior to or post the linked activity process,
depending on whether it is a source or target link respectively. As an example, Figure 4-8
illustrates the target and source links that are used in an approval invocation service request
in a “loan approval” process (as part of the example requirements scenario discussed in
section 3.1). Here, an “invoke pl ol” operation is only carried out after an approval is

received and assessed, with links guarding the operation transition.

LINKS BPEL4WS LINKS FSP
<sequence> LINKl = (receive to_approval->END) .
<invoke partner="pl” LINK2 = (assess_to approval ->END).
operation="0l1"> | | TARGETLINKS = (LINK1 || LINK2).
<target linkName="receive-to- LINK3 = (approval to reply ->END).
approval"/> | ISRCLINKS = (LINK3).
<target linkName="assess-to- INVOKELl = (invoke pl ol -> END).
approval"/> SEQUENCE = TARGETLINKS; INVOKE1;
<source linkName="approval-to- SRCLINKS; END.
reply" /> | ILINKS = (SEQUENCE) .
</invoke>
</sequence>
LINKS LTS

receive_to_approval

T

LINKS assess_to_approval receTve_to_approial imwoke_pl_ol

approval_to_reply

assess to_approval

Figure 4-8 Mapping link Semantics for part of a loan approval process

76 Chapter 4. Modelling Web Service Compositions

Whilst the actual declaration of a link is simply referred to as a label, the representation of a
process activity provides synchronisation of dependencies against other processes.
Additionally the transitionCondition can be given for source links (as either a constant or
variable Boolean expression). This condition is represented in FSP as a guarded process

activity.

4.4 Guarded Process Activities

The basic and structural activities in BPEL4WS do not require in-depth knowledge of data
handling between partners and the state of a process, however, the conditional activities of
the specification require expression evaluation to determine specific paths of execution. For
example, a while activity (based upon the traditional iteration programming language
construct) contains a condition expression, which is evaluated against one of several value
types defined in BPEL4WS. All those activities, including the while activity, which require
expression evaluation for conditional structured processing are described in this section,

being mapped to FSP using the guarded action and process variable concepts.
4.4.1 Variable Abstraction and Guards

A key concept in BPEL4WS, for both message data and conditional processing flow, is the
use of messages variables. Variables (formally known as containers in earlier specifications)
hold data between services invocations and replies, and are also used for a source of values
in semantic expressions for some activities. Variables take the form as illustrated in Figure

4-9;

name
aﬁributes}-{
messageType

wsdl:message |—name|

variablesl—variahle

Figure 4-9 The Variable form in BPEL4WS

Variables are closely linked with message definitions and the abstract protocol (via the
WSDL associated with the process). Although variables are essentially type-less, the
message format that variables hold are defined in the WSDL and contain type information as

part of the WSDL XML schema specification. A representation of the semantics of variable

Chapter 4. Modelling Web Service Compositions 77

use in BPEL4WS is based upon a read-write model in a similar style to the “get or set” that
used in traditional programming language variables. In FSP, a variable can be associated
with a set or a range of integer values. To model the reading and writing of variable
expressions an action label is used to represent a read or a write respectively. Each variable
used within the BPEL4WS may be modelled using this mechanism. The range of values set
for a variable can be determined during mapping, as activities access and assign values to

variables. The FSP code illustrated in Figure 4-10, defines such a read-write variable model.

There is clearly a limitation imposed on the mapping of variables, in that we are mapping on
the basis of a static data analysis and representation. To provide some flexibility in
determining how the values of variables affect the process execution path, we add further
mapping to enumerate static values within the process. For example, in the conditional
guarded activities a “Switch..case” path is determined by which path of activity is
undertaken. By representing possible process path outcomes based upon each case value
evaluation and each variable read-write mapping, all possible paths can be analysed. The
enumeration of variable values, from expressions, is discussed further in the following
sections, as referenced with the assign activity. An example variable model, in this case for
the variable of sellerInfo and a variable part named “askingPrice”, is illustrated in Figure
4-10. The corresponding use of this model within further BPEL4WS activity mapping
would assume that the variable is used twice, as the value range is set to 0..1 (such as the

transition for askingPrice.write[0] or askingPrice.write[1]).

/* FSP code for read-write variable model for a variable A with range VR. */
range VR = 0..1

VARIABLE (A=0) = VARIABLE[A],

VARIABLE[1:VR] = (write[j:VR]->VARIABLE[Jj]|read[i]->VARIABLE[i]),

VARIABLE['null] = (write[j:VR]->VARIABLE[J] |read['null]->VARIABLE['null]).
sellerInto askingPrice write[1]

sellerInfo askimgPrce | wiite [sellerIndio askingPrice. {read, wnte}[1]

sellerInfo aslangPrice write (]

Figure 4-10 Read-write Models for BPEL4WS Variables. FSP (top), LTS (bottom)

78 Chapter 4. Modelling Web Service Compositions

With the variable and condition mapping defined, all of the following guarded activities may

be mapped with synchronisation against one or more variable definitions.
4.4.2 Assign

The assign activity reads a value from a source data element and writes fo another data
element. The source may be a literal value, a variable, a partner, a variable property or a
value expression. For the purpose of mapping the assign activity to FSP, we reuse the read-
write model described previously, as the basis for assign activity processes. In BPEL4WS,
the assign activity takes the form illustrated in Figure 4-11. The assign activity can also be
linked for pre or post-conditional activities. For each assign statement in the BPEL4WS
implementation, an associated read or write is mapped to a process activity with a parameter
representing the variable value assigned. This may be an enumeration of an expression or a
literal value. For each variable in BPEL4WS, the read and write of variables used in assign
statements is referenced. In Figure 4-11, a BPEL4AWS example illustrates how an assign is

3

used to copy the expression “yes” to the approvallnfo variable. The assign statement is
linked to an “assess-to-setMessage” link declaration, which is sourced as a pre-condition
elsewhere in the complete BPEL4WS implementation. The assign statement also declares a
source condition for another activity. The corresponding FSP for the assign activity is
generated with an enumeration of the possible values that a condition may evaluate in the
scope of the process. This is achieved by having a lookup table created and appended to as
each assignment is made to a variable. Regardless of the type of the from specification of
the assign activity, an enumerated value is given to that from spec. The enumeration is

created in the sequence that values are assigned, and a FSP write activity (as part of the read-

write model) represents the assign copy action for that assignment.
4.4.3 While

The while activity provides a construct to perform iterative execution of activities until a
Boolean condition is evaluated to true. The while activity is represented in FSP in two parts.
Firstly using the variable expression evaluation described at the beginning of this section.
The second part is to represent recursion and use the FSP if....then...else with alternative
process transitions depending on whether the evaluation is true or false. For example, if a
condition is evaluated using an expression which considers whether a variable contains a
“yes” value, the “yes” value can be associated with a integer value and compared with the

actual value currently stored in the model guard variable.

Chapter 4. Modelling Web Service Compositions 79

ASSIGN Construct Form
standard-aﬁributes|
Standard-elementsl
assign
fram-spec
CUF"I|
fo-spec
ASSIGN BPEL4WS ASSIGN FSP
<assign> <...variable range and process for enumerated yes
<target linkName="assess-to- and no -range0,l...>
setMessage"/> LINKI1 = (assess_to_setMessage->END).
<source linkName="setMessage-to- ITARGETLINKS = (LINK1).
reply"/> LINK?2 = (setMessage to_reply->END).
<copy> [[SRCLINKS = (LINK2).
<from expression="'yes'"/> ASSIGNI1 = (approvallnfo.accept.write[0] ->
<to variable="approvalInfo" END).
part="accept"/> ASSIGNSEQ = TARGETLINKS; ASSIGNI;
</ copy> SRCLINKS; END.
</assign> IASSIGN = (ASSIGNSEQ).
ASSIGN LTS

assess_to_setmessage approvallnfo accept write] setmessage to_reply

ASSIGNLINKSEQ

Figure 4-11 Assign construct and FSP mapping

The activities defined within the while activity are mapped as per the sequence construct
detailed in section 4.3.1. The example, illustrated in Figure 4-12, has an iterative body of
receiving a message and replying to the service message. The corresponding FSP mapping,
illustrates how the conditional expression that “exp = yes” is mapped to a read process on the

variable “exp” and the processes are synchronised in a parallel composition model.
4.4.4 Switch..Case

The Switch..Case structured activity supports conditional activity selection in a pattern that
occurs quite often. The case branches of the switch activity are considered in the order in
which they appear. The first branch whose condition holds true is taken and provides the
activity performed for the switch. If no branch with a condition is taken, then the otherwise
branch is taken. If the otherwise branch is not explicitly specified, then an otherwise branch

with an empty activity is deemed to be present.

80 Chapter 4. Modelling Web Service Compositions

WHILE Construct Form
standard-aﬁributes|
attributes H
cunditinn-bnnlexpr|
while
standard-elements|
activity
WHILE BPEL4AWS WHILE FSP
<while condition ="exp = 'yes'"> <...variable range and process for enumerated true
<sequence> and false for while - range 0,1...>
<receive partner="caller" |[WHILEEXP = exp:WHILE variable.
operation ="echo" set WHILEEXP_alphabet =
variable = "request" /> {exp.{read,write}.[Range]}
<reply partner="caller" WHILEEVAL = (exp.read[i:Range]-
operation="echo" >WHILEEVAL[i)),
variable="request" /> WHILEEVALJi:Range] = if (i==0)
</sequence> then SEQ1; WHILEEVAL else END.
</while> RECEIVE1 = (receive caller_echo -> END).
REPLY1 = (invoke caller_echo -> END).
SEQ1 = RECEIVEIL; REPLY1; END.
WHILESEQ = WHILEEVAL; END +
{WHILEEXP_alphabet}.
[[WHILE = (WHILESEQ).
WHILE LTS

exp read (0]

recelve_caller echo

WHILE

iwwoke caller echo

Figure 4-12 While construct and mapping to FSP

To map the Switch activity, we can again utilise the variable FSP read-write model. An
evaluation process is defined for each case defined in the body of the switch. The
conditional evaluation is identical to the while condition explained in section 4.4.3. The
mapping includes the requirement that if the Switch activity contains an “otherwise”
condition (i.e. that if none of the case statement conditions evaluates to true) then this
activity is executed. The formation of this evaluation is then in a sequence of cases, or if
none of these results in true, then the “otherwise” activity path must be followed. Activities
defined within each of the case clauses, is mapped as a sequential composition. Figure 4-13

illustrates a “Switch..Case” mapping to FSP, for a choice of whether a negotiation outcome

Chapter 4. Modelling Web Service Compositions 81

results in a success or a failure. The case condition (the value of sellerInfo variable), is

evaluated and either the process CASE1 or OTHERWISE activity is executed.

SWITCH Construct Form
-standard-attriautes|
Fstandard-elements ‘
switch|— attributes I—cnnditiun-hnul-exnr
—caseH
activity
—othenwise l*au:tivitgr|
SWITCH BPEL4WS
<switch>
<case condition="bpws:getVariableData('sellerInfo', 'askingPrice')”>

<assign> <copy>
<from expression="'yes'"/>
<to variable="approvallInfo" part="accept"/>
</copy> </assign>
</case>
<otherwise>
<assign> <copy>
<from expression="'no'"/>
<to variable="approvallInfo" part="accept"/>
</copy> </assign>
</otherwise>
</while>

SWITCH FSP

CASE1EVALC= (sellerInfo.askingPrice.read[i:MPRange]->CASE1EVALCIi]),
CASE1EVALC[i:MPRange] = if (i==0) then CASE1; END else OTHERWISE; END.
[CASEIEVAL = (CASE1EVALC).

SUCCESSASSIGN = (negotiation.outcome.write[0] -~ END).

[CASE1 = (SUCCESSASSIGN).

FAILEDASSIGN = (negotiation.outcome.write[1] -> END).

[|[OTHERWISE = (FAILEDASSIGN).
MARKETPLACESWITCH = CASE1EVALC; END.

SWITCH LTS

sellerInfo.askingPrice read[0]

sellerInfo askingPrice read[1] negotiationCateorme outcome write[1]

CASE1EVAL

tegotiationCniteore outeorne write[0]

Figure 4-13 Switch/Case construct and mapping to FSP

82 Chapter 4. Modelling Web Service Compositions

4.4.5 Pick..onMessage

The pick activity awaits the occurrence of one of a set of events and then performs the
activity associated with the event that occurred. The occurrence of the events, as defined in
the BPEL4WS specification, is often mutually exclusive (the process will either receive an
acceptance message or a rejection message, but not both). If more than one of the events
occurs, then the selection of the activity to perform depends on which event occurred first. If
the events occur almost simultaneously, there is a race and the choice of activity to be
performed is dependent on both timing and the actual implementation of a runtime
BPEL4WS engine. The Pick..onMessage construct takes the form illustrated in Figure 4-14.
Each of the event types (either an onMessage or an OnAlarm) is triggered in BPEL4WS
using a choice of event received. In FSP, this corresponds directly to the notion of process
choice, being specified using the FSP operator of |. In addition to standard-element and
attribute mappings (section 4.1.2), the mapping provides a choice of any OnMessage or
OnAlarm activity. The choice within a pick activity is then on the activities within each
event, and this is mapped using the sequence mapping discussed in section 4.3.1. Each of

these sequences is placed in a “wrapper” pick process, delimited by the FSP choice operator.

For example, in an ATM logon process, the event triggers of logon and disconnect can be
modeled as an onMessage transition processes. The pick sequence for each of these events is
illustrated as FSP code in Figure 4-14. Notice that there are two cases of the write process
transition for the process variable connected.value.write. As discussed in section 4.4.1, the
variables possible values are enumerated based upon the types and number of assignments
that the process defines. In this case the logon is enumerated as condition 0 and disconnect
enumerated as 1. Therefore, further process activities which may read this variable would
check for logon (0) or disconnect (1) using the enumerated lookup table generated. In the
case of the model presented here, we define the possible paths of a pick activity, for any
logon or disconnect received by the process. Figure 4-14 also illustrates a sample of
Pick..OnMessage BPEL4WS, the FSP and a pick model as a graphical LTS. Note that we do
not model the timed or triggered event itself. We abstract this and provide a process which
represents an alternative possible path through the process model. Therefore, it can be used
to aid the validation and verification of if a particular event occurs, which path would be

chosen.

Chapter 4. Modelling Web Service Compositions 83

PICK Construct Form
createlnstance
-aﬁnbutesH
standard-aﬂﬂbutes|
-standard-elenﬂents|
cnnemﬂunsk—cnnemﬂnn|
mckP-DnMeasagef[
activity
for-duration-expr
aﬁnbutesH
—anAlarm unﬂLdeadHn&expd
activity
PICK BPEL4WS (sample)

<pick createlInstance="no">
<onMessage partner="atmFrontEnd" operation="logoff"
variable="logoffReqg">

<assign><copy><from expression="false()"/>
<to variable="loggedon" part="value"/>
</copy></assign>
</onMessage>

<onMessage partner="atmFrontEnd" operation="disconnect"
variable="sessionMsg">

<assign><copy><from expression="false()"/>
<to variable="connected" part="value"/>
</copy></assign>
</onMessage>
</pick>
PICK FSP
ATM ONMESSAGE DISCONNECT = (disconnect->END) .
DISCONNECT = (connected.value.write[l] -> END).
ATM ONMESSAGE DIS SEQ = ATM ONMESSAGE DISCONNECT; DISCONNECT; END.
ATM ONMESSAGE LOGON = (logon->END).
LOGON = (loggedon.value.write[0] -> END).
ATM ONMESSAGE LOGON SEQ = ATM ONMESSAGE LOGON; LOGON; END.
| [PICK = (ATM ONMESSAGE DIS SEQ || ATM ONMESSAGE LOGON SEQ) .
PICK LTS
disconnect

logon Ingzedon wvalue write 0] disconnect connected walue write[d] connected walue write[d] connected valne write[]

loggedon value write[(floggedon wealue write] logon logon

Figure 4-14 FSP Code for Pick..OnMessage event model for an ATM Logon

84 Chapter 4. Modelling Web Service Compositions

4.5 Fault and Compensation Handlers

In BPEL4WS, fault and compensation handlers can be defined for one or many activities in
activity scopes. Scopes may also contain nested scopes. In the case of compensation
handlers, they may also be specified “inline” to an activity, which means that an activity has
its own individual compensation routine. A fault may be raised on the receipt of a message,
or defined by the BPEL4WS engineer to be specifically thrown by way of the BPEL4WS
throw activity. Compensation handlers define part of the process behaviour that is meant to
be reversible, for example, if a request is made to place an order, the compensation action

may likely be to cancel the order.

Compensation routines in BPEL4WS are self-contained blocks of code that are scoped the
same as fault handlers, yet are only executed on the completion of a scope or on completion
of a particular activity. Fault handling in BPEL4WS is provided for two levels. Firstly, the
composition (process) may declare fault handling scopes that are focused on specific fault
handling for a series of activity blocks, a “local scope”. In this scope, specialised fault
handling can be undertaken for events that occur in specific areas of the process.
Alternatively or additionally to local fault handling, global handling routines may be
specified that react to certain events at any point in the composition process. Such fault
handling can be a useful way to trap errors and respond to partners if a complete process
must be completed in a usual reply, and any specific faults are not known or captured to a
local scope. Therefore, this level of fault handling is at a “global scope”. For nested scope
handlers, when a fault is raised the innermost enclosing scope is executed. The BPEL4WS
specification discusses how fault and compensation handling refers to data variables, with
compensation handling having access to a snap-shot of the process data variable state. Also,
fault handlers may receive one of many fault types raised. In our work we concentrate on
the possible behaviour exhibited by faults raised and if compensation routines are undertaken

in the event that a fault is raised in both local and global scopes.
4.5.1 Modelling Fault Handling

To model a fault handler we firstly build a representation of the fault Handler in BPEL4WS
by mapping the activities of the handler to FSP. Any activity described earlier in this section
can be mapped as part of this modelling exercise. If an error occurs inside a scope, a

particular type of fault is generated. A fault can also be thrown for a scope from code, if the

Chapter 4. Modelling Web Service Compositions 85

BPEL4WS engineer adds this to the process code. An interesting characteristic of fault
handling in BPEL4WS is that if a fault is raised, then the remaining activities in the scope
are automatically terminated. An example form of a fault handler, within a scope is given in
Figure 4-15. The scope activity defines the start of the mapping, with two composition
processes modelled as part of the fault handling and normal execution set of activities.
Firstly, the activities are built as described by each element in the set, in our example
previously; this would be a set of two processes executed as a sequential composition
process. Secondly, the fault handling process is modelled as a choice of fault types that
could potentially be raised. This is modelled in the same way as a Switch..Case activity,
described in section 4.4.4. The example in Figure 4-15, is given as sample BPEL4WS, FSP
model and is modelled as a graphical LTS. As the semantics of BPEL4WS includes this
“scope termination” once a fault has been raised, then this is very similar to the example of
the terminate activity we have discussed in section 4.2.4. The differences being that a choice
of processes is carried out depending on the fault type caught, and that the termination does
not finish the composition, but only the scope. This is handled through the fault handling
process being composed with the wider process and the scope end transition synchronising
with the next activity in the composition process. The BPEL4WS specification also provides
a catchAll mechanism to provide faultHandling for any fault that is not caught by the choice
of fault handling specifically defined. We are limited in modelling this mechanism as a
simple alternative (again as an additional case in a list of choices) such that an unknown fault

is considered an alternative path of execution (e.g. faultxraised).
4.5.2 Throw

The throw activity is used to signal an internal fault explicitly. As each fault is named
uniquely within the process (given a qualified name), the throw activity specifies this name
such that a fault handler sequence is identified and appropriate action is undertaken as a
result of the fault signal. To illustrate the semantic mapping of faults thrown, we provide the
structure of the throw activity, the BPEL4WS form and the corresponding FSP model in
Figure 4-16. The FSP model composes the activity of a throw, with that of the action of an
individual fault in the faultHandler model discussed previously. This synchronisation of
these activities causes the scope to terminate immediately following the faultHandler
process, as it would if caught in from a fault raised by the BPEL4WS process

implementation engine.

86 Chapter 4. Modelling Web Service Compositions

FAULT HANDLING Construct

faultflame="gname" faultvariable="ncnamea"=*
cath
fauliHandlers activity
SCope camhAHP—acﬁww

invake '—partnerLink:"SeIIet" operation="8yncPurchase" inputvariable="sendFO" outputvariahle="getResponse"r=
ﬂDWH

invoke '—par‘merLink:"Shippet" operation="C0rderShipment" inputvariable="sendShipOrder” outputvariable="shipAcki=

FAULT HANDLING BPEL4WS (example)

<scope>
<flow>
<invoke partnerLink="Seller”” operation="SyncPurchase”>
<invoke partnerLink="Shipper” operation="OrderShipment”>
</flow>
<faultHandlers>
<catch faultname="fault1” faultVariable="faultlvar” />
<catch faultname="fault2” faultVariable="fault2var” />
</faultHandlers>
</scope>

FAULT HANDLING FSP

range Fault IntRange = 0..1

FAULTHAND]1 = (fault.read[i:Fault IntRange]->FAULTHAND1[i]),

FAULTHAND] [i:Fault IntRange] = if (i==0) then DOFAULT1; END else if (i==1)
then DOFAULT2; END.

DOFAULT1 = (faultlraised->END) .

DOFAULT2 = (fault2raised->END) .

INVOKELl = (invoke seller SyncPurchase->END) .

INVOKE2 = (invoke shipper OrderShipment->END) .

ACTSEQ = INVOKEl ; INVOKEZ2 ; END.

| [JACTIVITIES = (INVOKEl || INVOKEZ2).

set ACTSET = {invoke seller SyncPurchase,invoke shipper OrderShipment}
TERMS = (ACTSET -> TERMS | faultlraised -> END | fault2raised -> END).
| | FAULTMON = (ACTIVITIES || TERMS || FAULTHAND]) .

FAULT HANDLING LTS

irvoke_seller_SyncPurchase

fault read[]

irvoke selley SymcPurchase imveoke shipper CrderShiproent
At read[1] faultdraised i fanltraised irvoke_seller_Swvoke_shipper OrderShipraent irvoke_shipper CrderShiproent

fault] raised: =
T itz

fault read[1]

Figure 4-15 LTS of Fault Handler and normal execution activity scope

Chapter 4. Modelling Web Service Compositions 87

THROW Construct Form

rTaulttame
~faultariable

—standard-aﬁﬂbutea|

thruuuf

—standard-elenﬂent5|

THROW BPEL4WS (sample)

<scope>
<flow>
<sequence>
<invoke partnerLink="Seller” operation="”SyncPurchase”>
<throw faultName='"faultlraised"
faultVariable="faultvar”></throw>
</sequence>
<sequence>
<invoke partnerLink="Shipper” operation="0OrderShipment”>
<throw faultName='"fault2raised"
faultVariable="faultvar”></throw>
</sequence>
</flow>
(see faultHandler BPEL4WS example in Figure 4-15)
</scope>

THROW FSP

range Fault IntRange = 0..1

FAULTHAND]1 = (fault.read[i:Fault IntRange]->FAULTHAND1[i]),

FAULTHAND] [i:Fault IntRange] = if (i==0) then DOFAULT1; END else if (i==1)
then DOFAULT2; END.

DOFAULT1 = (faultlraised->END).

DOFAULT2 = (fault2raised->END) .

INVOKELl = (invoke seller SyncPurchase->fault.read[0]->END) .

INVOKEZ2 (invoke shipper OrderShipment->fault.read[1]->END) .

ACTSEQ = INVOKE1l ; INVOKEZ2 ; END.

| |ACTIVITIES = (INVOKEl || INVOKE2).

set ACTSET = {invoke seller SyncPurchase,invoke shipper OrderShipment}
TERMS = (ACTSET -> TERMS | faultlraised -> END | fault2raised -> END).
| [FAULTMON = (ACTIVITIES || TERMS || FAULTHAND1).

THROW LTS

irvoke_seller_SyncPurchase

irvoke_seller_SyncPurchase

irvoke_seller_SyncPurchase
fault Jraised

wioke_shipper OrderSHanlt read[1] faultdraised fault read[] fault] raised fault read[] fault] raised

irrvoke_shipper_imvoke_shipper_ OrderShipment

Figure 4-16 LTS of Throw activity model and process synchronisation

88 Chapter 4. Modelling Web Service Compositions

4.5.3 Modelling Compensation Handling

To model compensation handling we can build a composition process for the compensation
handler in a given activity or as part of an activity scope and then combine the compensation
composition process with that of the normal execution activity process or activity scope. As
a set of compensation activities is only carried out at the end of an activity or a scope of
activities, the composition of both activity groups yields a behavioural choice of execution
paths in the BPEL4WS composition model. A compensation handler takes on the forms as
illustrated in Figure 4-17. An example inline compensation handler in BPEL4WS is also
illustrated as its form in Figure 4-17. To map the compensation handlers for inline activity
compensation, we build two processes in FSP, one representing the normal executed activity
and the other the compensation activities undertaken if compensation would be undertaken.
For the example given, this means a single process for the invocation of the Seller service
operation “SyncPurchase” and then a process for the compensation activity of invoking the

Seller service operation “CancelPurchase”.

Activity
: o SCOpe
cumpensahDnHandIerl—actn-'|tg.f| 4|-|:

cumpenaatinnHandler'—acthfit'g.f|

partnerlink="Seller" operation="SyncPurchase" inputvariable="sendPO" outputvariable="getResponse"
invokeH

compensationHandIerl—invoke |—par1nerLink:"SeIIer" operation="CancelPurchase" inputvariable="getResponse” outputvariahle="getConfirmation”

Figure 4-17 Compensation Handlers as inline (top-left) or scoped (top-right) and activity (bottom)

Clearly, the compensation action here is to cancel the purchase made previously. The model
of this compensation needs to consider the choice of undertaking compensation or not. In
this way, we can reuse the mapping FSP for the Switch..case activity (described in section
4.4.4). With this conditional transition included in the model for the inline compensation we
illustrate a composition choice path with a BPEL4WS sample, mapping to FSP and an LTS
in Figure 4-18. The other form of compensation handlers is as part of a scope. We provide
another example of a compensation handler, inside a scope of activities, in Figure 4-19. The
scope is considered to be the start point at which the compensation process is composed
along with the normal execution process. In this case, the two normal invoke activities, for
the seller and supplier service operations, are composed with an alternative set of invoke

activities and conditionally undertaken following normal execution as with the inline

Chapter 4. Modelling Web Service Compositions 89

example previously. The yielding model from mapping this scope of activities is given in

Figure 4-19.

COMPENSATE (inline) BPEL4AWS

<invoke partnerLink="seller” operation=""SyncPurchase”>
<compensationHandler>
<invoke partnerLink="seller” operation="CancelPurchase” />
</compensationHandler>
</invoke>

COMPENSATE (inline) FSP

COMPENSATE = (compensate.read[i:TRUEFALSE variable]
->COMPENSATE [i]),

COMPENSATE [1: TRUEFALSE_Variable] = if (i=='true') then
COMPENSATE INVOKE; END else END.

COMPENSATE INVOKE = (invoke seller CancelPurchase -> END).
INVOKE = (invoke seller SyncPurchase -> END).

INVOKE SEQ = INVOKE; COMPENSATE; END.

| | COMPENSATEEXAMPLE = (INVOKE_SEQ) .

COMPENSATE (inline) LTS

corpensate read tre

mrvoke seller SynePurchase compensate read false

mreoke seller CancelPurchase

Figure 4-18 Compensate (inline) choice of execution paths

Lastly, the compensation handler process may be synchronised with the compensate activity,
if directly specified in the BPEL4WS process code by the BPEL4WS Engineer. Note that
the default behaviour of BPEL4WS process compensation is to execute the scoped
compensation handler. If the scope is part of a nested scope, the engineer may instruct the
process to execute a compensation routine out of the current scope. Such an activity is
modelled through synchronisation of the compensation handler process at the given point in

the process mapping, using an alternative compensation process name.

90 Chapter 4. Modelling Web Service Compositions

COMPENSATE (scope) Construct

\nvokel— parnerLink="Sellet" operation="CancelPurchase" inputvariable="getResponse" outputvariable="getConfirmation”
compensatiunHandIerl—sequence)-|:
m\rokek partnerLink="Supplier" operation="CancelSupplier" inputvariable="getSupplierResp" outputvariahle="getSupplierConf'

scope
invoke l—pannerunk:"se\ler" porType="SFP:Purchasing” operation="SyncPurchase inputvariable="sendPO" outputvariable="getResponse"s
sequenceH

invoke l—partnerLink:"Suppher" porType="SF:FPurchasing" operation="SyncSupplier" inputfariable="reqProd" autputvariable="getSupplierResp"=

COMPENSATE (scope) BPEL4WS

<scope>
<sequence>
<invoke partnerLink="Seller” operation=""SyncPurchase”>
<invoke partnerLink="Supplier” operation="ReqProd”>
</sequence>
<compensationHandler>
<sequence>
<invoke partnerLink="Seller” operation="SyncPurchase”>
<invoke partnerLink="Supplier” operation="CancelSupplier”>
</sequence>
</ compensationHandler >
</scope>

COMPENSATE (scope) FSP

COMPENSATE = (compensate.read[i:TRUEFALSE variable]->COMPENSATE[i]),
COMPENSATE [1: TRUEFALSE_variable] = if (i=='true') then

COMPENSATE INVOKE; END else END.

INVOKE3 = (invoke seller CancelPurchase->END).

INVOKE4 = (invoke supplier CancelSupplier->END) .

COMPENSATE INVOKE = INVOKE3; INVOKE4; END.

INVOKE1l = (invoke seller CancelPurchase->END).

INVOKE2 = (invoke supplier CancelSupplier->END) .

INVOKE SEQ = INVOKE1l; INVOKE2; COMPENSATE; END.

| | COMPENSATESCOPE = (INVOKE SEQ) .

COMPENSATE (scope) LTS

compensate read true

irwoke seller SyncPurchase irvoke supplier ReqProd corapensate read false irwoke seller CancelPurchase

irvoke supplier CancelSupplier
Figure 4-19 LTS of scoped compensation handler activities

4.6 A Complete Example

A complete example of modelling a web service composition process is taken from the

BPEL4WS source samples provided by a BPEL4WS engine implemented called “BPWS4.J”’

Chapter 4. Modelling Web Service Compositions 91

(Curbera, Duftler et al. 2004). The example, an elaborated version of the “loan approval
process” (as part of the example requirements scenario discussed in section 3.1), utilises a
variety of the mapping concepts discussed in this chapter. We present the process (with
original source available as part of the tool discussed in Chapter 7) as a series of mappings
for each of the activities and variable definitions in this example, and discuss the resulting
composition from the view of a compiled LTS. The example consists of a single concurrent
activity (a flow element), with its child elements providing the loan approval process from a
series of linked message exchanges between the process partners for a customer, a loan
assessor and a loan approver. The process behaviour begins with an initial receive activity
(with its form illustrated in Figure 4-20), whereby a customer (partner) requests a loan
approval and this activity is marked as the process begin point. The request consists of
various information, amongst which, one is the actual amount requested for the loan
approval. The activity also has two source transitionConditions (described in section 4.3.3).
The conditions are evaluated for either the request amount being equal to or over 10000, or
less than 10000. An alternative of this strategy of linking would have been to include a
Switch..Case activity block immediately following the receive activity and an expression
evaluation used on the “equal to or greater than 10000 condition. The model produced by
this activity is composed of three processes. Firstly, there is the simple transition process
representing receiving the message itself. Secondly, there is a guarded transition activity for
the conditional link source to assess the request for loan approval (a “receive to assess”
transition) and thirdly, there is a guarded transition activity for the conditional link source to
approve the request for the loan (a “receive to approval” transition). These processes are

illustrated in Figure 4-20.

