
Imperial College London 

University Of London 

Department of Computing 

 
 
 
 
 

A Rigorous Approach  
To Engineering  

Web Service Compositions 
 
 
 

Howard Foster 
 
 
 
 
 

 
 
 
 
 
 
A thesis submitted in fulfilment of the requirements for the degree of Doctor of 
Philosophy in the Faculty of Engineering of the University of London, and for 
the Diploma of the Imperial College of London. 

 
 

January 2006 



Abstract 

 

Despite the emergence of standards to define and compose Web Services to form more 

complex systems, as yet, there is little support for engineering systems composed from 

multiple services. As web technology has evolved, tools have been developed that support the 

design of both visual content and functional services for users. Web Services however, 

concentrate on the view of systems inter-operating with other systems rather than that of 

actual human actors, yet the concepts related to ease of design are still highly relevant. 

However, as yet, tools which assist service design and composition provide only basic 

capabilities. 

 

The main contribution of this work is to provide a rigorous approach to specifying, modelling, 

verifying and validating the behaviour of web service compositions with the goal of 

simplifying the task of designing coordinated distributed services and their interaction 

requirements. We address these issues through the use of rigorous software process analysis 

techniques.  The thesis specifies semantics for web service composition standards and 

develops an accessible, mechanical tool, which automates the tasks involved. 

 

This thesis presents a model-based approach built upon formal verification, validation and 

simulation techniques, utilising scenario-based design and implementations built in service 

composition standards. The work assigns the semantics of compositions through the use of 

Labelled Transition Systems (LTS) in the form of Finite State Processes (FSP).  A tool suite 

is also presented, forming an environment to assist in undertaking the approach, and featuring 

an extendable and flexible architecture for the variety of compositional standards that exist.  

The approach is validated using a case study as a result of collaborative work with the UK 

Police Information Technology Organisation (PITO) and through example compositions 

published by the International Business Machines Corporation (IBM). 

 



Acknowledgements 

 

This thesis is dedicated to my family, friends and colleagues whose support has proved 

invaluable to my research.  Through the progress of undertaking this research, I have felt 

extremely fortunate to have contributed in part to the emerging use of standards and the 

application of formal modelling techniques to analyse software processes constructed in these 

standards. In particular, the many varied discussions I have had surrounding the issues 

associated with the validation and verification of processes for web service composition has 

continually boosted my endurance to pursue new ideas and here I mention those who have 

been part of this work. 

 

In particular, I would like to thank my supervisor Jeff Magee for discussions and guidance, 

who has not only been a source for academic progression, but has also provided a friendship 

and understanding throughout my research.  Additionally the support from Jeff Kramer and 

Sebastian Uchitel also proved highly complementary to working through ideas and 

considering possible solutions.  Thanks are also due for Robert Chatley, who assisted in 

building early prototypes of the tool described in this thesis and continuing to update the core 

analyser and other plug-ins.  I would also like to thank those beta testers of the tool 

(potentially unknown to them that they were!) for returning comments and highlighting where 

the use of the tool for the approach could be improved.   

 

I will also fondly remember all those I met at the annual conferences on software engineering 

and web service research, and particularly, the growing emphasis of service composition and 

choreography reasoning playing an increasing part of their publications. 

 

“…the best test of truth is the power of the thought to get itself  

accepted in the competition of the market.”  

(Oliver Wendel Homes Jnr, dissent. Abrams v. United States, 1919) 

 

 
Financial Support for this thesis has been provided in part by a series of IBM Eclipse Innovation Awards (2004, 

2005) and with the assistance of the Department of Computing, Imperial College London. 

http://www.quotationspage.com/quote/3731.html
http://www.quotationspage.com/quote/3731.html


Table of Contents 
 

ABSTRACT ........................................................................................................................................................... 2 

ACKNOWLEDGEMENTS.................................................................................................................................. 3 

LIST OF FIGURES............................................................................................................................................... 8 

GLOSSARY......................................................................................................................................................... 12 

CHAPTER 1  INTRODUCTION....................................................................................................................... 13 

1.1 MOTIVATION ............................................................................................................................................... 13 
1.2 THE APPROACH ........................................................................................................................................... 17 
1.3 MOTIVATING EXAMPLE ............................................................................................................................... 19 
1.4 CONTRIBUTIONS .......................................................................................................................................... 21 
1.5 THESIS OUTLINE.......................................................................................................................................... 22 

CHAPTER 2  BACKGROUND......................................................................................................................... 24 

2.1 EVOLUTION OF THE COMPUTING NETWORK ................................................................................................ 24 
2.2 EVOLUTION OF DISTRIBUTED COMPUTING .................................................................................................. 25 
2.3 WEB SERVICES ARCHITECTURE................................................................................................................... 27 
2.4 WEB SERVICE BEHAVIOUR .......................................................................................................................... 28 

2.4.1 The Problem Domain.......................................................................................................................... 30 
2.4.2 Web Service Interfaces........................................................................................................................ 30 
2.4.3 Web Service Compositions.................................................................................................................. 31 
2.4.4 Web Service Choreography ................................................................................................................ 33 
2.4.5 The Service-Oriented Model (SOM) ................................................................................................... 34 
2.4.6 Service Goals, Policies and Obligations............................................................................................. 35 
2.4.7 Goal-Oriented Requirements Engineering.......................................................................................... 37 

2.5 SOFTWARE PROCESS ANALYSIS................................................................................................................... 38 
2.5.1 Software Process Models .................................................................................................................... 39 
2.5.2 π-calculus............................................................................................................................................ 40 
2.5.3 Petri-Nets ............................................................................................................................................ 41 
2.5.4 Finite State Process ............................................................................................................................ 42 
2.5.5 Comparison......................................................................................................................................... 42 

2.6 REVIEW OF RELATED WORK........................................................................................................................ 43 
2.6.1 Web Service Specifications ................................................................................................................. 43 
2.6.2 Modelling Web Service Compositions and Choreography ................................................................. 44 
2.6.3 Verification and Behaviour Analysis .................................................................................................. 47 
2.6.4 Tool Support and Case Studies ........................................................................................................... 48 
2.6.5 Summary of related work and our approach ...................................................................................... 49 

2.7 SUMMARY AND DISCUSSION........................................................................................................................ 50 



 

CHAPTER 3  WEB SERVICE SPECIFICATIONS ....................................................................................... 52 

3.1 SPECIFYING WEB SERVICE COMPOSITIONS.................................................................................................. 52 
3.2 THE SCENARIO APPROACH .......................................................................................................................... 54 

3.2.1 Basic Message Sequence Charts (bMSC) ........................................................................................... 55 
3.2.2 High Level Message Sequence Charts (hMSC)................................................................................... 56 

3.3 MSCS, COMPOSITIONS AND CHOREOGRAPHY ............................................................................................. 57 
3.3.1 Mapping MSCs elements to Web Service Composition Behaviour ..................................................... 57 
3.3.2 Web Service Compositions as MSCs................................................................................................... 57 
3.3.3 Web Service Choreography as MSCs ................................................................................................. 60 

3.4 SYNTHESISING MSCS TO LABELED TRANSITION SYSTEMS ......................................................................... 61 
3.5 SUMMARY AND DISCUSSION........................................................................................................................ 62 

CHAPTER 4  MODELLING WEB SERVICE COMPOSITIONS................................................................ 64 

4.1 MODELLING BPEL4WS PROCESSES............................................................................................................ 64 
4.1.1 Overview of BPEL4WS ....................................................................................................................... 64 
4.1.2 BPEL4WS Processes and Business Protocols .................................................................................... 65 
4.1.3 Private Process Structure ................................................................................................................... 66 
4.1.4 Mapping BPEL4WS Processes to FSP ............................................................................................... 68 

4.2 MAPPING PRIMITIVE ACTIVITIES ................................................................................................................. 69 
4.2.1 Label Abstraction of Web Service Interactions................................................................................... 69 
4.2.2 Invoke, Receive, Reply ........................................................................................................................ 70 
4.2.3 Wait and Empty................................................................................................................................... 71 
4.2.4 Terminate ............................................................................................................................................ 72 

4.3 STRUCTURED ACTIVITIES ............................................................................................................................ 72 
4.3.1 Sequences of Activities ........................................................................................................................ 73 
4.3.2 Concurrent Activities .......................................................................................................................... 73 
4.3.3 Linked Transitions .............................................................................................................................. 75 

4.4 GUARDED PROCESS ACTIVITIES .................................................................................................................. 76 
4.4.1 Variable Abstraction and Guards ....................................................................................................... 76 
4.4.2 Assign.................................................................................................................................................. 78 
4.4.3 While ................................................................................................................................................... 78 
4.4.4 Switch/Case......................................................................................................................................... 79 
4.4.5 Pick/onMessage .................................................................................................................................. 82 

4.5 FAULT AND COMPENSATION HANDLERS ..................................................................................................... 84 
4.5.1 Modelling Fault Handling .................................................................................................................. 84 
4.5.2 Throw.................................................................................................................................................. 84 
4.5.3 Modelling Compensation Handling .................................................................................................... 85 

4.6 A COMPLETE EXAMPLE ............................................................................................................................... 90 
4.7 ASSUMPTIONS AND LIMITATIONS ................................................................................................................ 95 
4.8 SUMMARY AND DISCUSSION........................................................................................................................ 97 



CHAPTER 5  MODELLING WEB SERVICE CHOREOGRAPHY ............................................................ 98 

5.1 WEB SERVICE INTERACTIONS AND CHOREOGRAPHY................................................................................... 98 
5.2 MODELLING WEB SERVICE INTERACTIONS ............................................................................................... 100 

5.2.1 Service Conversations....................................................................................................................... 100 
5.2.2 Service Partners and Roles ............................................................................................................... 101 
5.2.3 Linking Composition Interactions..................................................................................................... 102 
5.2.4 An Interaction Modelling Algorithm................................................................................................. 105 

5.3 BUILDING INTERACTION MODELS ............................................................................................................. 107 
5.3.1 Composition Process Interactions .................................................................................................... 107 
5.3.2 Building a Set of Processes............................................................................................................... 108 
5.3.3 Messaging Port Connector Models................................................................................................... 109 

5.4 SUMMARY AND DISCUSSION...................................................................................................................... 116 

CHAPTER 6  ANALYSIS FOR THE SERVICE-ORIENTED MODEL.................................................... 117 

6.1 ANALYSIS OF WEB SERVICE COMPOSITIONS AND CHOREOGRAPHY .......................................................... 117 
6.1.1 Approach to Analysis of the SOM ..................................................................................................... 117 
6.1.2 Techniques used in the Analysis........................................................................................................ 119 

6.2 PREPARATION FOR ANALYSIS .................................................................................................................... 121 
6.2.1 Types of Preparation Activities......................................................................................................... 121 
6.2.2 Preparation for Composition Abstraction and Mappings................................................................. 122 
6.2.3 Sample Scenario for Verification and Validation ............................................................................. 123 

6.3 REFINING COMPOSITION BEHAVIOUR MODELS ......................................................................................... 124 
6.3.1 Reduction of Implementation Specific Activities ............................................................................... 124 
6.3.2 Grouping Design and Implementation Activities between Models ................................................... 125 
6.3.3 Building an Architecture Model for Analysis.................................................................................... 126 

6.4 ANALYSIS OF COMPOSITION BEHAVIOUR MODELS.................................................................................... 127 
6.4.1 Composition Design and Implementation Equivalence .................................................................... 128 
6.4.2 Compatibility of Service Composition Interactions .......................................................................... 135 
6.4.3 Other Properties ............................................................................................................................... 139 

6.5 VALIDATION ANALYSIS OF BEHAVIOUR MODELS ..................................................................................... 143 
6.5.1 Composition Validation through Animation ..................................................................................... 144 

6.6 SUMMARY AND DISCUSSION...................................................................................................................... 147 

CHAPTER 7  TOOL SUPPORT AND CASE STUDY ................................................................................. 148 

7.1 TOOL SUPPORT .......................................................................................................................................... 148 
7.1.1 Tool Architecture .............................................................................................................................. 149 
7.1.2 Initial Prototype as Plug-in for LTSA ............................................................................................... 150 
7.1.3 Migrating the tool to the Eclipse Environment ................................................................................. 153 

7.2 CASE STUDY: UK NATIONAL POLICE IT WEB SERVICE COMPOSITIONS.................................................... 155 
7.2.1 Introduction ...................................................................................................................................... 155 
7.2.2 Scope................................................................................................................................................. 155 



7.2.3 Issues and Our Contribution............................................................................................................. 156 
7.2.4 Requirements .................................................................................................................................... 157 
7.2.5 Specification...................................................................................................................................... 158 
7.2.6 Implementation and Analysis ............................................................................................................ 162 
7.2.7 Choreography ................................................................................................................................... 170 
7.2.8 Summary and Discussion .................................................................................................................. 175 

CHAPTER 8  EVALUATION AND CONCLUSIONS ................................................................................. 176 

8.1 EVALUATION OF APPROACH ...................................................................................................................... 176 
8.1.1 On Design Specifications .................................................................................................................. 177 
8.1.2 On Modelling Implementations......................................................................................................... 179 
8.1.3 On Verification and Validation......................................................................................................... 181 
8.1.4 On Iteration....................................................................................................................................... 182 

8.2 EVALUATION OF TOOL SUPPORT ............................................................................................................... 183 
8.2.1 Ease of learning ................................................................................................................................ 183 
8.2.2 Early Payback................................................................................................................................... 184 
8.2.3 Efficiency .......................................................................................................................................... 185 
8.2.4 Incremental gain for incremental effort ............................................................................................ 185 
8.2.5 Orientation toward error detection................................................................................................... 185 
8.2.6 Integrated use ................................................................................................................................... 186 
8.2.7 Focused Analysis .............................................................................................................................. 186 
8.2.8 Evolutionary Development................................................................................................................ 187 

8.3 SUMMARY OF CONTRIBUTIONS.................................................................................................................. 187 
8.4 FUTURE WORK .......................................................................................................................................... 188 
8.5 CLOSING REMARKS ................................................................................................................................... 190 

BIBLIOGRAPHY ............................................................................................................................................. 191 

APPENDIX A – WS-*....................................................................................................................................... 202 

A.1  WEB SERVICE STANDARDS ...................................................................................................................... 202 

APPENDIX B – FSP SEMANTICS................................................................................................................. 203 

B.1  PROCESSES............................................................................................................................................... 203 
B.2  COMPOSITE PROCESSES............................................................................................................................ 203 
B.3  COMMON OPERATORS.............................................................................................................................. 204 
B.4  PROPERTIES.............................................................................................................................................. 204 

APPENDIX C – BPEL4WS TO FSP ............................................................................................................... 205 

C.1  PRIMITIVE ACTIVITIES ............................................................................................................................. 205 
C.2  STRUCTURED ACTIVITIES......................................................................................................................... 205 
C.3  GUARDED ACTIVITIES.............................................................................................................................. 206 
C.4  FAULT HANDLING ACTIVITIES ................................................................................................................. 207 



List of Figures 
 
Figure 1-1  Web Services, Compositions and Choreography in a Police Enquiry Collaboration ......................... 15 

Figure 1-2  An Approach to Rigorous Engineering of Web Service Compositions.............................................. 18 

Figure 1-3  UK PITO Case Study – Police Enquiry Service Domain and Hierarchy............................................ 20 

Figure 1-4  Chapters and subtopics of thesis ......................................................................................................... 23 

Figure 2-1  Evolution of Distributed Computing Architecture Styles ................................................................... 27 

Figure 2-2  Web Services Standards Stack............................................................................................................ 28 

Figure 2-3   Web Services and Software Process Elements .................................................................................. 29 

Figure 2-4  WSDL Structure ................................................................................................................................. 31 

Figure 2-5.  Elements and relationships of a Service Oriented Model .................................................................. 35 

Figure 2-6  Elements of SOM for Verification and Validation of Services........................................................... 36 

Figure 2-7   Scenario of shared (printer) resource between server and client........................................................ 40 

Figure 2-8   A Petri-Net example for a Simplified Alternating Bit process .......................................................... 41 

Figure 2-9  FSP and LTS of a sequential process composition ............................................................................. 42 

Figure 3-1  Example service composition for a new loan request ......................................................................... 53 

Figure 3-2  A Rich-Picture of viewpoints in a loan selection service composition............................................... 54 

Figure 3-3  Example scenario of a loan offer service composition ....................................................................... 55 

Figure 3-4  Example bMSCs for scenarios in the loan selection service composition .......................................... 56 

Figure 3-5.  High Level MSC (hMSC) for Loan Selection Service composition.................................................. 57 

Figure 3-6.  Basic MSCs and Web Service Composition elements....................................................................... 59 

Figure 3-7  Basic MSC and Web Service Choreography elements forming a Collaboration Group..................... 61 

Figure 3-8  Architectural Model LTS of Loan Selection Composition ................................................................. 62 

Figure 3-9  LTS for Loan Selection Service Process............................................................................................. 62 

Figure 3-10  Elements of the approach discussed in chapter 3.............................................................................. 63 

Figure 4-1  Basic BPEL4WS Process Structure and Activity Groups................................................................... 66 

Figure 4-2  Standard Transitional Attributes and Elements Tags of BPEL4WS Activities .................................. 68 

Figure 4-3.  Basic Service Activity Labelling ....................................................................................................... 70 

Figure 4-4  Invoke, Receive and Reply constructs and mapping to FSP............................................................... 71 

Figure 4-5  Example mapping of terminate activity as LTS process..................................................................... 72 

Figure 4-6  Sequence construct and mapping to FSP ............................................................................................ 73 

Figure 4-7  Flow construct and mapping to FSP for concurrent activities ............................................................ 74 

Figure 4-8  Mapping link Semantics for part of a loan approval process.............................................................. 75 

Figure 4-9  The Variable form in BPEL4WS........................................................................................................ 76 

Figure 4-10  Read-write Models for BPEL4WS Variables.  FSP (top), LTS (bottom) ......................................... 77 

Figure 4-11  Assign construct and FSP mapping .................................................................................................. 79 

Figure 4-12  While construct and mapping to FSP................................................................................................ 80 

Figure 4-13  Switch/Case construct and mapping to FSP ..................................................................................... 81 

Figure 4-14  FSP Code for Pick..OnMessage event model for an ATM Logon.................................................... 83 

Figure 4-15  LTS of Fault Handler and normal execution activity scope.............................................................. 86 



Figure 4-16  LTS of Throw activity model and process synchronisation.............................................................. 87 

Figure 4-17  Compensation Handlers as inline (top-left) or scoped (top-right) and activity (bottom).................. 88 

Figure 4-18  Compensate (inline) choice of execution paths ................................................................................ 89 

Figure 4-19  LTS of scoped compensation handler activities................................................................................ 90 

Figure 4-20  LoanApproval models (bottom) produced from Linked Receive Activity (top)............................... 92 

Figure 4-21  LTS for models produced from InvokeAssessor Activity ................................................................ 92 

Figure 4-22  LTS for models produced from InvokeApprover Activity ............................................................... 93 

Figure 4-23  Assign activity to set reply message content..................................................................................... 94 

Figure 4-24  LTS for models produced from Reply Message Assign Activity ..................................................... 94 

Figure 4-25  LTS for model produced by mapping of reply activity..................................................................... 95 

Figure 4-26  Architecture Model of Loan Approval Web Service Composition................................................... 96 

Figure 4-27.  Elements of approach discussed in chapter 4................................................................................... 97 

Figure 5-1  View of multiple service compositions interacting and choreography layer ...................................... 99 

Figure 5-2.  Composition Interaction Analysis Sub-Action Diagram ................................................................. 101 

Figure 5-3.  Service Partners, PartnerLinks and Roles in Composition Linking................................................. 103 

Figure 5-4.  PartnerLinkType, PartnerLink and Partner construct forms ............................................................ 104 

Figure 5-5.  Flow-chart of algorithm for Modelling Composition Interactions................................................... 106 

Figure 5-6   Web Service Composition and Port Channels ................................................................................. 107 

Figure 5-7.  View of Multiple Web Service Compositions Interacting in a Police Enquiry Scenario................. 108 

Figure 5-8  Scenario and Diagram for a MarketPlace Service Composition....................................................... 109 

Figure 5-9.  FSP Code for Buyer and Seller Interactions with a MarketPlace Process ....................................... 110 

Figure 5-10  Channels and Interaction Activities of Web Service Compositions ............................................... 110 

Figure 5-11  LTS of Model for Request Only Port Connector ............................................................................ 111 

Figure 5-12.  LTS of Model for Synchronous Rendezvous Port Connector........................................................ 112 

Figure 5-13.  Mapping Activities Between Port Connector and BPEL4WS for ................................................. 113 

Figure 5-14  FSP Code segments for mapping activities..................................................................................... 114 

Figure 5-15  LTS for Partial Set of Interactions between Seller, Buyer and Marketplace Compositions ........... 115 

Figure 5-16.  Elements of the approach discussed in chapter 5........................................................................... 116 

Figure 6-1  Approach to analysis of Service Specifications and Implementation Models .................................. 118 

Figure 6-2.  Behaviour Refinement through Analysis and Abstraction............................................................... 122 

Figure 6-3  Example scenario of activities in a Message Auditing Service Composition ................................... 123 

Figure 6-4.  Composition Implementation Alphabet before Reduction............................................................... 124 

Figure 6-5  FSP code for Refined Composition Architecture Model .................................................................. 127 

Figure 6-6  Approach for Verification Analysis of Composition Models ........................................................... 128 

Figure 6-7  bMSCs for scenarios in the echo-audit service composition ............................................................ 130 

Figure 6-8  hMSC of echo-audit service composition......................................................................................... 130 

Figure 6-9  LTS model for MSC scenario Echo-Audit Composition.................................................................. 131 

Figure 6-10  BPEL4WS Process Structure for .................................................................................................... 131 

Figure 6-11  LTS model for BPEL4WS Provider Service Activities in Echo-Audit Composition..................... 132 

Figure 6-12  LTS model for BPEL4WS Provider Service mapped to MSC activities ........................................ 133 

Figure 6-13  FSP code for equivalence verification of BPEL4WS against MSC models ................................... 134 



Figure 6-14  Trace run example of trace equivalence of MSC and BPEL4WS models ...................................... 134 

Figure 6-15  FSP code for equivalence verification of BPEL4WS against MSC models ................................... 134 

Figure 6-16  BPEL4WS Process Structures for Services in Echo-Audit Composition Example ........................ 137 

Figure 6-17  FSP code for Client-Provider port connector model....................................................................... 137 

Figure 6-18  Port Connectors for Services in Echo-Audit Composition Example .............................................. 138 

Figure 6-19  FSP code for parallel composition of BPEL4WS services and port connectors ............................. 138 

Figure 6-20  Deadlock example of compatibility verification BPEL4WS and partnered services...................... 138 

Figure 6-21  FSP code for safety property that a request to log a client is made ................................................ 140 

Figure 6-22  LTS model of a violation of a safety property in the Provider Service Composition ..................... 141 

Figure 6-23  FSP code for progress property that a reply to a client is always made.......................................... 142 

Figure 6-24  FSP code for equivalence verification of BPEL4WS against MSC models ................................... 142 

Figure 6-25 Approach for Validation Analysis of Composition Models............................................................. 144 

Figure 6-26  A sample validation of a sequence using LTSA Animator function............................................... 145 

Figure 6-27  A sample validation of alternative paths using LTSA Animator function...................................... 146 

Figure 6-28  The alternative paths available using LTSA Animator function..................................................... 146 

Figure 6-29.  Elements of the approach discussed in chapter 6........................................................................... 147 

Figure 7-1  LTSA-WS Tool Component Architecture ........................................................................................ 149 

Figure 7-2  LTSA-MSC: hMSC .......................................................................................................................... 151 

Figure 7-3  LTSA-MSC: bMSC .......................................................................................................................... 151 

Figure 7-4  LTSA-WS Interface and LTSA plug-in framework ......................................................................... 152 

Figure 7-5  LTSA-WS:  FSP ............................................................................................................................... 152 

Figure 7-6  LTSA-WS: Verification.................................................................................................................... 152 

Figure 7-7  LTSA-WS:  Validation and Animation ............................................................................................ 153 

Figure 7-8  Web Service Composition Development with LTSA-Eclipse.......................................................... 154 

Figure 7-9  PITO Web Services Architecture Scope........................................................................................... 156 

Figure 7-10  A Pilot Project Scenario for Web Service Composition in PITO ................................................... 157 

Figure 7-11  Initial specification for a PITO police enquiry web service composition ....................................... 158 

Figure 7-12  Concurrent interactions introduced in to the PITO composition specification ............................... 159 

Figure 7-13  Partial scenario for Vehicle Enquiry reply and ANPR request constraint ...................................... 160 

Figure 7-14  Partial specification scenario to constrain nominal enquiry with result of insurance enquiry ........ 160 

Figure 7-15  Partial specification scenario to constrain nominal enquiry with result of vehicle enquiry............ 161 

Figure 7-16  hMSC for PITO Police Enquiry composition ................................................................................. 161 

Figure 7-17  PITO Police Enquiry Basic BPEL4WS Process structure (interactions only) ................................ 162 

Figure 7-18  Partial PITO Police Enquiry Basic BPEL4WS Process with assignments ..................................... 163 

Figure 7-19  Partial BPEL4WS Process sequence with assignments .................................................................. 163 

Figure 7-20  Graphical LTS view of Police Enquiry Composition with abstraction........................................... 164 

Figure 7-21  Results of trace equivalence test to check BPEL4WS partially fulfils MSC specification............. 165 

Figure 7-22  Results of trace equivalence test to check scenarios not covered by BPEL4WS composition ....... 166 

Figure 7-23  Modified BPEL4WS Process to support FLOW of Vehicle Enquiry and Insurance Invocations .. 167 

Figure 7-24  Trace equivalence verification to check current vehicle enquiries in BPEL4WS composition ...... 167 

Figure 7-25  BPEL4WS Process to support LINKED transitions of Vehicle Enquiry and Nominal Enquiry .... 168 



Figure 7-26  Final BPEL4WS process for verification........................................................................................ 169 

Figure 7-27  Final BPEL4WS process verification against MSC specification .................................................. 169 

Figure 7-28  A Pilot Project Scenario for Web Service Composition in PITO ................................................... 170 

Figure 7-29  Overview of choreography of elaborated composition scenario..................................................... 171 

Figure 7-30  Specification for scenario of Vehicle, ANPR and Authorisation Enquiries ................................... 172 

Figure 7-31  Police Enquiry composition in Choreography example.................................................................. 172 

Figure 7-32  Vehicle Enquiry composition in Choreography example ............................................................... 173 

Figure 7-33  ANPR Enquiry (Traffic Services)  in Choreography example........................................................ 173 

Figure 7-34  Port Connector model between Police Enquiry and Vehicle Enquiry compositions ...................... 174 

Figure 7-35  Deadlock example of compatibility verification BPEL4WS and partnered compositions ............. 174 

Figure 7-36  Results of trace equivalence test to check BPEL4WS partially fulfils MSC specification............. 175 



Glossary 
 

The following glossary terms are taken from the Open Distributed Processing Reference 

Model (ISO 1995), and various Web Service specifications including; (Christensen, Curbera 

et al. 2001; Leymann 2001; Haas 2002; Schlimmer 2002; Christensen, Curbera et al. 2003; 

Gudgin and Hadley 2003; Booth, Haas et al. 2004; Gudgin and Hadley 2004).  Traditional 

and more general descriptions are cross-referenced with relation to web services. 

 
Term Applied To 

Web Services 

Definition 

Behaviour A web service’s behaviour is defined by the set of activities behind that service and 

mapping those activities to message exchanges. 

Choreography Choreography describes the collective message exchange among interacting Web Services, 

providing a global, message-oriented view of the interactions (observing and controlling a 

many to many relationship). 

Composition A web service composition consists of an orchestration of web service interactions defined 

in a local process (itself potentially a service).  Static web service compositions are those 

which use services known at design time and are bound to a composition at design time.  

Dynamic web service compositions those which define web service interactions where the 

services are not known at design time, and which are discovered or their properties 

resolved based upon a criteria process set at design time.  

Interface A service interface is the abstract boundary that a service exposes. It defines the types of 

messages and the message exchange patterns that are involved in interacting with the 

service, together with any conditions implied by those messages.  A web service’s interface 

describes the operations provided by that service and biographical information about where 

the service may be referenced (e.g. network address). 

Orchestration Describes the definition and the implementation of processes that drives the message 

exchanges between one or more web services.   The BPEL4WS standard refers to 

participating services as composition Partners.  Interaction is seen between one process and 

many services (i.e. one to many). 

Problem Domain The functional area of interest, or under control, by individual or groups of (web) services 

hosted on the internet and accessible either locally or globally (to other service groups) to 

fulfil a task or a series of tasks within the function area. 

Service A web service is a software application identified by a URI, whose interfaces and binding 

are capable of being defined, described and discovered by XML artefacts and supports 

direct interactions with other software applications using XML based messages via 

Internet-based protocols. 



 

Chapter 1  

Introduction 
  

“…the inherent complexity of a software system is related to the problem it is trying to solve.  The actual 

complexity is related to the size and structure of the software system as built.” (Kevin Henney, 1999) 

1.1   Motivation 

Distributed software systems, and the interactions between components within these systems, 

can exhibit a high level of complexity and lead to difficulty in the assessment of what system 

behaviour is possible in multiple scenarios (Hogg and Huberman 1991).  Constraining such a 

system requires us to fully understand the behaviour of the system and place controls on 

which sets of activities a system can perform. A distributed software system also encourages 

system evolution, by offering reusable services so that other systems may also include 

components from each other without reengineering solutions.  Web Services (components 

interfaced using XML and standard internet protocols) are one such software architecture to 

exhibit this need for control, combining the flexibility and reach of the internet, the principles 

of reusability, with that of conventional distributed systems engineering practices. 

 

The effect of using earlier distributed architecture styles has been prone to issues of semantic 

failure (where processes fail to achieve a goal due to transaction failures) and difficulties in 

providing the necessary distributed compensation handling sequences (Bukhres and Crawley 

1996).  There have also been difficulties attributed to the strict binding of compositions with 

specific technologies.  Where previously designers of compositions had to work very closely 

with the developers of a technical solution, there is now a mechanism to support technology 



Chapter 1. Introduction 14 

independent software component invocation through the standards used in Web Service 

architectures.  This provides opportunity for software designers to concentrate on the exact 

processes required from the services without hindrance from limitations of technical 

possibilities or great effort required to implement them.  As web technology has evolved, the 

emphasis has been placed on providing ease of design and implementation, with the desirable 

“what-you-see-is-what-you-get - WYSIWYG” (Johnson, Roberts et al. 1989) now the normal 

rather than the exception for rapidly building web served applications.  This is equally 

applicable to the domain of web services.  Even though the web services concept focuses on a 

view of systems to systems rather than actual human actors, the concepts of ease of design 

and implementation for system interactions are highly related.   