The first link target upon receiving the request for loan approval is the activity connected to
the receive-to-assess linkName. This activity is the invocation of the operation “check”
provided by the service partner “invokeAssessor”. The form of this invoke activity is
illustrated in Figure 4-21. In the mapping, the invoke activity itself also creates a process
transition, however, the semantics of the link target sub-element of the invoke activity means
that a process transition must also be created to provide a synchronised process composition
on the invoke activity and only when the guarded source link transition, “receive_to assess”,
has taken place. The invoke also has two source links, which are again mapped to guarded

process transitions. The resulting models are illustrated as LTSs in Figure 4-21.

92 Chapter 4. Modelling Web Service Compositions

partner="customer" porType="apns:loanApprovalPT' operation="approve" variable="request'createlnstance="yas"
receive snurce|—IinkName:“receive-m-assess"transitinnCnnditinn="bpws:gewariabIeData('request'. ‘amounty=10000"

source |—IinkName="receive-m-apprwal" transitionCondition="hpws:getvariableDatarequest’, 'amaounti==10000"
request guardlink] read[0]
request. guardlinkl read[1]

recelve_to_assess

recelve_customer approve
request guardlink read 0]

request guardlinkd read[1] tecelve to_approral

Figure 4-20 LoanApproval models (bottom) produced from Linked Receive Activity (top)

panner="assessor podType="asnsriskAssessmentPT' operation="check" inputvariahle="request" outputariahle="riskAssessment'=

target'—IinkName:"recei\re-to-assess"
invoke

Source '—IinkName="asSess—tu—setMessage" transitionCondition="hpws:getv¥ariableData(riskAssessment, riski="Tow"

source '—IinkName:"assess-ta-appro\ral" transitionCondition="hbpws getvariableDatariskAssessment!, riskll="Tow"

tecelve to assess Imwoke assessor check

tisktssessiment guardlink read [0]

tiskfzzessmment guardlink read[1] assess_to_setmessage

tighf seesstnent guardlinké read[]

tiskbssessmment guardlinkd read[1] aggess_to_approval

Figure 4-21 LTS for models produced from InvokeAssessor Activity

The second link from receiving a request for loan approval is the invokeApprover activity.
In a similar way to that of the invokeAssessor activity, the invokeApprover activity also has

target links, however, the invokeApprover draws upon source links which are guarded as

Chapter 4. Modelling Web Service Compositions 93

both part of the receive and invokeAssessor activities. The invokeApprover also has a
source link of an “approval to reply”. The form of this activity is illustrated in Figure 4-22.
Again, the basic invoke activity is modelled as a simple process transition, however, the two
target links (namely for “receive to approval” and “assess to approval”) can occur in any
order, yet they both must occur for the invoke activity transition to be undertaken. Therefore
firstly, a parallel composition process is created for the target links and the invoke transition,
secondly, a sequence process with two transitions is created for the invoke transition and the

source link transition. The resulting models are illustrated as LTSs in Figure 4-22.

partner="approver” portType="apns:loanApprovalPT' operation="approve" inputvariable="request' outputvariahle="approvallnfo"=

target'—IinkName:”receive-tn-approval"
imvake

target'—IinkName:"assess—to-apprnval"

source '—IinkName="appruval—tu—reply"

receTive_to_approval

assess to_approval recele to_appronal Dreeoke apprower approee

asgess_to_approval

iwwoke approver approve approeal to reply

Figure 4-22 LTS for models produced from InvokeApprover Activity

The result of the invoke approver activity is a source linked transition to the target linked
activity of replying to the loan approval request. However, the reply activity is also linked to
the result of the assessment activity via an intermediate activity of assigning a value for the
reply. In this case, the activity is linked as a target of the “assess to setmessage”, which
was created as part of a transitionCondition from the invokeAssessor activity earlier in the
mapping. The assign activity copies the value “yes” to the reply message if the invoke
activity for invokeAssessor returned as value of “low” (risk) in its reply message. The form

of this assign activity is illustrated in Figure 4-23.

94 Chapter 4. Modelling Web Service Compositions

targetl—linkName:"assess-tn-setMeSaage"

suurcel—linkName:"setMessage-tu-replﬁ,.-"
frnml—expressiun:"‘yes"
EDWH

ﬂ—variable:"appruvallnfn" pant="accept’

assign

Figure 4-23 Assign activity to set reply message content

The mappings of this assign activity forms three processes. Firstly, the process of the target
transition ‘“‘assess to setMessage” is created and assigned to this process composition.
Secondly, a write process transition is created to enumerate the assigning of the “yes” value
to the message reply variable of “approvalinfo” and its variable part of “accept”. The “yes”
value is given an enumerated value of 0 as this is the first assignment to this variable part.
Thirdly, the continuation of the transition link between assessor result and reply is given by
another link transition process of ‘“setmessage to reply”. The sequential process

composition from the mapping is illustrated in Figure 4-24.

assess to setmessage approvallnfoacceptwrite[d] setmessage to reply

Figure 4-24 LTS for models produced from Reply Message Assign Activity

The last activity to be mapped in this web service composition example is that of the reply to
the original receive for a loan approval. The reply activity is a target of both

(13

“setMessage to reply” (from the assign activity) and “approval to reply” (from the
approver activity) respectively. The form of the reply activity is illustrated in Figure 4-25.
The mapping for the reply activity therefore is similar in model form to invokeApprover
activity, in that two target link transitions could occur in any order. Therefore, the parallel
composition process model is mapped such that the “setmessage to reply” and
“approval to reply” can occur in any order before a process transition for the actual reply to
customer is undertaken. This is illustrated in Figure 4-25. The final step of modelling the
web service composition is to link all the process compositions (i.e. the individual process
models produced by the mapping from BPEL4WS to FSP) into a complete system

architecture and to request the process FLOW element scoping the activities through a

parallel composition.

Chapter 4. Modelling Web Service Compositions 95

partner="customer" potType="apns:loanspproval PT operation="approve" variahle="approvallnfo"

refply targetl—linkName:"sethﬂessage-tn-replf

target'—linkName:"apprwaI-tu-replﬁ,f"
setressage to reply

approval_to reply setriessage to reply reply_customer approve

approval to_reply

Figure 4-25 LTS for model produced by mapping of reply activity

In FSP, this architecture model is defined as follows and is illustrated in Figure 4-26.

/* FSP code for architecture model of web service composition mappings. */

IARCHMODEL = (LA_RECEIVESEQ || LA_INVOKEASSESSORLINKSEQ || LA_ASSIGNLINKSEQ |
LA__INVOKEAPPROVERLINKSEQ || LA REPLYLINKSEQ).

4.7 Assumptions and Limitations

Amongst the assumptions in our semantic mappings of BPEL4WS to FSP, we have
considered that a process lifecycle begins at the first receive activity specified in the process
document. The possibility of multiple start points as part of a series of receive activities
(discussed in section 4.2.2) would affect the order in which activities are executed. Related
to this is also a limitation on modelling the correlation attribute of activities, which are used
to match returning or known clients to interact in long-running processes (in a message to
correlation linking). We have not implemented a synchronisation of such events, but we
anticipate these mappings would be evolved to consider this in our future work. Our
mapping is also currently limited in the translation of variables, in that we are mapping on
the basis of a static representation (to values enumerated based upon occurrence of
conditional variable comparisons). To provide some flexibility in determining how the
values of variables affect the process execution path, we add further mapping to enumerate
static values within the process. The mapping does not consider translating event handling,
as part of an activity scope. Such a mapping would however, take a form similar to the fault
and compensation handling although the semantics behind event handling are much more

towards a time based simulation basis.

request guardlivk | read]

reguest guardlink] read[1]

request. guardlink] read[l]

request guardlink] read[1]

reqquest guardlink] read[0]

request guardlivk] read[l]

Tecelve_customer_appreecuest guardlink? readrecmest quardlink] read[1] receive_to_sssess recelve_to_approvaleduest guardlink] read[1] wecelve_to_assess Teceive_to_assess

@w @® ® @ 6 © ® ® ©® ©® O o ®

’0
AAA‘-;J

recelve_to_approval recelve_to_spproval recelve_to_approvabeguest guardlink? readrequest. guardlink? reack guardlink2 read[]

receive_to_assess

recquest guardlink? reack link? readrequest guardlink? read[1]

Figure 4-26 Architecture Model of Loan Approval Web Service Composition

96

suonisodwo)) 901AI9S GO SUI[[OPOIN ¥ Jidey)

Chapter 4. Modelling Web Service Compositions 97

We are seeking to evolve the methods described here to ease these limitations and provide a
closer representation of a BPEL process model. Our evaluation of modelling BPEL4WS
implementations (section 8.1.2) also discusses the implication of a new standard (with few
runtime implementations) and the impact of observing a standard compliant BPEL4WS

engine’s behaviour against our own translation from specification to FSP.
4.8 Summary and Discussion

In this chapter we have described the semantics of BPEL4AWS by way of mapping each of
the BPEL4WS constructs to the FSP algebra and building a model of the process behaviour.
With these mapping rules, we have described a modelling approach of a process defined for
a single web service composition, however, this modelling is limited to a local view, or in
other words, it can only be used to model the behaviour of a single process. In the next
chapter we further the semantic mapping to include web service composition interactions
through modelling web service conversations and their choreography. In terms of the
approach discussed in section 1.2, we have introduced the highlighted parts as those

illustrated in Figure 4-27.

l < validation results Tool
validation traces } |
Designers Construct | Composition . i i
—P» Specri)fication Mscg Model Generation Validation
grELaws | ¥ BPEL 3
We.b __ __ __Reference > Composition | Specificatio S [synthesis | ® | models Analysis
Service s : 4; > N oFsp_/| B Choice
emantics s | @ =
Standards gre° 4 2. 3
W@l »
Composition o™’ B} .
Processes Verification
verification properties N
4 |
verification results
Verified and
Valldated Request
Serwces Web Services
Deployers Clients

Figure 4-27. Elements of approach discussed in chapter 4

Chapter 5

Modelling Web Service Choreography

“If the constituent parts can be understood, the reasoning goes, some insight into the whole will follow.....

(Sanmay Das, “Modelling Complexity - Agents of Creation”, The Economist, 2003)

In chapters 3 and 4 the design and implementation of web service composition interactions
was discussed and models were produced to provide a formal representation of the behaviour
specified. These models are useful to describe individual compositions; however, an
elaboration of modelling is required to represent the behaviour of interacting compositions
across partnered processes. A series of compositions in web service choreography needs
specific modelling activities that are not explicitly derived from an implementation. In this
chapter, we describe this elaboration of models to support a view of interacting web service
compositions extending the mapping from BPEL4WS to FSP discussed in Chapter 4, and

including web service interfaces (WSDL) for use in modelling between services.
5.1 Web Service Interactions and Choreography

In the previous chapters of this thesis, we have described how the process view of a web
service (also known as a composition) takes focus of how a service interacts with other
services as well as its own internal processing steps. Whilst the other participants in a
composition may simply be seen as another service, their compositions are equally important
when describing the form of a conversation between participants in web services
architecture. The connective expression of these conversations provides the benefit of
designing collaborative compositions or services in a given business scenario, yet as we

discussed in Chapter 2, the choreography of these interactions is required to understand

Chapter 5. Modelling Web Service Choreography 99

exactly what state a conversation is in, and on a broader view, how multiple conversations
(as part of a scenario) are coordinated by state and goals. In essence, web service
choreography defines a kind of policy for “rules of engagement” in conversations
implemented between partners in web services architecture, alongside operational state
transfer for interactions indirectly between services (i.e. variable passing). It defines the
global interactions necessary to be controlled and enforced when two or more services are
interacting to fulfil a goal in a scenario. In this sense, the designer of partnered service
choreography may specify global service interactions such that they form a policy of how the
services should interact to complete a common goal. The concept is illustrated in Figure 5-1,
where a defined choreography specification (as a set of scenarios) is used as a policy for

coordinating several service partners.

Choreography Domain

Interaction State
Scenarios Partner A Partner B Partner B Partner_x Transfer
i request | : request |
H (=
: reply ! : reply !
Kg—————— 4 Ke————— 4
(Choreography Specification >
T
! I !
Partner A Partner B Partner x...
Web Service Web Service JAVA/EJB
BPEL4WS | Channel 1 L‘
Process
Channel 1 |:
<invoke 1'4_/\[—' [] Channel 2
Channel 2 ive>|4— I

Figure 5-1 View of multiple service compositions interacting and choreography layer

Choreography describes the peer-to-peer collaboration between participants with designated
roles in service interactions. Choreograph makes use of interaction and activity notation to
define the relationships, which represents message exchanges between two web services
participants. Web Service Choreography differs from Web Service compositions in that it is
a global view of interactions; in other words, it is a view of a series of process compositions

that interact to fulfill a common goal. Web Services Choreography explores the

100 Chapter 6. Analysis for the Service-Oriented Model

relationships, constraints and /iveness of a series of interactions between two or more
partners in a wider goal and with a standard (such as Web Service Choreography Description
Language (WS-CDL) (Kavantzas, Burdett et al. 2004)) the aim is to provide a technology
independent method of describing these through state collaboration and awareness at a
higher level than individual service processes. WS-CDL suggests providing a design
specification for choreography, which in turn is used for defining a contract for composition
interactions. It is anticipated that a designer would use a choreography editor which would
generate WS-CDL and then either a centralized or distributed engine would carry out the
necessary monitoring, reporting and rule-enforcement as part of the choreography

specification.

In this chapter we seek to further our modelling of web service interactions through two
viewpoints. Firstly, we examine the interactions within the choreography layer of web
service compositions collaborating in a global goal. Secondly, through further behaviour
analysis, we model the interaction sequences built to support multiple-partner conversations
across enterprise domains and with a view of wider goals. We limit the scope of
choreography analysis to that of interactions between compositions, and discuss the future

work needed on state collaboration analysis in the evaluation sections of this thesis.
5.2 Modelling Web Service Interactions

5.2.1 Service Conversations

Interactions of objects are carried out as part of a conversation. A conversation however, is
defined differently depending on the context it is used within. For example, for a verbal
conversation a definition is “the use of speech for informal exchange of views or ideas or
information”, applied to interacting service components there are several definitions,
however the W3C consortium defines a conversation as “...inferfaces or public processes
supported by a service. They differ from interfaces as defined by CORBA IDE or Java
interfaces because they also specify the possible ordering of operations,”. A composition
interacting with other compositions or services employs the use of a web service
conversation protocol (Banerji, Bartolini et al. 2002; Fu, Bultan et al. 2004b). The W3C
Web Service Conversation Language (WSCL) (Arkin, Askary et al. 2002) defines a standard
for describing a conversation in terms of documents, interactions and transitions. Whilst a

document is the body of a message used in conversation, interactions model the exchanges of

Chapter 5. Modelling Web Service Choreography 101

documents between two or more participants. A transition specifies an ordering between a
source interaction and a destination interaction. A conversation defines how interactions can
start and end depending on the goal of the conversation. For example, between a customer
and an ordering service, there may be several interaction scenarios including a “Login”
scenario and a “Purchase” scenario. A conversation therefore, also specifies the order in
which these scenarios could occur (in a similar way to that of the hMSc in the design

specification specifies the possible sequences of bMSCs discussed in Chapter 3).

To model these conversations in the context of web service compositions we perform an
analysis process on all the implementation processes and use an algorithm as part of this
analysis to semantically check and link partner process interactions. The algorithm uses as
input partner service interfaces (in the form of a WSDL document) and the implementation
models created in the initial implementation synthesis. The output of the composition
modelling is a list of composition mapping requirements (as input to the mapping stage
discussed in later sections) and information on non-interaction activities encountered and
unmatched partner process references. These sub-actions of our approach are illustrated in

Figure 5-2.

/ Conversation \
Model Generation Semantics

a

/Zte,f Crvice l Composition

Composition Mapping
Interaction

Analysis

uonoelsqe

Buiddew
%
T
Z
(e) % 5
. & ~
> (i,? o

SISaYIUAS
suolnoeJaul

Non-interaction Undefined

Activities Process Refs /

Figure 5-2. Composition Interaction Analysis Sub-Action Diagram

5.2.2 Service Partners and Roles

A service conversation consists of a number of service partners and a service partner is
considered in two ways. Firstly, the partner’s service has a process role in the choreography
of the service scenario (e.g. to provide a book ordering service). Within that, or another
service process, a partner of a service may be considered to have one or many roles

depending on what behaviour the partner’s service provides. For example, a service partner

102 Chapter 6. Analysis for the Service-Oriented Model

in a BPEL4WS composition may be labelled “Vendor”. This partner can be designated with
one or many roles, such as in this case, both a “Seller” and a “Shipper”. The link to the
partner and a list of their roles is defined by the client of the service composition. Therefore
the service partner role semantics are defined locally to the process. The role indicator is
used primarily to distinguish what the business process is referencing as part of the
collaborative business service (for example, that the invocation from a buyer is in the buy

context of conversation with another service acting as a seller).
5.2.3 Linking Composition Interactions

As part of the BPEL4WS specification, abstract processes (described as part of the WSDL
interface) can be defined which hide the private implementation of interactions within the
process. These are not directly executable, but they can indirectly impose behaviour
compliance upon private processes executed by the BPEL4WS engine server. Abstract
processes may assist in execution however, as a BPEL4WS engine server validates and
assures public protocol conformance of executing processes. Whilst abstract processes assist
in this way, we scope this approach to the design of the core (private) process to capture the
actual interaction and process of each BPEL4WS implementation, whilst using the abstract
process as a reference point to link compositions together through the semantics of interface
ports (described later). The core semantics of BPEL4WS, as discussed in (Aalst, Dumas et
al. 2003; Khalaf, Mukhi et al. 2003; Foster, Uchitel et al. 2003a) and by way of translation to
FSP in Chapter 4, describes how the language provides interactions of web service
compositions. The interfaces are a key link between compositional partners in collaborating
service scenarios. To model interacting web service compositions there is clearly a need to

elaborate our analysis of implementations by linking compositional interactions based upon:

e activities within the process
o identifying invocation style (rendezvous or request only)
o identifying and recording the points at which interaction occurs
e the abstract interface
o linking between the private process activities and the public communication

interface declared in the abstract WSDL service description

To model the semantics of linking interactions between processes requires a mapping

between activities in each of the processes translated (using the translation rules described in

Chapter 5. Modelling Web Service Choreography 103

Chapter 4) and building a message port connector for each of the interaction activities
linking invoke (input) with receives, and replies (output) and with the returned message to an
invoke. In addition to the executable process of BPEL4WS, the specification’s abstract
process defines PartnerLinkTypes, which are used as a class or type of relationship between
a web service partner’s invocation and a corresponding receiving service partner port. These
link types are then referenced in composition implementations to distinguish service
interactions between two or more partners. For example, the linking and dependency of
service partners, roles, service interface (WSDL) and the executable composition

(BPEL4WS), along with where a modelling port connector is positioned is illustrated in

Figure 5-3.
Service Client Service Provider
WSDL WSDL Partners
Partners Partner

Partner J PartnerLink / Role ‘ PortType PartnerLink
PartnerLink / Role || PortType (7 Operation

Operation 5 Operation
Rolg We_b © g o We_b Partner
Partner Service 8 < BH— Service Receive
Invoke Composition é = Composition Reply

Figure 5-3. Service Partners, PartnerLinks and Roles in Composition Linking

In BPEL4WS, a partner link type characterizes the conversational relationship between two
services by defining the "roles" played by each of the services in the conversation and
specifying the portType provided by each service to receive messages within the context of
the conversation. Figure 5-4 illustrates the structure of a partner link type declaration.
BPEL4WS utilises the extensibility mechanism of WSDL (as in version 1.1). To define
partnerLinkType as a new definition type to be placed as an immediate child element of a
<wsdl:definitions> element in all cases. This allows reuse of the WSDL target namespace
specification and, more importantly, its import mechanism to import portTypes. For cases
where a partnerLinkType declaration is linking the portTypes of two different services, the
partnerLinkType declaration can be placed in a separate WSDL document (with its own
targetNamespace). The services with which a business process interacts are modeled as
partner links in BPEL4WS. Each partner link is characterized by a partnerLinkType. More
than one partner link can be characterized by the same partnerLinkType. For example, a

certain procurement process might use more than one vendor for its transactions, but might

104 Chapter 6. Analysis for the Service-Oriented Model

use the same partnerLinkType for all vendors. Figure 5-4 also illustrates the basic syntax of

a partner link type declaration.

The fundamental use of endpoint references is to serve as the mechanism for dynamic
communication of port-specific data for services. An endpoint reference makes it possible in
BPEL4WS to dynamically select a provider for a particular type of service and to invoke
their operations. BPEL4WS provides a general mechanism for correlating messages to
stateful instances of a service, and therefore endpoint references that carry instance-neutral
port information are often sufficient. However, in general it is necessary to carry additional
instance-identification tokens in the endpoint reference itself. A partner link represents a
conversational relationship between two partner processes; relationships with a business
partner in general require more than a single conversational relationship to be established. To
represent the capabilities required from a business partner, BPEL4WS uses the partner
element. A partner is defined as a subset of the partner links of the process, as shown in the
example below. Partner definitions are optional and need not cover the entire partner links
defined in the process. From the process perspective a partner definition introduces a
constraint on the functionality that a business partner is required to provide. In this way, the
same partner (e.g. a Vendor), may provide two roles in a set of interactions within a process.
For example, a vendor could be the “seller” and the “shipper”. Figure 5-4 also illustrates the

syntax of a partner element.

rhame="Buyet" rhatre
—nodType FpatnerLinkType
partnerLinks l—partnerLink

rhname="Seller ~rvRole
—porType “partnerRole

rl:ule|‘

partnerLinkType

rnle|~

hame="apartner'=

pannersl—par‘mer)—[

partnerLink—name="pamnerlink’

Figure 5-4. PartnerLinkType, PartnerLink and Partner construct forms

Chapter 5. Modelling Web Service Choreography 105

5.2.4 An Interaction Modelling Algorithm

The physical linking of partnerlinks, partners and process models is undertaken as follows.
For each invocation in a process, a messaging port is created. @BPEL4WS defines
communication in a synchronous messaging model. BPEL4WS process instance support in
the specification specifies that in order to keep consistency between process activities, a
synchronous request mechanism must be governed. The synchronous model can be formed

by the following process.

For each composition process
For each process invoke service activity
Get invoke activity local partner
Lookup partnerlink using local partner
Get porttype using partnerlinktype
For each process interface definition
Lookup porttype using activity portype
Store matching partner
Lookup partner operation
End For
If invoke activity is in rendezvous style
Add invokeoutput action to activity model
Build reply-invokeoutput port
End If
Build invoke-receive connector partner labelling
End For

End For

For every composition process selected for modelling we extract all the interaction activities
in this process. As mentioned previously, interaction activities are service operation
invocations (requests), receiving operation requests and replying to operation requests. In
addition to an invocation request, we also add an invocation reply to synchronise the reply
from a partner process with that of the requesting client process. The list is then analysed for
invocation requests, and for each one found a partner/port lookup is undertaken to gather the
actual partner that is specified in a partnerlink declaration. To achieve this, a partner list is
used and the partner referenced in the invocation request is linked back to a partnerlink

reference. The partnerlink specifies the porttype to link operation and partner with an actual

106 Chapter 6. Analysis for the Service-Oriented Model

interface definition. To complete the partner match, all interface definitions used in
composition analysis are searched and matched on porttype and operation of requesting
client process. This concludes the partner match. A port connector bridge is then built to
support either a simple request invocation (with no reply expected) or in “rendezvous” style,
building both invoke/receive and reply-invokeoutput models. This supports the model
mapping. The sequence is then repeated for all other invocations in the selected composition
process, and then looped again for any other composition processes to analyse. We therefore
specify an algorithm that will enable mechanical linking between activities, partners and
process compositions. The algorithm is illustrated in Figure 5-5 with a flow diagram. The
algorithm supports a mechanical implementation of linking composition processes together
based upon their interaction behaviour. Two build phases are required as part of the
algorithm, being that of building a reply-invokeoutput port and invoke-receive connector

between partnered processes.

Composition Partner

(Start) I/ List List

/

N
Select Select Select \
o Get Get
Composition Activities | | ™ Invoke » [4—p WSDL
Process Activity Partner porttype ﬁ List

Lookup
Partner |

7/
- 7
\ Lookup

Operation

no.

Rendezvous?

yes
h |

Build Add
reply-receive Inputoutput
connM activity

Figure 5-5. Flow-chart of algorithm for Modelling Composition Interactions

In summary, the algorithm described provides a port connector based implementation of the
communication between two partner processes. Where multiple partner communication is
undertaken in a composition, a port connector is built between each instance of a message
(and optionally a reply if used in rendezvous interaction style). When each process is being
translated in the synthesis step of this work’s approach, the viewpoint changes, but the
activities are synchronised in parallel. For example, an invoke is received by a partner
process. The receive activity is viewed, when translating the partner process, as a new
connector, but synchronised with the invoke connector of the calling process. We elaborate

on how these connectors are formed in the following subsections.

Chapter 5. Modelling Web Service Choreography 107

5.3 Building Interaction Models

The activity of building port connectors for our integration mapping is based on the basic
concept of message passing in the formation of web service composition communication.
Messages can be sent directly to their destination partner process or indirectly via some
intermediate entity. Modelling these different types of messaging style has been considered
in (Magee and Kramer 1999). The essence of this work is that messages are passed through
channels. A channel connects two and only two processes, in which a single process sends
to a channel and a destination process can receive from a channel. The term connector is
used to symbolise that a one-to-one channel is used in process synchronisation. A connector
is the implementation between port and channel, in that a sender port is connected to a

sender-receiver channel. An example between two processes is shown in Figure 5-6.

Web Service Web Service

BPEL4WS PRy LLUENpRew ™ BPEL4WS
Process Process

Channel 1 <receive>
<invoke>Tg [

Channel 2
Figure 5-6 Web Service Composition and Port Channels

Applied to the context of web service composition processes, there are two views that
process connection can take. Let us consider this by example, viewed from either between

the composition processes or externally at the higher level web service communication.
5.3.1 Composition Process Interactions

With the view of composition process actions, a process makes a request by passing an
invocation message to a partner process. A composition process is sequenced such that it
either expects a message from a sender at a particular state or it rejects a request if this
violates the process sequence (Figure 5-7). The sender process will block execution of its
current process thread of the invocation until a response is received. The process may
continue processing if the invocation is part of a concurrent execution thread (for example
see Flow statement of BPEL4WS in section 4.3.2). As described in the beginning of this

chapter, in BPEL4WS there are two styles of invocation being that of rendezvous or invoke

108 Chapter 6. Analysis for the Service-Oriented Model

only. The latter does not expect a partner service reply to be synchronised with the
invocation, rather, it may suggest that the invoking process will expect a reply at a later part
of the process execution. This would be synchronised on a receive activity with a partner

process invocation.

Web Container Police Enquiry Vehicle Movement Web Container

BPEL4WS BPELA4 Ly
\ : <|nvolke <invoke |
N [[]

<receive>| <receive

<reply> "
M <invoke

Web Container Web Container

ws Fingerprint - ,| Identity Check
En uir <receive |;invoke
\ Proce <invoke Proce <invoke

<receive>| <receive| <receive>| <receive

4
g

Web Container Web Container
E ‘
ws

Figure 5-7. View of Multiple Web Service Compositions Interacting in a Police Enquiry Scenario

<reply> - <reply> -
<invoke <invoke

/N /)

\

5.3.2 Connecting a Set of Processes

To consider synchronising the connector models between composition partner processes we
firstly examine how an unsynchronised communication model is represented. Individual
processes can be modelled as a set of partner interactions, with an inner process defining its
internal behaviour around these partner interactions. A process model commonly used to
illustrate partnered compositions is that of a business Market Place, where a buyer and seller
negotiation interactions are maintained and evaluated through a core process. An example
definition of requirements for these set of services is described with a related context
diagram illustrated in Figure 5-8. Transition semantics are labelled using the construct name
(invoke or receive), partner (seller) name, partner process name (marketplace) and by the
operation being requested (e.g. offer a product). It is worthy to note that this is an extended
labelling scheme from that of which was described in section 4.2.1. These provide us with a
set of labelled process transitions, such as “invoke seller marketplace offer”. If there is
more than one invocation in the seller process, then this can be sequentially numbered.
Equally, the receive activities in a Marketplace process example gives as an example

translation of “receive _seller marketplace offer”.

Chapter 5. Modelling Web Service Choreography 109

The marketplace provides three stages to a negotiation. Firstly, a product may be either
offered or requested. The message is passed from the seller or buyer role respectively, and is
received by the marketplace service. Once a request is received, the marketplace instantiates
a new transaction and awaits for either a seller or buyer to offer or request a similar product.
This process matches a seller to a buyer. A seller cannot be matched to another seller, and
equally a buyer cannot be matched to another buyer. When a match is recognized, the
second stage is undertaken. The second stage of the negotiation is to receive initial prices
from the partners, for when satistied, allows the workflow to proceed to the third stage. The
third stage provides an iterative negotiation of prices, with each partner able to specify a

price and then place agreement as to whether a deal is made or terminated.

‘ I
offer : BPEL4WS | request
price. X | Web Service | f priee
A\
| I
offer | | | request
product I MarketPlace product
| I
| I
agree I : agree
price I price
o I

Figure 5-8 Scenario and Diagram for a MarketPlace Service Composition

The composition generates three process compositions, one for each of the partner processes
in the scenario. The FSP for these processes is illustrated in Figure 5-9. Note that here we
have simplified the FSP generated, by including only the activities for interaction and not the

logic for conditional selection of when a price is agreed.
5.3.3 Messaging Port Connector Models

To build connected composition interactions, port connector channels are used for each of
the invocation styles between two or more partnered compositions. The algorithm is used
from the viewpoint of a process composition at the “centre of focus”, that is, the one in
which initial process analysis is being considered. The interface of subsequent partner
interactions is used in the algorithm to obtain a link between two partners and an actual
operation. For example in Figure 5-10, two BPEL4WS process interact using both a request

only invocation (Channel A) and a Rendezvous style (Channel A and B).

110 Chapter 6. Analysis for the Service-Oriented Model

/* FSP code for seller service composition */

// SELLER PROCESS: FLOW MODEL OF TWO OFFERS

SI1 = (invoke seller marketplace offer->END).
SR1 = (invoke seller marketplace reply->END).
SI2 = (invoke seller marketplace offer2->END).
SR2 = (invoke seller marketplace reply2->END).
SSEQ1 = SI1l; SR1; END.

SSEQ2 = SI2; SR2; END.
| |S_BPELModel = (SSEQl || SSEQZ2).
/* FSP code for buyer service composition */
// BUYER PROCESS: SEQUENCE MODEL OF A REQUEST AND REPLY
BI1 =(invoke buyer marketplace request->END).
BR1 =(invoke buyer marketplace reply->END).
BSEQ1 = BI1l; BR1l; END.
| |IB_ BPELModel = (BSEQI).
/* FSP code for marketplace service composition */
// MARKETPLACE PROCESS: RECEIVING AND REPLYING TO BUYER/SELLER
MPSIl=(receive seller marketplace offer-> END).
MPSR1=(reply seller marketplace offer->END).
| IMPSBR = (MPBSI1 || MPBSRI1).
MPBR1=(reply buyer mp request -> reply seller mp offer -> END).
MPBSEQ1 = MPSBR; MPBR1; END.

Figure 5-9. FSP Code for Buyer and Seller Interactions with a MarketPlace Process

Composition of
invocation and
receive/reply

Port Connectors
Join sender activity
activites are with receiver activity
composed via a channel

Web Service __Neb Service

BPEL4WS
Process

Figure 5-10 Channels and Interaction Activities of Web Service Compositions

<invoke
output>

Our model of interactions using channels is based upon the interaction state and not on the
messaging architecture used for transport. In this way, we do not consider synchronous

against asynchronous messaging models for modelling the communication flow between

Chapter 5. Modelling Web Service Choreography 111

compositions. The model produced from analysis of the compositions is from the viewpoint
of the composition performing as part of a role in choreography. This makes the model an
abstract view of interactions for the purpose of linking invocations and not on the actual
order of messages received by the process host architecture (synchronous and asynchronous

messaging models for web services can be referred to in (Fu, Bultan et al. 2004)).

5.3.3.1 Request only invocation (Channel A)

Web Service compositions specified with the invoke construct (see section 4.2.2) and only
an input container attribute declare an interaction on a request only basis (there is no
immediate reply expected). More generally this requirement is for a reliable message
invocation without any output response from the service host (other than status of receiving
the request). The message synchronisation for this port model is listed below with an
example number of messages ranged from 1 to 3. The model for this is illustrated as an LTS

in Figure 5-11.

/* FSP code for request-only service invocation model */

range MSG = 1..3 /* no of msgs */

CHANNELA = (invoke input[v:MSG] -> receive[v] -> CHANNELA).
IIREQONLY_PORT = (CHANNELA) .
rrvoke _inpt[1]
oke ivgput[d]
wvoke input[3]
recerre 3]
\\'receive[ﬂ]
receme[1]

Figure 5-11 LTS of Model for Request Only Port Connector

The process “ChannelA” is defined with two transitions, that of an invoke input and a

receive, followed by a recursive transition back to the start of the process. Note that this

112 Chapter 6. Analysis for the Service-Oriented Model

model simply defines a send and receive mechanism, whereby the transitions are labelled

invoke input and receive respectively.

5.3.3.2 Rendezvous style invocation (Channels A and B)

“Rendezvous” (Request and Reply) invocations are specified in BPEL4WS with the
<invoke> construct, with both input and output container attributes. To model these types of
interactions, we use a generic port model for each process port. A synchronous messaging
model in web services compositions (such as BPEL4WS) requires an additional activity of
an “input_output” to link a reply in a partnered process to that of the caller receiving the
output of the invoke, however, this is necessary only if the invocation style is that of
rendezvous. The message synchronisation for this port model is listed below with an

example for a single message composition in Figure 5-12.

/* FSP code for rendezvous service invocation model */

range MSG = 1..1 /* one message example */
CHANNELA = (reply[v:MSG] -> invoke output[v] -> CHANNELA).
CHANNELB = (invoke input[v:MSG] -> receive[v]-> CHANNELB) .
IIRENDEZVOUS_PORT = (CHANNELA || CHANNELB) .

A corresponding model for this port connector is illustrated as an LTS in Figure 5-12.

reply(1]
urvoke_mput[1] reply[1] recene[1]

cee[1] wwoke output[l] eeoke mput[1]

urvoke _output[1]

Figure 5-12. LTS of Model for Synchronous Rendezvous Port Connector

Chapter 5. Modelling Web Service Choreography 113

5.3.3.2 Mapping Process Activities to Port Connectors

The next step in the port connector modelling process is to map the activities of the
BPEL4WS process to the port connector activities. This is achieved using the semantics of
BPEL4WS for the interaction activities discussed earlier and replacing the port connector
activities appropriately. The invoke activity in BPEI4WS is mapped from the client process
to the invoke input action of the port connector — this represents the initial step of a request
between web service partners. The associated receiving action of the BPEL4WS partner
process is mapped to the receive activity in the port connector. The reply from the partner
process to the client process is mapped to the reply in the partnered process. Both receive
and reply activities in the BPEL4WS are discovered as part of the interface analysis
described in section 5.2.4 . Figure 5-13 lists the mapping explained here.

WS Interaction = Port Action BPEL4WS Action (example)

Invoke (Client) Invoke input invoke seller marketplace offer
Receive (Partner) | Receive receive seller marketplace offer
Reply (Parnter to | Reply reply marketplace seller offer
Client) Invoke output output marketplace seller offer

Figure 5-13. Mapping Activities Between Port Connector and BPEL4WS for
A Seller and Marketplace Example

With both of the invocation model types, the connection interaction for invoke activities in
BPEL4WS can be modeled effectively using transition links for send, receive and reply
processes in FSP. The task of modelling the invocation process and port is completed by
using the re-labelling feature of FSP linking the appropriate activities between process and
port. At this point the interactions are mapped into a connector yet it is still an
unsynchronised set of activities if aligned with the main BPEL4WS process models.
Therefore we need to compose these activities with those specified in the BPEL4WS
processes. To complete the modelling of the compositions, we specify an architecture model
composing the previous models for seller, seller port, marketplace, buyer port and buyer
processes. An example of applying this mapping to the Seller and Marketplace processes

described earlier produces the FSP code as illustrated in Figure 5-14.

114 Chapter 6. Analysis for the Service-Oriented Model

/* FSP code for building model of port connector in marketplace example */
range MSG = 1..1
PORT INVOKE=(invoke seller marketplace offer[v:MSG]
->receive seller marketplace offer[v]->PORT_INVOKE) .
PORT REPLY=(reply marketplace seller offer[v:MSG]
->output marketplace seller offer[v]->PORT REPLY).
| |PORT_MODEL = (PORT_ INVOKE || PORT REPLY) .
/* mapping process and port connector transitions for request only conversation */
/ {invoke seller marketplace offer / invoke input,
{receive seller marketplace offer / receive).
/* mapping process and port connector transitions for rendezvous conversation */
/ {reply marketplace seller offer / reply,
{output seller marketplace offer / invoke output).
/* code for composition of processes and port connectors */
| |CompArch = (Seller BPELModel || Seller Port || MP BPELModel

| | Marketplace Port).

Figure 5-14 FSP Code segments for mapping activities

A partial set of interactions is modelled in Figure 5-15 as an LTS model for the seller and
buyer with the Marketplace process. The labels in this model have been shortened for
presentation purposes and clarity. The result of providing a complete model of interactions,
as part of a conversation, is that a choreography specification can potentially be used as input
to a verification process. This verification process can highlight inconsistencies on a series
of compositions and their interaction behaviours implemented. We term this type of
verification as “compatibility checking”, in the way that focus can be placed on how the
compositions interact and if they are suitable to be used for choreography as part of a
business process. Although the choreography specifications are still being created, such as
in the case of WS-CDL, these additional features will be key part in how choreography will

be undertaken.

5_irvoke [0]

mp_s_recefve[]

mp_s_reply[0] s_output[] mp_s_recedve[l] rap_s_teply[0] s_output[T] rap_s_tecefve]

b_output[0 b_output[J] b_output[M b_output[] rp_b_reply 0] mp_b_reply (]

Figure 5-15 LTS for Partial Set of Interactions between Seller, Buyer and Marketplace Compositions

rp_s_recefve[]

mp_s_recefve]

Ayde1309107)) 991AIS GIA\ SUI[[OPOIN S Jaidey)

!

116 Chapter 6. Analysis for the Service-Oriented Model

5.4 Summary and Discussion

In this chapter, we have described an elaboration of composition models to support a view of
interacting web service composition processes extending the mapping from BPEL4WS to
FSP discussed in Chapter 4, and introducing web service interfaces for use in modelling
between services. The ability to model these conversations is important to discovering how
web service interactions fulfil a choreography scenario and if the conversation protocol
implement (by way of interaction sequences) is compatible with that of partnered services.
In essence, our view of modelling has moved from analysing a local process, or in other
words a single composition, with that of other services and their interactions. With both the
local behaviour and mappings between compositions defined, we now have a sufficient
model to perform analysis of service interaction for behaviour properties. The approach to
verifying and validating these properties is discussed in Chapter 6. In terms of the approach
overview discussed in section 1.2, we have introduced the highlighted parts as illustrated in

Figure 5-16.

l < validation results Tool
BPEL Port N l
. Synthesis Cﬁllr:)r:jee(;;or 4
Construct iti To FSP . .
Designers onstuet . | Composition| o Validation
> Specification”%‘
Web srELaws | & [2 > |3
. Reference Composition | Specificatio S| 5 @) models Analysis
Service |—m———r—»p " 4‘ S22l 3|3 Choice
Semantics o | &1 a T
Standards et Lo | 5 = |3
=) e“\a\\o“‘ » =] o «@
Composition |in#e” o1 > I
Bl Verification
verification properties N
4 |
verification results
Verified and
Valldated Request
Serwces Web Services
Deployers Clients

Figure 5-16. Elements of the approach discussed in chapter 5.

Chapter 6

Analysis for the

Service-Oriented Model

“Contrariwise," continued Tweedledee, “if it was so, it might be, and if it were so, it would be; but as it isn’t, it
ain’t. That’s logic!”

(Lewis Carroll, Alice In Wonderland)

In the previous chapters we have described an approach to design, implement and model web
service compositions with respect to their specification processes and interactions. These
models provide a representation that can be used to perform verification and validation
analysis using formal model checking techniques. In this chapter we discuss this analysis
and how software process model checking techniques are applied to the web service
composition models to assist designers and implementers assess the correctness of
compositional behaviour. This chapter brings together the models of design and
implementation for a service-oriented model and evaluates their behaviour in the form of

obligations.
6.1 Analysis of Web Service Compositions and Choreography

6.1.1 Approach to Analysis of the SOM

In the introduction to our work, we described verification of processes to be used to identify

parts of the web service composition’s behaviour that have been implemented incorrectly, or

118 Chapter 6. Analysis for the Service-Oriented Model

perhaps have unforeseen interactions. This aims to satisfy such questions as; does the
implementation match the requirements and was the process built correctly? Additionally,
we described validation as a mechanism to clarify the understanding of requirements against
that of the implementation and that the result of validation is to ensure that the right process
was built. In chapter 2 we described the policies and goal states defined of the SOM (section
2.4.5) related to service objectives and obligations, and why the analysis of web service
compositions (and its related use in choreography) facilitates the construction and general
engineering of web services. The ability to perform verification and validation between
implementations and design, and within the process compositions themselves, is a key
requirement of the web services architecture specification (Booth, Haas et al. 2004). We
portray this analysis through an approach to compare the design specification models against
that of implementation models (and vice-versa), and report back on obligations specified by
either service designer or implementer that result in implied scenarios or progress violations

(as illustrated in Figure 6-1).

Analysis Domain

+—dient—+———sanvicss——— | | Service Compositions and Interactions
Interaction | Cffier DszioeH Polioe Encyiry || Vetide Euiry | | Insurarce, @‘ FSari _
Scenarios ; ; . €b service Web Servics
1 1 1 BP / = n
.And. I ! | = _ invoke>| Channel <receivel= 4
Obligations ! vefide reg N 0 Proce
(properties) i ineLrance records i Channel 1_y,[<receive> invoke>
I ; : invoke>]
| i i Channel 2 L—repl receive:
P I .
Composition and Choreography Composition and Interaction
Specification Models Implementation Models

\—I

Formal Software Process Analysis
(Verification and Validation)

Property Violations Property Violations

Figure 6-1 Approach to analysis of Service Specifications and Implementation Models

The use of MSCs to specify obligations of a service composition or choreography provides
an accessible method for end-users to describe the sequence of interactions necessary to
fulfil their requirements. Whilst there exist other suggestions for describing web service
policy standards through such work as WS-Policy (Bajaj, Box et al. 2004), which provides a
general framework to specify constraints on web service communication, at the time of
writing this work there is little on specifying interaction constraints in policies for decisions
about anything other than security and resource access control permissions. Perhaps the
nearest exposure of obligations as part of a general web service policy framework is the

eXtensible Access Control Markup Language (XACML) (Anderson, Nadalin et al. 2004)

Chapter 6. Analysis for the Service-Oriented Model 119

which defines pre- and post conditions in terms of activities that a service participant must
have carried out prior to or after requesting a service. Due to the lack of available standards
in this area, we assume that a general policy of desirable interactions can be defined
sufficiently in a design specification (such as we used MSC specifications in Chapter 3).
Additionally, for the purpose of our verification approach, we assume that a stated policy is
to be upheld within the choreography model (regardless of duration of existence) relating to
the interactions permissible in a given scenario of a businesses goal. Collectively gathering
scenarios and building a set of specifications forms a choreography verification set with
which properties may be defined to analyse how implementations fulfil the set of

specifications given in these sets.

As an example, if a service choreography is defined between three different services and
their tasks, the properties we are interested in is that the implementation has observable
behaviour which satisfies the choreography rules and requirements. We abstract away from
the storing and passing of state values between choreography scenarios — however, the
interaction state (whether a service request, request received or reply is given) is considered
for state transition analysis. The process in the web service context is that of a Web Service
Composition’s tasks (or more generally seen as any service’s set of tasks). For verification
we analyse how web services, a service’s tasks (inner process), and actions specified in
service compositions (referred to as activities in our models) fulfil several areas of analysis.
Equally we also provide a mechanism for confirmation of the behaviour exhibited by a
modelled composition, and allow the analyst or engineer to validate that the processes
created are indeed the required behaviour for a solution to the requirements. In this section
we discuss the techniques for both of these methods and provide examples of undertaking

them.
6.1.2 Techniques used in the Analysis

Verification is achieved through the use of formal software process model checking
techniques, but we evaluate specific topics of our approach for web service compositions by
wrapping and applying these techniques under the notions of deadlock freedom and safety
and progress property analysis. Firstly, we can check the behaviour of a composition or
choreography is deadlock free (i.e. that there are no states with no outgoing transitions). In a
finite state model (such as the models we produced from design specification and

implementations in chapters 3 and 4), a deadlock state is a state with no outgoing transitions

120 Chapter 6. Analysis for the Service-Oriented Model

in these models. A process in such a state can engage in no further actions. The deadlock
states we are interested in are those that arise from a parallel composition of concurrent
activities in a single composition, a number of interacting compositions and one or many
compositions against that of their design specifications. This analysis can be performed by
input of a series of processes and using a parallel composition to build an architecture model.
A breadth-first search of the model is then performed and trace results can be obtained of the
activities taken from the start state to the state at deadlock. An example of a deadlock state
in web service choreography is that two services are waiting to receive a message from each
other. The processes of these services are clearly in a deadlock situation where one is

awaiting the other, and will never transition past this state.

Secondly, we can use safety property checking techniques to determine if given model
properties are satisfied in one or many compositions. Safety properties are distinguishable
from deadlock states in that they result in an error state — identified uniquely within a trace of
the given model analysed. For example, if a safety property is composed with a given
model, a safety check will result in error if the property is not preserved in the composed
model. Safety properties used on complex systems are usually better stated as what is
required, rather than stating what is not required (Magee and Kramer 1999). Thirdly, we can
use progress properties (one of several liveness property analysis types) to assert that
whatever state a process is in, it is always the case that a specified activity will eventually be
executed. Progress is the opposite of starvation, the name given in a concurrent
programming situation in which an action is never executed. Progress properties are simple
to specify and are sufficiently powerful to capture a wide range of liveness problems in

concurrent processes.

For validation we provide additional mechanisms for designers to validate web service
composition design specifications through simulation and animation. Assertions are used to
identify properties for service interactions in a simulation of the composition, again from the
model built in previous chapters. Animation is also provided, whereby designers are able to
walkthrough scenarios of the composition, and selectively choose different paths of
execution to check requirement scenarios are fulfilled in the given design or implementation.
To perform direct process analysis we use model checking techniques (such as deadlock,
safety and progress properties) to specify the checks we wish to perform against process

models. Whilst deadlock and safety can be performed generally (through direct instruction

Chapter 6. Analysis for the Service-Oriented Model 121

to an analyser) safety and progress can also be applied subject to those properties of interest
or required by an end-user (for example, to directly assert whether a system can perform a
series of activities or that the system exhibits to necessary behaviour to complete and fulfil a
property). These more “end-user” properties are considered related to policy verification and
validation. Preparation for property checking using such concepts is discussed in the next

section of this chapter.
6.2 Preparation for Analysis

Whilst the model synthesised from the MSC design of a web service composition (illustrated
in chapter 3) is focused on service interactions, the implementation may also include
additional representation in the form of conditions and constraints (also known as /inks in
BPEL4WS). The naming scheme of the MSC message interactions is also likely to be
differing to that of the implementation specification naming standards for interaction
activities. It is necessary to abstract these additional representations away from the
implementation by hiding or mapping them in the model composition. The common
elements of the models produced for both the design and implementation of web service
compositions are the interaction activities. In essence, our preparation focuses on
abstraction, applying a concise labelling scheme to the implementation specification, hiding
implementation specific activities which are not based upon direct interaction messages and
identifying a mapping between activities specified in the implementation and the design.

These collectively fall under some common abstraction preparation activities.
6.2.1 Types of Preparation Activities

The techniques to apply for this abstraction against our earlier models is categorised under
the area of abstraction with reference to model checking. Abstraction is used to reduce the
complexity of a model by including only the parts of the system necessary for the issues
being investigated (Frantz 1995). Engineers and scientists routinely use abstraction in
problem solving. Amongst the abstraction techniques used, the following are prominent in
these works. Variable elimination removes parts of a system that are not relevant to the
properties and behaviour to be demonstrated or proven (Heitmeyer, Kirby et al. 1998;
Bharadwaj and Heitmeyer 1999). Irrelevant variables can be identified by looking at
dependencies and then removed. Enumeration is a technique that represents the range of the
values of a continuous variable as a set of abstracted terms. The general approach is to

partition the range of the variable into a set of subparts. Reduction is a technique that

122 Chapter 6. Analysis for the Service-Oriented Model

decreases the size of individual parts of a system while preserving relevant characteristics
needed to verify the behaviour of the system. The reduction choices are made based upon
what behaviour is to be investigated; this is the modelling perspective. Performing
abstraction by using non-determinism involves allowing arbitrary choices at decision or
transition points in a model. In this technique, the details in the logic used to make a choice
among alternatives are ignored. Grouping is an explicit many-to-one mapping of variables
or entities into a single descriptor. The issues the model is being used to explore as described
in section 6.1 guides the grouping. The goal of this technique is to group entities into a
smaller set or to regroup entities to facilitate modelling and analysis. Decomposition is a
technique for systematically partitioning a system into structural or functional components.
While this approach is not traditionally considered an abstraction technique, it is effective in
helping to make decisions about what is needed in a model and what is not and in

understanding individual components of a system and their interrelationships.
6.2.2 Preparation for Composition Abstraction and Mappings

Our approach to modelling has at its core; synthesis, mapping and abstraction. We describe
the model abstraction steps for web service compositions as consisting of a series of tasks
given input from the synthesis of initial design and implementation models and
specifications and semantics of the processes modeled. The composition model preparation

is illustrated in Figure 6-2.

validation results

- validation traces |
Afesig” Understanding
o -
w& Gt " Validation
Specifications

Analysis and
Abstraction

Model Generation

And Semantics

Verificas.
Mapy2tion models
(\@‘\00 Ping

A

sISayjuAs
suofoe.la}ul

Non-interaction Undefined Ver|f|cat|0n

\ Activities Process Refs /
verification properties |

verification results

Figure 6-2. Behaviour Refinement through Analysis and Abstraction

The process of abstraction is decomposed in to analysis of non-interaction activities in
implementation (reduction), joining actions between design and implementation through
specification semantics (grouping) and linking interactions between compositions through

service interface models (further mapping).

Chapter 6. Analysis for the Service-Oriented Model 123

The output of the abstraction steps are enhanced models including mapping information that
can be used for joining composition process models, reducing the activities which are
considered in the behaviour analysis and verifying models of design against implementation
models. The inputs to behaviour abstraction are the models from synthesis of a design and
models from the translation of implementation discussed in the previous chapter. In addition
to these models, the composition standards specifications and design model semantics are
passed on through to assist in analysis of the elaboration techniques discussed later in this
chapter. The service composition standards are formed from those used in the BPEL4WS
specification - providing syntactic standards and suggesting semantics of how BPEL4WS
processes are defined, implemented and formed and provide information on those activities
which are candidates for reduction. The WSDL specification also provides semantics of
service binding and linking with BPEL4WS partner interface extensions (as described in
Chapter 5). We now discuss the steps in this abstraction within our approach, by firstly
considering the refinement of translated models with reference to the semantic information

from the specifications.
6.2.3 Sample Scenario for Verification and Validation

In this chapter we refer to a simple yet illustrative composition example, being a simple
service which receives a message from a client to log a message by way of an audit provider.
The audit is an additional service which is invoked from an echo service provider. The

initial requirements for this composition example are given in Figure 6-4.

The Echo-Audit composition is carried out by three partners. The Echo client requests
a message to the Echo service provider. In turn, the request is processed and an Audit
Service is requested by the Echo service provider to record the message. The Audit
service logs the message and returns a status to the Echo service provider. The Echo
service provider acknowledges the Audit request. This can occur before the Audit
Service returns the actual Audit status. The Echo client can continue with other

actions once the reply is given from the Echo service provider.

Figure 6-3 Example scenario of activities in a Message Auditing Service Composition
To consider how the design and implementation models generated through the modelling as

described in chapters 3, 4 and 5.would be analysed for the example scenario given, we begin

124 Chapter 6. Analysis for the Service-Oriented Model

by considering what the models exhibit that is not required in the analysis, such that we have

a refined model.
6.3 Refining Composition Behaviour Models

6.3.1 Reduction of Implementation Specific Activities

The BPEL4WS specification includes a subset of a traditional programming language,
having structured and variable statements to define conditional process flow. Whilst some
activities can be treated as primitive processing directives (such as assignments between
variables in the process), they cannot be removed completely from the implementation
process model as a different interaction model would be produced (e.g. when the next path of
a variable expression is evaluated). This part of the preparation for verification specifies
which activities can be abstracted to be verified in the BPEL4WS models, for the analysis of
process interactions. These are identified as transitions in the BPEL4WS that are concerned
with assignments, switch conditions, end actions and initiators. This reduction does not
change the behaviour of the model, but hides the activities from the set used in model
analysis. The alphabet of the model produced from the BPEL4WS translation will include
assignments, switch statements and other conditional processing which is unlikely to be
specified in a design. A sample alphabet of a BPEL4WS model produced prior to

abstraction is illustrated in Figure 6-4.

Process:
echostring echoslt echo

Alphabet:
{invoke_audit_echo,invoke audit echo_reply,
invoke_echoprovider echo,invoke echoprovider echo_ reply,
receive caller echo,reply caller echo,
assign.client.message,assign.audit.message,

assign.audit.result, assign.client.result}

Figure 6-4. Composition Implementation Alphabet before Reduction

Notice that the alphabet includes activities starting with the invoke, receive, reply and assign
constructs. In addition to the re-labelling operator (used in Chapter 5), the FSP language
includes a hiding operator to conceal (and “reduce”) a set of activities in a specified model so

that they are not witnessed a process trace. To specify this in FSP, the \ operator is used.

Chapter 6. Analysis for the Service-Oriented Model 125

The hiding for the Echo Audit example is given as follows to illustrate abstracting the

assignment constructs.

/* FSP code for hiding non-observable activities in BPEL4WS composition
model */
\ {assign.client.message,assign.audit.message,

assign.audit.result, assign.client.result}.

6.3.2 Grouping Design and Implementation Activities between Models

The models produced as part of the design specification and BPEL4WS implementations
may have different process alphabets. An alphabet in terms of a finite state machine is the
string of symbols that are read by a machine. In machine state transition, the next state is
determined using the current state and the symbol next in the alphabet (or the empty string).
When the machine has finished reading, it is said to be in an accepting state, otherwise it is
said to reject the string. Clearly, where activities are thought equivalent in the alphabet sets,
these must match between design and implementation. The designer’s choice of labelling
interactions may have different forms of expression to describe each of the required activities
as part of a service process composition requirement specification. In a similar way to
mapping activities for interaction port connectors, as described in chapter 5, we are required
to provide a mapping (or “bridge”) between the activity alphabets compiled in the translation
from the BPEL4WS source implementation to the message sequence chart model produced
as part of the design composition steps. The mapping can be achieved by re-using the notion
of re-labelling. FSP supports relational re-labelling. The relation operator applies a relation
to a process, which can result in replacing many labels with a single label and replacing one
label with multiple labels. The re-labelling relation is defined by a set of pairs. Each pair
takes the form newlabel/oldlabel. Sets of labels and the replication construct permit the
concise definition of the re-labelling relation. Re-labelling occurs before a parallel
composition of processes — therefore before we combine the implementation with design

processes (this is discussed in section 6.4.1).

An example of re-labelling activity labels from the synthesis of the MSC specifications and
translation of BPEL4WS to FSP is given in Table 6-1. This example shows how the receive,

invoke and reply activities contained within a partner process are mapped to the alphabet of

126 Chapter 6. Analysis for the Service-Oriented Model

activities defined in a service composition design. The result is a model that both MSC and

BPEL4WS reflect the same alphabet.

Table 6-1 Mapping Activities as part of model abstraction

MSC BPEL4WS FSP Action Source Code for FSP Mapping

Action

call echo receive caller echoprovider echo | /{call echo/

call_audit invoke echoprovider audit echo | receive_caller_echoprovider_echo, call_audit/
reply audit reply audit_echoprovider echo invoke_echoprovider_audit_echo,

reply_echo reply_echoprovider caller_echo reply audit/reply audit_echoprovider echo,

reply_echo/reply echoprovider caller echo }.

The tasks of abstracting implementation specific activities, labelling appropriately in service
interaction activities, hiding implementation specific activities and mapping between
implementation and design composition models provides a typical set of characteristics in
abstracting models for model verification and validation (Gluch, Cormella-Dorda et al. 2001;

Engels, Kuster et al. 2003).
6.3.3 Building an Architecture Model for Analysis

A final preparation activity to perform analysis for verification and validation requires that
these models are composed together to produce a model which represents a minimal,
deterministic representation (Erdogmus 1997). A minimal model means that a trace in the
original process leads to an END state if and only if the trace leads to an END state in a
determinised process. The step combines the original synthesis of the composition design
MSCs, the translation from BPEL4WS to FSP and the abstraction mappings described
previously. An architecture model is produced by composing these models and mappings
together. The models are tagged prior to compilation so that the FSP compiler performs the
necessary abstractions. Figure 6-5 illustrates an example of FSP code for composing an
architecture model for composition analysis. Note that the Client, Provider and Audit
BPEL4WS architecture models have previously been translated and mapped with port
connectors to produce the “BPEL ArchitectureModel” process. The FSP code here
composes the architecture models of MSC and BPEL4WS, with additional abstraction (a
subset of the MSC and BPEL4WS activity mappings).

Chapter 6. Analysis for the Service-Oriented Model 127

/* FSP code for architecture models of MSC and BPEL4WS compositions, specifying
mapping between models */
|IMSC_ArchitectureModel = (Client || Provider || Audit).
|| BPEL_ArchitectureModel = BPELModel /
{invoke.echo.provider/invoke client echo}.

||ArchitectureModel = (MSC_ArchitectureModel || BPEL_ArchitectureModel).

Figure 6-5 FSP code for Refined Composition Architecture Model

6.4 Analysis of Composition Behaviour Models

In this section we describe the verification part of the approach, which considers analysing
the architecture models of the compositions produced in section 6.3, and specifying
properties of interest to provide greater assurance that compositions hold the required
behaviour. The essence of the tasks performed here is to give greater assurance of
compositions correctness, through equivalence checking of implementation and design
models (termed trace equivalence). The behaviour model abstraction tasks that have been
discussed in previous sections of this chapter, illustrate how we deduce what is not required
to be “observed” or “witnessed” in the trace equivalence verification — i.e. we specified parts
that differed between design and implementation, and thus reduced the set of observable
activities from the combined model. The result of which is used in model checking (in order
to prove properties of the compositions) consisting of; /iveness (paths contain positive
transitions), safety (paths do not contain negative transitions), and specific compatibility
reasoning in the implementation models. For example, that two partnered processes have
sufficient /iveness that the interfaces between the processes are fulfilled. The following
inputs are required to support the verification process, and form the inputs to this step in the
approach. Firstly, the original implementation and design models accompanied by the
mappings through interaction analysis, and mapping through abstraction, are required as the
model input to verification. Secondly, a set of analysis properties to check are required as
pre-requisites to checking the models. These are discussed in the following sections as to the
format and nature of these properties. We consider verification in terms of trace equivalence
(checking the implementations against specification models), interface compatibility —
ensuring that interactions following the web service conversation standards and that
interaction activities are suitably placed in processes to provide progress of a process, and

thirdly a mechanism to check general properties in terms of both safety and progress. The

128 Chapter 6. Analysis for the Service-Oriented Model

output from this verification is a set of trace results which can be used to determine the cause
of why any property violations occur, or indeed if a successful result is obtained. The steps

described here are illustrated in Figure 6-6.

validation traces

Validation /

models

/

Trace
Equivalence

Verification
results

—

Interface
Compatibility

- Implementation
mappings Models

| Checking

saoel] pue
uone|dwo) [epo

>

General
Progress

Verification

G

verification properties

Figure 6-6 Approach for Verification Analysis of Composition Models

6.4.1 Composition Design and Implementation Equivalence

The primary role of verification in our approach is to assist in checking whether the
implementation of web service composition requirements and the related designs are
equivalent. Equivalence verification has been reported in various themes. Amongst these
are strong and week equivalence (Milner 1989), and traces and failure-divergence
equivalence (Hoare 1985) are commonly referenced. In the context of this thesis we
leverage trace equivalence to support our approach upholding the requirement that a
composition that is tested equivalent provides af least the necessary behaviour to fulfil the
test specification. In summary, the main property that will be considered in trace
equivalence 1s that the BPEL4WS implementation exhibits the necessary behaviour to fulfil
the requirements that are described in the MSC design.

The essence of this verification is to prove that a property exists in the composition
modelling of combined implementation and design models. In section 6.3.3 we built a
combined architecture model of the implementation and design models, specifying additional
abstraction rules based upon our understanding of the composition environment and
implementation semantics. This is used as source for the trace equivalence verification.
Furthermore, any additional behaviour can be fed back to the implementer as counter
examples. It is also the case that by definition of trace equivalence, the MSC design can be

checked against that of the implementation. However, this may appear less useful in the

Chapter 6. Analysis for the Service-Oriented Model 129

design approach of web service compositions, but essentially this also provides a technique
for future re-engineering and checking against existing compositions where the
implementation is the initial requirements in focus. In summary, the equivalence verification
may also be used to check that a MSC design specification exhibits the behaviour of a
BPEL4WS implementation. The requirements to trace equivalence verification of web
services composition design and implementations are listed in Table 6-2. We continue to use
the Echo-Audit web service composition example (specified in section 6.1) for ease of
following the approach steps, and to illustrate how this verification is undertaken with the
composition models. We begin with the synthesized model of the MSC design. From the
Echo-Audit composition example, we build a scenario which provides a sample sequence of
interactions between client and the services (Provider and Audit). In this scenario we
describe a call to the provider (call echo) and it’s reply back to the client (reply echo), and a
call to the audit service (call_audit) and it’s reply back to the provider service. Given the
initial requirements specification back in Figure 6-3, the designer would construct a series of
bMSC to specify required design components and interactions. The resulting bMSCs that

would be produced by this exercise would be similar to those illustrated in Figure 6-7.

Table 6-2 Trace Equivalence Verification Requirements

Approach Item | Product Role in verification

Design Message Sequence Charts Input model for requirements of service

Specifications composition

Implementations BPEL4WS processes Input model for service implementation

Abstractions BPEL4WS process Refine BPEL4WS model for verification if
refinements process contains non-interaction elements

Mappings Mapping activities Map activities between input models

Properties Equivalence property Verification properties

130

Chapter 6. Analysis for the Service-Oriented Model

«—clients» <«———services——

«clients—» «—services——

Provider

Audi

Client Provider

+«clients» <+«———services———

call echo

\4

a) Client request scenario 1

: call audit
|
]

>

b) Provider request audit scenario

«clients» «———services——

Client

Provider

Audit

Client Provider Audit

reply echo

reply audit

¢) Audit reply scenario 1

reply audit

reply echo

|
|
|
|
|
I
«
|
|
|
|
|
[

d) Audit reply scenario 2

Figure 6-7 bMSCs for scenarios in the echo-audit service composition

A corresponding hMSC (Figure 6-8) would also be specified to sequence the scenarios

constructed earlier. In this example, the initial scenario is sequenced as 1) client request (to

provider), 2) audit request (from provider to audit service), either the audit service replies to

provider and then provider to client, or alternatively the provider replies to client and audit to

provider.