 

Web Services exhibit many similarities to traditional software components that amongst 

which resemble hosted objects which have a simple, well-defined interface, and that are 

designed with the expectation of reuse.  In fact, the notions and ideas behind constructing 

reusable software components are highly applicable to web services, as they could simply be 

viewed as a type of software component architecture but with the addition of yielding a 

standard communication model.  Some problems of component composition have been 

reported in (Fowler 2003) as: 

 

• Identifying the appropriate components to implement the desired functionality 

• Determining and resolving gaps between desired functionality and the component’s 

functionality  

• Specifying the component interactions 

 

These issues are equally applicable to web service components.   As web service deployment 

and use becomes more widespread, the notion of managing the composition of web services 

to integrate software processes together is being highlighted with concerns within research 

and the adopted standards (Yang and Papazoglou 2003).  Web Service compositions focus on 

a group of services offering functional roles and activities to achieve a goal.  An 

“orchestration” of services is assembled to achieve a collaborative effort between this group 

of services.  The difference with web service compositions over that of traditional software 

component compositions is that web services compositions focus on the “autonomic open 

system”; in that they are designed to exhibit a service for varied client use and these can be 

reused without significant changes incurred to the design, potentially by any interested party.  



Chapter 1. Introduction 15

They also exhibit some operational differences where run-time binding is loosely coupled 

assisting dynamic service invocation.  If a web service or web service composition (a process 

interacting with one or more web services) is offered, the interests lie in who will use the 

service, how they will use the service and what they will expect to be invoked when 

requesting the service.  These issues encourage us to consider how the analysis and 

verification of service offerings are incorporated into a service-oriented development 

approach, and specifically how prior to deployment, modelling and behaviour analysis can 

assist in determining the impact of solution given, and thus providing reassurance that the 

services are constrained appropriately.  As an introduction to the domains covered in this 

thesis, the architecture of a web services solution with multiple compositions collaborating in 

a theoretical Police Enquiry services environment, illustrates how complex compositions 

could become (Figure 1-1).     

 

Composition

Problem Domain

Composition

Composition

Web Server Web Server

Web Server
Web Server

Police EnquiryWeb
Service

BPEL4WS
Process

<receive>

<reply>

<invoke>
<receive>

<invoke>

Fingerprint
Enquiry

BPEL4WS
Process

<receive>

<reply>

<invoke>
<receive>

<invoke>

Vehicle Movement

BPEL4WS
Process

<receive>

<reply>

<invoke>
<receive>

<invoke>

Identity Check

BPEL4WS
Process

<receive>

<reply>

<receive>

<invoke>

<receive>

<invoke>

Web Server
Web Server

<invoke>

Choreography Domain

Composition

1 2

3 4

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

 
Figure 1-1  Web Services, Compositions and Choreography in a Police Enquiry Collaboration 

 

 

This example, of four compositions collaborating to fulfil a set of police officer enquiry 

scenarios, illustrates how the layers of a services architecture firstly, communicate from basic 

invoke, request and reply actions (4), are orchestrated in a common process through standard 



Chapter 1. Introduction 16 

web service composition languages such as the Business Process Execution Language for 

Web Services (BPEL4WS) (3), and are kept consistent for transactional and process state 

purposes through Choreography (2).  Brought together, these elements form a view of the 

problem domain (1) that we consider in the web services architecture. 

 

An approach to service process modelling and behaviour analysis of these software 

architectures can be constructed to assist in providing a solution to some of the difficulties 

inherent in these types of architectures (Magee, Kramer et al. 1999).  Whilst process 

behaviour analysis has been used for various themes of verification and validation, including 

analysing systems for deadlock, safety and progress properties (Holzmann 1997; Magee, 

Kramer et al. 1997), the core of these approaches can be seen in forming process models for 

analysis from a given specification or implementation.  Aligned with these models, we can 

explore an approach of tasks for web service composition analysis that can be summarised 

using the analysis terms of: 

 

• Verification (checking specified properties of the model, individually or against design 

specifications) 

• Validation (simulation to validate requirements against design or implementation) 

• Compatibility (that service compositions can cooperatively carry out shared tasks) 

 

The motivation in collaborative web service engineering is similar to those efforts applied in 

UML for software process models (Jiang, Mair et al. 2003).  The model may also be used in 

the design and implementation steps to derive service compositions from models of 

specifications.  This promotes a collaborative distributed system design as specifications may 

be built locally and then compiled as composite processes.  However, there is a need to 

explore how process modelling, and its formal background, can assist in these areas.  The 

theme of this thesis therefore also considers the related areas of; 

 

• Composition Architecture (building a model representation of service components) 

• Role-based Decomposition (decomposing a model into one or more web service 

compositions based upon the roles and domains of service hosts and processes). 

 



Chapter 1. Introduction 17

The motivation for this work also aligns closely with similar goals formed by the web service 

standards community on web service compositions and choreography, such as in the criteria 

of OASIS (OASIS 1993) and the W3C (W3C-Org 1994) focus groups, which provides greater 

confidence in the reasoning behind this area of work.  At the time of writing this thesis, their 

work is under review but clearly indicates the need for early design verification as part of a 

standards based process for developing web service composition behaviour. 

1.2   The Approach 

Web service composition architectures aim to provide a technology independent means of 

integration, the ability to verify workflows is inherently not a technology issue but of state, 

behaviour and identity (Hruby 1998).  A process has behaviour in the way in which it 

responds to a certain set of conditions, persistent state which is not visible to the client and 

persistent identity which is visible through explicit user defined operations (OMG-CORBA 

2002).  Web service compositions (as a set of service processes) equally hold these 

characteristics.  An approach therefore is required to provide steps to analyse each of these 

characteristics, but without limitations imposed from the underlying technologies involved.  

The approach therefore considers analysis of a web service composition process from two 

viewpoints.  Firstly, process model verification can be used to identify parts of the process 

behaviour that have been implemented incorrectly, or perhaps have unforeseen property 

results.   Whilst there have been other attempts to use model-checking techniques for reliable 

web service verification (Nakajima 2002; Narayanan and Mcllraith 2002), they have 

concentrated on property specifications in domain specific language notations (e.g. Promela, 

the implementation language of SPIN).  Our verification approach is from an abstract 

behavioural specification using the Message Sequence Chart (MSC) (ITU 1996) notation.  

The approach uses the UML (OMG 2002) style design of these sequences away from a 

technical implementation, and evaluates their transitional state and behaviour locally before 

deploying any parts of the workflow, and realizing the true effect of the process flow.  The 

verification side of the approach aims to provide a mechanism to support such questions as; 

can the implementation fulfil the interaction requirements and did we build the process 

interactions correctly?   

 

The second viewpoint is from that of validation.  The focus of validation is clarifying the 

understanding of requirements against that of the web service composition implementation.  



Chapter 1. Introduction 18 

Some questions help us identify the validation areas that the approach can assist in with this.  

For example, has the implementer understood the needs of all expected clients, their intended 

use of the process and in all possible contexts?  Ultimately, the result of validation is to ensure 

that the right process was built.   Validation allows the designers and also prospective users of 

the process to step through the model and determine whether the design is fit for their 

requirements.  Validation of web service composition specification models are a useful step 

prior to verification of implemented web service compositions, such that designers and users 

can evaluate a modal aimed at representing an equal view of their requirements.  The 

approach for this is built from a series of steps undertaken by service designers, implementers 

(BPEL4WS engineers), those who deploy the services and clients (partners) of the service.  

Figure 1-2 illustrates the approach taken to verification and validation of web service 

compositions. 

 

 

Tool   

Designers Validation

validation results

.
models

Deployers

Implementers

Specification

verification results

Composition

Clients

Verification

Verified and 
Validated
Services

BPEL4WS 

implementations

Composition
Processes

Composition
Semantics

Requirements

Web 
Service

Standards

MSCs

BPEL4WS 
Specification

Composition
Specification

Web Services

Model Generation

synthesis

m
apping

abstraction

interactions

verification properties

validation traces

Partner
Service

Interfaces

Composition

Release
Request

Analysis
Choice

Construct

Construct

Reference

Reference

 
Figure 1-2  An Approach to Rigorous Engineering of Web Service Compositions 

 

 

The approach is undertaken as follows; a designer, given a set of web service requirements, 

specifies a series of MSCs to describe how the services will be used and to model how each 

service requests or receives a reply in a series of service scenarios. The resulting set of 

scenarios is synthesized to generate a behavioural model, in the form of a state transition 



Chapter 1. Introduction 19

system.  The service implementation is undertaken by a BPEL4WS engineer, who builds the 

BPEL4WS process from either specification or requirements. The BPEL4WS specification is 

used to generate a second behavioural model (transition system) by a process of abstracting 

the BPEL4WS, with respect to data, to yield a model of interaction. Validation and 

verification consists of comparing and observing states of these two transition systems. The 

approach can assist in determining whether the implementation contains all the specified 

scenarios and whether any additional scenarios implied by the implementation are acceptable 

to the end-user. In addition, checks can be made on the models with respect to desirable 

general global properties such as absence of deadlock and liveness (using model-checking). 

Feedback to the user is in the form of UML style MSCs. The aim is to hide the underlying 

Labelled Transition System (LTS) representations and let the user view only the BPLE4WS 

implementations and the MSCs as a simple intuitive and visual formalism accessible to most 

engineers (Uchitel and Kramer 2001). 

1.3   Motivating Example 

Web Service compositions aim to fulfil the requirement of a standards based coordinated and 

collaborative service invocation specification to support multi-stake holder, multi-service 

application transactions (Hall 2003).  This is seen as an important element of making the web 

services architecture viable for wide spread use, and to provide a closer representation of 

business transactions in cross-enterprise domains.  One language which aims to consolidate 

previous efforts of specifying a composition language is the Business Process Language for 

Web Services (BPEL4WS) (Curbera, Goland et al. 2002).  BPEL4WS is mostly the result of 

work undertaken previously by industry to build such specifications, such as that from the 

XLANG (Microsoft Corporation) specification and Web Service Flow Language (WSFL) by 

International Business Machines Corporation (IBM).  Whilst BPEL4WS provides an 

orchestration of web service interactions at a local (single party) viewpoint, it does not 

provide a level of coordination between processes or manage long-running transactions 

(LRTs).  This additional level of specification is encompassed in the term Choreography.  

Related specifications for this are still in an early stage of design, however, the Web Service 

Choreography Description Language (WS-CDL) (Kavantzas, Burdett et al. 2004) and Web 

Service Choreography Interface (WS-CI) (Cabrera, Copeland et al. 2002) are being marketed 

as a response to this requirement.   

 



Chapter 1. Introduction 20 

At the time of writing this thesis, BPEL4WS has been voted in as a standard service 

composition language by OASIS and has been positioned in a standards stack for clarification 

and consensus of where it is related with other emerging standards.  The momentum of 

BPEL4WS is seen through case studies and industry BPEL engine implementations 

suggesting that BPEL4WS will be the standard of choice for coordinated web service 

composition implementations.  Of the BPEL4WS examples used in this thesis, one is of the 

UK Police IT Organisation project (detailed in Chapter 7).  Their UK national web services 

project is spread across heterogeneous systems including varied enquiry services (Finger 

Print, Vehicle etc) and centrally to the UK Police National Criminal Database (PNCD).   

 
A series of web services, such as those scoped in the PITO project (Figure 1-3), clearly 

requires management and coordination.  If this coordination is implemented as a process in 

BPEL4WS or other web service orchestration language, then the implementation needs to be 

constructed for a series of differing scenarios and verified and validated thoroughly for 

desirable execution paths in each.  The use of web technology for services provides an 

example of how flexible distributed system computing has become.  From a specification 

perspective, the focus is on appropriate service interaction, yet it is important to compose the 

web service workflow correctly for all service actors and more importantly, verify this flow 

before deployment is undertaken. This issue is particularly important in sensitive and critical 

system domains such as civil, emergency and other national infrastructure services.  

 

Vehicle 
Web 

Service

Fingerprint 
Enquiry 

Web 
Service

Motor 
Insurance 

Web 
Service

Nominal 
Enquiry 

Web 
Service

ANPR Web 
Service

Service Composition

Police Enquiry

Vehicle Movement Enquiry Vehicle Enquiry

Names Enquiry Insurance Enquiry

Fingerprint Enquiry

London Scotland

 

Figure 1-3  UK PITO Case Study – Police Enquiry Service Domain and Hierarchy 
 



Chapter 1. Introduction 21

1.4   Contributions 

To focus on the goals of undertaking this work we constructed the following statement.  This 

statement was established at an early stage to guide the research to a common goal and to 

form the basis to address the areas discussed previously. 

 

“The main objective of this work is to provide a rigorous approach to 

specifying, modelling, verifying and validating the behaviour of web service 

compositions with the goal of simplifying the task of designing coordinated 

distributed services and their interaction requirements.  “ 

 

This thesis aims to satisfy the objective.  We address the issues in designing web service 

compositions by modelling the required processes in an accessible and concise notation which 

can then be used to verify, not only web service workflows but behaviour over cross-domain 

services.  In this thesis an approach is presented which specifically addresses adding semantic 

representation to the BPEL4WS compositions and extends a tool to support a mechanical aid 

for verification and validation of these processes.  The approach has been illustrated both 

from constructing workflows from a specification, modelling and transformation perspective, 

and by translating existing BPEL4WS processes to produce models for verification.  

Furthermore, by automating the process specified in this thesis, a framework can be added to 

the web service engineering life cycle to support modelling, verification, validation and 

implementation in the notation of choice.  We have chosen BPEL4WS to use as an example, 

yet verification and validation of other web service workflow specifications may be 

undertaken using the same approach.  The approach also provides scope to enhance the 

specification of BPEL4WS with availability, reliability and service performance 

consideration.  With a medium such as the Internet, these are becoming increasingly 

important to verify before deployment of services is undertaken.  It is our goal that the 

approach, combined with an extensive analysis tool will provide both academic and industrial 

areas with a rigorous tool for design and implementation analysis.  Indeed, there are already 

references to this approach and the tool set being used for the education of BPEL4WS (Austin 

2004) and as part of distributed system engineering lectures.  Additionally, references have 

been made for industry community web sites focusing on BPEL (Foster 2004b), and in other 

service design and verification projects (Maghrabi 2004). 

 



Chapter 1. Introduction 22 

The work presented in this thesis is based upon, and extends, several papers and reports that 

have been published in the last three years (Foster, Uchitel et al. 2003a; Foster 2003b; Foster, 

Uchitel et al. 2004a; Foster, Uchitel et al. 2005; Foster, Uchitel et al. 2005).  Work on tool 

support for the approach was also carried out as part of an IBM Eclipse Innovation Award 

(IBM 2004; IBM 2005).  This thesis however, should be regarded as the definitive account of 

this work. 

1.5   Thesis Outline 

This thesis presents an approach which considers the issues of designing web service 

compositions (outlined in earlier sections) by providing a mechanism to support verification, 

validation and generally greater understanding of the behaviour of compositions created.  In 

chapter 2 we describe a background to web services and the efforts in progress towards 

compositions and other standards to evolve web services for reliable and critical service 

configurations.  Furthermore, a review of modelling software processes and other work in 

modelling web service compositions is discussed.  Chapter 3 details building design 

specifications, in the form of MSCs for compositions and their choreography, and how 

interaction models are synthesised from these specifications.  Chapter 4 provides a guide to 

modelling BPEL4WS compositions in the Finite State Process (FSP) notation.  BPEL4WS 

semantics are described by way of FSP models and Labelled Transition Systems (LTS) used 

to illustrate these models graphically.  Chapter 5 extends the approach to include models of 

service choreography with multiple interacting web service compositions, from the 

perspective of a collaborative distributed composition development environment.  The process 

of behaviour analysis moves from a single local process to that of modelling and analysing 

the behaviour of multiple processes across composition domains.  In chapter 6, the 

verification and validation steps are described, and utilising the models of design 

specifications (from chapter 3), modelling BPEL4WS processes (from chapter 4) and 

elaboration of these models for choreography (from chapter 5), examples are given to 

implement, translate and generate complete system models for checking with properties 

specified for verification.  Furthermore, validation is illustrated in the form of animated and 

interactive process models represented back to designers and implementers of the process.  