ClientRequest

AuditRequest

Figure 6-8 hMSC of echo-audit service composition

Audit-Sc1

End

Audit-Sc1

We introduce the notion of choice here to consider alternative paths of execution in the

composition example. A labeled transition system is then generated from this model, using

Chapter 6. Analysis for the Service-Oriented Model 131

the technique described in section 3.4. The model represents the finite state machine of the
design built as messages between three components (that of requester, provider and audit).

A graphical view of the LTS for this model is illustrated in Figure 6-9.

reply_andit

Figure 6-9 LTS model for MSC scenario Echo-Audit Composition

Each component in the MSC specification represents a service in the web service
composition. Notice however, that the synthesis for this MSC model includes an endAction
transition. The endAction transition provides a synchronized way of ensuring that the
process terminates between components in the bMSC and a sequence of processes in the
hMSC. We are now required to implement such a service architecture, however, for this
example we illustrate building this using just one service composition and its interactions. A
good example for verification is the provider service (effectively a coordinator service
between client and audit). Note that the provider is a good example as it includes receiving,
invoking and replying to services, all the types we can model in the MSC design
specification. The structure of the BPEL4WS process used to implement this service is

given in Figure 6-10.
variahle '—echu_\tar
-variables}-{
variahle '—audit_var
pannerl—cliem
-partnersH
pannerl—Audit
receie '—call_echo
invake '—call_audit
—seguUence
receive '—replv_audit
replyl—reply_echo

Figure 6-10 BPEL4WS Process Structure for
Provider Service in Echo-Audit Composition

pl’DCESS|‘

132 Chapter 6. Analysis for the Service-Oriented Model

A labeled transition system is then generated from this BPEL code, using the technique
described in Chapter 4. The full source for this service example is given in the appendix of
the thesis. The model represents the finite state machine of the BPEL process as activities

between the client and audit services. A graphical view of this model is illustrated in Figure

6-11.

recerve_clent provider echo irwoke provider audit log recenve_audit prosdder log reply client proeider echo

@ @)) ®

Figure 6-11 LTS model for BPEL4WS Provider Service Activities in Echo-Audit Composition

A brief comparison of the models shows that there are clearly differences between the
possible paths in the MSC over that defined by the BPEL4WS implementation. The main
difference is clearly that in the specification, the reply to a client (reply echo) and the reply
from the audit service (reply_audit) could happen concurrently. In other words, the design
specifies that either execution path of replies could occur. Also notice that the activities are
labeled differently (in this case, we have singled out the provider service and the viewpoint
has changed from an invoke activity by the client, to a receive activity by the provider). This
is where we use the mapping discussed in 6.3.2. The mappings group the activities in these
models and assign the semantics of implementation from that of the design and requirements.
The mappings (listed in Table 6-3), are applied to the LTS model of the BPEL4WS process.
The resulting model has the same structure as the original BPEL4WS process, but with the
naming scheme applied from the MSC designs. This model can then be used for trace

equivalence verification. This mapped model is illustrated in Figure 6-12.

Table 6-3 Mapping from MSC design to BPEL4WS
activities for Echo-Audit Composition Example

MSC Action BPEL4WS Action

call _echo receive client provider echo
call audit invoke provider audit log
reply audit reply audit provider log
reply echo reply provider client echo

Chapter 6. Analysis for the Service-Oriented Model 133

call echo call_andit reply_andit reply_echo

O @) ®) ®

Figure 6-12 LTS model for BPEL4WS Provider Service mapped to MSC activities

Although the task of comparing models is easier in simple processes, more complex
processes require an in-depth and time-consuming comparison. Model checking can then be
performed to formally test that a BPEL4WS implementation provides the necessary activities
to meet the MSC specification, through a model trace. Additionally, the aim is to provide as
much a mechanical verification as possible, so that observation is not required by human eye
in larger more complex processes. Although we have built models of both MSC and
BPEL4WS activities, we are interested in the minimal trace equivalence in both these
models. To specify this in FSP, we use the deferministic operation on the given MSC model
and include abstracting the endAction transition as it is not included in the BPEL4WS model.
A complete analysis model is created by combining these models together to form an
ArchitectureModel, as discussed in section 6.3.3. We are also required to specify the
property we are seeking to trace in the software model analysis. The properties of interest
for verification are specified in FSP using the property function of the FSP language. The
property of verification in this case is on equivalence checking of the BPEL4WS
implementation against that of the MSC specification (our main property stated earlier). The
property function creates a process by assignment of another process. For equivalence, we
assign the property “BIS MSCBPEL” as the deterministic MSC model giving a complete

representation as the requirement for our verification check as the MSC specification.

The final activity in constructing the model for equivalence is to produce a parallel
composition of the property model and the BPEL4WS model. This is achieved using the
standard parallel composition operator of FSP. An example FSP code for checking trace
equivalence of a MSC LTS model and BPEL4WS LTS model is given in Figure 6-13. The
result of performing a trace operation on this composition is that of checking each and every
transition of the MSC against that of the BPEL model and reporting on any violations where
one has a transition that the other does not exhibit. ~For example a sample trace from
checking the equivalence of the Echo Audit service and MSC design given previously is

listed in Figure 6-14.

134 Chapter 6. Analysis for the Service-Oriented Model

/* FSP code for equivalence checking of MSC and BPEL4WS compositions, with the
property that BPEL4WS implementation should uphold activities of MSC design */
MSC_ArchitectureModel = MSC composition model FSP
BPEL_ArchitectureModel = BPEL composition model FSP + mappings...
deterministic ||[DetMSC = MSC_ArchitectureModel \ equ.
property ||Bis_ MSCBPEL = DetMSC.
||CheckBPEL = (Bis_ MSCBPEL || BPEL_ArchitectureModel).

Figure 6-13 FSP code for equivalence verification of BPEL4WS against MSC models

/* Trace run example from Equivalence Verification of MSC over BPEL4WS */

Trace to property violation in

Bis MSCBPEL: client provider aLcit

receive_client_provider_echo

rECEiVE_C"EI"ItJJ[;\ vider_echo
+

invoke provider_audit_echo ,) ,

- - - |n~.-'u:uke;uru:n-'|der_h udit_echao
]
R reply_audit_proviger_echo
[+

reply_audit_provider_echo

Figure 6-14 Trace run example of trace equivalence of MSC and BPEL4WS models

The reason for this property violation is that the reply echo activity is permitted in the
specification before the reply audit activity but the BPEL4WS process model does not allow
this (in equivalent mapped actions). Studying the BPEL4WS source for this example, and
highlighting the implementer’s decision to only allow a sequence of activities for the
reply echo and reply audit is the source of this problem. The implementer can correct this
issue by adding a concurrent activity execution statement (the flow element in the BPEL4WS
source) or changing the existing sequential execution statement to concurrent. Similarly, a
check of the specification for the composition against that of the implementation can be
undertaken. We recode the FSP to have as source the BPEL4WS model as the property, and
the MSC as the model to check. The modified code is given in Figure 6-15.

/* FSP code for equivalence checking of MSC and BPEL4WS compositions, with the
property that MSC design should uphold activities of BPEL4WS implementation */
deterministic ||[DetBPEL = BPEL_ArchitectureModel \ {endAction}.
property ||Bis BPELMSC = DetBPEL.
||CheckBPEL = (Bis BPELMSC || MSC_ArchitectureModel).

Figure 6-15 FSP code for equivalence verification of BPEL4WS against MSC models

Chapter 6. Analysis for the Service-Oriented Model 135

We provide more detailed examples of equivalence verification of web service compositions
as a result of a case study in Chapter 7. With the results gathered in equivalence checking,
and primarily checking that the implementation fulfils the design specification provided
against client requirements, the implementers can be assured that the web service
composition process (using a standard such as BPEL4WS) will exhibit the behaviour
necessary to fulfil these requirements. By way of behaviour equivalence verification it is not
the purpose however, to guarantee that the messages passed between services is suitable to
carry out the operations specified. This requires data analysis and possibly a run-time
verification for checking its suitability (e.g. as expressions are evaluated within a process).
Equivalence verification in the context of web service compositions ultimately allows the
designer and implementer to compare interactions between models produced from their
works. In an increasingly distributed environment and as design and implementation
professions are frequently separated, the use of this activity provides early results in the

success of executing such compositions.
6.4.2 Compatibility of Service Composition Interactions

As we discussed in Chapters 3 and 5, compatibility verification is an important aspect of
behaviour requirements between different clients of compositions. Clients will likely
anticipate different behaviour depending on their individual requests and therefore the
composition must be tested against various scenarios to reflect these different sequences of
activities. There is also an assumption that a web service composition will work in any
process environment (not just the original development domain). A greater level of
assurance in compatibility can be given if interacting services are checked whether a
composition exhibits the correct behaviour for its own use. Web Service compositions can
also be seen as the implementation layer of a multi-stakeholder distributed system (MSDS)
(Hall 2003). An MSDS is defined as; “a distributed system in which subsets of the nodes are
designed, owned, or operated by distinct stakeholders. The nodes of the system may,
therefore, be designed or operated in ignorance of one another, or with different, possibly
conflicting goals”. The focus is on interaction with multiple parties and the behaviour could
be somewhat ad-hoc depending on the requirements of the partner services. However, three
basic levels of compatibility for component compositions have been previously reported in
(Larrson and Crnkovic 1999). These are defined as interface, behaviour and input-output
(data) compatibility. Whilst input-output data compatibility is of interest, it is not the main

focus of this verification work. We would however, expect a related growth of data analysis

136 Chapter 6. Analysis for the Service-Oriented Model

work to monitor and analyse service messages. We now apply the first two of the concepts
discussed for compatibility, and describe interface compatibility specifically for web service
compositions as; the activity of correlating invocations against receiving and message
replies between partner processes, such that invoke, receive and reply activities are

synchronised.

In our compatibility checking, the focus is currently only on the implementations and does
not introduce another specification standard for compatibility in choreography (although this
may be added at a later stage). Given a series of service implementations (in the form of
BPEL4WS processes) the approach elaborates on the interaction mappings between
processes and further inputs from port connectors between interaction activities in these

processes. The requirements to compatibility verification of web services interactions are

listed in Table 6-4:

Table 6-4 Compatibility Verification Requirements

Approach Item | Product Role in verification

Implementations BPEL4WS processes and partner | Input model for service implementations

interface definitions (WSDLs) and interface activities
Abstraction BPEL4WS process refinements Refine BPEL4WS model for verification
Interactions Service interaction models Translate BPEL4WS into a model

representation (FSP) and assign related

interface activities from partners (WSDL)

Mappings Mapping activities Map activities between input models
Properties Safety properties for properties to analyze those compatibility
compatibility checking requirements are held for conversations

where specified interactions exist

We expand on our example from the trace equivalence verification by providing all three
processes in BPEL4WS. The structure of these processes takes the form as illustrated in
Figure 6-16. The process for performing compatibility verification focuses on the
interactions between processes, rather than comparing activities between design and
implementation (although this can be performed as a secondary verification step). The
essence of the verification relies on our choreography modelling, as discussed in Chapter 5.
For each BPEL4WS process there is a corresponding service interface defined. This is in the

format of a WSDL document.

Chapter 6. Analysis for the Service-Oriented Model 137

‘fafiab|9|_rEQUest variahle '—echu_\tar Variablel—request
variablesH —variables}-{ variables}-{
wariable—reply wariahle '—audit_\tar —I"a”ab'e reply

: roCess artners artner—provider
paﬂnersl—par‘[nerl—pmwder par‘[nerl—client B g I—p I—p
e o— Fparners recei\reI—receive_call_audit
Sequencel—lnvo e'—ca _echo mDCBSS|_ par‘merl—Audit sequence

process

reply—repty_audit
receive'—call_echo
—Sequence M,—call_audit
re_pl\,r'—repl\,r_echn
Client Service Process Provider Service Process Audit Service Process

Figure 6-16 BPEL4WS Process Structures for Services in Echo-Audit Composition Example

The set of BPEL4WS processes and WSDL interface definitions are translated and
abstracted, and the algorithm for building port connectors (chapter 5 section 5.2.4) is
performed for each invocation or reply in a given process. Thus, an iterative modelling
exercise is undertaken starting with the first process input, and finishing with the last in the
set. A sample port connector for the modelling of interactions between client and provider

services in our example is listed in Figure 6-17.

/* FSP code Client-Provider port connector model and mappings */
CLIENT ECHO PORT REPLY =

(reply provider client echo->

output provider client echo->CLIENT ECHO PORT REPLY).
CLIENT ECHO PORT INVOKE =

(invoke client provider echo->

receive client provider echo->CLIENT ECHO PORT INVOKE) .
| ICLIENT ECHO PORT = (CLIENT ECHO PORT INVOKE || CLIENT ECHO PORT REPLY) .
| ICLIENT PROVIDER PORT MAPPING = (CLIENT ECHO PORT)
/{reply provider client echo/reply,output provider client echo/input output, invoke

client provider echo/invoke,receive client provider echo/receive}.

Figure 6-17 FSP code for Client-Provider port connector model

For the client, provider and audit processes, the port connector interaction models (between
client and provider, and provider and audit) are listed in Figure 6-18. Compatibility
verification is the trace result of a parallel composition of input BPEL4WS models and the
port connector models. We perform a safety deadlock check on this new composition
architecture model to ensure that each of the interaction activities are resolved in the port

connector models. The FSP code for this parallel composition model is listed in Figure 6-19.

138 Chapter 6. Analysis for the Service-Oriented Model

call_echa call_audit

reply_echo call echa irevoke_echo_reply reply andit call andit mrvoke_audit_reply

recerve_call echa recelve_call_audit

Client-Provider Port Connector Provider-Audit Port Connector

Figure 6-18 Port Connectors for Services in Echo-Audit Composition Example

/* FSP code for parallel composition of BPEL4WS service models and ports */
||CompositionModel =
(CLIENT _BPELModel || CLIENT PROVIDER PORT MAPPING ||
PROVIDER BPELModel || PROVIDER AUDIT PORT MAPPING ||
AUDIT BPELModel).

Figure 6-19 FSP code for parallel composition of BPEL4WS services and port connectors

Again, it is possible to witness errors in building compositions correctly for partnered
processes only if the process is of an applicable size to an observer’s comprehension. The
model checking facilities of deadlock analysis provides us with a suitable compatibility
checking mechanism to check larger process compositions. If, for example, an invoke
activity in one service process does not have a suitable reply in a partnered service process, a

deadlock trace may give the result listed in Figure 6-20.

/* Trace run example from compatibility verification of BPEL4WS interactions */

Trace to DEADLOCK:

.) . Client provider At [[a]s]
invoke client provider_echo

invoke_provider_audit_log irvoke_cliert_profider_echo
reply_provider_client_echo 1) e bt |

invoke audit log_echo T e
output_audit_provider_echo [, reply_provider_client_echo

[+
invnke_aud'rt_lu:ugh Echo
+

output_audit_prodider_echo

1l
[+

Figure 6-20 Deadlock example of compatibility verification BPEL4WS and partnered services

The output _audit provider echo activity built in the port connector between provider and

audit services has detected that a path to reply to the provider has not been modelled (and as

Chapter 6. Analysis for the Service-Oriented Model 139

such terminates before the provider reply is received). This indicates that a reply activity has
not been given in the audit service, or was omitted in error. The BPEL4WS engineer can
then revisit the BPEL4WS implementations and adjust accordingly. Repeat tests may
exhibit further interactions that violate the standards of web service conversations or indeed,

assure that the composition interactions are compatible.

In summary, compatibility verification provides a BPEL4WS engineer and any partnered
BPEL4WS engineers to check the suitability of service conversations in composition
implementations. This is important in two ways. The first is that a process may be required
to behave in different ways for differing partner interactions, and that other service processes
in the same domain have to be capable of interacting appropriately to fulfil there own
progress and liveness. Secondly, in system decomposition (where a business or other
process is split into several services) the engineers can check that responsibility to carry out a
task has been split safely between services and that the complete goal is fulfilled by a
complete trace model. Generally however, we expect this technique to be used with more
emphasis on the first case, providing engineers with a safety check of collaborating services
with partnered services (where the engineers may exist in different problem domains).
Compatibility verification is undertaken by the input of a series of service compositions,
service interfaces and through the generation of service port connectors. A safety check of
deadlock analysis results in success if no deadlock (or a trace to deadlock) is detected as a

violation in compatibility.
6.4.3 Other Properties

Our third set of verification checking is more general than the previous two. By specifying
particular properties of interest, engineers can check whether a web service composition can
reach a particular state in terms of its obligations in more general cases (over that of
individual scenarios used in section 6.4.1). This assists in building reusable SOM
architectures, for which a policy states obligations in which web service choreography may
be undertaken. We describe the model checking techniques for general properties of the

composition models under two different types in our approach, categorised as;

e Safety — providing assurance that the composition is checked for partial correctness of
transitions for a given property within the model, e.g. that a partner service

invocation is always logged following an failure

140 Chapter 6. Analysis for the Service-Oriented Model

e Progress — providing assurance against starvation of progress in the composition,
such that, whatever state the composition is in, an activity will always be executed

e.g. that a reply is always sent back to the original requester.

For both property types, we can reuse the model building steps described for trace
equivalence (Table 6-2 - excluding the design specification requirement) and compatibility
checking (Table 6-4). The building step requirements for including one or many processes is
dependent on the source in question, or in other words, whether it is that the property must
be tested on one composition or over a choreographed domain of processes. In this section
we simplify the examples by concentrating on one composition to illustrate how each of the

property checks are carried out in analysis.

In safety analysis of the compositions, we are seeking to assist the engineer to specify
properties (or activities in the composition) that should be upheld in the composition. For
example, the engineer may want to revisit the requirements for the service to be provided and
note a series of conditional processing dependent on a sequence of activities having been
carried out. In the Echo-Audit example, we can give a simple example that the Provider
process must request the audit log of each request made to it (the LTS model for the provider
service process was illustrated in Figure 6-11). To model check this and perform a safety
analysis we can use the FSP syntax of property to describe the safety property of interest in
our model. A safety property defines a deterministic process that asserts that any trace
including actions in the alphabet of the process P, is accepted by P. The property syntax for

the audit after request requirement is listed in Figure 6-21.

/* FSP code for safety property that a request to the provider will be logged by request
to the audit service */
property REQUESTAUDITCHECK =
(receive_client_invoke_echo->invoke_ audit_echo->END).
||PROVIDER_BPELATrchitectureModel =
(PROVIDER_BPELModel || REQUESTAUDITCHECK).

Figure 6-21 FSP code for safety property that a request to log a client is made

Compiling the PROVIDER BPELArchitectureModel in this model, composed with the
safety property process provides the expected reassurance of no violation to our property, as

the model built earlier clearly provides this activity following receiving a request from a

Chapter 6. Analysis for the Service-Oriented Model 141

client. If however, the engineer was interested in whether a log was made prior to receiving
a client request, then we could reverse the order of the property and rerun the model
compilation. The result of this produces a model which includes the error state (Figure
6-22). Notice how the model reflects that each state is in violation of the property, which
causes an immediate transition to the error state (identified by a state transition of -1). By
iteratively specifying key properties of the requirements and safety checking the
composition, the engineer can be given greater assurance in releasing the composition for

deployment.

irevoke_andit_echo recelve_client irveoke_echo

REQUESTAUDIT

recelve_client irsroke echo
\irm:ukﬂ_audit_echn
-4

{irevoke_audit echo, recene_client irweoke echol

Figure 6-22 LTS model of a violation of a safety property in the Provider Service Composition

It is important to note that safety properties are usually given as those properties required by
the composition, rather than those that are not. In this way, it is a much simpler and shorter
task to perform, as it may be a tedious task to try and consider all the possible undesirable

behaviours of a process rather than those which are easily identified as required.

Progress analysis is similarly specified by activity properties, but the focus is on those
properties which will eventually happen (such as the example given previously, that a reply
will always be given back to a requestor to a service). In FSP, the syntax for defining
progress properties uses the progress keyword. A progress P = {aj,a,...a,} defines a
progress property P which asserts that in an infinite execution of a target system, at least one
of the actions a;,a;....a, will be executed infinitely often. This definition allows us to specify
a range of progress properties, with the condition that at least one must be upheld in a service
composition. By way of example, we use the provider service model to check whether a
reply to client to always given. A progress property for this requirement is listed in Figure

6-23.

142 Chapter 6. Analysis for the Service-Oriented Model

/* FSP code for progress property that a reply is always given to a client */
progress ALWAYSREPLYCLIENT = {reply_provider_client_echo}
PROVIDER_ BPELArchitectureModel =

(PROVIDER_BPELModel || REQUESTAUDITCHECK).

Figure 6-23 FSP code for progress property that a reply to a client is always made

A repeat of compiling the PROVIDER BPELArchitectureModel in this model, composed
with the progress property specified again provides the expected reassurance of no violation
to our property, as the model built earlier provides this activity as a terminating state. If
however the process did not include a reply to the client, then the result of compilation

produces a model which includes a set of terminal actions (Figure 6-24).

/* FSP code for progress property that a reply is always given to a client *

Progress violation:

ALWAYSREPLYCLIENT
Trace to terminal set of states:
client provider audit
receive client_provider_echo
invoke provider audit log receive_u:lienLpru:uvider_eu:hu:u
— —_ - +

. . . invake_providdr _audit_log
Cycle in terminal set: cl;,

. . . output_audit_prosgider_log
Actions in terminal set:)

{output_audit_provider log}

Figure 6-24 FSP code for equivalence verification of BPEL4WS against MSC models

The trace of the provider composition implemented in error, shows that there is no reply
activity transition prior to the terminal state in the model, and that the terminating state of
receiving a reply from the audit service is the last activity in the process. Clearly, an
engineer can use this information to investigate the process and in this case, add an activity
to reply to the client before the process ends. The task here may involve iterations of
checking the composition, obtaining results of progress checks and adjusting the

composition’s activities, until the checks yield satisfactory results.

Chapter 6. Analysis for the Service-Oriented Model 143

6.5 Validation Analysis of Behaviour Models

In the previous sections of this chapter we have described how to fulfil the requirements of
the verification aspect of our approach using model checking techniques for equivalence
implementations against design, safety and progress properties being upheld within the
model and the specification and checking of general action activities using policy
declarations. The other feature that facilitates a rigorous approach to engineering web
service compositions is the provision and undertaking of validation of the composition for
both designer and potentially, also to service clients. In the latter, it is to give assurance that
requirements have been met and for the designers, that they have specified appropriate
activities for the composition to be implemented. Modelling techniques (from boxes-and-
arrows diagrams to logical formalisms) with varying degrees of analytical support are
offered to assist requirements engineers in these tasks. The objective, in these “late-phase”
requirements engineering tasks, is to produce a requirements document to pass on
downstream to the developers, so that the resulting system would be adequately specified
and constrained, often in a contractual setting (Yu 1997). This is particularly important as
the service composition may be released in to a wider enterprise domain and reused by
potentially a unknown number of clients, where there has been no previous verification with

other compositions that already exist.

In this section we describe how this validation is undertaken using the model created as part
of verification (but with the purpose of validation) and how features of simulation and
animation can assist the designer in the requirements engineering issues discussed
previously. The validation approach consists of taking as input the same inputs that were
used in verification analysis, but with the exception that a set of validation properties are
known by the end-user who is undertaking the validation, rather than a machine processable
set used in verification. Therefore the inputs are the design models, implementation models
and mappings. The process of validation is split between a focus of animation, simulation or
an interactive trace. The output of the validation process is a set of results related to the
validation properties used (for example, a general property would be that the behaviour
defined in the models provides sufficient behaviour to support the initial requirements

given). The sub-actions of our approach are illustrated in Figure 6-25.

144 Chapter 6. Analysis for the Service-Oriented Model

validation traces

/

Validation

Map,oings

m—' Validation

Results

—>

models Validation

Analysis

- Implementation
mappings Models

Simulation =

JUBWISSaSSY
uonepien

Interactive
Trace

Verification

\

verification properties

Figure 6-25 Approach for Validation Analysis of Composition Models

Other approaches have introduced the notion of validation of web service compositions
against requirements using different source representations, such as in (Pistore, Roveri et al.
2004). The basis of these works is to have a high-level business requirements model. We
believe however, that it is more important to have an easily definable business requirements
model (such as in our Message Sequence Charts) to be able to validate and verify
requirements for web services and their compositions. The basis of generating behaviour

models for validation however is the same compared with these works.
6.5.1 Composition Validation through Animation

Simulation is described in (Balci 1994) as “the process of constructing a model of a system
which contains a problem and conducting experiments with the model (on a computer) for a
specific purpose of experimentation to solve the problem”. In addition simulation software
specifically has been described in (Schumaker 1999) as "a software package that re-creates
or simulates, albeit in a simplified manner, a complex phenomena, environment, or
experience, providing the user with the opportunity for some new level of understanding.”.
These propositions brought together, fulfil simulating compositions through software process
models, and enabling its validation through simulation software. Our aim is to provide a
simulation feature in the approach such that web service compositions can be analysed by
requirement and BPEL4WS engineers for the purpose of validating that the behaviour given
in designs and implementations meets stakeholder requirements. Indeed, requirements
engineers must not only elicit and document requirement scenarios, but also validate that
these are indeed what stakeholders want (Nuseibeh and Easterbrook 2000). The technique of
simulation through animation is an effective validation technique, whereby in its simplest

form, stakeholders can step through sequences of events dictated by a behaviour model

Chapter 6. Analysis for the Service-Oriented Model 145

(Uchitel, Chatley et al. 2004). We begin by illustrating this through animation of the

Echo_Audit composition example used in the verification sections of this chapter.

As we have shown previously, the Echo Audit composition may come in two forms, either
in that of a design or implementation. The assumption here is that if an implementation
composition is used as source for validation, then it has been verified against a design prior
to validation being carried out. Ideally, the requirements would be validated prior to any
implementation being carried out. However, for the purpose of post-implementation
validation, such as future client assessment for use within their own processes, either source
is suitable for validation depending on the needs of the situation in focus. The behaviour
model is a key output of design or implementation synthesis, and is the source model used in
validation animation. Given a composition behaviour model, the client may step through the
sequence of events exposed by this model. An example validation sequence performed using
the Animator feature of the LTSA tool (described in the next chapter) is illustrated in Figure
6-26.

é Animator

call_echo
call_audit

: . . rephy_audit
all echo all aundit Iy andit 1 hio no bt
call ec call_a reply_al reply_ec 2 ction reply_echo I call_echo

—— endAction
OREORMEOREC)

[call_audit
Jd_ 1 _,ILI [rephy_audit

Figure 6-26 A sample validation of a sequence using LTSA Animator function

Here, the user steps through each state of the composition design (from state 0, labelled
call echo in this example, to state E — the end state). Whilst the sample given is just one
sequence, more complex compositions may introduce alternative paths to the end state (such
as the model presented earlier in Figure 6-9). In the earlier loan selection composition
example (introduced in Chapter 3) there are several alternative paths of execution to the end
state of the composition. For example, a “credit check” may result in either a state of check
ok or check failed. The initial assumption is that if a credit check fails, then the entire
request fails. If however, the credit check is ok, then the full sequence of the composition is
carried out. Using animation, the designer can validate that these two possible sequences are

acceptable and fulfil the requirements from path start to path end, in the service composition

146 Chapter 6. Analysis for the Service-Oriented Model

to be provided. A sample validation sequence in the position just prior to the credit check
choice is given in Figure 6-24. Continuing to validate this composition, introduces two paths
as described previously. Either the result can lead to a check fail or a check ok. Sample

animation steps are listed in Figure 6-28 for both paths.

getloanofter 2 endfetion replyloancfferl

check ok request fail getloancffer 1

wguest request_check

® &

check_fail

reply_offer

Figure 6-27 A sample validation of alternative paths using LTSA Animator function

request < request ~ |
reguest_check i request_check i
check_fail [[] endaction check_ok [] endaction
request_fail [] getloanoffer_1 getloanaffer_2 [] wetloanaffer 1
endiction rephbdoanoffer2
END [rephdoanaffer1 reply_offer [] repiloanaffer1
[] getloanoffer_2 ::[[:Aﬂi"“ [] yetloanoffer 2
[] rephdoanoffer2 [] rephdoanaffer2
[T rephy_offer [] rephy_offer
[Jrequest_check [request_check
[] check_fail [] check_fail
[Irequest_fail [request_fail
- [Jrequest [Trequest
W
% 3 [] check_ok % 3 [check_ok
Credit Check Failed path Credit Check OK path

Figure 6-28 The alternative paths available using LTSA Animator function

If we assume the credit check is successful (i.e. that the check ok is the next transition to
occur), then there is a clear issue with these animated traces of the composition. At state 4,
either getloanoffer 1 or getloanoffer 2 activities may take place. This is presented as a

choice to the user, but upon selection of either one of these activities, the composition selects

Chapter 6. Analysis for the Service-Oriented Model 147

that given path and does not enforce that both must eventually complete in order for the
composition to give a selective reply to the user. The composition is lacking in that these
alternative activities must both happen, but not necessarily at the same time. In this case the
designer may revisit the original composition design, and address these issues by adjustment

of the MSC (e.g. checking scenarios and adapting the higher sequence diagram).
6.6 Summary and Discussion

In this chapter we have discussed the verification and validation steps, and how software
process model checking techniques are applied to the web service composition models to
provide trace results back to designers and implementers, and to facilitate the overall
objectives of a service-oriented model and its goals, policies and obligations. We have
shown that through verification, greater assurance can be given on the implementation of a
web service composition before it is deployed in to a distributed environment. This rigorous
approach to verifying and validating compositions prior to deployment is a key objective of
our work, but to assess this we need to examine a case study from industry and evaluate how
effective it is to web service practitioners. In terms of the approach overview discussed in

section 1.2, we have introduced the highlighted parts as illustrated in Figure 6-29.

Requirements

validation results Tool
|

validation traces;»
Designers Construct iti idati
ﬁ onstruc CompqSItIF)n %‘ e CErEE e Validation

Web
Service
Standards

Specmcatlon”
BPEL4WS
models Analysis
Choice

Referenc_e Composition Specificatiori
> Semantics
Verification

sISayluAs
Buiddew

suoloeIBUI
uonoelsge

WS
PELATY

B‘{>\e,ﬂ\e“""“0“
i

Construct Composition
’ Processes

Implementers

verification properties

e‘e‘ |

N
verification results
Verified and
Interfaces Valldated Request
Serwces Web Services
Deployers Clients

Figure 6-29. Elements of the approach discussed in chapter 6.

Chapter 7

Tool Support and Case Study

“I view the problems created by Technology as simply opportunities for new tool making...”

(from Tools Are The Revolution, Kevin Kelly, 2000)

In the previous chapters of this work, we have described an approach for designing,
implementing, modelling and verifying web service compositions with respect to their
behaviour. The undertaking of the approach has until this point, been suggested in a manual
way. In other words, each step has been described as though it would be carried out by hand.
We now present a tool which provides an implementation of this approach and features
functionality to offer an interface for this design, implementation and verification
mechanisms on compositions, in an integrated development environment (IDE). As a base
for evaluating the approach and the tool, we also provide a case study of using the approach

for a real-world industry project.
7.1 Tool Support

The tool requires a composed set of modules to mechanically provide the steps necessary to
implement the approach described in earlier chapters. These modules can be expressed
individually with regards to the design (Message Sequence Charts) models, implementation
(BPEL4WS), specifying model abstraction and mappings, and executing the verification and
validation steps. It is only when they are brought together however, that they ideally assist in
ease of iterative design and implementation process. The integrated tool (Foster 2003b),
which we call LTSA-WS is built upon the Labelled Transition System Analyser (LTSA)

written by Jeff Magee in Java. The LTSA has, since its introduction, been expanded with a

Chapter 7. Tool Support and Case Study 149

plug-in framework to support various modelling design specifications, including work by
Robert Chatley and Sebastian Uchitel on Message Sequence Charts (LTS-MSC) (S.Uchitel,
R.Chately et al. 2003), and also Animation with Web Page Simulation enhancements
(Chatley, Kramer et al. 2003). It is a well known and structured tool to encourage
contributions by further applications. Our LTSA extensions were implemented in two
phases. The first concentrated on functional requirements, building upon the current plug-in
framework of the LTSA tool suite, and interacting with other plug-ins. The second phase
considered broadening the application of the tool by migrating the LTSA-WS plug-in across
to the Eclipse Integrated Development Environment and more specifically, encouraging its
review by peers of the Eclipse community alongside their other BPEL4WS works. The
Eclipse Innovation programme hosts a central research community, awarding those with
ideas and projects to contribute to Eclipse. In addition to the community benefits of
migrating to Eclipse, our work also demonstrates that our tool is flexible to be moved into
different development environments. We now describe the key features of each of these

phases.
7.1.1 Tool Architecture

The LTSA-WS plug-in architecture (Figure 7-1) is built in the commonly known model-

view-controller pattern.