Chapter 7 describes an example implementation of the approach steps in a tool, providing 

mechanical automation of the steps, and linking these steps with results back to designers, 

implementers and users of the process.  Chapter 7 also considers how the approach has been 



Chapter 1. Introduction 23

applied to a service development life cycle through a sample case study.  The result of this 

case study is used in a discussion and evaluation on the findings and contributions contained 

within this thesis.  Finally, Chapter 8 provides a conclusion on our work carried out, a view of 

anticipated future work and closing remarks.  Overall consideration is also given how the 

contribution of this thesis aids in the broader areas of related research, and how it is believed 

further research will evolve and in which directions this may take.  Figure 1-4 outlines the 

chapters and subtopics of this thesis. 

     

1. Introduction 
(Concepts)

2. Background 
(Review)

3. Web Service
Specifications

4. Modeling 
Web Service
Compositions

5. Modeling 
Web Service

Choreography

6. Analysis for the 
Service-Oriented 

Model

7. Tool Support 
and Case Study

8.Evaluation and 
Conclusions

- History of Web Services
- Standards
- Modeling Software Processes

- Motivation and Example
- Approach
- Thesis Outline

- Requirements
- Message Sequence Charts
- Compositions
- Choreography
- Specification Models

- BPEL4WS
- FSP
- Mapping BPEL4WS to FSP 
  Models

- Web Service Interactions
- Analysis of interactions
- Interaction Algorithm
- Port Connector Models

- Methods
- Preparation
- Verification Analysis
- Validation Analysis

- Prototype Tool
- Community Tool
- Case Study

- Evaluation
- Summary
- Future Work
- Closing Remarks

 
Figure 1-4  Chapters and subtopics of thesis 

 
 
 

 



 

Chapter 2  

Background 
 

"By examining the history of distributed computing, we can see how web services  

are a consequence of a natural evolution." (Wrox 2003) 

 

In this chapter, we describe the evolution of distributed computing and give an account of 

web services, their compositions, choreography and modelling distributed systems in 

general.  We focus in more detail on the issues in what these systems are, how we analyse 

such systems and describe the areas of research that this work builds upon.  Related work is 

also reviewed as part of a background to this topic area. 

 

2.1   Evolution of the Computing Network 

In the early 1990s, few had heard of Tim Berners-Lee's World Wide Web (Berners-Lee 

2000), and, of those that had, many fewer appreciated its significance. However, since the 

1970s computers had been increasingly connected to the Internet, and transferring specific 

data loads among computers was commonplace amongst Defence and Academic IT 

infrastructure (Leiner, Cerf et al. 2002). Yet the Web brought something really new: the 

perspective of viewing the whole Internet as a single information space, where users 

accessing information could move seamlessly and transparently from machine to machine by 

following related information links.  A similar shift in perspective is currently underway, but 

the focus now is with application programs. Although distributed computing has been in use 

for as long as there have been computer networks (Roberts and Wessler 1970), it's only 

recently that applications that draw upon many interconnected machines as one vast 



Chapter 2. Background 

 

25

computing medium are being deployed on a large scale. The basis for making this possible 

are new standards for protocols of distributed computing built upon existing internet 

standards and that are designed for programs interacting with programs, rather than for 

people interacting with browsers.  The move away from an environment where applications 

are deployed on individual machines or Web application server, is to a world where 

applications are composed of pieces (called services) and that are spread across many 

different machines, where the services are aimed at interacting seamlessly and transparently 

to produce an overall solution. While the consequences of this change could appear not 

dramatic, it's also possible that they could be as profound as the introduction of the Web. The 

computing industry is introducing new Web service frameworks that exploit this new 

architecture. Sun Microsystem’s SUNOne (Sun 2001) and Microsoft's .NET (Microsoft 

2001) are two such frameworks.  In this work we concentrate on how this shift of focus 

highlights the need to have concrete methods to verify and validate solutions built for this 

new application architecture style.  We begin to consider what aspects this involves by 

looking at the history of distributed computing and architecture styles. 

2.2   Evolution of Distributed Computing 

Distributed Computing become popular with the difficulties of centralised processing in 

mainframe use.  With mainframe software architectures all components are within a central 

host computer. Users interact with the host through a terminal that captures keystrokes and 

sends that information to the host. In the last decade however, mainframes have found a new 

use as a server in distributed client/server architectures (Edelstein 1994).  The original PC 

networks (which have largely superseded mainframes) were based on file sharing 

architectures, where the server transfers files from a shared location to a desktop 

environment. The requested user job is then run (including logic and data) in the desktop 

environment. File sharing architectures work well if shared usage is low, update contention 

is low, and the volume of data to be transferred is low. In the 1990s, PC LAN (local area 

network) computing changed because the capacity of the file sharing was strained as the 

number of online users grew and graphical user interfaces (GUIs) became popular (making 

mainframe and terminal displays appear out of date). 

 

The next major step in distributed computing came with separation of software architecture 

into 2 or 3 tiers.  With two tier client-server architectures, the GUI is usually located in the 



Chapter 2. Background 26

user's desktop environment and the database management services are usually in a server that 

is a more powerful machine that services many clients. Processing management is split 

between the user system interface environment and the database management server 

environment. The two tier client/server architecture is a good solution for locally distributed 

computing when work groups are defined as a dozen to 100 people interacting on a LAN 

simultaneously. However, when the number of users exceeds 100, performance begins to 

deteriorate and the architecture is also difficult to scale.  The three tier architecture (also 

referred to as the multi-tier architecture) emerged to overcome the limitations of the two tier 

architecture. In the three tier architecture, a middle tier was added between the user system 

interface client environment and the database management server environment. There are a 

variety of ways of implementing this middle tier, such as transaction processing monitors, 

messaging middleware, or application servers. The middle tier can perform queuing, 

application execution, and database queries. For example, if the middle tier provides 

queuing, the client can deliver its request to the middle layer and disengage because the 

middle tier will access the data and return the answer to the client. In addition the middle 

layer adds scheduling and prioritization for work in progress. The three-tier client/server 

architecture has been shown to improve performance for groups with a large number of users 

(in the thousands) and improves flexibility when compared to the two tier approach. 

 

Whilst three tier architectures proved successful at separating the logical design of systems, 

the complexity of collaborating interfaces was still relatively difficult due to technical 

dependencies between interconnecting processes.  Standards for Remote Procedure Calls 

(RPC) were then used as an attempt to standardise interaction between processes. As an 

interface for software to use it is a set of rules for marshalling and un-marshalling parameters 

and results, a set of rules for encoding and decoding information transmitted between two 

processes; a few primitive operations to invoke an individual call, to return its results, and to 

cancel it; provides provision in the operating system and process structure to maintain and 

reference state that is shared by the participating processes. RPC requires a communications 

infrastructure to set up the path between the processes and provide a framework for naming 

and addressing. There are two models that provide the framework for using the tools. These 

are known as the computational model and the interaction model. The computational model 

describes how a program executes a procedure call when the procedure resides in a different 

process. The interaction model describes the activities that take place as the call progresses.  

A marshalling component and a encoding component are brought together by an Interface 



Chapter 2. Background 

 

27

Definition Language (IDL). An IDL program defines the signatures of RPC operations. The 

signature is the name of the operation, its input and output parameters, the results it returns 

and the exceptions it may be asked to handle.   RPC has a definite model of a flow of control 

that passes from a calling process to a called process. The calling process is suspended while 

the call is in progress and is resumed when the procedure terminates. The procedure may, 

itself, call other procedures. These can be located anywhere in the systems participating in 

the application. 

 

Figure 2-1 summarises the evolution of Distributed Computing architecture styles discussed.  

Web Services have repositioned the distributed computing architecture from further splitting 

the architecture into a domain of separate standards for remote procedure calls (RPC), 

interface definitions, and component technology, limiting the definitions and messages 

exchanges to be used only by that of XML specifications.  These are marketed as a service-

oriented, interaction based, architecture. 

 

Mainframe

File 
Sharing

Script

Thick
Client

View

Model

Data

Web Services

Web 
Apps

Thin
Client

RPC

XML

Components

Data Data

Data

3Tier -CS

View
Model

Data

2Tier -CS Local
Apps Applications

 
Figure 2-1  Evolution of Distributed Computing Architecture Styles 

 

2.3   Web Services Architecture 

A Web Service Architecture (WS-A) is a web component architecture that aims to address 

the service oriented requirements mentioned previously.  A commonly used definition of a 

Web Service is taken from the W3C official Description Working Group specification 

(W3C-WS 2002) is; “A web service is a software application identified by a URI, whose 

interfaces and binding are capable of being defined, described and discovered by XML 

artefacts and supports direct interactions with other software applications using XML 

based messages via Internet-based protocols.” 

 

At a conceptual level, Web Services are pieces of functionality, hosted on internet enabled 

application servers that have the ability to be invoked for and respond to instructions carried 



Chapter 2. Background 28

out in compliance with an XML messaging standard.  The basis for web services is that they 

provide easily accessible interfaces to methods contained within application resources, and 

correspondingly identified uniquely on that hosted system by a uniform resource identifier 

(URI) (Berners-Lee, Fielding et al. 1998).   Each resource offers one or more methods to be 

called upon by a message handler. The handlers receive messages as documents of 

instructions or parameters (depending on the web service messaging standard used), detailing 

which resource and data should be passed in order for that method to carry out its 

responsibilities.  At a physical level, Web Services are built from a stack of emerging 

standards, some of which are specified in (Box, Ehnebuske et al. 2000; Arkin, Askary et al. 

2002; Curbera, Goland et al. 2002; W3C-WSCI 2002; Christensen, Curbera et al. 2003).  An 

example stack is illustrated in Figure 2-2.  The layers cover descriptions for web service 

data, format, messages, interface, orchestration (compositions), transactions and coordination 

(choreography).  Each W3C or OASIS standard is an implementation of an XML Schema for 

a set of permissible elements for defining each of the layers.  As each standard is merely a 

“template” for describing web service implementations and their partners, an actual 

implementation engine is required in each case to support execution or interpretation of the 

XML implemented.   

 

SOAP

WSDL

XML Schemas

XML

BPEL, WSCI

WS-Transaction

WS-CDL, WS-CI

Data

Format

Message

Interface

Orchestration

Transactions

Choreography

Layer Standards (W3C/OASIS)

S
er

vi
ce

s
C

om
po

si
tio

ns

WS-Policy, XACMLPolicy

 
Figure 2-2  Web Services Standards Stack 

2.4   Web Service Behaviour 

Whilst Web Services themselves are components with a clearly defined interface (based 

upon the standards mentioned in 2.3), the architecture lacks verification and validation of 

process behaviour in the composition and coordination of these services to the requirements 

and behaviour of users (or clients) of these services.  This is in a similar way to that of 

analysing the impact of customisation and personalisation of web sites, in which the main 



Chapter 2. Background 

 

29

problems associated with reusable web sites is that they are written without significant 

analysis of the potential use-cases and the needs of various clients (Bonett 2001).  We 

describe what constitutes a web service’s behaviour as; “A web service’s behaviour is 

defined by the set of activities behind that service and mapping those activities to message 

exchanges.” 

 

Web Service behaviour analysis consists of analysing two aspects of web service architecture 

style.  The web service formally exhibits its identity and permissible interactions through 

definition in the Web Service Description Language (WSDL), which we describe in 2.4.2.  

However, within the implementation for a web service the behaviour of its interactions is 

defined.  The coordination of a service’s behaviour is formed from the basic operations of 

service invocation, replying to a service or receiving the reply from a service and this forms 

the basis for service analysis for its interaction behaviour.  Standards elaborate the 

specification of how, what and when these interactions can occur.  These standards can be 

aligned with that of software process analysis areas, as illustrated in Figure 2-3 

. 

 

SOAP

WSDL

XML Schemas

XML

BPEL, WSCI

WS-Transaction

WS-CDL, WS-CI

Data

Format

Message

Interface

Orchestration

Transactions

Choreography

Layer Standards (W3C/OASIS)

S
er

vi
ce

s
C

om
po

si
tio

ns

Software Process

Behaviour
(State)

Identity

Input and Output

WS-Policy, XACMLPolicy Verification
(Properties)

V
alidation

 
Figure 2-3   Web Services and Software Process Elements 

 
 

In essence, to analyse web services we must consider what is defined by and behind the 

service interface, and consider those activities that comprise the process that the service 

offers.  Web Service Behaviour Analysis can be described as; “Web Service Behaviour 

Analysis considers analysing the set of activities behind a service (a composition), and 

together with service interactions (choreography), provides an end-to-end view that models 

the role of each individual process in the choreography and the activities performed by 

each role.”  The theme of Web Service behaviour is used throughout our work, and is the 



Chapter 2. Background 30

basis for understanding what may be observable from a web service implementation and a 

partnered composition process.  The behaviour aspect of web services also encourages a 

view of the problem domain for the web services architecture. 

2.4.1   The Problem Domain 

In Chapter 1, we scoped our work given a particular problem domain.  An appropriate 

definition of problem domains for web service compositions needs to address both local and 

global service requirements.  A definition of a conventional problem domain is given in 

(Subramanian 1993) as “A problem domain is given by a set of possible states of a physical 

world, and a set of actions that can be executed sequentially to change the state of that 

world”.  As we are interested in describing problem domains with respect to web services to 

support a problem domain for one or many user requirements, our definition for a web 

service problem domain extends the conventional definition by specifically stating that the 

domain consists of services and that multiple interested groups are interested in or have 

control over these services.  A web service problem domain can be therefore be described as; 

“A web service problem domain is the functional area of interest, or under control, by 

individual or groups of (web) services hosted on the internet and accessible either locally 

or globally (to other service groups) to fulfil a task or a series of tasks within the function 

area”. 

2.4.2   Web Service Interfaces 

The web service interfacing standard is called the Web Services Description Language 

(WSDL).  The W3C WSDL group defines WSDL as “…an XML format for describing 

network services as a set of endpoints operating on messages containing either document-

oriented or procedure-oriented information. The operations and messages are described 

abstractly, and then bound to a concrete network protocol and message format to define an 

endpoint.”  (Christensen, Curbera et al. 2001).  WSDL is the interface description for any 

service that follows the Simple Object Access Protocol (SOAP) (Box, Ehnebuske et al. 

2000) using HTTP GET/PUT or MIME standards.  At the time of writing this work, the 

W3C Web Services Description Working Group has released two revised Working Draft 

specifications for WSDL 2.0. “Web Services Description Language (WSDL) Version 2.0 

Part 1: Core Language" describes the Web Services Description Language (WSDL) Version 

2.0, an XML language for describing Web services. It defines the core language which can 

be used to describe Web services based on an abstract model of what the service offers. It 



Chapter 2. Background 

 

31

also defines criteria for a conformant processor of this language. “Web Services Description 

Language (WSDL) Version 2.0 Part 2: Message Exchange Patterns” (Gudgin, Lewis et al. 

2004) defines patterns that are intended for use with WSDL. "WSDL message exchange 

patterns define the sequence and cardinality of abstract messages listed in an operation. 

Message exchange patterns also define which other nodes send messages to, and receive 

messages from, the service implementing the operation. WSDL patterns are described in 

terms of the WSDL component model, specifically the Label and Fault Reference 

components."  The structure of a basic WSDL document is illustrated in Figure 2-4. 

 

 

Service

Binding

OperationMessageTypes endpointInput
outputtype Port

binding

PortType type

meth
od

m
et

ho
d

 
Figure 2-4  WSDL Structure 

 

WSDL complements a service composition by providing an abstract process representation 

in terms of its interface.  WSDL is broken down into seven parts, providing a declaration of 

an interface for message types, messages, operations (methods in traditional component 

terminology), port types and ports, and bindings.  The topmost layer of a WSDL service 

description is the “service” element.  WSDL is not limited to these basic elements and 

extensions can be specified by providing suitable element reference types to include in a 

document.  The basic elements however, must be included as part of every WSDL document.  

WSDL builds on the SOAP specification for binding a service interface and operation to an 

actual endpoint service.  

2.4.3   Web Service Compositions 

Web Service Compositions are formed from a singular problem domain which is “local” to 

problem domain owner.  This has traditionally been a clearly marked boundary for a 

development project to work to.  The difference in terms of structured and anarchic systems 

is described by (Chandy and Rifkin 1996).  In structured system domains, the design 

proceeds from a specification, and there is a single entity that is ultimately responsible for 



Chapter 2. Background 32

the design and implementation of the system.  Anarchic systems on the other hand are 

collaborative application developments on the Internet which comprise many program units 

developed by different groups of people. For such distributed systems, no single agency 

assumes overall responsibility for reliability control.  They define the difference in terms of 

ownership of the design implemented, and thus this ownership is either local or global as part 

of the deployment of the implementation.   Our thoughts are towards this issue in relation to 

web service compositions, as compositions can be built locally yet aim to conform to global 

compositional constraints through the use of choreography and orchestration rules.  This rule 

base is significantly involved in standard ways of both communication and domain 

understanding.  There is currently industry work however, in having a global description 

language for local web service compositions.  Fronting these language specifications is the 

Business Process Execution Language for Web Services (BPEL4WS) for process 

orchestration and handling fault tolerance or compensation actions.  There are two themes of 

composition, being static and dynamic.  Both static and dynamic web service compositions 

can collectively be described as; “A web service composition consists of orchestrated web 

services through a local process, itself potentially a service.  Static web service 

compositions are known at design time and are bound to a composition at design time.  

Dynamic web service compositions are one or many compositions in which web services 

are not known at design time, and which are discovered or their properties resolved based 

upon a criteria process set at design time.”   

 
Static web service compositions appear currently the most used web service composition 

style in both industry and academia (Haas 2002).  They are formed by identifying manually 

(i.e. by human assessment) the applicability of a web service to a particular problem domain.  

The composition is therefore limited to the web services encompassed in the design.  Static 

compositions are represented by known paths, known data representations and expected 

results as part of a formal and technical link with the web service.  Dynamic web service 

compositions form the basis for discovery and flexibility in web service invocations.  WSDL 

goes some way to detail the technical interface and to locate a given service (Christensen, 

Curbera et al. 2001), yet it does not identify what that service does, what function(s) it 

performs in order to fulfil the request, and neither does it suggest what level of service it will 

provide.  Technically, dynamic interactions can be achieved through utility layers, such as 

the Web Services Invocation Framework (WSIF) (Duftler, Mukhi et al. 2001) which 

complements WSDL by providing the layer of invocation once discovering WSDL 



Chapter 2. Background 

 

33

documents.  The aim is to be able to build a semi-automated service discovery and execution 

mechanism.  If the scope of a web service composition is to include dynamic discovery and 

invocation, it must do so by considering how these services would be used in such an 

anarchic developed system and within a particular problem domain. 

2.4.4   Web Service Choreography 

Whereas Web Service Compositions describe the local process of service orchestration, Web 

Service Choreography describes the observable interactions between services and their users.  

Choreography in general terms, and by dictionary definition, explores the wider aspects of 

interactions, often referenced by a similarity to arranging dance or ballet group sequences.  

The W3C Web Services Architecture group describe general choreography as “…the 

sequence and conditions under which multiple cooperating independent agents exchange 

messages in order to perform a task to achieve a goal state.”  Whereas compositions are 

focused from a single service viewpoint and its interactions, choreography of a group of 

related services is the interaction to complete a broader scenario.  Web Service 

Choreography is more formally described by the W3C Web Services Choreography Working 

group as; “….the external observable behaviour across multiple clients (which are 

generally Web Services but not exclusively so) in which external observable behaviour is 

defined as the presence or absence of messages that are exchanged between a Web Service 

and it's clients” (Austin 2004).  In a series of scenarios, the messages that flow between web 

services and clients (which may be web services, but also applications or even human 

beings) may require a specific set of interactions to occur and to group these interactions for 

transactional or compensational reasons.  Choreography is typically initiated by an external 

source (a client or service) and ends with a target service or a reply to the source.  Such 

interactions during this choreography poses questions such as; can messages be sent and 

received in any order?, what are the rules governing the sequencing of messages?  And can 

a global view of the overall exchange of messages be drawn? (i.e. can we verify, modify and 

monitor the behaviour)? 

 
As BPEL4WS is aimed at addressing the interactions from a local process workflow and 

fault tolerance perspective, it does not exhibit observable state by which other web service 

compositions can respond to for a global service responsibility.  The element in question is 

that of impact of state in wider composition invocations.  If the composition is invocated 

from a local “master” controller (as currently modelled by the BPEL4WS invocation engine) 



Chapter 2. Background 34

state is not transferred between composition engines.  The efforts necessary for effective 

workflow system analysis (Bolcer and Taylor 1998), the exploration of engineering these 

compositions is troublesome.  In addition to state, the impact of introducing dynamic service 

selection in choreography increases the impact on complex engineering decisions at design 

time.  For example, in a local problem domain, a dynamic discovery of an “Order Books 

Service” may be satisfied.  Yet the same service hosted globally may not take into account 

local composition behaviour, or indeed, even synchronize with data managed by the local 

service.  These are issues that should be recognized as a web service design compositional 

constraints and verified appropriately.  Implementations for choreography standards are 

currently in the form of the Web Service Choreography Description Language (WS-CDL) 

(Kavantzas, Burdett et al. 2004) and the Web Service Choreography Interface (WSCI) 

(Arkin, Askary et al. 2002).  Both of these specifications have been introduced as part of a 

service-oriented model aligned with the same W3C working groups. 

2.4.5   The Service-Oriented Model (SOM) 

The Service-Oriented Model (SOM), illustrated in Figure 2-5, is a relationship model 

described by the W3C Web Services Architecture Group as created “…to explicate the 

relationships between an agent and the services it provides and requests” and that this is 

the base layer for building service architectures (Booth, Haas et al. 2004).  The fundamental 

elements in the model are that of goal state (states of some service or resource that is 

desirable from some person or organization's point of view), service (an abstract resource 

that represents a capability of performing tasks), task (an action or combination of actions 

that is associated with a desired goal state), role (defines a set of related tasks carried out 

and identified by message properties) and agents (which are capable of and empowered to 

perform the actions associated with a service on behalf of its owner).   The model also serves 

to exhibit the relationships between elements, such as a service’s relationship to provider, 

tasks, semantics and goal states.  It also links these elements with web service choreography 

(described previously) and how web service activities are formed from and with the purpose 

of actions and state “goals”. 

 

The SOM model serves as a useful reference map in considering the elements of service 

oriented architecture and a rigorous approach to engineering them.  Our focus and interests 

however, lay closely with the properties defined by goal state elements and its relationships 

to service, interface, semantics and choreography.  Choreography is clearly a key part in the 

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#poo#poo


Chapter 2. Background 

 

35

service architecture model yet what is more interesting in this model is that a goal state is 

bridged between service task and action and does not have a direct link with choreography.   

  

 
Figure 2-5.  Elements and relationships of a Service Oriented Model 

 

At a broader level this model poses questions such as does the architecture form a complete 

goal or a series of goals?  Additional elements linked in the SOM include that of policy.  A 

policy is a constraint on the behaviour of agents as they perform actions or access resources.  

The SOM policies are described as either permissions or obligations.  We describe the 

service obligations at a later stage of our work.  

2.4.6   Service Goals, Policies and Obligations 

A subset of the SOM related to our approach is illustrated in Figure 2-6.  This subset is 

essentially built around a core set of policies which are monitored by agents in the 

architecture to support service security requirements and constrain the use of a service 



Chapter 2. Background 36

through interaction rules, being pre-requisite and post-requisite actions to comply with a 

service’s use. 

 

Goal State

action

policy

service

service task

applies
to

performs

executes

results in

applies
to

choreography

pertains to

message

semantics

part of

results is

defines

defines

about

 
Figure 2-6  Elements of SOM for Verification and Validation of Services 

 

A policy is applied to a goal state and a service.  Policies are considered into two categories; 

that of service permissions and obligations.  Permissions are a type of policy that prescribes 

the allowed actions and states of an agent or resource.  A permission policy refers mainly to 

security aspects of a service model, as it is presented as more of a technical constraint rather 

than behavioural requirement.  We therefore concentrate on the obligation category of 

policies as the focus of our analysis context.  There appear differing definitions of an 

obligation in earlier work.  In the PONDER language (Damianou, Dulay et al. 2001) an 

obligation is summarised as “…the actions that must be performed by managers within the 

system when certain events occur and provide the ability to respond to changing 

circumstances”, whilst the W3C (WS-A SOM) defines obligations in terms of the goal 

states.  For example, when a service provider (or agent in W3C terminology) has an 

obligation to perform some action, then it is required to perform that action. When the action 

is performed successfully, then the agent can be said to have satisfied its obligations.  Not all 

obligations relate to actions.  For example, an agent providing a service may have an 

obligation to maintain a certain state of readiness (quality of service policies are often 

expressed in terms of obligations).   Such an obligation is typically not discharged by any 

one of the obligee's actions; although a triggered event (such as a certain time period 

expiring) may discharge the obligation either before (pre) or after (post) an activity in the 

service model.  An obligation may continue to exist after its requirements have been met (for 



Chapter 2. Background 

 

37

example, an obligation to maintain a particular credit card balance), or it may be discharged 

by some action or event.  The policy is established by implementers and results in goals and 

goal states from the actions in service compositions.   Obligations in the services architecture 

may not be mandatory for every interaction scenario, yet through service analysis we are 

interested in the assurance that an obligation may be satisfied in a series of compositions and 

their choreography, if it is expected in a particular scenario.  Obligations therefore become 

the basis for the general properties in our approach, implemented as either a safety or 

progress property type (which we elaborate upon in Chapter 6).   

2.4.7   Goal-Oriented Requirements Engineering 

Goal-oriented requirements engineering has become an increasingly researched topic.  There 

are differing definitions of goals and their related states (Lamsweerde 2001).  Lamsweerde 

describes goals as the objectives of a system to be constructed.  They are declarative 

statements that refer to intended properties to be assured of the system.  Whilst the WS-A 

includes this broader definition in its standards based objectives, it currently describes goals 

broadly as those which complement non-functional policies (such as security, safety and 

other permission based roles of a policy).  The goals we are particularly interested in for 

verification are those which are more functionality based (such as objectives of providing 

suitable service behaviour to its users).  The W3C goal states are related to object states in 

these goal related works.  An object state is something that an agent or other resource is 

interested in or exhibits; likewise a goal state is reached by the undertaking of a service’s 

task and is monitored or reacted to by another service or agent.  An example goal is that of a 

book ordering service, which may have a goal state in which a book has been purchased by a 

legitimate customer.  It is important to establish the meaning of a goal state in the web 

services context and relate this to other goal-oriented requirements engineering definitions.  

The WS-A group elaborate on a goal (state) as “a state of some service or resource that is 

desirable from some person or organization's point of view. Goal states are associated with 

tasks. Tasks are the unit of action associated with services that have a measurable meaning. 

Typically measured from the perspective of the owner of a service, a goal state is 

characterized by a predicate that is true of that state”.  In this way we build upon goal 

oriented requirements engineering principles by applying these concepts to web service goal 

verification.  Our issue is to identify these goals, yet also assume a suitable representation for 

these goal properties to be used as input to an analysis process (Levi and Arsanjani 2002).  

We now consider expressing goal states and policy obligations of web service compositions, 

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#poo#poo
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#service#service


Chapter 2. Background 38

seeking to describe the properties used in our approach after consideration of preparing web 

service composition models for verification and validation analysis.  Formal software 

process analysis is a set of techniques we discuss for this analysis. 

2.5   Software Process Analysis 

So far, we have described a web service composition as that which is constructed from a 

series of references to web services, hosted either locally or by other parties.  Within a 

service composition is a coordinated and orchestrated workflow of service calls, replies, 

decision points, and data manipulation.  One goal of such compositions is to provide a 

process implementation language without the technical challenge of writing bespoke service 

connection handlers or providing differing interfaces to different users (Srivastava and 

Koehler 2003).  With this independence however, comes an increased difficulty in concisely 

determining the behaviour of a web service composition as the focus is on interoperability 

rather than process semantics.  There have also been varied efforts to leverage a Model-

Driven Architecture (MDA) to constructing web service compositions, such as  flow-chart 

specifications (Sherman, Shaffer et al. 2002), or by using the Unified Modelling Language 

(UML) (Hruby 1998; Gardner 2003; Iyengar 2003; Siegel 2003).  With this work however, 

the process is modeled from a single composition, with interactions only visible from the 

local process perspective, and vagueness on how compositions over multiple processes may 

be assured.  The assumption with the MDA approach to service compositions is also that the 

resulting implementation is assured to up-hold behaviour properties (being for example, that 

a reply will always be made to a partner of the service or that the result of a concurrent 

invocation of several services will all be synchronized once completed) (Soley 2003).  This 

assumption however, does not provide formal evidence for a confident deployment of the 

composition in all scenarios.  A more rigid approach is required, to assist in decomposition 

of system specifications where distributed compositions are organized on the basis of 

ownership over a particular domain of the system (Hall 2003).  Basic synthesis of web 

service compositions from these models does not appear to provide a concrete behavioral 

representation that would give confidence to the implementers that once deployed, these 

processes are error free.  A further series of steps in the web service engineering life cycle is 

desirable.   



Chapter 2. Background 

 

39

2.5.1   Software Process Models 

In (Osterweil 1987) it was asserted that “software processes are software too”, and thus 

could (and should) be developed, analyzed, and managed using the same software 

engineering methods and techniques that are applied to software. This idea implies there is a 

software service life-cycle that resembles the software life-cycle, involving analysis, design, 

implementation, and maintenance of software processes (Scacchi 2000).  In contrast to 

software life cycle models, service process models represent a networked sequence of 

activities, objects, transformations, and events that embody strategies for service evolution 

(such as accommodating for varied interaction sequences). Service process models can be 

used to develop more precise and formalized descriptions of service life cycle activities. 

Their power emerges from their utilization of a sufficiently rich notation, syntax, or 

semantics, often suitable for computational processing.   