Multi-page Editor
MSC FSP BPEL
Editor View Editor View Editor View
tranlslate view corr{pose view tran‘slate
MSC BPEL
Synthesis LTSA Translator
results Its
Result Views

Compiler |V®¥| LTS Draw |5t LTS
View View Animator

t action

Figure 7-1 LTSA-WS Tool Component Architecture

The architecture of the tool consists of two models. Firstly, the BPEL4AWS XML source
code is used as the model for standard XML editing. The BPEL4WS source is also parsed to

150 Chapter 7. Tool Support and Case Study

provide useful editor functions, such as content outline and syntax highlighting. Parsing is
also performed upon restore or save actions, whereby the translation function is called to
view activities specified in the composition. The BPEL4WS engineer is able to build one or
many web service compositions which aids in integrated enterprise service decomposition.
For each composition selected, the engineer can either translate a single composition (by way
of a mechanical implementation of translation rules described in Chapter 4) or compose
multiple compositions for choreography and translate them in to FSP (as described in
Chapter 5). The translation module is written as an independent module (itself potentially a
web service), which takes as input one or more BPEL4WS implementations and in turn,
traverses the source building a representation model in FSP. Multiple composition
translation includes interaction mapping by using a mechanical implementation of the
algorithm discussed in Chapter 5, to model partner links between services invoke, receive
and reply actions. In addition, the composition design specifications (discussed in Chapter
3) in the form of MSCs can be synthesized to FSP models and included in the composed
model. To enable this, a visual mapping table is available to the engineer to link activities in
design and implementation models (as discussed under abstraction in Chapter 6). Results of
checks provide implementers and designers with useful details such as missing interaction
cycles (e.g. a missing receive or reply action). Checks are undertaken by the main LTSA
function module. An output view summaries actions undertaken by the LTS compiler, and
reports on property violations, such as deadlock, liveness or other safety properties

(discussed in Chapter 6).
7.1.2 Initial Prototype as Plug-in for LTSA

The initial prototype was written as an extension plug-in to LTSA, with a web service
implementation, abstraction, mapping and translation interface. The plug-in adds a tab to the
plug-in views of LTSA allowing an implementer to specify a series of web service
compositions in BPEL4WS and then by the selection of a menu or action bar item,
mechanically translate the composition into the FSP notation. A single composition may be
edited at a time; however, managing a series of compositions is supported in a listed project.
The LTSA-MSC, included as another plug-in into the framework, provides a designer with
an editor pane to build the composition design specifications and features actions to
mechanically synthesise them into FSP. Both the hMSC specifications (Figure 7-2) and the
bMSC specifications (Figure 7-3) can be described.

Chapter 7. Tool Support and Case Study 151

£ LTSA - echo.xml [Z)E]X) W £ LTSA - echo.xml M=1E3
File Edit Check Build ‘Window Help Options BPEL4WS Plugin File Edit Check Build ‘Window Help Options BPEL4WS Plugin
DEdi2Eo «@B3BEINH-FMEIDEeE L 2R« B E I 85 =3 E
Eclit | Output | MSC Editor | WS Compositions || Drasy Eclit | Output | MSC Editor | WS Compositions || Drasy
hMZC | Echo | AuditSct | AuditSc? hhsSC | Echo | suditSet | AuditSc2
~
irit Reqguestor Provider Audit
[% invoke echo pro iI:ler
invoke.echo.audi}\
Echa
AuditSct AuditScz
v
< b4
R X TR T e R XL T e -
Figure 7-2 LTSA-MSC: hMSC Figure 7-3 LTSA-MSC: bMSC

The LTSA-WS plug-in enables the mapping of these MSCs with the BPEL4WS
compositions by way of the engineer selecting a FSP file for one or a series of compositions.
This selected model is included at the point of translation, and abstractions and mappings
included as part of the translation. This action provides the pre-requisites to verification and
validation of design against implementation (and vice-versa as discussed in Chapter 6). The
BPEL4WS interface, illustrated in Figure 7-4, provides a view of these model
representations to the BPEL4WS engineer. Through the click of a button (or selection of a
menu item), the engineer can generate the FSP model for the process currently being edited.
Additionally the interface (WSDL documents) to this composition (used in the interaction
modelling between partnered compositions) is edited in a sub-pane of the view. The
mappings are also listed in a sub-pane (to the middle-left of the editing pane), such that when
translation is invoked — the translator automatically includes any mappings specified (to hide
or re-label appropriately). Two lists (for a series of compositions and WSDL documents) are
in sub-panes below the mapping view. This enables the engineer to manage and specify the
modelling of multiple-compositions and to automatically instruct the translator to include
port connector mappings in the models produced by translation. The aim is to provide a
single view (with multiple sub-panes) such that both compositions and interfaces are easily

managed.

152

Chapter 7. Tool Support and Case Study

LTS Analyser

File Edit Check Buld wWindow Help Options
D | © oo | @ Swbacontst o) uff §93 peraur VG e 44
Edit | Qutput | MSC Editar | WS Cotrposttions | Draw .
Build free
HML Tree Wiew heck Source BPELAWS Editar - echio2 bpel
= 1 process Partner name="audit"” »
[Attribute] --= name="echoString2" servicelinkType="tns: audi t3LT" /=
& [Atftribute] --= targetNamespace="urn echoechoSe </partners-
[Aftribute] --= wminz="httpfschemas Kmlsosp org
? [Adtribute] --= xminstns="urn:echoechoService" <zequence name="EchoSequence™s
Tl variables <receive partner="caller” portType="tns:echolT"
operation="echo” wariahle="request"™
| Clear Save Map Load Map createlnstance="yes" name="EchoReceive™ /=
' AETION LIST <inwvoke partner="andit” portType="ths:auditPT" operation="echo™ —
inputVariahle="request” output¥ariahle="request™>
Mo Specification selected. .
< fimmrokes .
Action Map To | Hide Set Fault
receive_caller_echo Ll L : Meww Refresh Check Source Select Spec FSP
finvoke_audit_echo L || -
imvioke_audit_scho_reply]] WEDL Editar
reply_caller_echo L L definitions targetNamespace="http://tempuri.org/services/echoService” ~
wmlns: ths="http: //tenpuri.org/services//echoService™ =
Cormposition List ®mlns:xsd="http: //wmm.w3. org/2001/XMLSchena”
: add Remove Edit Transite xwlns: soap="http: //schenas.xnlsoap. org/wsdl /soap/"
= xulns="http://schenas.xnlsoap. org/wsdl />
Mo Process Location Hidle: (C)
1 [ECHOSTRING1 |CimperiahCo.. [false v
2 [ECHOSTRING2 [C:umperianco . [talse < >
Service WSDL List Progress farnings
2 CHOSTRINGZ
© Add Remove Edit
File: Process Liocation Hidle: (C)
echol swsdl [ECHOSTRIN... [imperiahc... [false |
b ol I:("'I—lﬁ TRk ||"‘- If izl |-f . I "

Figure 7-4 LTSA-WS Interface and LTSA plug-in framework

When the user selects that the BPEL4WS is translated to models, an FSP editor view is

automatically presented to the engineer (Figure 7-5), so that any additional verification

properties may be defined. The Safety Check

or errors (Figure 7-6).

£ LTS Analyser E|E||z|
File Edit Check Buld ‘Window Help ©Oplions

D@ d BB 3 & I & w77

Edlit | Output | MSIC Editor | WS Compositions | Drawy

EPEL4'S Plugin

ECHOSTRINGZ _ECHOREPLY = (reply caller_echo -»> END).
ECHOSTRINGZ _SEQUENCEL = ECHOSTRINGZ_ECHORECEIVE : ECHOSTRIN(
A4 Entry: SEQUENCE end -—-----------—--mm——— -

| IECHOSTRINGZ _BPELModel (ECHOATRINGZ _SEQUENCEL).

P TNy N VNN VNS IS FT NI FT NN
/¢ END BPEL4WS Process: ECHOSTRINGE

PN TNy NNV N VNN VNSNS T NI N TN FINY

| |IECHOSTRINGEZ_EPELArchitectureModel ECHOSTRINGZ_EPELModel.
B FEESTEEF IR R R PR d R IR TSGR EF i i rdddd i diisiiiii,
/¢ PORT PROCE3S CONNECTOR: Cowmpose synchronised message pord
B FEESTSEF SRR R R R d R IR ST dFEF i i rdd i i i isiiiii]
range ECHOSTRING1 ECHOSLT ECHO PORT RANGE o..0

ECHOSTRINGL_ECHOSLT ECHOD_PORT BEPLY = (reply caller_ echo-ret
ECHOSTRINGL_ECHOSLT ECHO_PORT INVOEE {echostringl_echoslt,
| [ECHOSTRING1_ECHOSLT_ECHO_PORT = (ECHOITRINGL_ECHOSLT ECHO

RSN RN NN RN NSNS R NSRRI RN RNNN .
< | >

Figure 7-5 LTSA-WS: FSP

(Verification) option informs of any deadlocks

LTS Analyser
Edit Check Build Window Help Options

DEHEH BB -« @ & I 8% 7 EE

Eciit | Qutput | MSC Editar

File: BPEL4'W'S Plugin

WS Compositions || Drawe

Compiled: ECHOSTRINGL_ECHOSLT_ECHO_PORT_INVOEE
Compiled: ECHOSTRINGL_ECHOSLT ECHO_PORT_FEPLY
Composition:

Portidrchitecture_echostringl echoslt_echo
ECHOSTRING]_EPELArchitectureModel.ECHOSTRINGL _EPELModel.ECH
03TRINGL_SEQUENCEL ||
ECHOSTRINGZ_EPELArchitectureModel.ECHOSTRINGE BEPELModel.ECH
03TRINGE_SEQUENCEL ||
ECHOSTRING1_ECHOSLT ECHO_PORT.ECHOSTRINGL _ECHOSLT ECHO_PORT
_INVOEE ||
ECHOSTRING]1_ECHOSLT_ECHO_PORT.ECHOSTRING1_ECHOSLT_ECHO_PORT
_FEFLY

State Space:

3FL T2 w2 =2 %]
Analysing...
Depth 7 -- States:

7 Transitions: & Memory used: 3364E

Analysed in: 1l0wms

Figure 7-6 LTSA-WS: Verification

Chapter 7. Tool Support and Case Study 153

Additionally, validation (as described in chapter 6) is undertaken using the Animator
extension to the LTSA tool. Figure 7-7 illustrates stepping through a BPEL4WS

composition using the animator action selection features.

File Edit Check Build “Window Help Options BPEL4WS Plugin

RE WY RE o @& Il @ 7 % precemons M RCR IR

| Edit | output | MSC Editor | WS Compositions | Draw |

IPTracemMadel <)

reply echo.andit reply echo.andit

reply echo requestor endbetion
imsoke # Run Step

replve | []endiction

[]imvoke.echo.provi
reply.echo.reques)
[Jinvoke.echo.audit

* | []rephr.echo.audit

| s [

Figure 7-7 LTSA-WS: Validation and Animation

7.1.3 Migrating the tool to the Eclipse Environment

Using the Eclipse framework opens the potential to link the tool with a network of other
Eclipse plug-in contributions and aims to simplify the number of different, bespoke tools
used in software engineering as a whole. Indeed, amongst these contributions are
commercial BPEL4WS graphical editors (we currently only provide a basic XML editor),
although the reader is invited to browse plug-in web sites as the list of contributors is
continuously expanding. To migrate the prototype plug-in to the Eclipse environment
consisted on rebuilding the model, views and controller pattern using the Eclipse Plug-in
development environment. The plug-in views described here are based upon a migration of
the Java modules from the original prototype. Core LTSA Java modules could be
successfully imported into the Eclipse plug-in development environment however;
rebuilding view modules has required some changes, particularly when moving the LTS
Draw view from the Swing/AWT API to SWT API (the GUI API used by Eclipse). Aside
from these differences however, current view migration has mapped conveniently onto the
standard views provided by the Eclipse framework (Editor, Outline, Console etc). A view of

the integrated Eclipse plug-in is illustrated in Figure 7-8.

& LTSA Perspective - pito.bpel - Eclipse Platform
Help LTSA

=& Il e ¢ d s v

", LTS Process 52

File Edit Mavigate Search Project Run Window

HEHE e e

T Mavigator 52 =0
= <'==={> =

small AW
label = A

¢\« [0]

[| TsqLTSA Perspec... >
=8
G =
%

= O |[%, LTS animater 52

+-[= Chapter3_WSSpecifications — receve_offi(~ |
+-[z= Chapterd_BPEL4WSModels Folders / invoke_pito_ ! :
- F=2 ChapterS_ChoreggraphyModels fmvoke_pito_vehiclerecords_getvehicleres imvoke_pito | [receive_officer_pito_process
+- = Chapter6_analysisModels - rephy_vehicl . . .
1= Chapter?_CasestudyTool - - - - - — [C] imvoke_pito_vehiclerecords_getve
prers_t ¥ irrvoke_pito_vebiclerecords_getvehicleres reply_pncse .])
=l-[7= 7.2 CaseStudy-UK-PITO] reply_wehiclerecords_pito_getvehi
= Iterationl R . .
BLT .] invoke_pito_pncservice_getpersol
5, Pito.bpel
(R . .
o Rit0.bpel. ks] reply_pncservice_pito_getpersonr
ito.bpel.maj . Lo .
B Eito-mpsc xmlp invoKe_pito_insurancesernvices_gi
(= Iteration2 cefve_offimoke pito ply_preservidroke pito ply_wehidreeoke _pito_insweply_insuranceservidivoke_pito_trafreply traffieservidreeoke_pito_forereply [teply_insuranceservices_pito_get
=72 Tterationd . . .
B pito-msc.xml] invoke_pito_trafficservices_getan
pito-msc.xmibpel w [reply_trafficservices_pito_getanp
— Process = s -
gE outine 57 = E< il] invoke_pito_forensics_getdnarect
Constants ”~ [L] reply_forensics_pito_getdnarecor
=|- Sets O p
reply_officer_pito_process
ECHOSTRING1 variable_EMUM = {a, b, ¢ |
-|- Ranges i D |
ECHOSTRING!_IntRange = 0. < #| Draw | Alphabet | Transkions E:‘tEL 4 I []
. itor
=|- Compasitions = o =
}ELOWI T, *pito-msc i 2 Edsc 8 View 8
itor = = = n
PITO_BPELMadsd i hMSC [/ PITOBasic rPITOZ rPITOS rPIT04 rPITOS | View <recelve name="recelvEInput” partner="officer” portType="tns:PIT,
PITO_Instance 17
= -
-| Pracesses — 15 <flow:>
ECHOSTRING] RECEIVEINFUT b icer .. PoliceEng... wehicleEn... MatminalEn, Insurance... AMPRENGL.. 19 <invoke namg“"Vehicle Records"™ partner="VehicleRecords"™ oper
< > ir i I 2o
Output M 21 <invoke name="Nominal Encuiry" partner="PNCService” operatio
e o 1 S e 22 </ flows - E Y
-- compiled:PITO_RECEIVEINPUT ~ getvehicledoo 4 23
- compiled:PITO_YEHICLE_RECORDS T . rrat s " " -
-- compiled:PITO_YEHICLE_RECORDS_REFLY owherregdoc 24 <invoke name="Vehicle Insurance” partner="Insurancelervices" ope
Compiled: PITO_VEHICLE_RECORDS_SEQ ook 4 25
-- compiled:PITO_MCMINAL_ENQUIRY OoKUp_person_teeon zZ6 <invoke name="ANPR Encuiry" partner="TrafficServices" operation=
-- compiled: PITO_MOMINAL_EMNGQUIRY_REPLY o -
Compiled: PITO_MOMINAL_ENQUIRY _SEQ person_recard
Composition: Jaak hicle | | 28 <invoke name="Fingerprint_ Enguiry" partner="Forensics" operation
FLOW1 = PITO_VEHICLE_RECORDS_SED || PITO_MO! 00KUR_VENICIE_INFUrance ~llll zs
S;itgip;c:’:“‘ Il | ’| 30 <reply name="replyOutput™ partner="officer" portType="tns:PITOPi
Composing. .. ? g | oaey || amm 31 b
Composed in 172ms < >
itar itar ource itor | Mappings
< > M3 Editor | FSP Edit BPEL4'WS 5 FSP Editor | Mappi

Figure 7-8 Web Service Composition Development with LTSA-Eclipse

129!

uoneneay pue poddng 007, £ 191dey)

Chapter 7. Tool Support and Case Study 155

7.2 Case Study: UK National Police IT Web Service Compositions
7.2.1 Introduction

Our industry case study is taken from a national development currently underway by the
Police IT Organisation (PITO) in the United Kingdom. PITO provides information
technology and communication systems to the police service and criminal justice
organisations in the UK. PITO’s vision is “to be a trusted and valued partner in the delivery
and operation of information and communication solutions to meet the needs of the police
service and its partners and stakeholders”. In this way, one of the highest priorities for PITO
is its ability to provide secure, reliable, and available services on demand and to provide
highly accurate information as a part of the processes carried out to fulfil service requests. In
this project the view is to consolidate distributed national police services and to form a set of
core processes by which the national police force may use without directly connecting to
separate data sources in the process. Our work runs alongside reported findings so far in the
progress of the project, detailing the consideration of moving to a service-oriented
architecture and its quality of service provision and expectations (Hu 2003; Hu 2004). Our
contribution is to assist in analysing the initial development of web service compositions, to

support a series of different police enquiry types.

We present here a study of some scenarios described within the scope of interacting police
enquiry services. We follow the approach described in our work to concisely model the
interaction behaviour of the compositions built from the scenarios gathered as part of a
business requirements building exercise. The scenarios given in this example case study are
representative of the interactions used in providing solutions to the business requirements
gained, however, due to the nature of the business of PITO and sensitivity in the detail of

systems, these examples remain representative and may not illustrate exact developments.
7.2.2 Scope

The scope of these compositions to date consists of a number of web services implemented
to support some basic enquiry types of PITO systems. The position of PITO is to have core
enquiry processes running on a central business process architecture (themselves deployed
web services) which interact with other services provided by local force system owners.

These central service enquiry compositions form key interactions to providing a distributed

156 Chapter 7. Tool Support and Case Study

yet consolidated view of the data and business process representations spread throughout the
organisation and its associated forces. The initial pilot project consists of a series of web
services providing functionality for; “Vehicle Enquiry” — matches vehicle details based upon
enquiry search criteria, “Motor Insurance Enquiry” linking vehicle details with motor
insurance details, “Nominal Enquiry” — matches person details based upon search criteria,
“ANPR Enquiry” — provides primary vehicle identification given a Automotive Number
Plate Recognition image pattern, and “Finger Print Enquiry” — provides DNA or Finger Print
matches to Nominal details. Collectively the scope of the pilot architecture is as illustrated

in Figure 7-9.

13

(f pplli;etlon

ser
Applications

Web Services
Composition & Choreography
Architecture

Motor
Insurance
Web Service

Vehicle

Web Services

Nominal

Enquiry
Web Service

Finger-Print
Enquiry
Web Service

ANPR

Enquiry
Web Service

Figure 7-9 PITO Web Services Architecture Scope

Within this scope is an aggregation of services and the pilot project considers how these
services can be combined, what the required behaviour of such compositions is, and how

these compositions fulfil a goal in a series of web service choreography specifications.
7.2.3 Issues and Our Contribution

Within the scope of the pilot project for the centralised service architecture is a range of two
issue sets. The first, the long term strategy for PITO and the UK Police Service as a whole,
has been reported in (ACPO 2002), which described how the current situation focused less

on information being a service asset and that this information was often inaccessible by those

Chapter 7. Tool Support and Case Study 157

who actually need to use it. The issues were clearly focused on providing a service-
orientation to the current enterprise police information technology solutions, describing the
localised practice of information storing and retrieval restricting the use of data across the
enterprise. The second set of issues was formed locally within the PITO service and was
centered on the provision of services to support the ACPO policies recommendations. The
core attribute of their issues is in service aggregation, and how service capabilities, a unified
interface, co-ordinated behaviour and a combined Service Level Agreement (SLA) can be
obtained through a definition of quality of service. Through our approach, we believed that
some of these issues could be addressed through greater understanding and manageability of
the behaviour exhibited by compositions, equally from the first time they are created and
deployed, and also when compositions evolved to support elaborated client interactions and
requirements. Our case study began with modelling the pilot project scenario, chosen for its

breadth of service inclusion.
7.2.4 Requirements

The pilot project’s initial requirements were based upon the core function of facilitating a
police officer’s enquiry. The basis for this scenario is that when a request is made, a series
of requests to various services are called to facilitate building an overall view to assist the
officer make a informed decision on demand. Initially, the context of a request is built with
a variety of linked information, with each request supplying the information for the next
request. The scope of the sample is to address vehicle checks with that of the owner’s
collective state in the police IT network. A textual representation of this example scenario is

given in Figure 7-10.

A suspicious vehicle with the number plate “xxxxxxxxx” has been identified by a police
officer in Northern England. The officer launches a formal police enquiry about the vehicle
including its registration record, insurance details, the registered owner’s criminal records (if
any) and DNA/fingerprint of the owner, as well as checking the vehicle’s movement in the

last 24 hours at key points in Scotland.

Figure 7-10 A Pilot Project Scenario for Web Service Composition in PITO

158 Chapter 7. Tool Support and Case Study

7.2.5 Specification

The specification of this scenario is built by abstracting the interaction components from the
requirements scenario. In this case, the officer makes a request through some device
(whether it is a Personal Data Assistant, Internet enabled Phone or locally via a personal
computer). The interactions are then added to support the steps described in the scenario.
The composition in this scenario is a police enquiry composition service. Initially, the only
client in the scenario, the device component, simply has two interactions, for that of making
a request and receiving a reply from the composition service. For each enquiry the police
enquiry composition makes a request using key search criteria (such as vehicle registration

no.). A bMSC view of this specification is given in Figure 7-11.

«—client— < services >

Officer_Device Police Enquiry Vehicle Enquiry || Nominal Enquiry Insurance Eng || ANPR Enquiry Fingerprint Eng

J:— request | i i i i i
: I'| vehicle_reg | ! : ! :
I L) I) I
: : owner_reg_doc : : : :
I % S, I I I I
I) ' . I I I I
| | lookup_records_by_person_id | | | |
I 1] R | | I
: : person_record 1 : : :
I I] | I | I
| S == - . | |
1 1 | vehicle_reg | 1 1 1
| | | | . | |

I T T
: : : insurance_records: m : :
| R T e T . | |
: ! | vehlcl:e_ld | R :
: : : hit_locations : E_I :
I [S e e b L I
: : : | person_id : : :
I L 1 1 1 1 a
: : : : hit_locations : : EI
| K- e e |
I reply I I | I | I
7 S 11 l l l l l

Figure 7-11 Initial specification for a PITO police enquiry web service composition

The specification illustrated is quite simple, in that it assumes that each enquiry is performed
sequentially from a central enquiry process (i.e. the composition service) and that alternative
scenarios are not possible. Studying this sample however, highlights possible areas of
composition improvement through concurrent behaviour (a goal from “quality of service” in
this case study), for example both vehicle records and vehicle insurance enquiries use the
vehicle registration details concurrently between the vehicle enquiry and insurance enquiry
components. This elaboration of requirements yields additional scenarios for the

specification. The amendment to the original specification is focused on a subsequent

Chapter 7. Tool Support and Case Study 159

scenario of a permissible sequence of interactions following the initial enquiry request. A

partial view of the amended parts to the original specification is illustrated in Figure 7-12.

«—client—> ¢ services » «—client—> « services
Officer_Device Police Enquiry || Vehicle Enquiry Insurance_Engq Officer_Device Police Enquiry || Vehicle Enquiry Insurance_Enqg

request request |

l
| l
! |
vehicle_reg I
| |

T

l

|

[}

|

I

[}

T 1

[} |nsurance_records
| v
K—————————— Hmm— e
1

1

1

I

vehicle_reg

owner_reg_doc

Figure 7-12 Concurrent interactions introduced in to the PITO composition specification

The additional specification scenarios pose a series of questions over that of the behaviour
constructed initially. Firstly, how does the introduction of this concurrency effect the
remaining interactions of the composition? Clearly, by introducing the possibility that two
service requests can be performed concurrently suggests that a series of actions may or may
not occur within the duration of these initial service requests. Furthermore, can the response
from each of the service requests based upon vehicle registration exist over the entire
duration of the composition? A partial answer to this question can be found by revisiting the
initial specification and identifying that a vehicle id is used in another service request, that is,
to the ANPR Enquiry service. Therefore, it is evident that one of the two service requests
must be completed to provide the composition with sufficient detail to pass as parameters to
the ANPR service call. Considering this leads a designer to enhance the specification to
include the possibility of either the Vehicle Enquiry or Vehicle Insurance Enquiry replying
and subsequently the ANPR Enquiry service being called. We illustrate this in further
scenarios, such as that for a Vehicle Enquiry request followed by a Vehicle Insurance
Request, then a Vehicle Enquiry reply, then an ANPR Enquiry request and a Vehicle

Insurance reply. This is illustrated in Figure 7-13.

Further consideration of the initial specification highlights that there is another constraint
required for other possible concurrent interactions. The Nominal Enquiry is requested with
person identification as part of its required parameters. This identification is also taken from

the result of either Vehicle or Insurance Enquiry service request.

160 Chapter 7. Tool Support and Case Study

+«client— < services >

Officer_Device Police Enquiry Vehicle Enquiry || Nominal Enquiry Insurance Eng || ANPR Enquiry

request

vehicle_reg

vehicle_reg

owner_reg_doc

T
[}
I
I
1
|
1
I
l
|
vehicfe_id :
| H
|
|
L]

T
A
!

i
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
L1

Figure 7-13 Partial scenario for Vehicle Enquiry reply and ANPR request constraint

The two services based upon person, being Nominal and Fingerprint enquiries, must be
sequenced with this initial request if an improvement to have these performed concurrently is
desired. An amended specification for the Nominal (Person) enquiry requirement is

illustrated in Figure 7-14.

+«—client—> « services »
Officer_Device Police Enquiry Vehicle Enquiry Insurance_Eng Nominal_Eng
] request ! : : :
| | | |
i | vehicle_reg ! i
1 [l
! : owner_reg_doc m I
: :
I T
i ! ! E_I

e A e

Figure 7-14 Partial specification scenario to constrain nominal enquiry with result of insurance enquiry

Equally we can define this constraint against that as being that the Nominal Enquiry request
can not made unless the Vehicle Enquiry has been completed. This further alternative

scenario is illustrated in Figure 7-15.

Chapter 7. Tool Support and Case Study 161

«——client— « services »
Officer_Device Police Enquiry Vehicle Enquiry Insurance_Eng Nominal_Eng
T request : : : :
| | | | |
: ! vehicle_reg ! ! !

: § I I
| I lowner_reg_doc I I
" I I I
| K | |
| : : lookup_person : :

I I I } »

| [t }
N1 e — —

Figure 7-15 Partial specification scenario to constrain nominal enquiry with result of vehicle enquiry

At this stage in defining the web service composition specification, the design has moved
focus from initially specifying a composition consisting of a sequence of service interactions,
to reviewing the order in which interactions are made. The revised specification consists of a
series of individual scenarios together with a scenario composition diagram specified in a
hMSC (for the composed series of constraint scenarios). These specifications are illustrated

in Figure 7-16.

Basic
Police
Enquiry
Sequence

Vehicle Enq
and ANPR
before Veh
Insurance

Vehicle Ins
and ANPR
before Veh
Enquiry

Officer
Request

Officer
Reply

Insurance Enq
Nominal Enq
Fingerprint Enq
Vehicle Enq
ANPR Enq

Vehicle Enq
Nominal Enq
Fingerprint Enq
Insurance Enq
ANPR Enq

Figure 7-16 hMSC for PITO Police Enquiry composition

By starting with a series of basic interactions and formulating an elaboration through a

higher level sequence chart, the interactions can be concurrent (where permissible) and

162 Chapter 7. Tool Support and Case Study

composed in one or many specifications. We now consider how the case study would

implement such a web service composition in one or more BPEL4WS processes.
7.2.6 Implementation and Analysis

In this case study, we have assumed that the implementation is undertaken in BPEL4WS and
that the design specification has been generated and passed to the implementers to replicate
the possible process transition paths in the implementation. The BPEL4WS process takes
focus on the Police Enquiry service, the central composition in the pilot project. The process
consists of a series of workflow statements described in BPEL4WS (as we illustrated in
Chapter 4). To illustrate iterative development using the approach in our work, the
implementation begins by building the initial process, where all the interactions are
sequenced. The outline structure of this process, with service interaction activities shown

only, is illustrated in Figure 7-17.

-receivel— partnerLink="officer* operation="process" variable="input’ createlnstance="yes"
Finvoke I*partnerLinkz"VehicleRecnrdS" operation="getvehicleRec"
Finvoke l*partnerLinkz"PNCSewice" operation="getFersonRecards"

sequencel——invnke l—name="VehicIe_Insurance" parnerLink="InsuranceSemnices" operation="getvehiclelnsurance

Finvoke I—name="ANPR_Enquir\f' partnerLink="TrafficSerices" aperation="getANFRHits"

Finvoke l—name="Fingerprint_Enquiw" partnerLink="Farensics" operation="getDMNARecards"

—replyl—nameﬂreplmutpuf' parnerLink="officer" aperation="process"

Figure 7-17 PITO Police Enquiry Basic BPEL4WS Process structure (interactions only)

The assignments part of the process forms the remainder of the process structure, and
outlines the passing of search criteria between service invocations and replies. The initial
request message part of vehicle registration is the first to be assigned, to both message
variables for input to Vehicle and Insurance record enquires. We illustrate part of this

assignment process structure in Figure 7-18.

Chapter 7. Tool Support and Case Study 163

—receivel— parttnerLink="officer operation="process" variable="input' createlnstance="yes

EDWF
Cassighn

sequence|‘ —fram l—variable:"input" part="vehiclereg"
EDWP

—Trarm l—variablef‘input" pan="vehiclereg"=

-ﬂ—uariablez"vehiclerecnrds" part="vehicleregsearch

-ﬂ—variable:"inSurancerecnrds" pan="vehicleregsearch"

—inw:lke|—partnerLinHz"UehicleRecclrds" operation="getvehicleRec"

—rest_nf_prucess_here|

Figure 7-18 Partial PITO Police Enquiry Basic BPEL4WS Process with assignments

This basic process is modelled as a simple sequence of activities, as described in section
4.3.1. Each receive or invoke activity, for example the initial request by the officer, is
undertaken in the order specified in the sequence. The begin and end of the process is
marked by the receive, and final activity of a reply, before the process terminates. Each new
request by an officer creates a new instance of the process, signified by the createinstance
attribute on the initial receive activity. In addition to the interactions, the process

composition is also modelled with variable assignment, as partially illustrated in Figure 7-19.

recerve_officer_process assign_input_wehicleser assign_input_wehicleins irsroke wehiclerecords _getwehiclerec

Figure 7-19 Partial BPEL4WS Process sequence with assignments

Whilst the engineer can attempt to perform a full trace equivalence against the specification
at this point, the sequence is perhaps too trivial to expect any relationship of implementation
against design. Yet even at this stage in implementation, this implementation may be
partially fulfilling the specification through one such scenario (in this case the first
sequenced scenario). We therefore use the trace equivalence verification method discussed
in section 6.4.1 to perform such a check at this stage. The preparation of the implementation
process has been discussed in section 6.3. To perform trace equivalence the non-interaction
activities are marked as being non-observable in the implementation model. In this case, we

use the hide operator of these activities. The tool mapping function generates the FSP code

164 Chapter 7. Tool Support and Case Study

through its compilation feature. A LTS model of this refined model is illustrated in Figure
7-20.

teceive_officer process invoke pneservice_getpersonrecords irvoke 3 bl iroke_toaffieservice prk invake forensice_petdnaseconds teply officer yrocess

Figure 7-20 Graphical LTS view of Police Enquiry Composition with abstraction

The composition engineer then specifies the mappings between the interactions modelled in
the composition with that of the design specification to be verified against. The mappings
are selected against a list of activities presented in the tool. A summary of mappings is listed
in Table 7-1. Note that the replies to the composition process are specified in this mapping
as a default of the invocation name mapping with the addition of a “ reply” as a suffix. The
question of reply interaction verification is not possible on a single composition and we are
not able to determine when replies are actually made by a partner that has not included a
process in the analysis. Therefore the equivalence is based upon the initial request (receive),
invocations to other services (with either an immediate or no reply) and the reply to the

initial requestor.

Table 7-1 Mapping Activities for initial PITO Police Enquiry composition

MSC Action BPEL4WS Action

request receive officer process_enquiry

vehicle reg enq invoke vehiclerecords_getvehiclerec
owner_reg_doc invoke vehiclerecords getvehiclerec reply

Lookup _records by person_id | invoke pncservice getpersonrecord

Person_record invoke pncservice getpersonrecord_reply

avehicle reg ins invoke insuranceservices getvehicleinsurance
Insurance records invoke insuranceservices_getvehicleinsurance reply
vehicle id invoke forensics getanprhits

vehicle hits invoke forensics getanprhits_reply

person_id invoke forensics getdnarecords

dna_hits invoke forensics_getdnarecords_reply

reply reply officer process

Chapter 7. Tool Support and Case Study

165

With the mappings, the model of the BPEL4WS process now takes the form of an LTS with

label names assigned with the equivalent transition names as used in the design specification.

The inputs for an initial analysis of trace equivalence of the BPEL4WS composition against

that of the design specification are listed in Table 7-2.

Table 7-2 Mapping

Approach Step

roduct of step

Activities for initial PITO Police Enquiry composition

Performed by tool, user or engineer

Design Specifications Model produced as part Design engineer input and model produced
of section 7.2.4. through tool as described in section 3.4

Implementations Model produced from BPEL4WS process built by engineer.
BPEL4WS Process Tool translates to FSP model.

Abstractions Refined model without Tool generates FSP code to provide
assignment activities refined model of BPEL4WS process.

Mappings Composition interactions | BPEL4AWS Engineer assigns interactions
mapped to design activity | to design specification using tool mapping
labels functionality.

Properties Equivalence property Tool option to run trace equivalence of
added to as additional BPEL4WS implementation against MSC
process model specification.

Using the tool, the trace equivalence is undertaken to check that the BPEL4WS satisfies

(albeit partially) the scenarios covered in the specification.

/* Trace run of equivalence property check of BPEL4WS process over MSC */

Composition:

CheckBPEL = MSCArchitecture Model ||

Abs Process BPEL.ECHOSTRING1 BPELArchitectureModel.ECHOSTRING1 BPEL

Model .ECHOSTRING1 SEQUENCEL

State Space:
13 * 13 = 2 ** 8

Analysing...Depth 13 -- States:

5104K

No deadlocks/errors

Analysed in: Oms

13 Transitions:

12 Memory used:

Figure 7-21 Results of trace equivalence test to check BPEL4WS partially fulfils MSC specification

166 Chapter 7. Tool Support and Case Study

Further analysis is also possible, even at this initial stage of implementation. As we are able
to determine whether the BPEL4WS fulfils one scenario of the MSC specification, we are
also able to describe what additional scenarios the BPEL4WS is missing. To achieve this,
we swap the model that is used as the property for verification. In this case, we analyse the
specification model against that of the BPEL4WS implementation model. Executing this

verification yields the result listed in Figure 7-22.

/* Trace run of equivalence property check of BPEL4WS process over MSC */
Composition:
CheckMSC = BPEL4WSArchitectureModel | Abs_Process SPEC.ArchitectureModel.FingerprintEnquiry ||
Abs_Process_SPEC.ArchitectureModel. VehicleEnquiry ||
Abs_Process_SPEC.ArchitectureModel.NominalEnquiry ||
Abs_Process SPEC.ArchitectureModel.InsuranceEnquiry ||
Abs_Process SPEC.ArchitectureModel.PoliceEnquiry ||
Abs_Process_ SPEC.ArchitectureModel.Officer Device ||
Abs_Process SPEC.ArchitectureModel. ANPREnquiry

State Space:

[3*#2*4*%4%4*15*%4%6=2%*20
Analysing...Depth 2 -- States: 2 Transitions: 3 Memory used: 5607K
/* Trace run example from Equivalence Verification of MSC over BPEL4WS */
Trace to property violation in BPEL4WSArchitectureModel:

receive officer pitobasic process

invoke pitobasic insuranceservices getvehicleinsurance

officer pitobasic inzurance...

receive_officer EtabasiCJamcess

invoke_pitobasic |nsuranceservices _getvehicleinzurance

Figure 7-22 Results of trace equivalence test to check scenarios not covered by BPEL4WS composition

The trace that is listed has highlighted that the BPEL4WS does not exhibit the behaviour to
support a Vehicle Insurance Enquiry (stated by the transition violation of a request followed
by a lookup vehicle insurance transition). The engineer may wish to discuss this with the
designer, however, with our initial knowledge of the specification’s requirements, the project
is keen that either service may be initiated first so that concurrency of activities may be
utilised to increase performance of the composition. The BPEL4WS engineer therefore
revisits the composition again and studies how this requirement can be implemented. A

solution appears to be to introduce the FLOW concurrent activity execution construct in

Chapter 7. Tool Support and Case Study 167

BPEL4WS (discussed in section 4.3.2). The modified BPEL4WS process structure is
illustrated in Figure 7-23.

-receivel— parnerLink="officer’ operation="process" variahle="input" createlnstance="yes"

itvoke l—par‘merl_inkz"\-fehicIeRecnrds" operation="getvehicleRec"

==

oy
invoke l—namez"VehicIe_Insurance" partnerLink="InsuranceServices" operation="getvehiclelnsurance"

sequence|——invoke |—par1nerLink="PNCSewice" operation="getFersonRecords"

Finvoke I—name="ANPR_Enquinf' parnerLink="TrafficSerices" operation="getaMNPRHits"

Finwvoke l*name:"Fingerprint_Enquin-" patnerLink="Forensics" operation="getDMNARecards"

—replﬂ—namef'replvOutput" partnerLink="officer* operation="process"

Figure 7-23 Modified BPEL4WS Process to support FLOW of Vehicle Enquiry and Insurance
Invocations

Performing the verification against this modified process however, highlights a further issue.
Notice that in the modified BPEL4WS process we have specified that the remaining
interaction activities are in sequence following the completion of the concurrent flow of
vehicle enquiries. This raises the violation (listed in Figure 7-24) that a Nominal Enquiry (to
lookup a person record) cannot occur until both vehicle enquiries have successfully
completed. This issue requires further elaboration on the BPEL4WS process to introduce

further concurrency but /inked to each of the vehicle enquiries in completion.

/* Trace run of equivalence property check of modified BPEL4WS process over MSC */
Trace to property violation in BPEL4WSArchitectureModel:

receive officer pitobasic process
invoke pitobasic vehiclerecords getvehiclerec
reply vehiclerecords pitobasic ownerregdoc

invoke pitobasic_insuranceservices getvehicleinsurance

officer pitakbasic vehiclere. . insurance...

receive_officer _Ellcnbasic _process
+]

invake J:u'rtnbasich ehiclerecords_getvEhiclerec
L4

R reply_vehiclerecoyds_pitobasic_ownefregdoc

[+

invoke J:u'rtu:ubasich nzuranceservices_getvehicleinsurance
+]

Figure 7-24 Trace equivalence verification to check current vehicle enquiries in BPEL4WS composition

168 Chapter 7. Tool Support and Case Study

What is now required is a link between the source of acquiring the person id (through either
of the Vehicle Enquiry service invocations) and the target of performing the Nominal
Enquiry (lookup person record). In BPEL4WS, this can be achieved through the use of
linked transitions (discussed in section 4.3.3). The newly modified BPEL4WS process now
includes this constraint on transition, by firstly placing all the partner service interactions in
an additional FLOW, and then adding a source link to the invocation (and reply) of the
Vehicle Enquiry and a target link (of the same name) to the invocation of the Nominal

Enquiry.

—receivel— parnerLink="officer aperation="process" vatiable="input" createlnstance="yes"

parnerLink="vehicleRecords" operation="getYehicleRec"
invukeH
—ﬂnw}-‘ source'—IinkName:“PersonIdAcquired“

invoke '—name:"\fehicle_lnsurance" partnerLink="InsurancesSerices" operation="getvehiclelnsurance"

sequence}-ﬂnw'—sequence} panerlink="FPHCService" operation="getPersonRecords”
—invuke}-{
targetl—linkName:”PersonldAcquired“>

Finvoke '—name:"ANPR_Enquiry" partnerLink="TrafficServices" operation="getAMNPRHits"

=invoke '—name="Fingerprint_EnquirV' pannerlink="Forensics" operation="getDNARecords”

—repIyl—name:"repl\;Outpuf' patnerLink="officer" operation="process"

Figure 7-25 Modified BPEL4WS Process to support LINKED transitions of Vehicle Enquiry and
Nominal Enquiry

Further analysis suggests that the linking is also required to fulfil the other set of scenarios,
detailing the constraint that the ANPR Enquiry may also follow the Vehicle Enquiry (as
illustrated previously in Figure 7-13). The engineer therefore adds a further source link to
the Vehicle Enquiry (VehicleIDAcquired) and a target link to the ANPR Enquiry service
invocation activity. The last link is considered against the Fingerprint/DNA Enquiry. This
can only occur if the Nominal Enquiry has completed. The engineer completes the links
constraints by placing a source on the Nominal Enquiry invocation and target on the
Fingerprint Enquiry invocation. To complete the process, the engineer adds a FLOW
wrapper to the ANPR and Fingerprint Enquiries such that either activity may commence
after the Nominal Enquiry has completed. This updated process is illustrated in Figure 7-26.
A final verification for trace equivalence is made on this final process, with results listed in

Figure 7-27.

Chapter 7. Tool Support and Case Study 169

-recei\tel— pannerlink="officer", operation="process" variahle="input" createlnstance="yesg"
parnerLink="vehicleRecords" operation="getvehicleRec"

invoke Suurce'—IinkName:"PersonIdAcquired"

saurce'—IinkName="VehicIeIdAcquired"

invoke '—name:"\fehicle_lnsurance" partnerLink="InsuranceSenices" operation="getvehiclelnsurance"

o

partnerLink="PHCService" operation="getPersonRecords"

sequence}-ﬂnw'—sequence |--invake targetI—IinkName="PersanIdAcquired"=

suurce'—IinkName:"PersnnRecAcquired“=

name="AMNPR_Enquin® partnerLink="TrafficServices" operation="getAMNPRHits"
invoke}-{

target'—linkName="VehicIeIdAcquired"
—flow

name="Fingerprint_Enguiry' partnerlink="Forensics" operation="getDNARecords"
invukeH

targetl—IinkName:"PersunRecAcquired">

-replv'—name="repl\,r0utput" partnerLink="officer" operation="process"

Figure 7-26 Final BPEL4WS process for verification

/* Trace run of equivalence property check of final BPEL4WS process over MSC */
State Space:

13 * 13 = 2 ** 8

Analysing...Depth 13 -- States: 13 Transitions: 12 Memory used:
5104K

No deadlocks/errors

Figure 7-27 Final BPEL4WS process verification against MSC specification

The engineer has constructed a single BPEL4WS process for the Police Enquiry composition
and has verified that the basic sequence (where all activities are completed in turn, with no
initial links between activities) can be fulfilled by the process through a trace verification of
the process model against the design specification model. The process can then be extended
to support additional scenarios, where the invocation of Vehicle Enquiry and Insurance
Enquiry could occur in parallel. Through further verification, it was established that this
alone would not fulfil the additional scenarios, as a constraint was required to support the
linking of Vehicle and Nominal Enquiries (of which the latter is dependent on completion of

the first). These steps fulfilled the implementation of the first set of scenarios in the pilot

170 Chapter 7. Tool Support and Case Study

project case study. In a wider context, the pilot project also considerd how multiple
compositions would be composed and we suggest how this is covered in choreography for

the pilot project.
7.2.7 Choreography

The choreography aspect of this project work focuses back on the example from our original
motivation for the approach (Chapter 1, Figure 1-1). The police enquiry composition will
interact with other services, themselves potentially compositions. Here we consider how
these compositions can be verified together, for elaboration of scenarios in web service
choreography. Addressing choreography takes us back to the designer, who may reuse
existing composition scenarios to act as a source for interactions observed in those
compositions. For example in the ANPR Enquiry (used as part of the vehicle movement
checking requirement) the ANPR Enquiry service may consist of other traffic related service
enquiries. Ideally we would assume that the service will eventually reply to a ANPR
Enquiry. However, as we discussed previously, choreography provides a global view of
requirements for one or more scenarios — such as in this case, that the ANPR does eventually
reply to the Police Enquiry. Additionally, the engineer can gain greater confidence in the
composition working alongside other partnered compositions. As choreography describes
the global goal and more noticeably an understanding of a global state we introduce a third
service into the PITO Police Enquiry requirements. The requirements are expanded to
include an authorisation service which holds state of enquiry requests and provides a control
on which services may be accessed in an enquiry type. The requirements are detailed in

Figure 7-28.

A suspicious vehicle with the number plate “xxxxxxxxx” has been identified by a police
officer in Northern England. The officer launches a formal police enquiry about the vehicle
including its registration record and checking the vehicle’s movement in the last 24 hours at
key points in Scotland. Each enquiry type must be authorised and recorded at each request

in the process.

Figure 7-28 A Pilot Project Scenario for Web Service Composition in PITO

Chapter 7. Tool Support and Case Study 171

The Authorisation Service composition process is a key to the service choreography, by
which each enquiry service must request authorisation before proceeding in the officer’s
request. Reusing the composition for Police Enquiry and ANPR (Vehicle Movement)

composition, our domain of interest is depicted as in Figure 7-29.

Web Server Choreography Domain

Web Server
[mmm g === T T
I Composition I] Composition '
Web | | 1 | Web
Service | - - |] - | Service
I~ | Police Enquiry : 1 | Vehicle Movement :
. | ! | y
~ . %
< invoKd | ——/
Web Server Web Server
Web Web
Service

Web Server

1 |
| |
! Authorisation :
: Composition :

Figure 7-29 Overview of choreography of elaborated composition scenario

The designer specifies the choreography requirements in a further scenario. As we discussed
in Chapter 3, the choreography is spread across components in the specification, with
interactions occurring between multiple-parties, such that the police enquiry is not the single
focus. The specification for this choreography scenario is illustrated in Figure 7-30. Notice
that for each enquiry request, an invocation of the authorisation service is undertaken. The
reply of a result from the authorisation is taken as the request has been granted in the current
request’s state. For simplicity, the designer has specified only one scenario for this
choreography, and as such the behaviour of all compositions and services within the
implementation of this choreography must exhibit behaviour suitable for this interaction
sequence. As with the composition implementation we build the compositions supporting
this requirement in BPEL4WS and then use verification, and specifically compatibility
verification to ensure that the behaviour of these collaborating compositions is suitable to

fulfil the requirements in the design specification.

172 Chapter 7. Tool Support and Case Study

A 4

+—client—> < services

Officer_Device Police Enquiry Vehicle Enquiry ANPR Enquiry Authoisation

+ i i i i
: request | : : !
: ' police_enquiry_auth| i
| I 1 1
: : police_enquiry_result :
| I 1 | I
| 1 5 M
| 1 | 1
| 1| ! :
: : vehenq_authorisation :
| 1]
| 1 T
: : vehenq_authorisation_result :
| [1 mintiniatatnteiaiaie Fomm—m 1
| | | |
1 K] 1 1
: : vehicle_id : :
I [) 1
! ! ! Il anpr_auth |}
1 1 1 pl
| i | lanpr_auth_result|
I I I (1 S, L
: : hit_locations : :
| Ko b ! |
| reply H | | |

() S — L] 1 | 1

Figure 7-30 Specification for scenario of Vehicle, ANPR and Authorisation Enquiries

The BPEL4WS compositions consist of a Police Enquiry process, a Vehicle Enquiry process,
ANPR Enquiry process and Authorisation process. Again, we have simplified the processes
to support this scenario as a base for creating extended processes supporting other enquiry
types. The Police Enquiry composition process is a subset of the interactions built in the
process used previously. Indeed, it is the case that this additional scenario may be simply
included in the current process, with the use of a SWITCH statement to distinguish which
type of Police Enquiry is undertaken. However, for clarity we build a new Police Enquiry
composition process outlining just the interactions in this authorisation scenario, with the

distinct additions of invoke enquiry auth and invoke enquiry result activities.

—receivel— partnerLink="officer* operation="vehiclecheck" variable="input' createlnstance="yes"
rpatnerlink="Authoriser" operation="authorise"

—irwl:uke|‘
—snurcel—linkName="ﬁ.uthnrisatiunﬁ.cquired"
rpatnerLink="vehicleRecords" operation="getvehicleRec"

—snurcel—linkName:"w‘ehicleldﬂcquired"

rhname="ANPR_Engquir partnerLink="TrafficSenices" operation="getAMFRHits"

sequence|——imfnke

—irwnkel‘

—targetl—linkName:"\-fehicleldﬁcquired"

—replyl—name:"repIyOutput" partnerLink="officer* operation="process"

Figure 7-31 Police Enquiry composition in Choreography example

Chapter 7. Tool Support and Case Study 173

Similarly, the composition processes are built for Vehicle and ANPR Enquiries. In this
example, these act simply as a wrapper enquiry composition, supporting the authorisation

and invocation of support services to provide vehicle and plate recognition hits respectively.

—receive'— partnerLink="policeenguiry’, operation="getvehicleRec" variable="input’ createlnstance="yes"

rpartnerlink="Authoriser" operation="authorize"
—inw:uke|-

sequence|— —su::uru:eI—IinkName:"Authnrisatinnﬁu:quired"

rpartnerLink="vehicleRecords" operation="getvehicleRec"

—inm:uke|-
—targetl—IinkName="AuthDrisatinnAcquired"

Figure 7-32 Vehicle Enquiry composition in Choreography example

—receivel— partnerLink="policeenguin, operation="getAMFRHits" variable="input' createlnstance="yes"

—irwnke|-

rpatnerlink="Authariser' operation="authorize"

—snurcel—linkName:"AuthnriSatinnﬁcquired"

SEQUEHEE|‘

rpartnerlink="TrafficRecords" operation="getvehicleARFRHits"

—invnkef

—targetl—linkName="AuthnrisatiDnAcquired"

—replﬁ;l—name:"replyOutput" partnerLink="policeenguin operation="getANPRHits"

Figure 7-33 ANPR Enquiry (Traffic Services) in Choreography example

Lastly the authorisation process is built as a simple composition which accepts an
authorisation request document, containing the enquiry type (policeenquiry, vehiclecheck or
ANPRHit enquiry) and replies with whether the enquiry type is authorised or not for the
given service session. This composition therefore takes the form of a sequence with a

receive and reply activity only.

The process of compatibility verification is undertaken by specifying these three
compositions, along with their related WSDL interface documents, in the compilation of
models to analyse. The algorithm that we described in section 5.2.4 is executed and a series
of port connectors built to link between the compositions. One such connector, in this case

for the PoliceEnquiry and VehicleCheck compositions, is illustrated in Figure 7-34.

174 Chapter 7. Tool Support and Case Study

irvoke wehicleenpmivy cetvehicleree input

//(— g —‘\‘\

teply officer getveliclerec Drnvole wveldcleenguiry getwehiclerec inpmt reply officer irmroke output

teply_officer irmeoke output recemve_officer getwehiclerec teply_officer getwehiclerec
\-\—_ 1

recemve_offiver setwvehiclerec

Figure 7-34 Port Connector model between Police Enquiry and Vehicle Enquiry compositions

Firstly, we perform a safety analysis of the choreography model, analysing it for deadlock

freedom. The result of such verification is illustrated in Figure 7-35.

/* Trace run example from compatibility verification of BPEL4WS service processes
and partnered process interactions in the PITO Police Enquiry example*/
Trace to DEADLOCK:
receive officer pitobasic process
invoke pitobasic_authoriser authorise
invoke pitobasic_vehicleenquiry getvehiclerec

reply pitobasic_officer process

officer pitabasic authorizer vehiclere. ..

FECEi'\.-'E_foiCEF_EllDbaSiCJJrDCESS
+

invake J:u'rh:ubasichal.rthl:uriser_al.rthl:nrise
]

invoke J:u'rh:ubasich ehiclerecords_getvehiclerec
+]

" reply _pitobasic_officer_process

[~

Figure 7-35 Deadlock example of compatibility verification BPEL4WS and partnered compositions

The reason for this deadlock is suggested in the last action of the trace — if we study the
process illustrated back in Figure 7-32, we can observe that there is no Vehicle enquiry reply
action specified. Consequently, the port models cannot be synchronised and a trace to
deadlock is observed in the verification. To solve this issue, the engineer can add a reply and

complete the model. A subsequent compatibility verification of the choreography provides

Chapter 7. Tool Support and Case Study 175

the engineer with a suitable “no deadlocks/errors found” successful result. Again, we can
also perform the trace equivalence of this composed model against the specification by
repeating the method described in the composition analysis example previously. Note that
we have not given an example of mapping labels back to the specification here — it is
assumed that as part of the composition builds, the engineer has repeated this task again.

Running the trace equivalence test provides the results as illustrated in Figure 7-36.

/* Trace run of equivalence property check of BPEL4WS process over MSC */
State Space:

3 X2 %2 *2*x 2% 6 * 4 x 2% 2 =272 %13
Analysing...
Depth 10 -- States: 18 Transitions: 25 Memory used: 4116K
No deadlocks/errors

Analysed in: Oms

Figure 7-36 Results of trace equivalence test to check BPEL4WS partially fulfils MSC specification

7.2.8 Summary and Discussion

In this section of our work, we have described a mechanical tool as an implementation of the
approach and a series of work undertaken as part of the scope for a pilot project within the
Police IT Organisation in the UK. The focus of this pilot project so far has been limited to
trialling a centralised composition that sequences a series of calls to a number of web
services. As part of our work, we have introduced the choreography aspect, which is an
anticipated evolution of the actual pilot project adopted by PITO. As the number of
compositions grows, the more difficult the observation of how the separate compositions will
work together will be and specifically, what possible interactions could occur in various
scenarios. Realising this through an extended example, we have aimed to illustrate that the
approach and tool supporting our work can be used to consolidate these scenarios and
compose models for easier assessment of combined compositional behaviour. Furthermore,
the results gained from this initial case study have provided a real evaluation ground, in
terms of real actors, scenarios and environments to evaluate the approach and tool away from
our academic focus. This concludes describing the practicalities of the case study. We
evaluate fully the effectiveness of the approach taken in this case study, the results acquired
and feedback from the designers and implementers of using the tool and approach in the

following sections.

Chapter 8

Evaluation and Conclusions

“The medium, the process of our time — electric technology...
it is causing us to rethink and re-evaluate practically every thought, every action!”

(Marshall McLuhan, Theorist and Educator, 1911-1980)

A key goal of the work in this thesis has been to describe an approach to designing and
implementing concurrent and distributed web service compositions in a service-oriented
architecture. A starting point was to examine the behaviour of components or services in this
service-oriented architecture, and through design specifications, realise how developers
could gain greater assurance by performing verification and validation analysis of
implementations using formal software process modelling techniques. Our work has resulted
in an approach which identifies key artefacts to use in this analysis, and key processes in
performing verification and validation against these artefacts. The nature of web service
interactions has provided the detail to which tasks these key processes must undertake to

provide useful results for this assurance reasoning. In this chapter we evaluate our approach.

8.1 Evaluation of Approach

In this section, with provide an evaluation of the approach described in this thesis and from
the case study in section 7.2. Using the results and feedback gathered by way of the case
study, and through our experience of engineering web service compositions with and without

the approach we evaluate the steps and their results. The evaluation of the approach is split

Chapter 8. Evaluation and Conclusions 177

between the theory and its practical usage with a view of clarifying the features that make it

rigorous.
8.1.1 On Design Specifications

The first aspect of the approach we consider is that of the early requirements gathering steps
and by way of describing these as specifications, how this captures the essence of
interactions between web service compositions. At a level aimed at designers, in other
words those who do not build the service components but specify what service components
are involved in a process composition, the design specifications provide a high level
description of how the services communicate and more specifically, which order the
conversations made in communication occur. The ability to describe sufficient information
in these high level interactions is obviously a prerequisite to being able to use models of
these specifications in analysis and verification. Whilst it is possible to elaborate on
interactions and specify some internal activities (such as a repetition of interaction or
alternatively called self-interaction) this does not provide a useful mechanism to describe
web service compositions or other services included in the scenarios described in a
choreography domain (e.g. state management). The reasons for our use of message sequence
charts are described as three main objectives. Firstly, sequence charts are a graphical tool
with which provides an intuitive interface to describing the sequence of component
communication. Secondly, the formation of scenarios is consistent with the protocol in
which to define basic message sequence charts (bMSC) for each alternative communication
sequence anticipated by the composition designer. Thirdly, by the nature of sequence chart
interaction transitions, charts may be synthesised to formal models and used in further
analysis through formal process modelling techniques. We have demonstrated how this
technique can be used in the context of describing web service composition interactions, yet

clearly, the domains in which this can be applied is not limited to this domain.

Our approach and tool support for MSCs design of web service compositions is presently
limited in several ways. Firstly, the designer is unable to represent data dependencies
between partners which therefore constrain interaction descriptions to the point of a fype of
message rather than a value of a message being passed between partners. In compositional
design this is not highly detrimental to the conciseness of interactions, yet when describing
choreography rules (where state and message part values are equally important) this will

impact the verification approach’s effectiveness in modelling conditions to analyse.

178 Chapter 8. Evaluation and Conclusions

Secondly, the set of basic message charts and its higher level sequence chart can become
complex to manage in itself. This complexity is exhibited when there evolves a high number
of alternative scenarios to describe and sequence. If for example, a concurrent set of five
interactions are permissible in a section of a composition, then the designer must describe
each alternative case for invocation and reply of these five interactions. Through
undertaking the case study in section 7.2, it was found that designers do not naturally think
of concurrent requests and replies, highlighted by the observation that the designer
considered it much greater effort to build many alternative scenarios. Yet at the same time
however the designers considered the approach as an aid to a more rigorous design than had

previously been undertaken.

Furthermore, at the time of writing this work, several consortiums are compiling
specification languages to describe interactions, monitor and provide state transfer between
choreography scenarios, yet it appears there is overwhelming support by the authors of these
specifications, that describing these in a practical approach will be with a suitable sequence
chart representation. Indeed, earlier work using message charts, in a similar way we make
use of its notation for interaction specifications, has commented on the ability for developers
(designers in this context) to easily specify what is required in scenarios. This related work
has been reported on using extensions to the standard UML notation, in addition to sequence
charts, to provide a level of design for the web service components themselves (Niittgens
2003). Additional practical support for this design approach is given by Rational Software
corporation in extensions to UML Specification 1.1 (RATIONALSOFTWARE 1997;
Niittgens 2003). This work however, still centralises on an approach to define core
components, in a now commonly used object-oriented analysis and design of components
with the focus on attributes and methods (and associated message calls to other methods).
Where this approach gains in the detail of exact operations and attributes within components,
it is felt that it lacks in observing the nature of service behaviour, in other words, the
potentially ad-hoc conversations that may occur in architectures of partnered processes.
Kept a high level, such as message sequence charts, the key interactions in one or many
scenarios can be captured and used in formal verification. Additionally, other uses of MSCs,
such as for negative scenarios or implied scenarios, can be captured to describe detailed

constraints on interaction scenarios permissible in a given composition.

Chapter 8. Evaluation and Conclusions 179

8.1.2 On Modelling Implementations

Our approach to modelling implementations has focused on the standards used to compose
web services, the semantics of those standards and a model representation of abstracted
interactions from these composition processes. Amongst those standards, BPEL4WS
appeared the most completed notation and has been reported under consideration for both
academic and industry projects. We approached modelling the web service composition
implementations by way of three steps. Firstly, the engineer builds the composition
processes in the standard notation (in this case BPEL4WS). Secondly, a mechanical process
abstracts the interactions and constructs that affect interaction behaviour from the
composition processes and builds a model representing these interactions in a finite state
machine representation. The semantics used to build the model are discussed in Chapter 4.
The core of this semantic translation is based upon the semantics as defined for the Finite
State Process (FSP) notation. This notation has gathered a strong user base, and has also
been used in various other research projects. The ability to translate BPEL4WS to FSP is
core to building the model of the composition process. Other process languages have been
used in a translation similar to ours including (Wohed, Aalst et al. 2002; Duan, Bernstein et
al. 2004; Hamadi and Benatallah 2004; Fu, Bultan et al. 2004b). Our approach to modelling
implementations does not differ greatly to the steps described in these works. Indeed, it is
encouraging to read that the workflow expressions of BPEL4WS have been translated in the
same way, albeit to another process language as an end result. We have added to this
translation, an interpretation of those activities which are interaction or non-interaction
based, and also the wider choreography rules through process interaction mapping (as

discussed in Chapter 5).

Our work has relied greatly on the ability to translate the semantics of BPEL4WS to that of
FSP, and yet at the same time aiming to preserve the behaviour that would be executed by a
standard compliant BPEL4WS process engine. The translation of BPEL4WS was originally
based on the specification version 1.0 (Curbera, Goland et al. 2002) and then updated to
include changes to naming and semantics as defined in version 1.1 (Curbera, Goland et al.
2002; Iyengar 2003). The work was, at the time of writing this thesis, wholly dependent on
our view of the mapping between BPEL4WS and the FSP notation. At the time of
completing this work there are emerging implementations of BPEL4WS, such as the open

source BPEL engine of ActiveBPEL LLC (ActiveBPEL 2005), the IBM BPEL engine

180 Chapter 8. Evaluation and Conclusions

project (Curbera, Duftler et al. 2002) and the ORACLE BPEL process manager (ORACLE
2005). A potential validation of our mapping could utilise the behaviour of these engines
with respect to the logging functions of their service interactions. This is discussed further in
the future work section of this chapter. There are however, already some key issues in
assumptions used within this translation from the BPEL4WS specification. For example, the
specification for the Terminate construct in BPEL4WS is officially described as that any
activity in current execution will eventually terminate. This is not concrete enough to be able
to simulate a terminate (and it’s effect) for each differing construct of the specification. Our
assumption has been to translate this to a STOP process in the FSP algebra but may require
further interpretation. In addition, the fault tolerance and compensation sections of
BPEL4WS used in this work, have not been discussed to a great extent. We are keen to
expand the approach to include this, but potentially this impacts a wider scope than just the
compositions and interaction choreography. The global state will be affected by any
compensation action that takes place in composition. The reason for this is if either a fault is
raised due to a service failure (be it technically or business process driven) then any partners
of that composition will need to be notified to take appropriate actions if necessary. The
modelling therefore covers a much broader scope than we have covered in this thesis to date.
Further specifications, such as the WS-CDL (Kavantzas, Burdett et al. 2004) should be
useful in linking with modelling choreography to determine the effects on other services not

necessarily directly partnered with a composition service.