 

Traditionally, software process models can be viewed as representing multiple 

interconnected task chains (Kling and Scacchi 1982; Garg and Scacchi 1989). Task chains 

represent a non-linear sequence of actions that structure and transform available 

computational objects (resources) into intermediate or finished products.  Non-linearity 

implies that the sequence of actions may be non-deterministic, iterative, accommodate 

multiple/parallel alternatives, as well as partially ordered to account for incremental 

progress. Task actions in turn can be viewed as non-linear sequences of primitive actions 

which denote atomic units of computing work, such as a user's selection of a command or 

menu entry using a mouse or keyboard. Winograd and others have referred to these units of 

cooperative work between people and computers as "structured discourses of work" 

(Winograd and Flores 1986), while task chains have become popularized under the name of 

"workflow" (Bolcer and Taylor 1998).  The main reason to use formal description techiques, 

or formal methods, is that they give us tools to analyze protocol models and other systems of 

interest, and find facts and errors in them, both at the specification level and at the 

implementation level.   

 

One of the difficulties of using formalisms is perhaps in choosing the formalisms to use and 

the abstraction level of the model (Ross-Talbot 2004) (Aalst 2004), (Basten 1998).  A few of 

the more commonly referenced software process modelling formalisms are in the form of 

Petri-Nets, π-calculus, and other process algebras (such as LOTOS (Bolognesi and Brinksma 



Chapter 2. Background 40

1987),  CCS (Milner 1980), CSP (Hoare 1985) and FSP (Magee and Kramer 1999)) .  We 

briefly compare π-calculus, Petri-Nets and FSP notations as representative formalisms for 

modelling service compositions. 

2.5.2   π-calculus 

The π-calculus is a mathematical model of processes whose interconnections change as they 

interact (Bergstra, Ponse et al. 2001).  The basic computational step is the transfer of a 

communication link between two processes; the recipient can then use the link for further 

interaction with other parties.  This makes π-calculus particularly suitable for representing 

where accessible resources vary over time.   (Milner, Parrow et al. 1992) present an example 

of this through a simple resource sharing communication and transition with a server, client 

and a printer resource (Figure 2-7).     

 

Server (S) Client

Printer (P)

a

b
c

d

 
Figure 2-7   Scenario of shared (printer) resource between server and client 

 
 

A server controls access to a printer and that a client wishes to use it.  In an initial state only 

the server itself has access to the printer, represented by a communication link a.  After an 

interaction with the client along some other link b this access to the printer has been 

transferred through the links c and d.  In the π-calculus this is expressed as follows: 

ba.S | b(c).cd.P   →    S | ad.P 
___* __ _5 
Where S is the server and P is the printer.  The notation specifies “.” for sequence and “|” for 

parallelism.  The server that sends a along b is ba.S; the client that receives some link along 

b and the uses it to send data along it is b(c).cd.P.  In this example a, b, c and d are all just 

names which intuitively represent access rights.  One constraint posed by this example model 

is that after the interaction occurs between server and client (providing access to the printer) 



Chapter 2. Background 

 

41

nothing else may access the printer.  For this reason the π-calculus is also known as a 

calculus of “mobile” processes.   

2.5.3   Petri-Nets 

Petri-Nets (Petri 1966) is a graphical directed net, and can be described in a formal 

mathematic language (Murata 1989), which is also suitable for modelling systems with 

concurrency.  Petri nets provide a tool for describing systems that are characterized as being 

concurrent, asynchronous, distributed and nondeterministic.  In graphical form, Petri Nets 

can be used as a visual communication aid in a similar way to that of structured design 

notations from traditional systems analysis and design methodologies.  The language of Petri 

Nets however, provides a sold mathematical basis for the description and analysis of 

equations of state, algebraic and other mathematical models.  This yields a practical notation 

for describing the behaviour of systems processes, such as that given for a simplified 

alternating bit (Paananen 1995) illustrated in Figure 2-8. 

 

 
Figure 2-8   A Petri-Net example for a Simplified Alternating Bit process 

 

Additionally, a planning-based role for Petri-net interaction models has now been suggested 

for commercial environments (Castilho, Kunzle et al. 2004).  The rationale for plan-based 

models to describe software processes is associated with the reasoning that process enacting 

choices are based upon existing conditions within the current state of a process’s execution 

(Huff and Lesser 1989).  Having instantiated a project plan, role interaction nets can be used 

as a method of coordinating the routing of artefacts among interacting roles and as a method 

of tracking progress by the completion of interactions among roles. That is, this formalism 

can be used as an underpinning for coordinating activities in a process-driven environment. 



Chapter 2. Background 42

2.5.4   Finite State Process 

The Finite State Process (FSP) notation (Magee, Kramer et al. 1997; Magee and Kramer 

1999) is designed to be easily machine readable, and thus provides a preferred language to 

specify abstract workflows.  FSP is a textual notation (technically a process calculus) for 

concisely describing and reasoning about concurrent programs.  The constructed FSP can be 

used to model the exact transition of workflow processes through a modelling tool such as 

the Labelled Transition System Analyzer (LTSA) (Magee and Kramer 1999), which provides 

compilation of an FSP into a state machine and provides a resulting LTS.   LTSA is a tool 

which provides a means to construct and analyse complex models of finite state process 

specifications.  This tool, which is fully explained in (Magee and Kramer 1999), provides us 

with an opportunity to model workflows prior to implementation and deployment testing, 

and with an MSC editor and synthesis extensions (S.Uchitel and Kramer 2001) to easily 

model a scenario-based design specification, which can increase the expectation that process 

composition will provide the necessary path of invocation in all states specified (e.g. reliably 

by eliminating deadlock situations).  With process animator extensions, the tool can also 

provide a facilitator in simulating workflow specifications.  An example FSP for a parallel 

composition of concurrent invoke and receive transitions in a process is given in Figure 2-9.  

The composed Labelled Transition system for this system is also illustrated. 

 

INVOKE = (invoke_activity->END). 

RECEIVE= (receive_activity->END). 

||PSEQ = (INVOKE || RECEIVE). 

Figure 2-9  FSP and LTS of a sequential process composition 
 

2.5.5   Comparison 

In (Ross-Talbot 2004) a comparison between several process algebras is given with a focus 

on the requirements for web service process modelling.  The aim of this comparison is to 

provide criteria for modelling web service choreography (including state of resources etc) 

through a notation.  In this article the author considers completeness (a complete set of 

semantics and maturity of notation), compositionality (providing process composition 

operators and modelling), and parallelism (a key aspect of formalism which must be fulfilled 



Chapter 2. Background 

 

43

for accurately modelling web service choreography).  Our view is closely related to views of 

Ross-Talbot in that comparison; however, we distinguish our comparison by the additional 

need to have extensive tool support and experience available to support implementations of 

web service compositions in that formalism (away from any specific web service standard).  

We also do not place as strong an emphasis on resource modelling capabilities.  Whilst this 

may be useful for future work, our initial requirements place value on completeness, 

compositionality, parallelism and extendable tool sets.  As the FSP model is formalised, 

provides the necessary operators for composition behaviour (in similar set of operations to 

business workflow processes) and is supported by an easily extendable plug-in framework 

we therefore believe that FSP models provides a sufficient process formalism to support our 

requirements for this work.  

2.6   Review of Related Work 

Related work on defining specifications, composition implementations and verification and 

validation for web services has followed closely with the advancements of recent standards 

in describing such web compositions.  Although specifications have emerged with little 

formal explanation of their underlying semantic representations (Aalst, Dumas et al. 2003), 

the research community has focused its attention on modelling web service processes and 

conversations.  The methods of modelling fall into two categories, firstly using a design 

notation (such as features of UML) and to then generate a composition skeleton in the form 

of a BPEL4WS process and WSDL (interface) documents.  Secondly, process algebras have 

been used to model the processes and interactions of service compositions and their 

choreography specifications. Here we describe the related work to ours, and where our work 

is positioned alongside these. 

2.6.1   Web Service Specifications 

In (Papazoglou and Yang 2002) a general basis for service (component) specifications is 

stated as being that it describes all interfaces of a set of operations that are available to the 

service client for invocation.  Although the service standards are rapidly changing and 

evolving, with respect to their interfaces and operations, there is some common ground on 

requirements-driven design specifications of web service compositions and equally some 

varied methods of building these process specifications.  The common ground appears to be 

formally specifying the business requirements of the composition process required, such that 



Chapter 2. Background 44

it captures the requirements for both the actors of the services and also the features of the 

web service interactions.  In (Gardner 2003; Iyengar 2003; Mantell 2003) the authors 

describe an approach to specifying business processes through a subset of the UML profile 

(driven from a process class with attributes and methods).  The behaviour of the interacting 

process classes is given using an activity graph.  Whilst these works show partnered 

processes working together, it is unclear how multiple scenarios of each process would be 

specified  In (S.J.Woodman, D.J.Palmer et al. 2004) however, the authors provide examples 

in UML Sequence Diagrams and Activity graphs, yet refer back to building requirements in 

a process algebra (in this case the π-calculus) to represent the concurrent and alternative 

paths possible in a composite web service specification.  Additional work, acting as a bridge 

between model-driven based approaches (such as UML) and directly being specified in a 

process algebra, has been discussed in (Pistore, Roveri et al. 2004).  The authors use an 

extended version of the TROPOS methodology, featuring a modelling framework proposed 

in (Yu 1997) to capture business requirements and then generate BPEL4WS source code 

from these requirements.  In (Hamadi and Benatallah 2004; Yi and J.Kochut 2004; Yi and 

Krys.J.Kochut 2004) Petri net-based models are used to specify the semantics of web service 

specifications, their compositions and the communication between services.  A direct 

mapping is mentioned between service and Petri-net yet no examples were given for this.  

With these works however, the key point that appears to be a disadvantage is that of 

alternative scenarios of the service specifications in design.  For example, in each of these 

works it is possible to design abstract specifications yet they appear to represent single 

scenario processes only.  A wider view of the alternative behaviours of the process must also 

be captured to gain greater assurance of a compositions use once deployed. 

2.6.2   Modelling Web Service Compositions and Choreography 

The second set of research in the analysis of web service compositions has been undertaken 

by modelling these implementations directly in a process algebra.  One of the earlier 

proposals for formal analysis of composition implementations was given in (Nakajima 

2002).  In this the author suggests that due to the nature of the software assets (the 

compositions in this case) being deployed to the internet, that the risk of a bug in such a 

composition impacts are much greater than that of conventional system deployments.  The 

author of this work has also provided analysis of compositions in terms of those 

implemented in the Web Service Flow Language (WSFL) (Leymann 2001), which is one of 

a group of specifications that have been used to create BPEL4WS, and implements a 



Chapter 2. Background 

 

45

mapping between WSFL and Promela (the language of the SPIN tool) (Nakajima 2002).  

The work provides a useful reference point on mapping XML schemas (as web service 

specifications are defined in XML).  Since the BPEL4WS specification has only recently 

become a standard (at the time of writing this thesis), one of the earlier works attempted on 

mapping BPEL4WS to a process calculus was reported in (Koshkina 2003) .  The author 

introduces an extended process calculus, named “BPE-Calculus” which aims at concisely 

describing BPEL4WS processes in a notation similar to that of other process calculus, such 

as CCS (Milner 1980; Milner 1989).  The calculus is then compiled into a Labelled 

Transition system (LTS).  The authors of the BPEL-Calculus state that the disadvantages of 

other methods to model BPEL4WS are that their reported results are difficult to trace in the 

end tool.  This point is useful to consider how our approach can cater for usability of results 

back to the end-user from that of the common mechanisms used by formal verification 

toolsets.  In (Ferrara 2004; Salaun, Ferrara et al. 2004) web service specifications are 

described in the Language of Temporal Ordering Specifications (LOTOS).  The authors 

extend the common mapping theme between the algebra and BPEL4WS by providing rules 

for a two-way process.  They also confirm however, that due to the expressive and flexible 

structure of LOTOS, the mapping from LOTOS to BPEL4WS clearly does not preserve the 

structure of a process.  We can learn from this that the abstraction necessary to perform 

modelling is not compatible in a two-way style, and that to perform this, additional resources 

(such as a resource map) would need to be included to “fill” the gaps between process 

algebra and implementation specification.  Alternatively, (Hamadi and Benatallah 2004; Yi 

and J.Kochut 2004; Yi and Krys.J.Kochut 2004) use Petri net-based models to represent web 

service composition flows.  In (Hamadi and Benatallah 2004) the work also defines a “web 

service algebra” (a grammar in BNF-like notation).  However, there is a little coverage of 

how this maps to current standard web service composition languages (such as BPEL4WS or 

WS-CDL). 

 

There has been some work on providing formal semantics for web service composition 

languages.  In (Ankolekar, Burstein et al. 2002), the mark-up and semantics for DAML-S 

(another web service composition specification proposal) is described.  They describe the 

notion of a “semantic web” as a series of Web resources that provide services, which effect 

some action or change in the world, such as the sale of a product or the control of a physical 

device. The semantic web should enable users to locate, select, employ, compose, and 

monitor Web-based services automatically.  Whilst in (Duan, Bernstein et al. 2004) 



Chapter 2. Background 46

BPEL4WS abstract processes (to describe the interface between processes) are analysed and 

semantics given on the construction of BPEL4WS implementations behind this.  BPEL4WS 

and DAML-S are similar attempts at a standard for workflow of services, however, 

BPEL4WS focuses more on business web service orchestration whilst DAML-S is more 

generic in terms of any web based service or object (Seeley 2003).  Additionally  in 

(Woodman, Palmer et al. 2004) the authors present an extension to the WSDL specification 

(discussed in section 2.4.2), to describe the interactions between web services.  This is then 

in turn mapped to π-calculus processes and sequencing formed using its operators.  Tasks are 

represented as processes and dependencies linking the tasks, represented by channels 

(representing data dependencies in conditional linking).  As BPEL4WS extends WSDL with 

an abstract process (which we describe further in Chapter 4), this mapping is aimed more at 

the choreography level (where the inner process of a service is not directly observed). 

 

In terms of choreography and web service conversations, work on asynchronous web service 

communication has been described in (Fu, Bultan et al. 2004; Fu 2004d), with an example 

focus on the BPEL4WS specification reported in (Fu, Bultan et al. 2004b).  A formal 

specification framework is described to analyse the conversations proposed by the 

asynchronous communication channels utilized on the internet.  Interestingly, we shall show 

later in this thesis, that BPEL4WS provides a pseudo-asynchronous interaction model 

(whereby an invocation is sent, and then a separate receive activity formulates the link of call 

and reply).  The technique proposed appears more useful for modelling general web service 

communication, rather than that of compositional specifics.  Both the work on asynchronous 

and BPEL4WS interaction modelling is achieved through the use of Guarded Finite State 

Automata (GFSA) which enables data dependencies to be modeled alongside process 

transitions.  In (Brogi, Canal et al. 2004) the authors describe an approach to formalizing 

conversations, by way of mapping the WSCI standard (as discussed in section 2.4.4) to CCS 

for web service choreography descriptions.  The technique is similar to that of formalizing 

compositions by way of mapping each of the actions and data parameters between two or 

more partnered services in choreography.  The conversation is traced by modelling the web 

service invocations with that of the receive and reply actions of the partnered service.  The 

authors call for a common view of representing both composition and choreography models, 

such that fluid design and maintenance of individual specifications is not detrimental to the 

development effort.  They additionally claim that other work in this area, including our work 

in (Foster, Uchitel et al. 2003a) does not provide support for channel adaptors (those which 



Chapter 2. Background 

 

47

link services interactions together).  This was the case until we published our port connector 

work in (Foster, Uchitel et al. 2004a).  Unfortunately, at the time of writing this thesis the 

WSCI specification work appears to have ceased, whilst the work on WS-CDL has continued 

with support from academia (Carbone, Honda et al. 2005; Carbone, Honda et al. 2005) in 

modelling the choreography specifications  (in this case, in π-calculus).  