Lastly, a comment on transitional representation of data variables used within a composition
process. Both compositions and choreography implementations can contain activities which
are constrained by data values either returned by a interaction with other partnered services,
or are dependent upon values stored within the composition or choreography itself. For
example, a decision point within a composition can be represented by the switch/case
statement pair. This evaluates an expression, and takes one of a selection of activity paths
based upon the result of the expression. In our modelling, we have used an enumeration to
label each possible path with a unique identifier. When these enumerations are built as part
of the model, the compiled state machine builds a path for each alternate activity route.
Further data analysis would bring us closer to modelling with dynamic analysis to determine

actual values or possible values passing between the service components.

Chapter 8. Evaluation and Conclusions 181

8.1.3 On Verification and Validation

Fred Brooks observed that to achieve a dramatic reduction in development time, a new
technology would have to simplify the essence of software development (Brooks 1987).
The general observation was that the more a technology strikes at the essence of what makes
software development difficult (duration, maintaining and cost), the better the results will be.
We believe in addition to this that providing an easy to learn, easy to use and repeatable
verification and validation process yields further gains against the issues in software

development.

We have described a verification approach of building design models suitable for the
analysis and verification of implementation processes that could be deployed into a,
potentially global, distributed environment. Through our goal of facilitating greater
assurance to composition engineers, these processes can collaboratively integrate into this
distributed environment, and that the result obtained through verification yields suitably rich
information such that engineers can adjust either design or implementation to provide greater

stability to such a deployed process.

Notably, the key step of mapping activities between the models is still something that
inhibits a fully mechanical approach. As we discussed in refining the service composition
models for verification (section 6.3) a mapping of activities is required to perform trace
equivalence of the implementation against design. This can only be achieved through a
common understanding between implementation engineer and the service designer. One
method to ease this mapping task is for the designer to follow a concise labelling of
activities, whereby the interaction is labelled in the same style as generated in our translation
whilst this does not have to be exact to the implementation labelling generation, We have
also chosen to centralise focus on the trace equivalence of implementation models against
design models yet the verification is not limited to this. Further work can be undertaken to
provide other types of verification, such as extended safety and liveness properties, which is
likely to be more useful when addressing choreography issues with partnered processes that
are not necessarily linked directly to interactions in a given composition process. Other
types of verification, such as fluent properties (Miller and Shanaham 1999), will provide a

greater range of analysis techniques to evolve this approach.

182 Chapter 8. Evaluation and Conclusions

On the validation of web service compositions, we have described this through model
simulation and animation (in section 6.5). In this work we provided a simple validation
mechanism illustrated through step-by-step interaction analysis of the model selected for
validation. Whilst this is not exclusively reserved for design, it is felt that in the approach a
designer would gain the most benefit by observing interactively what has been described in
the models produced by MSC synthesis. The essence of the simulation aspect of validation
is also provided through this animation mechanism. A trace run can be analysed
interactively, yet there is scope of improved simulation by way of allowing the user to
specify certain conditions (in terms of conditional statements) which can allow for testing of
various scenarios in the environment. An example of this may be to introduce certain faults
and ascertain how the composition recovers from this failure, and how the partnered

compositions process is similarly affected.
8.1.4 On lteration

The principle of our approach is to provide mechanical verification in an evolutionary style
of development. It is hypothesised that the steps of the approach (through design,
implementation and verification) will not be undertaken in a waterfall development approach
style, such as the Spiral Model described in (Boehm 1988). Moreover, it is anticipated that
the style of web service composition development will be more akin to Rapid Application
Development (RAD) approaches, such as the Dynamic Systems Development Methodology
(DSDM) (DSDM 1995). Our reasoning for this is that with reusable components, an initial
requirements baseline is considered when the first deployment occurs. The expectations of
these components will quickly be exhausted as new requirements and further functionality
are required by additional partners in a composition (Larrson and Crnkovic 1999; Yang and
Papazoglou 2003). Thus, the approach we describe has also the thought that it must support
a highly iterative process. We feel that the approach has clear boundaries in terms of inputs
required and outputs gained which assists in this repetition. For example, there are two
consistent sets of input criteria. Firstly, there is the set of compositional definitions
(specification, implementation, interfaces and web service standards) which remains
consistent in each iteration of the approach. Secondly, aligned with the compositional
definitions, is a set of verification and validation properties that the composition must fulfil.
We describe these as consistent in the sense that there is no fluctuation in the number of sets
for input or output. It is expected that the contents of these sets will change as each iteration

is undertaken.

Chapter 8. Evaluation and Conclusions 183

8.2 Evaluation of Tool Support

For the tool support evaluation, we appropriately split the discussion into a series of criteria
for evaluation taken from the work in (Clarke and Wing 1996). This criteria considers tool
support from several viewpoints including; ease of learning, early payback, efficiency of
developer’s time, increase in benefits, error detection, integrated development environment

enabled, focus on analysis and support for evolutionary development.
8.2.1 Ease of learning

“Notations and tools should provide a starting point for writing formal specifications for
developers who would not otherwise write them. The knowledge of formal specifications
needed to start realizing benefits should be minimal” (Clarke and Wing 1996).

Our approach and the tool built to support it, aims at providing the following criteria for its

ease of learning and carrying out verification and validation.

e The design specifications are based on the scenario approach, and the use of bMSC and
hMSC sequence charts is widely undertaken and understood in industry. Where other
work has concentrated on specifying formal algebraic notations for specifications, we
provide a graphical interface so that the user does not have to learn these sometimes
complex notations.

e The implementations are constructed either directly in the tool or through a third-party
tool such that the BPEL4WS engineers are not restricted in a particular editor
implementation or feature list to use our approach. There is already evidence of several
BPEL4WS editors in the Eclipse development environment.

e Verification properties can be specified by reusing the approach for building design
specifications. For example, the designer, in addition to building a complete set of
service scenarios for equivalence verification, may also submit further safety or liveness
properties by way of constructing bMSCs that specify these individual requirements.

e Validation is undertaken through an animated label transition system interface.
Validation can be undertaken with two views. Firstly, the designer can animate their
design specification and make initial assessment of what composition interactions should
occur, in which order and in relation to other compositions for choreography scenarios.

Secondly, the BPEL4WS engineer can verify implementations of composition process

184 Chapter 8. Evaluation and Conclusions

interaction through the same interface. Either party can examine counterexamples
generated by the verification steps in our approach through this interface.

e Results can be translated back in the format in which specifications were generated (i.e.
both in bMSC scenarios). Counterexamples show were differences have been detected,
and iterative checking can be used to manage each scenario and how each change made

to a composition affects the set of interactions covering all scenarios.
8.2.2 Early Payback

"Methods and tools should provide significant benefits almost as soon as people begin to use

them". (Clarke and Wing 1996).

Early payback is a key objective of the approach. As we discussed in Chapter 1, Section 1.1
in terms of motivation for this work, our aim is to support answering questions highlighted
by the distributed nature of web service compositions and on consideration of the pattern by
which these compositions may interact. Clearly, the benefits of using such an approach will
require early feedback to the developers so that assurance can be given, in both design and
implementation activities, as earlier as possible. We achieve this by separating the tool
between design and implementation, and consolidate their output to provide another view for
analysis. The iterative development does not necessarily suggest that service compositions
will be designed and implemented in isolation; moreover, we believe that compositions will
be part of collaborative developments cross-enterprise and yet still between several
development teams. An example of this is from the Police Enquiry case study discussed
earlier. The initial specification and composition design suggested a simple sequence of
interactions between one compositions interacting with up to five partnered services. Further
elaboration of the scenarios possible from that composition illustrated that the other
partnered services may also be compositions. Indeed, one of the last elaborations in the case
study suggested that several compositions all communicated with an ‘“Authorizer”
composition. Clearly, it can be seen that several design specifications and implementation
models may be used in this case study, which are not necessarily undertaken by a single
developer or engineer. By providing early feedback, in terms of verification and validation,
these types of projects can resolve local differences and yet at the same time consolidate

global requirements for choreography scenarios.

Chapter 8. Evaluation and Conclusions 185

8.2.3 Efficiency

“Tools should make efficient use of a developer’s time. Turnaround time with an interactive
tool should be comparable to that of normal compilation. Developers are likely to be more
patient, however, with completely automatic tools that perform more extensive analysis”

(Clarke and Wing 1996)

We have not given in depth analysis on the efficiency of our approach in this work. We have
provided some examples, such as in the Police Enquiry case study and in the evaluation
sections of this chapter to how the complexity of design specifications, joined with complex
composition implementations yield large process machines for analysis. Further work must
be undertaken to assess where efficient changes to analysis and associated algorithms are
streamlined to given optimal performance. Clearly, our approach relies heavily on and is
limited by, the efficiency of the underlying model checking technology. However, state of
the art model checkers, such as LTSA, have proven to manage efficiently large behaviour

models (Cleaveland and Smolka 1996).
8.2.4 Incremental gain for incremental effort

“Benefits should increase as developers get more adept or put more effort into writing

specifications or using tools” (Clarke and Wing 1996).

The most complex part of our approach is in determining the composite interactions in web
service choreography. Our work utilizes an algorithm to link compositions and by way of
elaborated design specifications, these interactions are compared with those of the
choreography requirements. The developers do not have to use the approach in such a way,
for example, they may simply chose to isolate verification at a single compositional level
(examining one process against its interactions with other, black box, services), yet it is
believed that as the developers become used to the approach that they will seek further

assurance in wider, cross-enterprise solutions.
8.2.5 Orientation toward error detection

“Methods and tools should be optimised for finding errors, not for certifying correctness.
They should support generating counterexamples as a means of debugging” (Clarke and

Wing 1996).

186 Chapter 8. Evaluation and Conclusions

The essence of our approach is to highlight inconsistencies between interactions specified in
composition implementations against that of those given in design specifications. We do not
aim to clarify notational and specification semantic correctness, although that can be
achieved to a degree by user validation through animation. We assume that correctness of
implementations is a given attribute of the inputs submitted for observing errors against
design specification scenarios, and as such, this provides orientation of our approach towards

error detection rather than correctness of these artifacts.
8.2.6 Integrated use

“Methods and tools should work in conjunction with each other and with common
programming languages and techniques Developers should not have to buy into a new
methodology completely to begin receiving benefits. The use of tools for formal methods
should be integrated with that of tools for traditional software development. E.g. compilers
and simulators.” (Clarke and Wing 1996)

From a technical implementation perspective, we wished to provide the tool as much as a
reusable service as that of which it is used to verify. In this way, we have scoped the
architecture for the tool to be extendable and integrated without a presumption of which
interfaces would be used to build the inputs to the tool core. In other words, the BPEL4WS
engineers are free to build the compositions in any supporting editor, yet on the one
condition that the output from these editors conforms with the same specification supported
by our tool. We also do not believe in forcing a new methodology upon developers by way
of the tool, but support various methodologies in the tasks that must be undertaken regardless
of the actual steps of a methodology e.g. verification and validation can be undertaken in

either design, implementation or maintenance.
8.2.7 Focused Analysis

“Methods and tools should be good at analysing at least one aspect of a system well, for
example, the control flow of a protocol. They need not be good at analysing all aspects of a
system” (Clarke and Wing 1996).

In a similar way as we discussed in section 8.2.5, we believe that our focus is on providing

verification analysis of composition implementations against those built as design

Chapter 8. Evaluation and Conclusions 187

specifications from web service composition requirements. Validation has been discussed,
but is really an additional benefit to building the core software process models. This is the
core analysis that we perceive such an approach will be undertaken, yet an alternative view is
that this can also lead to other forms of analysis, such as checking fluent properties (Uchitel,

Chatley et al. 2004).
8.2.8 Evolutionary Development

“Methods and tools should support evolutionary system development by allowing partial
specification and analysis of selected aspects of a system”. (Clarke and Wing 1996).

By the nature of web service compositions, they may represent only one part of a service-
oriented architecture. From the discussions above, it is clear that our approach provides an
incremental, elaborative approach to building compositions and realising the effects of
changes as they are introduced in the life-time of service. What is perhaps more interesting
is that as a software engineering community we are used to hearing about lifecycles of
systems, and yet the service-oriented architecture (implemented in one part through web
services compositions) can be seen to avoid that practice. In other words, individual
components of architecture may be removed or replaced, yet the service may still exist.
Related to this, we still need to undertake further work in providing greater assurance to
developers in areas such as fault tolerance, compensation and upholding choreography

policies.
8.3 Summary of Contributions

The main contribution of this thesis is to provide an approach, which when implemented
within a tool, demonstrates a mechanical verification of properties of interest to both
designers and implementers of web service compositions. The use of a formal, well defined,
process algebra (in this case FSP) provided a semantic mapping between the composition
implementation (in the BPEL4WS specification for web service compositions), and we were
fortunate to be able to leverage some work previously reported in (Uchitel 2003) for the
synthesis of design specifications, in the form of message sequence charts, to the same
process algebra. These two representations as models form the basis to provide further

model-based verification.

188 Chapter 8. Evaluation and Conclusions

Furthermore, our contribution consisted of several specific features. Firstly we built
behaviour models of both design specifications and implementation processes on the basis
that they modelled web service compositions, providing a guide to how this was achieved for
both local and global compositions and their choreography. Secondly, we provided a guide
on how to translate the semantics of the BPEL4WS specification to FSP and map
implementation abstractions which preserve the interaction behaviour between services, yet
also disposing of process characteristics which are not required in the analysis. Thirdly, we
elaborated these models to analyse the conversations of compositions across choreography
scenarios, providing both interface and behavioural compatibility verification processes.
Fourthly, we collaborated with the UK Police IT Organisation to illustrate a real and
practical example of how our approach may assist in web service composition development.
This not only provided a ground to prove our approach and gain feedback from users, but
also gains invaluable experience where currently there is a lack of reported findings in real-
world situations. Finally, we have contributed a plug-in tool for both the existing LTSA
plug-in architecture but also contributed to the open community through development of an

equal plug-in feature for the Eclipse development environment.

8.4 Future Work

Fundamentally, the future opportunities from undertaking this work have been discovered
through some of the limitations observed in the evaluation section of this chapter, and by the

dynamic and evolving nature of the service industry and research.

Firstly, on the current approach, the method of constructing design specifications, in the form
of basic message sequence charts provides further opportunity to allow message data
dependencies of composition behaviour to be considered. The aspects of this that would
most benefit our approach would be to observe how different message part values (between
service partners) yields alternative scenarios that can be verified against implementations of
compositions and choreography policies. For example, the state of a choreography
enactment between several service partners can only be verified if the differing values of
state are known at design time. In an order processing choreography, this would naturally
include such state as ‘“order placed” or “order could not be placed” for example.
Choreography defines how this state affects partnered processes which are not necessarily

involved in direct interactions. Related to this is the data representation within the

Chapter 8. Evaluation and Conclusions 189

composition implementations. Future work could evolve this representation to provide

expressions of data values within process algebra models.

The types of property used in verification are also open to a much broader range than
suggested in this work. The aspect of goal-based objectivies of a system is a particular
opportunity through the concept of checking fluent properties. Fluents are abstractions of
system state specified in terms of the occurrence of events. (Miller and Shanaham 1999)
informally define (propositional) fluents as follows: “Fluents (time-varying properties of the
world) are true at particular time-points if they have been initiated by an event occurrence at
some earlier timepoint, and not terminated by another event occurrence in the meantime.
Similarly, a fluent is false at a particular time-point if it has been previously terminated and
not initiated in the meantime.” This type of property provides useful state analysis over the
period that a service choreography is undertaken, raising the scope of verification from
composition and interactions to choreography policies. Within this future work, we wish to
continue describing behaviour by elaborating on the wider choreography aspects of partnered
service compositions. This includes considering fault, compensation and transactional
integrity within and between distributed processes. As part of this we are closely working
with consortiums, such as the W3C, on their work with choreography architectures and
specifications. It is anticipated that the result of their work could be incorporated into our
approach to provide an extension to the choreography elements we have considered thus far.
To assess our assumptions in translation of BPEL4WS semantics to that of FSP semantics,
we are also seeking to provide a mechanism to check the models produced in this approach
against trace runs output from BPEL4WS process engine instances. This is one way to
evaluate how accurate the translation is, although consequently, there is always the question
of whether the engine itself has been built to standards. We can therefore only compare
expected with actual results based upon an assumption that the implementation engine and

execution of a process are on best endeavours.

Secondly, the web services field is very much standards driven, and by the very nature of
standards, complying means keeping up-to-date on standards released and supporting new or
amended features. The expectation of this is that whilst BPEL4WS is the standard for web
service compositions as of this date, newer alternatives may superceed BPEL4AWS. We
believe the principles applied in this work however (for verification and validation of

processes), will remain consistent but will require updated work in the translation of these

190 Chapter 8. Evaluation and Conclusions

notations to software process models. Furthermore, we are not independent of other closely
related work in the techniques used in our approach. For example, the support in scenario-
based elaboration and implied scenarios is providing easier and accurate methods to support
describing requirements using such techniques as message sequence charts. Lastly, we also
believe we can extend the mechanism to resolve issues highlighted in the results from
verification and validation, by for example, tracing and highlighting parts of
implementations that relate to violations in the models analysed. We currently support
presentation in the form that the designer builds scenarios in a MSC editor, yet equally, the
BPEL4WS engineer should also have an accessible view as to which part of the composition

it relates to (by for example, MSC representations or syntax highlighting).
8.5 Closing Remarks

The need for pre-development and pre-deployment reasoning about the system behaviour has
been addressed by software engineers and software engineering researchers for many years.
To this end, a significant effort has been made in developing modelling notations, automated
analysis techniques and tool support. However, providing an intuitive interface to building
design models of service compositions and verifying these against implementations has been
largely neglected. Model construction and elaboration are engineering activities in their own
right, and developing support for these activities is a key challenge. Support which
complements existing behaviour modelling notations, analysis techniques and tools should

provide sound model-based engineering methods for software development.

Bibliography

Aalst, W. M. P. v. d. (2004). Pi calculus versus Petri nets: Let us eat "humble pie" rather than
further inflate the "Pi hype".

Aalst, W. M. P. v. d., M. Dumas, et al. (2003). Web Service Composition Languages: Old
Wine in New Bottles? Proceeding of the 29th EUROMICRO Conference: New Waves in
System Architecture, Los Alamitos, CA, IEEE Computer Society.

Abadi, M. and L. Lamport (1993). "Composing specifications." ACM Transactions on
Programming Languages and Systems 15(1): 73-132.

Abadi, M. and L. Lamport (1995). "Comjoining specifications." ACM Transactions on
Programming Languages and Systems 17(3): 507-534.

ACPO (2002). Association of Chief Police Officers (ACPO), ACPO Information Systems
Strategy - Version 2.0. United Kingdom.

ActiveBPEL (2005). ActiveBPEL - The Open Source BPEL Engine. Available from:
http://www.activebpel.org/, ActiveBPEL LLC.

Anderson, A., A. Nadalin, et al. (2004). "eXtensible Access Control Markup Language
(XACML) - Committee draft 04, 6 Dec." from http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

Ankolekar, A., M. Burstein, et al. (2002). DAML-S: Web Service Description for the
Semantic Web. 1st International Semantic Web Conference (ISWC), Sardinia, Italy.

Arkin, A. (2002). "Business Process Markup Language (BPML) Specification Version 1.0."
from http://www.bpmi.org/_vti_bin/shtml.exe/bpml-spec.htm.

Arkin, A., S. Askary, et al. (2002). Web Service Choreography Interface (WSCI) 1.0 - W3C
Note 8 August 2002, W3C - Web Services Choreography Working Group.

Austin, M. (2004). "ENSE 622: Systems Engineering Requirements, Design, and Trade-Off
Analysis." from http://www.isr.umd.edu/~austin/ense622.html.

Bajaj, S., D. Box, et al. (2004, September 2004). "Web Services Policy Framework (WS-
Policy)." s. 2004, from http://www-106.ibm.com/developerworks/library/specification/ws-

polfram/.

http://www.activebpel.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.bpmi.org/_vti_bin/shtml.exe/bpml-spec.htm
http://www.isr.umd.edu/~austin/ense622.html
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/

192 Bibliography

Balci, O. (1994). Validation, Verification, and Testing Techniques Throughout the Life
Cycle of a Simulation Study. 26th conference on Winter simulation, Orlando, Florida, USA.

Banerji, A., C. Bartolini, et al. (2002). "Web Services Conversation Language (WSCL)
v1.0." from http://www.w3.org/TR/wscl10/.

Basten, T. (1998). In Terms Of Nets: Systems Design with Petri Nets and Process Algebra.
Eindhoven, Endhoven University of Technology. PhD Thesis: 237.

Bergstra, J. A., A. Ponse, et al. (2001). Handbook of Process Algebra, ELSEVIER.

Berners-Lee, T. (2000). Weaving the Web. San Francisco, HarperBusiness.

Berners-Lee, T., R. Fielding, et al. (1998). Uniform Resource Identifiers (URI): Generic
Syntax, Internet Engineering Task Force.

Bharadwaj, R. and C. Heitmeyer (1999). "Model Checking Complete Requirements
Specifications Using Abstraction." Automated Software Engineering 6(1): 37-68.

Boehm, B. (1988). "A Spiral Model of Software Development and Enhancement." IEEE
Computer 21(5): 61-72.

Bolcer, G. A. and R. N. Taylor (1998). "Advanced workflow management technologies."
Software Process - Improvement and Practice 4(3): 125-171.

Bolognesi, T. and E. Brinksma (1987). Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems.

Bonett, M. (2001). Personalization of Web Services: Opportunities and Challenges. Ariadne.
June.

Booth, D., H. Haas, et al. (2004). "Web Services Architecture - W3C Working Group Note
11 February 2004." Retrieved 7th January, 2004, from http://www.w3.0rg/2002/ws/arch/.

Booth, D., H. Haas, et al. (2004, 28 October 2002). "Web Services Architecture (WS-A) -
W3C Working Group Note 11 February 2004." Retrieved 7th January, 2004, from
http://www.w3.org/TR/ws-arch/.

Box, D., D. Ehnebuske, et al. (2000). Simple Object Access Protocol (SOAP) 1.1. See:
http:// www.w3.org/TR/SOAP/, W3C SOAP WORKING GROUP.

Brogi, A., C. Canal, et al. (2004). Formalizing Web Services Choreographies. 1st
International Workshop on Web Services and Formal Methods (WS-FM 2004), Pisa, Italy.

Brooks, F. P. (1987). "No Silver Bullets - Essence and Accidents of Software Engineering."
IEEE Computer: 10-19.

Bukhres, O. and C. J. Crawley (1996). Failure Handling in Transactional Workflows
Utilizing CORBA 2.0. 10th ERCIM Database Research Group Workshop on Heterogeneous
Information Management, Prague.

Cabrera, F., G. Copeland, et al. (2002). Web Services Coordination (WS-Coordination),
BEA Systems, IBM, Microsoft Corporation.

http://www.w3.org/TR/wscl10/
http://www.w3.org/2002/ws/arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/SOAP/

Bibliography 193

Carbone, M., K. Honda, et al. (2005). "Programming interaction with Types." from
http://lists.w3.org/Archives/Public/public-ws-chor/2005Dec/0002.html.

Carbone, M., K. Honda, et al. (2005). A Theoretical Basis of Communication-Centred
Concurrent Programming, Available from: http://lists.w3.org/Archives/Public/public-ws-
chor/2005Nov/att-0015/part] _Nov25.pdf.

Castilho, M., L. A. Kunzle, et al. (2004). A Petri Net Based Representation for Planning
Problems. 5th International Conference on Knowledge Based Computer Systems,
Hyderabad, India.

Chandy, K. M. and A. Rifkin (1996). "Systematic Composition of Objects in Distributed
Internet Applications: Processes and Sessions." Computer Journal 40(8).

Chatley, R., J. Kramer, et al. (2003). Model-based Simulation of Web Applications for
Usability Assessment. The workshop on Bridging the Gaps between Software Engineering
and Human-Computer Interaction.

Checkland, P. (1982). Systems Thinking, Systems Practice. Chichester, UK, John Wiley and
Sons.

Checkland, P. (1990). Soft Systems Methodology in Action. Chichester, UK, John Wiley and
Sons.

Christensen, E., F. Curbera, et al. (2001). Web Services Description Language (WSDL) 1.1 -
W3C Note 15 March 2001. Internet, W3C XML Activity on XML Protocols.

Christensen, E., F. Curbera, et al. (2003). Web Services Description Language (WSDL) 1.2,
W3C.

Clarke, E. M., O. Grumberg, et al. (1994a). "Model Checking and modular verification."
ACM Transactions on Programming [Languages and Systems 16(3): 843-871.

Clarke, E. M., O. Grumberg, et al. (1994b). "Model Checking and Abstraction." ACM
Transactions on Programming Languages and Systems 16(5): 1512-1542.

Clarke, E. M. and J. M. Wing (1996). "Formal Methods: State of the Art and Future
Directions." ACM Computing Surveys 28(4): pp626-643.

Cleaveland, R., J. Parrow, et al. (1993). "The concurrency workbench:A semantics-based
tool for the wverification of concurrent systems." ACM Transactions on Programming
Languages and Systems 15(1): 36 —72.

Cleaveland, R. and S. A. Smolka (1996). "Strategic Directions in Concurrency Research."
ACM Computing Surveys 28(4): 607-625.

Curbera, F., M. J. Duftler, et al. (2002). "BPWS4J: A platform for creating and executing
BPEL4WS processes."

Curbera, F., M. J. Duftler, et al. (2004). "The IBM Business Process Execution Language for
Web Services JavaTM Run Time (BPWS4J) - V2.1 - April 13, 2004." 2004, from
http://www.alphaworks.ibm.com/tech/bpws4;.

http://lists.w3.org/Archives/Public/public-ws-chor/2005Dec/0002.html
http://lists.w3.org/Archives/Public/public-ws-chor/2005Nov/att-0015/part1_Nov25.pdf
http://lists.w3.org/Archives/Public/public-ws-chor/2005Nov/att-0015/part1_Nov25.pdf
http://www.alphaworks.ibm.com/tech/bpws4j

194 Bibliography

Curbera, F., Y. Goland, et al. (2002). Business Process Execution Language For Web
Services, Version 1.0.

Damianou, N., N. Dulay, et al. (2001). The Ponder Specification Language. Workshop on
Policies for Distributed Systems and Networks (Policy2001), HP Labs, Bristol, UK.

De-Leon, H. and E. Grumberg (1993). "Modular Abstractions for Verifying Real-Time
Distributed Systems." Formal Methods in System Design 2(1): 7-43.

DSDM. (1995). "The Dynamic Systems Development Methodology - Version 2.0."

Duan, Z., A. Bernstein, et al. (2004). Semantics Based Verification and Synthesis of
BPEL4WS Abstract Processes. 3rd IEEE International Conference on Web Services, San
Diego, CA.

Duftler, M. J., N. K. Mukhi, et al. (2001). "Web Services Invocation Framework (WSIF)."
2004, from http://www.research.ibm.com/people/b/bth/OOWS2001/duftler.pdf.

Edelstein, H. (1994). "Unraveling Client/Server Architecture." DBMS 7(5): 34.

Engels, G., J. M. Kuster, et al. (2003). "Model-Based Verification and Validation of
Properties." Electronic Notes in Theoretical Computer Science 82(7).

Erdogmus, H. (1997). "Architecture-Driven Verfication of Concurrent Systems." Nordic
Journal of Computing 4(NRC 41549): 380-413.

Ferrara, A. (2004). Web Services: A Process Algebra Approach. The 2nd International
Conference on Service Oriented Computing (ICSOC'04), New York City, NY, USA, ACM
Press.

Foster, H. (2003b). "LTSA-BPEL4WS Tool." from http://www.doc.ic.ac.uk/Itsa/bpel4ws.

Foster, H. (2004b). "BPEL Code Samples." from
http://www.bpelsource.com/resources/code.html.

Foster, H., S. Uchitel, et al. (2003a). Model-based Verification of Web Service
Compositions. Eighteenth IEEE International Conference on Automated Software
Engineering (ASE), Montreal, Canada, IEEE.

Foster, H., S. Uchitel, et al. (2004a). Compatibility for Web Service Choreography. 3rd IEEE
International Conference on Web Services (ICWS), San Diego, CA, IEEE.

Foster, H., S. Uchitel, et al. (2005). Tool Support for Model-Based Engineering of Web
Service Compositions. 3rd IEEE International Conference on Web Services (ICWS2005),
Orlando, FL, IEEE.

Foster, H., S. Uchitel, et al. (2005). Using a Rigorous Approach for Engineering Web
Service Compositions: A Case Study. 2nd IEEE International Conference on Services
Computing (SCC2005), Orlando, FL, IEEE.

Fowler, M. (2003). "Components and the World Of Chaos." IEEE Software 3(3): 83-85.

http://www.research.ibm.com/people/b/bth/OOWS2001/duftler.pdf
http://www.doc.ic.ac.uk/ltsa/bpel4ws
http://www.bpelsource.com/resources/code.html

Bibliography 195

Frantz, F. K. (1995). A Taxonomy of Model Abstraction Techniques. the Winter Simulation
Conference, New York, NY, Association for Computing Machinery.

Fu, X. (2004d). Formal Specification and Verification of Asynchronously Communicating
Web Services, Phd. Thesis. Santa Barbara, CA, USA, University of California.

Fu, X., T. Bultan, et al. (2004). "Conversation Protocols: A Formalism Specification and
Verification of Reactive Electronic Services."

Fu, X., T. Bultan, et al. (2004). WSAT: A tool for Formal Analysis of Web Services. 16th
International Conference on Computer Aided Verification (CAV), Boston, MA.

Fu, X., T. Bultan, et al. (2004b). Analysis of Interacting BPEL Web Services. 3rd IEEE
International Conference on Web Services (ICWS), San Diego, CA.

Gardner, T. (2003). UML Modelling of Automated Business Process with Mapping to
BPEL4WS. European Workshop on Object Orientation and Web Services, Darmstadt,
Germany.

Gardner, T. (2003). UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS. First European Workshop onWeb Services and Object Orientation (ECOOP
2003), Darmstadt, Germany.

Garg, P. K. and W. Scacchi (1989). "ISHYS: Design of an Intelligent Software Hypertext
Environment." IEEE Expert 4(3): 52-63.

Gluch, D. P., S. Cormella-Dorda, et al. (2001). Model-Based Verification: Abstraction
Guidelines. Pitssburgh, PA, Software Engineering Institute.

Graubmann, P. (2003). "Describing interactions between MSC components: the MSC
connectors." The International Journal of Computer and Telecommunications Networking
42(3): 323-342.

Gudgin, M. and M. Hadley (2003). Web Services Description Language (WSDL Binding)
1.2 - W3C Working Draft 8 December 2004. Internet, W3C Web Services Activity.

Gudgin, M. and M. Hadley (2004). Web Services Description Language (WSDL Binding)
1.2 - W3C Working Draft 8 December 2004. Internet, W3C Web Services Activity.

Gudgin, M., A. Lewis, et al. (2004). "Web Services Description Language (WSDL) Version
2.0 Part 2: Message Exchange Patterns - W3C Working Draft 26 March 2004." from
http://www.w3.0org/TR/2004/WD-wsdl20-patterns-20040326/.

Haas, H. (2002). Web Services Activity - W3C Web Services Activity Group.

Hailpern, B. and P.Santhanarn (2002). "Software debugging, testing and verification." IBM
Systems Journal 41(1): 4-12.

Hall, R. J. (2003). Open Modeling in Multi-stakeholder Distributed Systems: Model-based
Requirements Engineering for the 21st Century. Proc. First Workshop on the State of the Art
in Automated Software Engineering, U.C. Irvine Institute for Software Research.

http://www.w3.org/TR/2004/WD-wsdl20-patterns-20040326/

196 Bibliography

Hamadi, R. and B. Benatallah (2004). A Petri Net-based Model for Web Services
Composition. 3rd IEEE International Conference On Web Services (ICWS), San Diego, CA.

Heitmeyer, C., J. Kirby, et al. (1998). "Using Abstraction and Model-Checking to Detect
Safety Violations in Requirements Specifications." IEEE Transactions on Software
Engineering 24(11): 932-941.

Hoare, C. A. R. (1985). Communicating Sequential Processes, Pentice-Hall.

Hogg, T. and B. A. Huberman (1991). "Controlling chaos in Distributed Systems." IEEE
Transactions on Systems Management and Cybernetics 21: 1325-1332.

Holzmann, G. J. (1997). "The Model Checker SPIN." IEEE Transactions on Software
Engineering 23(5): 1-17.

Holzmann, G. J. (1997). "The Model Checker Spin." IEEE Transactions on Software
Engineering 23(5): pp. 279-295.

Holzmann, G. J. (2003). The SPIN Model Checker: Primer and Reference Manual, Addison-
Wesley Professional.

Hruby, P. (1998). Specification of Workflow Management Systems with UML. OOPSLA
Workshop on Implementation and Application of Object-oriented Workflow Management
Systems, Vancouver, BC.

Hu, M. (2003). Web Services Composition, Partition, and Quality of Service in Distributed
System Integration and Re-engineering. XML Conference 2003, Philadelphia, PA,
IDEAlliance.

Hu, M. (2004). Quality of Service Composition and Factoring In Composite Web Services
Based Business Process. XML Conference 2004, Washington D.C., USA, IDEAlliance.

Huff, K. E. and V. R. Lesser (1989). A Plan-Based Intelligent Assistant that Supports the
Software Development Process. Third Software Engineering Symposium on Practical
Software Development Environments.

IBM. (2004). "IBM Eclipse Innovation Awardees." from http:/www-
306.1bm.com/software/info/university/products/eclipse/eig-2004.html.

IBM. (2005). "IBM Eclipse Innovation Awardees." from http:/www-
306.1bm.com/software/info/university/products/eclipse/eig-2004.html.

ISO (1995). Open Distributed Processing - Reference Model - Part2: Foundations,
International Standard 10746-2 / ITU-Recommendation X.902.

ITU (1996). Message Sequence Charts, Recommendation Z.120, International
Telecommunications Union. Telecommunication Standardisation Sector.

Iyengar, S. (2003). Business Process Integration Using UML and BPEL4WS. XML
Conference & Exposition 2003, Philadelphia, PA, IDE Alliance.

Iyengar, S. (2003). Business Process Integration Using UML and BPEL4WS. XML
Conference and Exposition 2003, Philadelphia, PA.

http://www-306.ibm.com/software/info/university/products/eclipse/eig-2004.html
http://www-306.ibm.com/software/info/university/products/eclipse/eig-2004.html
http://www-306.ibm.com/software/info/university/products/eclipse/eig-2004.html
http://www-306.ibm.com/software/info/university/products/eclipse/eig-2004.html

Bibliography 197

Jacobson, 1., J. Rumbaugh, et al. (1999). The Unified Software Development Process,
Addison-Wesley, Harlow, UK.

Jiang, P., Q. Mair, et al. (2003). Using UML to design distributed collaborative workflows:
from UML to XPDL. Twelfth IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), Linz, Austria.

Johnson, J., T. L. Roberts, et al. (1989). "The Xerox "Star": A Retrospective." IEEE
Computer 22(9): pp 11-29.

Karamanolis, C., D.Giannakopoulou, et al. (1999). Modelling and Analysis of Workflow
Processes. London, Imperial College of Science, Technology and Medicine.

Kavantzas, N., D. Burdett, et al. (2004). Web Service Choreography Description Language
(WS-CDL) - W3C Working Draft 17 December 2004, W3C - Web Services Choreography
Working Group.

Kavantzas, N., D. Burdett, et al. (2004). "Web Services Choreography Description Language
Version 1.0 - W3C Working Draft 17 December 2004." from
http://www.w3.0rg/TR/2004/WD-ws-cdl-10-20041217/.

Khalaf, R., N. Mukhi, et al. (2003). Service-Oriented Composition in BPEL4WS. The
Twelfth International World Wide Web Conference, Budapest, HUNGARY, WWW2003.

Kling, R. and W. Scacchi (1982). "The Web of Computing: Computer Technology as Social
Organization." Advances in Computers 21: 1-90.

Koshkina, M. (2003). Verification of Business Processes for Web Services. Department of
Computer Science. Toronto, Ontario, York University.

Lamsweerde, A. v. (2001). Goal-Oriented Requirements Engineering: A Guided Tour. 5th
IEEE Intl. Sym. on Requirements Engineering (RE'01), Toronto, Canada.

Larrson, M. and I. Crnkovic (1999). New Challenges for Configuration Management. 9th
Software Configuration Management Workshop, Toulouse, France.

Larrson, M. and I. Crnkovic (1999). New Challenges for Configuration Management. the
SCM-9 workshop, Toulouse, France, Springer-Verlag.

Leiner, B. M., V. G. Cerf, et al. (2002). "A Brief History of the Internet." version 3.32. from
http://www.isoc.org/internet/history/brief.shtml.

Levi, K. and A. Arsanjani (2002). "A goal-driven approach to enterprise component
identification and specification." Communications of the ACM 45(10): pp 45-52.

Leymann, F. (2001). Web Services Flow Language (WSFL 1.0), IBM Academy Of
Technology.

Lynch, A. N. and M. R. Tuttle (1987). Hierarchical Correctness Proofs for Distributed
Algorithms. 6th Annual Symp. on Principles of Distributed Computing, Vancouver, Canada.

Magee, J. and J. Kramer (1997). Exposing the Skeleton in the Coordination Closet. 2nd
International Conference COORDINATION '97, Berlin, Germany.

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
http://www.isoc.org/internet/history/brief.shtml

198 Bibliography

Magee, J. and J. Kramer (1999). Concurrency - State Models and Java Programs, John
Wiley.

Magee, J., J. Kramer, et al. (1997). Analysing the Behaviour of Distributed
SoftwareArchitectures: a Case Study. 5th IEEE Workshop onFuture Trends of Distributed
Computing Systems, Tunisia.

Magee, J., J. Kramer, et al. (1999). Behaviour analysis of Software Architectures. Ist
Working IFIP Conference On Software Architecture (WICSAT), San Antonio, TX, USA.

Maghrabi, T. H. (2004). "ICS 411 "Senior Project" (032) - Research-Based Projects." 2004,
from http://faculty.kfupm.edu.sa/ics/maghrabi/ics411-032/ics-topics.doc.

Mantell, K. (2003). From UML to BPEL. Available from: www-
128.ibm.com/developerworks/webservices/library/ws-uml2bpel, IBM.

Microsoft (2001).NET: Driving Business Value with the Microsoft Platform, Microsoft
Corporation.

Miller, R. and M. Shanaham (1999). "The Event Calculus in Classical Logic - Alternative
Axiomatisations." Linkoping Electronic Articles in Computer and Information Science
4(16): p 1-27.

Milner, R. (1980). A Calculus of Communicating Systems.

Milner, R. (1989). Communication and Concurrency. Upper Saddle River, NJ, USA,
Prentice-Hall, Inc.

Milner, R., J. Parrow, et al. (1992). "A Calculus of Mobile Processes." Information and
Computation 100(1): 1-40.

Murata, T. (1989). "Petri Nets: Properties, Analysis and Applications." Proceedings of the
IEEE 77(4): 541-580.

Nakajima, S. (2002). Model-Checking Verification for Reliable Web Service. OOPSLA
2002 Workshop on Object-Oriented Web Services, Seattle, Washington.

Nakajima, S. (2002). On Verifying Web Service Flows. SAINT 2002 Workshop - WebSE
2002.

Narayanan, S. and S. A. Mcllraith (2002). Simulation, Verification and Automated
Composition of Web Services. Eleventh International World Wide Web Conference
(WWW-11), Honolulu, Hawaii.

Nuseibeh, B. and S. Easterbrook (2000). Requirements engineering: A roadmap.
International Conference on Software Engineering (ICSE'00), Limerick.

Niittgens, M. (2003). "Business Process Modeling with EPC and UML Transformation or
Integration?"

OASIS (1993). Organization for the Advancement of Structured Information Standards
(http://www.oasis-open.org).

http://faculty.kfupm.edu.sa/ics/maghrabi/ics411-032/ics-topics.doc
http://www.oasis-open.org)/

Bibliography 199

OMG (2002). Unified Modelling Language, Available at: http://www.omg.org.

ORACLE (2005). ORACLE BPEL Process Manager. Available from:
http://www.oracle.com/technology/products/ias/bpel/index.html.

Osterweil, L. (1987). Software processes are software too. the 9th International Conference
on Software Engineering, Monterey, CA USA.

Paananen, J. (1995). Introduction to and comparison of formalisms. Tik-110.501 Seminar on
Network Security. Available at: http:/www.tml.tkk.fi/Opinnot/Tik-110.501/1995/intfo.html.
Helsinki University of Technology.

Papazoglou, M. and J. Yang (2002). "Design Methodology for Web Services and Business
Pro- cesses." Lecture Notes in Computer Science 2444.

Pavlovic, D. and D. R. Smith (2002). Guarded Transitions in Evolving Specifications. 9th
International Conference on Algebraic Methodology And Software Technology (AMAST
2002), St. Gilles les Bains, Reunion Island, France, Springer-Verlag LNCS.

Petri, C. A. (1966). Technical Report RADC-TR-65-377. New York, Griffiss Air Force
Base: Vol 1. Suppl 1.

Pistore, M., M. Roveri, et al. (2004). Requirements-driven Verification of Web Services. 1st
International Workshop on Web Services and Formal Methods (WS-FM 2004), Pisa, Italy.

RATIONALSOFTWARE. (1997). "UML Extension for Business Modeling version 1.1."
Unified Modeling Language version 1.1, from
http://www.rational.com/uml/documentation.html.

Roberts, L. G. and B. D. Wessler (1970). Computer Network Development to Achieve
Resource Sharing. Spring Joint Computer Conference, AFIPS Proceedings.

Ross-Talbot, S. (2004). "Web Services Choreography and Process Algebra." 2004.

Salaun, G., A. Ferrara, et al. (2004). Negotiation Among Web Services Using
LOTOS/CADP. European Conference on Web Services (ECWS2004), Erfurt, Germany.

Scacchi, W. (2000). "Understanding software process redesign using modeling, analysis and
simulation." Software Process—Improvement and Practice.

Schlimmer, J. C. (2002, 28 October 2002). "Web Services Description Requirements."
Retrieved 7th January, 2002, from http://www.w3.org/TR/ws-desc-reqs/.

Schumaker, K. (1999). "A Taxonomy of Simulation Software." from
http://antioch.rice.edu/etrac/lester/thesaurus_br.html.

Seeley, R. (2003). "Berners-Lee: Integrate Web services and Semantic Web. Quote from
Gartner Web Services and Application Integration conference." from
http://www.adtmag.com/article.asp?id=7662.

Sherman, D., D. Shaffer, et al. (2002). Orchestrating Asynchronous Web Services, Collaxa.

http://www.omg.org/
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/intfo.html
http://www.rational.com/uml/documentation.html
http://www.w3.org/TR/ws-desc-reqs/
http://antioch.rice.edu/etrac/lester/thesaurus_br.html
http://www.adtmag.com/article.asp?id=7662

200 Bibliography

Siegel, J. (2003). Using OMG’s Model Driven Architecture (MDA) to Integrate Web
Services, Object Management Group.

Soley, R. (2003). White paper: Model-Driven Architecture, Object Management Group
(OMQG).

Srivastava, B. and J. Koehler (2003). Web Service Composition - Current Solutions and
Open Problems. The 13th International Conference on Automated Planning & Scheduling
(ICAPS), Trento, Italy.

Stevens, P. (1999). Tools and Algorithms for the Construction and Analysis of Systems. 5th
International Conference, TACAS'99, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS'99, Amsterdam, The Netherlands.

Subramanian, S. (1993). A Mechanized Framework for Specifying Problem Domains and
Verifying Plans. Department Of Computer Science. Austin, Texas, University of Texas.

Sun (2001). Implementing Services on Demand With the Sun Open Net Environment - Sun
ONE. Sun Professional Services White Paper. I. Sun Microsystems. Palo Alto, CA.

Thatte, S. (2001). XLANG - Web Services For Business Process Design, Microsoft
Corporation.

Uchitel S., R.Chately, et al. (2003). LTSA-MSC: Tool Support for Behaviour Model
Elaboration Using Implied Scenarios. Ninth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), Warsaw, Poland.

Uchitel, S. (2003). Incremental Elaboration of Scenario-Based Specifications and Behaviour
Models Using Implied Scenarios. Distributed Software Engineering. London, Imperial
College London.

Uchitel, S., R. Chatley, et al. (2004). Fluent-Based Animation: Exploiting the Relation
between Goals and Scenarios for Requirements Validation. Requirements Engineering
(RE'04).

Uchitel, S., J.Magee, et al. (2001). Detecting Implied Scenarios in Message Sequence Chart
Specifications. 9th European Software Engineering Conferece and 9th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (ESEC/FSE'01),
Vienna, Austria.

Uchitel, S. and J. Kramer (2001). A Workbench for Synthesising Behaviour Models from
Scenarios. the 23rd IEEE International Conference on Software Engineering (ICSE'01),
Toronto, Canada.

W3C-Org (1994). W3C - The World Wide Web Consortium (http://www.w3c.org).

Winograd, T. and F. Flores (1986). Understanding Computers and Cognition: A New
Foundation for Design. Lexington, MA, Ablex Publishers.

Wohed, P., W. M. P. v. d. Aalst, et al. (2002). Pattern Based Analysis of BPEL4WS.
Brisbane, Queensland University of Technology.

http://www.w3c.org)/

Bibliography 201

Woodman, S., D. Palmer, et al. (2004). Notations for the Specification and Verification of
Composite Web Services. 8th IEEE International Enterprise Distributed Object Computing
(EDOC) Conference, Monterey, California.

Yang, J. and M. P. Papazoglou (2003). "Service Components for Managing the Life-Cycle of
Service Compositions." Information Systems.

Yi, X. and K. J.Kochut (2004). Towards Efficient Integration of Complex Web Services
Using a Unified Model for Protocol and Process. 5th International Conference on Internet
Computing (IC 2004), Las Vegas, Nevada, USA.

Yi, X. and Krys.J.Kochut (2004). Process Composition of Web Services with Complex
Conversation Protocols: a Colored Petri Nets Based Approach. Design, Analysis, and
Simulation of Distributed Systems Symposium, Washington DC, USA.

Yu, E. (1997). Towards Modeling and Reasoning Support For Early Requirements
Engineering. 3rd International Symposium on Requirements Engineering (RE '97),
Annapolis, MD.

Appendix A — WS-*

A.1 Web Service Standards

Layer Standards ‘ Description

Profile WS-I Basic Profile Standard to ensure that vendors and web service providers meet an agreed usage
of standards below.

Composition WS-BPEL/BPEL4WS The BPEL4WS specification defines a notation for specifying business process

(Business Process Execution | behaviour based on Web Services. BPEL4WS focuses on orchestration rather

and Language) than choreography (i.e. by using a single controller)

Choreo graphy WS-CDL Transactions among Web services and their clients must clearly be well defined at

(Choreography Description the time of their execution, and may consist of multiple separate interactions

Language) whose composition constitutes a complete transaction. This composition, its
message protocols, interfaces, sequencing, and associated logic, is considered to
be choreography.

Transaction WS-Transaction This specification describes coordination types that are used with the extensible
coordination framework described in the WS-Coordination specification. It
defines two coordination types: Atomic Transaction (AT) and Business Activity
(BA).

WS-Coordination This specification (WS-Coordination) describes an extensible framework for
providing protocols that coordinate the actions of distributed applications. Such
coordination protocols are used to support a number of applications, including
those that need to reach consistent agreement on the outcome of distributed
activities.

OASIS BTP At a most simple level BTP allows a set of remote calls to be grouped together
and the outcomes tied together. It allows for; all or nothing outcome; mixed
outcome; service alternative recognition and selection; time qualification and
exception reporting.

Rel1ab111ty WS-Reliability WS-Reliability is a specification for open, reliable Web services messaging
including guaranteed delivery, duplicate message elimination and message
ordering, enabling reliable communication between Web services.

WS-ReliableMessaging This specification (WS-ReliableMessaging) describes a protocol that allows
messages to be delivered reliably between distributed applications in the presence
of software component, system, or network failures.

S ecurity WS-Security A mechanism for incorporating security information into XML messages

XML Encryption Standard for encrypting and decrypting parts of xml documents

SAML Security Assertions Markup Language for role-based permissions on resources
used by a web service

Disc overy WSDL The Web Service Description Language is an XML format for describing network
services as a set of endpoints

UDDI UDDI stands for Universal Description, Discovery and Integration. The UDDI

(Universal Description, specification enables businesses to quickly, easily, and dynamically find and

Discovery and Integration). transact with one another. UDDI enables a business to (i) describe its business
and its services, (ii) discover other businesses that offer desired services, and (iii)
integrate with these other businesses.

Message SOAP a lightweight xml protocol intended for exchanging structured information in a
decentralized, distributed environment.

Format UBL a standard library of XML business documents (purchase orders, invoices, etc.)
by modifying an already existing library of XML schemas to incorporate the best
features of other existing XML business libraries

ebXML ebXML intends to develop a technical framework that will enable XML to be
utilized in a consistent manner for the exchange of all electronic business data

Transport HTTP - HyperText The protocol for moving hypertext (or other) files across the Internet.

. Transfer Protocol

Mechanism

Policies WS-Policy

WS-SecurityPolicy

XACML

Policy frameworks and specifications for access control and obligations

Appendix B
FSP SEMANTICS

B.1 FSP Process Syntax

A process is defined by one or more local processes separated by commas. The definition is
terminated by a full stop. STOP and ERROR are primitive local processes.
Examples: 1. Process = (a -> Local), 2. Local = (b -> STOP).

Table B-1 FSP Process Operators
Operator Description

Action prefix (x—>P) describes a process that initially engages in the action x and then
- behaves as described by the auxiliary process P
Choice “|” (x=>P | y->Q) describes a process which initially engages in either x or

y, and whose subsequent behaviour is described by auxiliary processes P or
Q, respectively

Recursion the behaviour of a process may be defined in terms of itself, in order to
express repetition

End state describes a process that has terminated successfully and cannot perform any

END more actions

Alphabet Extension The alphabet of a process is the set of actions in which it can engage. P + S

+ extends the alphabet of the process P with the actions in the set S.

B.2 Composite Processes

A composite process is the sequential or parallel composition of one or more processes. The
definition of a sequential composite process is proceeded by ; (semi-colon) whereas a
parallel composite process is proceeded by ||.

Example: 1. Sequence =P ; Q; END. 2. |/Composite = (P || Q).

Table B-2 FSP Composite Process Operators

Operator Description

Sequential composition (P;Q) where P is a process with an END state, describes a process that

; behaves as P and when it reaches the END state of P starts behaving as the
auxiliary process Q

Parallel composition || (P||Q) describes the parallel composition of processes P and Q

Replicator Forall [i:1..N] P(i) is the parallel composition (P(1) || ... || P(N))

forall

Process Labelling a:P prefixes each label in the alphabet of P with a.

Process Sharing {actionl..actionx}::P replaces every label n in the alphabet of P with the

labels actionl.n , actionx.n. Further, every transition (n->Q) in the definition
of P is replaced with the transitions ({actionl.n,..,actionx.n}->Q).

Appendix B 204

B.3 Common Operators

The operators listed in table B-1 are common to both processes and composite processes.

Table B-3 FSP Composite Process Operators
Operator Description

Condiitional The process (if B then P else Q) behaves as the process P if the condition B

if then else is true otherwise it behaves as Q. If the else Q is omitted and B is false then
the process behaves as STOP.

Relabelling Re-labelling is applied to a process to change the names of action labels.

/ The general form of re-labelling is / {newlabel/oldlabel}.

Hiding When applied to a process P, the hiding operator \ {actionl, actionx}

\ removes the action names from the alphabet of P and makes these concealed

actions “silent”. These silent actions are labelled tau. Silent actions in
different processes are not shared.
Interface When applied to a process P, the interface operator @ {actionl, actionx....}
@ hides all actions in the alphabet of P not labelled in the set action]...actionx.

B.4 Properties

Table B-4 FSP Process Properties
Operator Description

Trace equivalence deterministic P describes the minimal trace equivalent process to P.
minimisation If no terminating traces are proper prefixes of other traces, then it also
deterministic preserves END states

Strong semantic equivalence Minimal P describes the minimal strong semantic equivalent process to P
minimisation

minimal

Safety A safety property P defines a deterministic process that asserts that any trace
property including actions in the alphabet of P, is accepted by P.

Progress progress P = {actionl, ...actionx} defines a progress property P which
progress asserts that in an infinite execution of a target system, at least one of the

actions actionl...actionx will be executed infinitely often.

Appendix C
BPEL4WS To FSP

C.1 Primitive Activities to FSP

BPEL4WS FSP Process Example \ Comments

Construct

(primitive activities)

Invoke INVOKE = (invoke pl ol -> END). Where pl is a named

Receive RECEIVE = (receive pl ol -> END). partner, and ol is a named

Reply REPLY = (reply pl ol -> END). operation.

Terminate INVOKEl = (invoke pl ol -> END). Where pl and p2 are
INVOKE2 = (invoke p2 o2 -> END). named partners, and ol
Set ACTSET = {invoke pl ol,invoke p2 o2} and 02 are named
TERMS = (ACTSET->TERMS | terminate->END) . operations.
| | TERMINATE = (INVOKE1 |] INVOKEZ2 | |
TERMS) .

C.2 Structured Activities to FSP

BPEL4WS FSP Process Example \ Comments

Construct

Sequence INVOKE = (invoke pl ol -> END). Where pl and p2 are
RECEIVE = (receive p2 o2 -> END). named partners, and ol
SEQUENCE = INVOKE; RECEIVE; END. and 02 are named

operations.

Flow INVOKE = (invoke pl ol -> END). Where pl and p2 are
RECEIVE = (receive p2 o2 -> END). named partners, and ol
FLOW = (INVOKE || RECEIVE). and 02 are named

operations.

Links TLINKl = (target link -> END). a) Where target link is a
| | TARGETLINKS = (TLINK1). named target operation
SLINK1 = (source link -> END). link and source_link is a
| ISOURCELINKS = (SLINK1). named source operation
INVOKE = (invoke pl ol -> END). link.
SEQUENCE = b) Where pl is a named
TARGETLINKS; INVOKE; SOURCELINKS; END. partner, and ol is a named
| | LINKPROCESS = (SEQUENCE) . Operation,

Links are pre and post
guarded transitions for an
operation or a scope of
operations. To model the
synchronisation of linked
transitions, the link
process is composed with
the source and target
processes.

206 Appendix C

C.3 Guarded Activities to FSP

BPEL4WS FSP Process Example \ Comments
Construct

(variable constructs — read/write operator process)

range VR = 0..n (where n is a possible range of values for evaluation)
VARIABLE (A=0) = VARIABLE[A},

VARIABLE[1:VR] = (write[j:VR]->VARIABLE[Jj] | read[i] ->VARIABLE[i]),
VARIABLE[‘null] = (write[j:VR]->VARIABLE[]j] | read[i] -> VARIABLE[‘null]).
Assign ASSIGN1l = (assign variable[x] -> END. Where assign_variable is
a process variable used in
the composition, and x is
an enumerated value to
read or store.
BPEL4WS FSP Process Example ‘ Comments
Construct
While WHILEAB = exp:WHILE variable. a) where exp is of type
set WHILEEXP_ alphabet = WHILE variable which is
{exp.{read,write}. [Range]} a declared read/write
WHILEEVAL = (exp.read[i:Range]- operator process.
>WHILEEVAL[i]), b) where pl is a named
WHILEEVAL[i:Range] = if (i==0) partner, and ol is a named
then SEQ1; WHILEEVAL else END. operation_
RECEIVEl = (receive pl ol -> END).

SEQ1 = RECEIVE; END.
WHILESEQ = WHILEEVAL; END +
{WHILEAB alphabet}.

| |[WHILE = (WHILESEQ) .

Switch CASE1EVALC = (exp.read[i:Range] a) where exp is of type
->CASE1EVALCI[i]), WHILE variable which is
CASE1EVALC[i: Range] = if (i==0) then a declared read/write
CASE1l; END else OTHERWISE; END. operator process.
| | CASELIEVAL = (CASE1EVALC).
caselprocess = (exp.write[0] ->END).
| |CASE1l = (caselprocess) .
caseZprocess = (exp.write[l] -> END).
| |OTHERWISE = (caseZprocess).

MARKETPLACESWITCH = CASE1lEVALC; END.

Pick ATM ONMESSAGE DISCONNECT = Ead10nNks%gezmﬁvﬁy
(disconnect->END) . is translated to a process
DISCONNECT = and composed as an
(connected.value.write[1l] ->END). alternative message path
ATM ONMESSAGE DIS SEQ = in the pmaﬂd
ATM ONMESSAGE DISCONNECT; DISCONNECT; END. conmogﬁonpnmeﬁ.
ATM ONMESSAGE LOGON = (logon->END) .
LOGON = (loggedon.value.write[0] -> END).

ATM ONMESSAGE_LOGON_SEQ

ATM ONMESSAGE LOGON; LOGON; END.
PICK = (ATM ONMESSAGE DIS SEQ ||
ATM ONMESSAGE_LOGON_SEQ) .

Appendix C 207

C.4 Fault Handling Activities to FSP

BPEL4WS FSP Process Example Comments

Construct

Fault Handlers | FAULTHAND1 = Each faultHandler

(inline) (fault.read[i:Compensate IntRange]- type of fault is
>FAULTI1[1]), modelled as an
FAULTHANDI [i:Compensate IntRange] = if alternative process
(1==0) then DOFAULT1l; END else if (i==1) path in the
then DOFAULT2; END. composition.
DOFAULT1 = (faultlraised->END).
DOFAULT2 = (fault2raised->END). As a fault is raised,
INVOKE1l =(invoke seller SyncPurchase->END) . all remaining
INVOKEZ2 =(invoke shipper OrderShipment- activities in the
>END) . scoped faultHandler
ACTSEQ = INVOKEl ; INVOKEZ2 ; END. are terminated. The
| IACTIVITIES = (INVOKEl || INVOKE2) . process therefore is a
set ACTSET = {invoke seller SyncPurchase, choice of paths (e.g.
invoke shipper OrderShipment} TERMS).
TERMS = (ACTSET -> TERMS | faultlraised ->
END | fault2raised -> END).
| | FAULTMON = (ACTSEQ || TERMS || FAULTHANDI1) .

Compensation COMPENSATE = A compensation

Handlers (compensate.read[1:TRUEFALSE variable] Handler (inline) is

(inline) ->COMPENSATE[1]), represented as an
COMPENSATE [i: TRUEFALSE variable] = if alternative process
(i=="true’) then COMPENSATE_INVOKE; END else | path in the
END. composition of a
COMPENSATE INVOKE = single activity. If an
(invoke seller CancelPurchase -> END). evaluation at the end
INVOKE = (invoke seller SyncPurchase -> of the normal process
END) . execution results to
INVOKE SEQ = INVOKE; COMPENSATE; END. TRUE, then the
| | COMPENSATEEXAMPLE = (INVOKE SEQ) . compensation process

if followed.

BPEL4WS FSP Process Example Comments

Construct

(scoped) COMPENSATE = A compensation

(compensate.read[i:TRUEFALSE variable]-
>COMPENSATE[1]),

COMPENSATE [1i: TRUEFALSE variable] = if
(i=="true’) then
COMPENSATE INVOKE; END else END.
INVOKE3 =

(invoke seller CancelPurchase-
>END) .

INVOKE4 =
>END) .
COMPENSATE INVOKE =
INVOKE1l = (invoke seller CancelP->END).
INVOKE2 = (invoke supplier CancelS->END).
INVOKE SEQ = INVOKEl; INVOKEZ; COMPENSATE;
END.

| | COMPENSATESCOPE =

(invoke supplier CancelSupplier-

INVOKE3; INVOKE4; END.

(INVOKE_SEQ) .

Handler (scoped) is
represented as an
alternative process
path in the
composition of a
process of one or
many activities. If an
evaluation at the end
of the normal process
execution results to

TRUE, then the
compensation process
if followed.

	Motivation
	The Approach
	Motivating Example
	Contributions
	Thesis Outline
	Evolution of the Computing Network
	Evolution of Distributed Computing
	Web Services Architecture
	Web Service Behaviour
	The Problem Domain
	Web Service Interfaces
	Web Service Compositions
	Web Service Choreography
	The Service-Oriented Model (SOM)
	Service Goals, Policies and Obligations
	Goal-Oriented Requirements Engineering

	Software Process Analysis
	Software Process Models
	π-calculus
	Petri-Nets
	Finite State Process
	Comparison

	Review of Related Work
	Web Service Specifications
	Modelling Web Service Compositions and Choreography
	Verification and Behaviour Analysis
	Tool Support and Case Studies
	Summary of related work and our approach

	Summary and Discussion
	Specifying Web Service Compositions
	The Scenario Approach
	Basic Message Sequence Charts (bMSC)
	High Level Message Sequence Charts (hMSC)

	MSCs, Compositions and Choreography
	Mapping MSCs elements to Web Service Composition Behaviour
	Web Service Compositions as MSCs
	Web Service Choreography as MSCs

	Synthesising MSCs to Labeled Transition Systems
	Summary and Discussion
	Modelling BPEL4WS Processes
	Overview of BPEL4WS
	BPEL4WS Processes and Business Protocols
	Private Process Structure
	Mapping BPEL4WS Processes to FSP

	Mapping Primitive Activities
	Label Abstraction of Web Service Interactions
	Invoke, Receive, Reply
	Wait and Empty
	Terminate

	Structured Activities
	Sequences of Activities
	Concurrent Activities
	Linked Transitions

	Guarded Process Activities
	Variable Abstraction and Guards
	Assign
	While
	Switch..Case
	Pick..onMessage

	Fault and Compensation Handlers
	Modelling Fault Handling
	Throw
	Modelling Compensation Handling

	A Complete Example
	Assumptions and Limitations
	Summary and Discussion
	Web Service Interactions and Choreography
	Modelling Web Service Interactions
	Service Conversations
	Service Partners and Roles
	Linking Composition Interactions
	An Interaction Modelling Algorithm

	Building Interaction Models
	Composition Process Interactions
	Connecting a Set of Processes
	Messaging Port Connector Models

	Summary and Discussion
	Analysis of Web Service Compositions and Choreography
	Approach to Analysis of the SOM
	Techniques used in the Analysis

	Preparation for Analysis
	Types of Preparation Activities
	Preparation for Composition Abstraction and Mappings
	Sample Scenario for Verification and Validation

	Refining Composition Behaviour Models
	Reduction of Implementation Specific Activities
	Grouping Design and Implementation Activities between Models
	Building an Architecture Model for Analysis

	Analysis of Composition Behaviour Models
	Composition Design and Implementation Equivalence
	Compatibility of Service Composition Interactions
	Other Properties

	Validation Analysis of Behaviour Models
	Composition Validation through Animation

	Summary and Discussion
	Tool Support
	Tool Architecture
	Initial Prototype as Plug-in for LTSA
	Migrating the tool to the Eclipse Environment

	Case Study: UK National Police IT Web Service Compositions
	Introduction
	Scope
	Issues and Our Contribution
	Requirements
	Specification
	Implementation and Analysis
	Choreography
	Summary and Discussion

	Evaluation of Approach
	On Design Specifications
	On Modelling Implementations
	On Verification and Validation
	On Iteration

	Evaluation of Tool Support
	Ease of learning
	Early Payback
	Efficiency
	Incremental gain for incremental effort
	Orientation toward error detection
	Integrated use
	Focused Analysis
	Evolutionary Development

	Summary of Contributions
	Future Work
	Closing Remarks
	Bibliography
	Appendix A – WS-*
	A.1 Web Service Standards

	Appendix B
	FSP SEMANTICS
	B.1 FSP Process Syntax
	B.2 Composite Processes
	B.3 Common Operators
	B.4 Properties

	Appendix C
	BPEL4WS To FSP
	C.1 Primitive Activities to FSP
	C.2 Structured Activities to FSP
	C.3 Guarded Activities to FSP
	C.4 Fault Handling Activities to FSP

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