2.6.3   Verification and Behaviour Analysis 

Compositional verification of concurrent systems has been explained in many articles 

including (Lynch and Tuttle 1987; Abadi and Lamport 1993; De-Leon and Grumberg 1993; 

Clarke, Grumberg et al. 1994a; Clarke, Grumberg et al. 1994b; Abadi and Lamport 1995; 

Hailpern and P.Santhanarn 2002).  In most of these works a model of the behaviour 

exhibited by concurrent systems is created.   However, the verification context is defined in 

different terms depending on the work reviewed.   For example in (Hailpern and 

P.Santhanarn 2002) the context is very much on equivalence verification of implementations 

against that which is specified in requirements and their design specifications.  The list of 

related work for verification of process models is extensive; therefore we concentrate on web 

service verification work in this thesis.   

 

In (Koshkina 2003), which was also described previously in terms of modelling, the authors 

discuss verification of compositions for checking the existence of deadlocks, livelocks (i.e. a 

test of liveness) and sequencing constraints in service conversations.  This is just one 

example of the general themes for properties used in web service composition and 

choreography verification.  Some variations exist between web service verification works, 

largely focusing in the modelling notation used for mapping and the context at which the 

end-user is interested in verification of the service offerings.  For example, for web service 

conversations, the approach to verification is to have two sets of conversation protocols (Fu, 

Bultan et al. 2004b).  Alongside our work, the implementation protocol concentrates on 

BPEL4WS, whilst the design representation is different being modelled in a Guarded Finite 

State Automata (GFSA).  The approach translates the BPEL4WS to GFSA and then both sets 

of GFSA to the Promela language.  Intermediate analysis is performed on the BPEL4WS for 

synchronisation compatibility (a Cartesian product) on conversation appropriateness of 

interacting BPEL4WS processes.  Whilst in (Fu 2004d) the same authors discuss a 

verification method of asynchronous communication for the broader web service 

conversations patterns (where there are long lasting, decoupled interactions between 



Chapter 2. Background 48

services).  The authors use data dependencies to check the possible values and alternative 

paths of execution by a form of message analysis (using the interface descriptions for the 

message document types being passed between partners).  This is quite a different approach 

to other work which abstracted data dependencies out of the implementations and enumerate 

possible values that effect reasoning of conditional execution paths in a composition.  In 

(Hamadi and Benatallah 2004) the analysis approach again consists of describing both the 

actual business process and equivalent specification.  However, the defined web services 

algebra is used to specify both, and as such limits the use for practical purposes against 

actual standard implementations.  In (Pistore, Roveri et al. 2004) verification is considered 

against a business requirements model, represented in the Tropos language. 

 

Aside from deadlock checking, there have been some attempts to reason about the behaviour 

of web services in terms of compatibility (a sub-set of analysis of choreography 

specifications).  In (Foster, Uchitel et al. 2004a) we described the synchronisation of 

interactions between partnered web service compositions using the notion of port connectors.  

We described an algorithm that constructed these port connectors and provided models 

which could be checked to detect if the necessary interactions had been specified to fulfil a 

certain property of the services requirements.  Additionally in (Brogi, Canal et al. 2004) a 

similar reasoning is undertaken but for web service choreography specifications by 

considering the local and global choices (which relates to the local and global problem 

domains discussed in section 2.4.1) of web service choreographies in interactions.  This work 

does not consider the broader choreography properties (such as verifying transaction, 

compensation or fault tolerance behaviour) of partnered services, and as such is therefore 

similar to those described which focus on interaction compatibility. 

2.6.4   Tool Support and Case Studies 

Several tools have been reported as part of the formalising and modelling work discussed in 

previous sections.  In (Fu, Bultan et al. 2004), a tool for analysing and verifying interactions 

among web services is supported.  The mechanism is based upon conversation modelling 

(interactions of messages passing between processes) using both BPEL4WS and a formal 

conversation representation (in the form of GFSA) to describe verification properties to be 

analysed.  The GFSA is then translated to the Promela language, which can then be verified 

in the SPIN tool (Holzmann 1997; Holzmann 2003).   In (Koshkina 2003) the BPE-Calculus 

is incorporated into the Concurrency WorkBench (CWB) tool, a tool which is fully described 



Chapter 2. Background 

 

49

in (Cleaveland, Parrow et al. 1993; Stevens 1999).  The CWB presents a new view to analyse 

the compositions specified the BPE-Calculus.  We believe that the end-user (i.e. the web 

service engineer) would ideally require that the view of the verification tool or process 

algebra compilation is hidden from the development process, which encourages us to 

develop the verification toolset to support automated, background compilation of BPEL4WS 

processes and present findings back in the way in which design specifications were 

constructed (e.g. in MSC form).   

 

To this date, our research in verification and validation of web service compositions has not 

yet encountered many real-world projects that have adopted the principles set out in these 

works, although we present one such case study in Chapter 7.  There are some adoptions 

however; in the modelling of specifications whilst these specifications are being agreed (for 

example the W3C Choreography Working Group has adopted an adapted form of π-calculus 

to reason about WS-CDL descriptions).  We believe that real-world examples and testing of 

these approaches will provide the necessary confidence in tools and support for undertaking 

the verification and validation techniques proposed. 

2.6.5   Summary of related work and our approach 

As with some, but not all of the related work, our approach builds on two representations for 

the design and implementation of web service composition and provides a single framework 

for both verification and validation of the compositions.  If the verification is performed 

using just one representation of the web service composition (i.e. either design specification 

or implementation) then there is naturally a limited offering of assurance in terms of if the 

behaviour was deployed without an equivalence check.  A preferred approach is to offer both 

validation and verification at any time in the engineering of the service compositions, such 

that sufficient analysis results are determined by the nature of the changes in either design or 

implementation.  We believe that both of these brought together, provides the level with 

which to assure compositions prior to deployment. 

 

Our choice of MSCs for the design specification of web service interactions aims at 

providing a sufficient notation to describe the synchronised interactions between web service 

compositions.  The implementation is assumed to be in BPEL4WS (due to it being a standard 

and with commitment from several leading industry organisations) and translated to an 

intermediate representation.  The design representation is also synthesised to an intermediate 



Chapter 2. Background 50

representation, on the basis of the behaviour modelling work described in  (Uchitel and 

Kramer 2001).  We believe this is easier for designers to construct the various scenarios of 

the system without learning a complex algebra or other process oriented language to specify 

this in.  The design and implementation representations are then translated into the Finite 

State Process (FSP) notation to provide behaviour models for trace equivalence analysis, and 

to check further model properties by way of either safety or liveness queries.  With a pair of 

behaviour models, verification can be performed on equivalence, and checked using safety or 

liveness properties.  Validation can also be measured by animated or simulated process 

executions.  In the LTSA tool, the FSP process algebra can be compiled into an LTS.  With 

this further representation, other verification and validation modules can be reused.  For 

example, in (Chatley, Kramer et al. 2003) the LTSA tool is extended to support a web-based 

interactive (step-by-step) process simulation.  

2.7   Summary and Discussion 

In this chapter we have described a background to web service architectures and how the 

principles of software process modelling can assist web service engineers to verify that web 

service compositions are an accurate implementation of specifications (given as a set of 

properties or obligations of interest).  We have described how the Service-Oriented Model 

(SOM) specifies aspects of web services architecture that provide a framework for us to 

consider the verification and validation of web service composition scenarios.  By 

application of policies between services and goal states (in the form of obligations), we have 

the necessary basic information to check these obligation properties of models in service 

compositions.   There is a clear need to support engineering tasks for web service 

compositions, by applying semantic checking and simulated workflow animation to validate 

workflow semantics prior to deployment.  BPEL4WS currently lacks the ability to test or 

simulate the correctness of workflow sequences.  It is desirable that a composition 

framework should include checks that for example, a composition actually terminates and 

that the required execution path (end to end) is possible in all defined scenarios 

(Karamanolis, D.Giannakopoulou et al. 1999).  These checks provide greater assurance 

before deploying one or many compositions in a local global domain which is connected to a 

wider, global, domain of partnered clients and services.   To begin our approach to providing 

this assurance; the first consideration is focused on the need to specify the design of such 

compositions thoroughly and in a method easily accessible to non-system implementers.  In 



Chapter 2. Background 

 

51

the next chapter, we discuss our approach to designing web service compositions using a 

scenario-based technique. 



 

 

 

Chapter 3  

Web Service Specifications 
 

“I don’t paint things, I paint only the difference between things…"    (Matisse 1908) 

 

It is an interesting concept that Henri Matisse approached his work not by centralising on 

objects in view, but on how these objects interacted with each other in the scene being 

depicted.  A similar view can be taken with the services of a web services architecture.  

Through modelling their interactions from the perspective of multiple interaction scenarios, a 

complete view of components behaviour can be specified in different sequences.  In this 

chapter, we describe how to model a series of interacting web service compositions using 

Message Sequence Chart (MSC) standards and a scenario-based approach to describing 

multiple use-cases for services.   

 

3.1   Specifying Web Service Compositions 

In section 2.4.3, it was discussed that a web service composition orchestrates a series of web 

service interactions, whilst also carrying out some internal functions for a service goal.  

Specifying these interactions means defining a local process (in similar way to building a 

system workflow) but limiting compositions to service interactions and without detailing the 

human interaction as part of wider system goals.  As an illustration of a composition, we 

describe a scenario whereby a process for selecting the “lowest loan offer” is selected from 



Chapter 3. Web Service Specifications 

 

53

two loan providers.  A credit rating is also obtained as part of an initial decision making step.  

Figure 3-1 illustrates this process and service composition.  Three services are partnered with 

this composition, being; a credit rating service and two loan provider services.   

 

Start  End  

Credit Rating Service  

Handle negative 
 rating

 

Loan Provider  1  

Loan Provider  2  

Get Loan Offer 

Get Loan Offer 

Select lowest  
offer 

New Loan  
Request 

Return 
Offer 

Terminal

State
Transition

Choice

Sub-
process

Service  

 
Figure 3-1  Example service composition for a new loan request 

 

The example composition above is relatively simple to analyse by human observation, yet 

larger, more complex compositions, encourage an analysis of how different scenarios are 

catered for in the complete system model (Magee and Kramer 1997).  For example, if a 

credit rating is obtained which does not provide a positive result then an alternative path of 

execution is undertaken to that of if a positive result is obtained.  The implications of 

designing a process given such situations encourages a designer to explore such requirements 

from a wider perspective, possibly using techniques such as the Soft Systems Methodology 

(SSM) (Checkland 1982; Checkland 1990).  Using SSM, a “rich picture” is built to consider 

all aspects of Clients (beneficiaries of the system), Actors (those who “play” out a series of 

scenes), Transformations (actions of Actors, transformations and process that take place), 

World-view (influences from within and outside the environment), Owners (those of own the 

domain of interest) and lastly the Environment (political, legal, technical and other aspects of 

the process domain).  A Rich Picture for the loan service example, illustrated in Figure 3-2, 

highlights some of these aspects of the wider impact of a composition implementation.  

These aspects are difficult to represent in a single process design diagram.  Consider each of 

the viewpoints of the actors in the service composition (such as client or provider) and how 

the behaviour exhibited by the process.  Emerging from this picture is a set of scenarios, or 

“outlines or models of an expected or supposed sequence of events” from the perspective of 

each actor.  It is worthy to note that whilst previous compositional work (using traditional 



Chapter 3. Web Service Specifications 54

distributed component techniques) has also considered sequencing of components in this 

way – web service compositions emphasise a more global nature of exposure through 

standard techniques in discovery, interoperability and interfacing.  We now consider how the 

use of a scenario approach aids elaboration towards a rigorous method of specifying Web 

Service composition models. 

 

Service charge

Loan 
Selection
Service

Loan Provider
Service

Loan Provider
Service

Credit
Rating
Service

design

Developers

Analyst/
Designer

Regulations

1

2

Can I verify 
my process?

Call my service and 
I will get back to you...

I offer a similar 
process...

You must check rating 
before calling service...

Can I validate my 
design with clients?

Client1

Client2

Is the process 
compatible with ours?

I want a different 
process...

3

2

1

1

Does the process handle 
asynchronous
Interactions?

 
Figure 3-2  A Rich-Picture of viewpoints in a loan selection service composition 

 

 

3.2   The Scenario Approach 

The scenario based design approach has been a popular technique to capture user 

requirements by way of story telling (Jacobson, Rumbaugh et al. 1999).  This method 

provides a concise yet simple tool for “painting a picture” of how actors (clients), 

components and messages are composed together to complete one or more system goals.  It 

has commonly been used in the past for actual interaction by system users (Graubmann 

2003), the actors can also represent any agent or service that interacts with the system being 

described by way of activities.  For clarity, an example initial requirement of one textual 

representation of the Rich-Picture illustrated previously could be as described in Figure 3-3.  

Scenario based design has aids in the form of various system design modelling standards.  

The messages and their sequences that pass between components in a process can be 

described by way of a Message Sequence Chart (MSC) (ITU 1996) or similarly Sequence 

Charts in the Unified Modelling Language (UML) (OMG 2002).  MSCs are part of building 

a set of scenarios of partial system behaviour (Uchitel 2003).  The ITU MSC specification as 



Chapter 3. Web Service Specifications 

 

55

defined in  (ITU 1996), forms MSCs as being part of two structures, that of Basic Message 

Sequence Charts (bMSCs) and High-Level Message Sequence Charts (hMSCs).  Scenarios 

can be expressed in terms of positive scenarios (those messages which are expected) and 

negative scenarios (those messages which are not expected) in a composition.  Here we use 

only the former for positive scenarios, to illustrate scenarios of web service compositions. 

 

A loan selection service accepts a request for a new loan.  The loan selection service first 

checks whether the credit rating of the client applying is suitable.  If the rating is suitable, 

then the loan selection service contacts at least two loan providers.  Each loan provider 

provides a rate and the loan selection service determines the lower rate of the two replies.  

Only when both loan provider replies are made, does the service calculate the lowest offer 

and then return this to the client. 

Figure 3-3  Example scenario of a loan offer service composition 
 

3.2.1   Basic Message Sequence Charts (bMSC) 

Basic MSCs (bMSCs) are useful for describing compositional activities, illustrating partial 

system behaviour by defining sequences of messages between components, and providing 

information of interaction state.  Messages are passed between the “actors” (known as 

components in MSC terminology) of the objects that interact in the scenario arena.  When 

diagramming a description of a concurrent or distributed system, we list the interactions 

between the system's environment and external systems, labelling the interactions scenario-

by-scenario.  Two terms are important here: interaction and interaction scenario.  An 

interaction refers to a specific sequence of events that happens among participating entities.  

For example, one interaction might be a temperature gauge (an external system) sending a 

message to a system controller. The message would be one interaction.  At more detailed 

levels, interactions involving internal components (subsystems) of the system are also 

included in the system description.  An interaction scenario, on the other hand, details a 

specific group of interactions that form an episode (one of the parts into which a scenario is 

divided) and often stands for the possible event sequences in that episode. For example, a 

series of interaction scenarios would be the acceptable interactions between a pressure 

gauge, controller, and a valve that make the valve open when the pressure is too high. Each 

interaction scenario is often classified as either desirable or undesirable. Ideally, the 

implemented system should meet all the desirable interaction scenarios and none of the 



Chapter 3. Web Service Specifications 56

undesirable ones.  Figure 3-4 illustrates a set of example scenarios for the loan selection 

service composition example.   

 

 
a)  Client Request 

 
b)  Request Credit – OK 

 
c) Request Credit – Failed 

 
d)  Get Loan Offer from a Provider 

Figure 3-4  Example bMSCs for scenarios in the loan selection service composition 
 

3.2.2   High Level Message Sequence Charts (hMSC) 

The bMSC and similar UML sequence charts are sufficient to describe the interactions of 

Web Service Composition designs.  In web service composition design, the scenario based 

approach provides a suitably detailed notation to establish a specification of the required 

interactions in a series of scenarios for a given problem domain.  We can use this notation to 

provide an abstract description of what the required behaviour of the web service 

compositions should be and leverage this into the specification approach such that individual 

service interaction models may be synthesised.  Prior to this synthesis however, a set of 

scenarios for a web service composition requires further sequence detail as to how the 

individual scenarios may be composed.  A higher contextual level of interaction may be 

specified using the hMSc (high level Message Sequence Chart) technique. 

 

A hMSC is a collection of nodes connected to each other through transitions. Each node is 

either a start symbol, an end symbol, a rectangle enclosing a reference to a bMSC or another 

hMSC, a hexagon enclosing a condition, a small empty circle denoting a connection point, or 

a parallel frame containing two or more hMSCs that act in parallel. To focus on the 

choreography aspects, components are not shown in an hMSC as they have no meaning to 

the high-level sequence. Conditions in an hMSC are global in the sense that they apply to all 

the entities and indicate a global system state.  This technique links together the basic 



Chapter 3. Web Service Specifications 

 

57

(scenario) message sequence charts and prescribes the expected possible paths in execution 

of one or more compositions.  Figure 3-5 depicts a high level message sequence chart for the 

scenario given earlier.  Whilst this is a simple example, it illustrates how a series of bMSCs 

may form the possible paths of sequence through a composition of possible message 

sequence scenarios. 

 

Start LoanRequest

CreditFail

CreditOK EndProvider2

Provider1

LoanReply

 
Figure 3-5.  High Level MSC (hMSC) for Loan Selection Service composition 

 

3.3   MSCs, Compositions and Choreography 

3.3.1   Mapping MSCs elements to Web Service Composition Behaviour 

A web service composition design can be seen as a composed process consisting of various 

scenarios which when combined together, provides a complete set of sequence paths 

describing all possible paths through a service composition design.  We relate the concepts 

of scenarios to web service compositions using a mapping between the elements of message 

sequence charts and those in building standards based web service composition.  Each of the 

elements of the MSC (defined by ITU) is described in relation to elements of web service 

compositions and web service choreography (defined by OASIS for BPEL4WS and W3C for 

WS-CDL respectively).  Table 3-1  lists each of the MSC elements as they relate to these two 

standards. 

3.3.2   Web Service Compositions as MSCs 

A Message Sequence Chart describes the message flow between instances and partners of 

the composition.  One message flow describes a partial behaviour of a system.   

Table 3-1.  Web Service Compositions and Choreography as MSC Elements 



Chapter 3. Web Service Specifications 58

MSC 
Element  

ITU Definition Web Service Composition Web Service Choreography 

hMSC Describes high level 
sequence of partial 
behaviour (bMSCs). 

Links several compositions or 
episodes together to form complete 
system behaviour. 

Defines sequence of 
compositions and overall 
system behaviour in wider 
context. 

bMSC Describes a partial 
behaviour of a system 
between instances. 

A Composition MSC is used to 
describe a single participant view 
of the overall message exchange.  
This provides a” skeleton 
template” for the composition as a 
workflow process, as seen from 
one participant. 

A Choreography bMSC is 
used to describe a multi-
participant view of the overall 
web service collaboration and 
message exchange. 

Instance  Name blocks, processes 
or services of a system 

Partners of composition, as seen 
from the local process perspective.  
Specific process name may also be 
included in the instance title. 

Partners in choreography.  
Local Partner services  or 
compositions are created upon 
a signified request. 

Messages A relation between an 
instance output and an 
instance input.   message 
exchange can be split into 
two messages for input 
and output events. 

Communication between 
composition “partners” or internal 
process activities.  Messages are 
mapped to activities in the local 
composition. (e.g. service 
invocation, conditional branching). 

Communication between all 
“partners” in choreography.  
Messages are related directly 
to an abstract process of web 
service calls between services 
and the compositions as a 
service. 

Conditions Restrict the traces that an 
MSC can take.  Setting 
conditions describe global 
or non-global conditions.  
Guarding Conditions 
restrict behaviour 
depending on event 
values. 

A web service composition may 
sequence its events to only be 
allowed if its current state permits 
this.  The composition therefore 
imposes a guarded condition on the 
process activities. 

A web service choreography 
may allow interaction only if a 
current state permits this.  The 
composition therefore imposes 
a guarded condition on the 
partner interactions. 

Gates and 
Environment 

Gates represent interface 
between MSC and its 
environment. 

All interactions in web service 
compositions are through standard 
web service calls.  Thus, gates are 
another form of instance in this 
case. 

Choreography tracks the 
sequence of messages 
involving multiple parties, 
where no one party truly 
"owns" the conversation 

Instance 
creation 

Creation of a instance in 
message sequence chart 
scenario 

Creation of service process or 
interaction.  Creation may also 
represent the lifetime of a unique 
instance of a composition. 

Instance creation of 
choreographed services is 
determined by the instance 
creation of local services or 
compositions 

Instance stop Termination of an 
instance in current 
scenario (by itself) 

Termination of service process or 
end of interaction.  Invocation may 
be asynchronous; therefore the 
partner process has control of 
termination.  

Services are potentially long-
running instances however, a 
service process has clearly 
defined start and end markers 
 

 

The message sequence chart is limited to describe only interactions and activities in a web 

service composition; therefore the chart can form a skeleton for the interaction constructs in 

a web service composition process generation.  Figure 3-6 illustrates the mapping of message 

sequence chart elements to web service composition elements. 

 

 



Chapter 3. Web Service Specifications 

 

59

Instances may be blocks, processes or services of a system.  In addition to service name, the 

specific instance process name may also be included.  In a web service composition, 

instances are referred to as partners of the composition.  Partners may be clients or other web 

services.   

 

Loan Provider 1Client Loan Service

request loan

Components 
represent services or 
partners of 
composition

Messages represent  
service invocations or 
replies

The sequence of 
messages defines 

the order in 
composition

Components have a 
clearly defined role 
within the 
composition

The composition is 
central view of 
interaction

request rate

Loan Provider 2

request rate

loan rate 2

loan rate 1

best loan rate

Activation shows 
composition instance 
creation and stop

 
Figure 3-6.  Basic MSCs and Web Service Composition elements 

 

Partners can interact either by consuming service messages, in the form of SOAP operations, 

or by actively requesting within one or more compositions.  Messages represent the relation 

between an instance output and an instance input.  Additionally, MSCs can specify messages 

from the environment (via a gate) or be found.  For web service compositions, a gate is 

assumed to always be a partner of the composition (a client or service).  Additionally, 

messages may also represent events (timed) or other internal process.  Conditions can be 

used to restrict the traces that an MSC can take, or the way in which they are composed into 

hMSCs. There are two types of condition: setting and guarding conditions.  Setting 

conditions set or describe the current global system state (global condition), or some local 

state (conditions). In the latter case the condition may be local, i.e. attached to just one 

instance.  Guarding conditions restrict the behaviour of an MSC by only allowing the 

execution of events in a certain part of the MSC depending on their values. This part, which 

is the scope of the condition, is either the complete MSC or the innermost operand of an 

inline expression or a branch of an hMSC.  Web Service compositions can equally impose 



Chapter 3. Web Service Specifications 60

conditions on sequence of interactions with partners, and locally in the flow of execution in 

its process.  Gates (points of interacting with the Environment) and Environment elements of 

Message Sequence Charts are not required in a mapping to web service compositions.  

Whilst they hold value for the environment specification in an MSC chart, standard links in a 

services environment is always undertaken by messages (i.e. interacting with other 

instances).  The Instance creation and stop element of MScs represent that a service has a 

finite duration.  Instance creation can be achieved by another instance.  Whereas 

conventionally no messages or events may be made on an instance which has not been 

created, messages between service components may create an instance of that service 

composition.  If not directly specified, it is assumed that an instance is created on activation 

of the entire scenario.  Alternatively, an instance may terminate, although an instance may 

only terminate itself.  It is assumed in web service compositions that services will be 

available (and thus created) prior to any scenario being carried out.  However, a web service 

composition may listen for a creation message (to start a given scenario) which may 

indirectly create another instance of a composition process.   

3.3.3   Web Service Choreography as MSCs 

In section 3.3.2, we described how message sequence charts can be used to describe web 

service compositions and the mapping of elements between them.  Web Service 

choreography extends the use of using bMSCs in specifying the web service behaviour by 

considering how to elaborate for multiple web service compositions or services interacting in 

a wider enterprise scenario.  The compositional view can still be used, however rather than 

concentrating on a single service the story of multiple services (or compositions) is 

described.  Figure 3-7 illustrates how a bMSc may be used to describe elements of WS 

Choreography.  As choreography describes interactions based upon multiple-viewpoints it is 

therefore also related to the using higher level message sequence charts to specify the 

sequence of interactions in various scenarios of Choreography interfaces  Describing the 

collective flow of scenarios (specified in bMSCs) also forms part of the choreography 

design.  Although designing web service choreography using MSCs is similar to building 

web service compositions, the subtle difference is that of coordination across multiple 

compositions and scenarios. 



Chapter 3. Web Service Specifications 

 

61

Client Loan Service Loan Provider 1

request loan

Components 
represent services or 
partners in 
choreography

Messages represent  
service invocations or 
replies

The sequence of 
messages defines 
service interaction 

choreography

Choreography 
specified as overall 
interaction

The choreography of 
all services is central 

view of interaction

request rate

Loan Provider 2

loan rate 1

best loan rate

Credit Rating Service

request rating

client credit rating

request rate

request rate

loan rate 2

 
Figure 3-7  Basic MSC and Web Service Choreography elements forming a Collaboration Group 

 

3.4   Synthesising MSCs to Labeled Transition Systems 

MSCs are visual aids to design requirements specifications for web service compositions, yet 

their combined behaviour (as a set of partial stories in a complete composition behaviour 

model) is still difficult to analyse by human observation.  The process of synthesising these 

MSC scenarios to Labelled Transition Systems (described in 2.5) provides a way to 

computationally and mechanically analyse these scenarios to determine whether the 

behaviour specified is desirable given a complete system behaviour model.  A formal syntax 

and semantics for MSCs is described in (Uchitel and Kramer 2001; Uchitel 2003), whilst a 

corresponding algorithm to synthesise MSCs to a LTS based upon these definitions is 

described in (Uchitel, J.Magee et al. 2001).   

 

In theoretical computer science, a state transition system is an abstract machine used in the 

study of computation. The machine consists of a set of states and transitions between states. 

State transition systems differ from finite state automata in several ways: In a state transition 

system the set of states is not necessarily finite, or even countable. In a state transition 

system the set of transitions is not necessarily finite, or even countable. In a state transition 

system, transitions do not form a function, but a relation between the states, and therefore, 

there may be zero or more than one transition out of a given state, with the same input. State 

transition systems with a finite number of states and transitions can be represented as 



Chapter 3. Web Service Specifications 62

directed graphs. There are at least two basic types of state transition systems: “labelled” (or 

LTS for labelled transition system) or unlabelled.  The net result of performing this synthesis 

of MSCs to an LTS is to “help correct, elaborate and refine scenario-based specifications by 

way of experiments and replaying them…”.  The algorithm we reuse in this work takes as 

input a series of MSC scenarios, and builds an LTS for each of the components involved.  

An intermediate step is performed, building finite state machine models in the FSP notation, 

which are in turn compiled to a architectural LTS model (Figure 3-8). 

 

 
Figure 3-8  Architectural Model LTS of Loan Selection Composition 

 

Represented as LTSs, the web service compositions built in the scenario approach appear 

quite different.  The model produced in this synthesis provides a complete view of a system 

modal process, providing concise inspection of all possible paths and thus behaviour of the 

composition.  Equally, from an abstract view, each of the actors in the process can be 

analysed for interaction.  For example, to see the steps of activities that the Loan Service 

process exhibits we can compile only the Loan Service into an LTS and similarly analyse. 

 

Figure 3-9  LTS for Loan Selection Service Process 
 

3.5   Summary and Discussion 

In this chapter we have described the notion and practical steps to designing web service 

compositions and choreography by means of using a scenario based approach.  The 



Chapter 3. Web Service Specifications 

 

63

technique uses Message Sequence Charts to describe the interactions both within and outside 

the local process environment, depending on the viewpoint taken.  The synthesis of these 

Message Sequence Chart scenarios provides a model of the complete system interaction 

design.  Initial analysis can be performed on the design to ensure that different scenarios are 

catered for, but also to provide a sufficient analysis specification as input to verification 

against a process implementation.  We consider the implementation of these design 

specifications in the following chapter. In terms of the approach discussed in section 1.2, we 

have introduced the highlighted parts as illustrated in Figure 3-10. 

 

Tool   

Designers Validation

validation results

.
models

Deployers

Implementers

Specification

verification results

Composition

Clients

Verification

Verified and 
Validated
Services

BPEL4WS 

implementations

Composition
Processes

Composition
Semantics

Requirements

Web 
Service

Standards

MSCs

BPEL4WS 
Specification

Composition
Specification

Web Services

Model Generation

synthesis

m
apping

abstraction

interactions

verification properties

validation traces

Partner
Service

Interfaces

Composition

Release
Request

Analysis
Choice

Construct

Construct

Reference

Reference

MSC
Synthesis
To FSP

 
Figure 3-10  Elements of the approach discussed in chapter 3. 



 

Chapter 4  

Modelling Web Service Compositions 
 

“Nothing goes by luck in composition. It allows of no tricks. The best you can write,  

will be the best you are."    (Henry D. Thoreau, 1817-1862) 

 
In Chapter 3 we discussed an approach to specifying web service compositions for the 

purpose of design and synthesising these design specifications to software process models.  

In this chapter we present a mapping of web service composition implementations (in the 

form of BPEL4WS processes) to that of processes described in the Finite State Process (FSP) 

notation.  The mapping is required to provide explicit process representation behind that of 

the BPEL4WS constructs activities and other process definitions.  The specification of 

BPEL4WS is analysed and each construct, and their related formations, described by way of 

the FSP semantics.  To further illustrate the mapping described here, we utilise (by way of 

graphical representation) the corresponding Labelled Transition Systems (LTS) for each FSP 

model generated. 

4.1   Modelling BPEL4WS Processes 

4.1.1   Overview of BPEL4WS 

The Business Process Language for Web Services (BPEL4WS) (Curbera, Goland et al. 

2002) is a  standard for specifying and executing service orchestration processes against a 

domain of web services.  The ability to develop a standards based process execution notation 

emerged from earlier efforts of several competing specifications including the Web Service 

Flow Language (WSFL) (Leymann 2001), XLANG (Thatte 2001) and BPML (Arkin 2002).  

The desire is to form a standard way of coordinating a uniformed and collaborative 



Chapter 4.  Modelling Web Service Compositions 

 

65

mechanism to support multi-service interactions for a business or other process.  This is seen 

as a critical element of making web services viable for wide spread use.  The BPEL4WS 

standard is based on XML and is defined as being a layer above the WSDL (described in 

section 2.4.2).  As we have discussed in previous chapters, distributed systems integration 

requires more than the ability to conduct simple interactions by using standard protocols. The 

potential of Web Services as an integration platform will be better achieved when 

applications and business processes are able to integrate their complex interactions by using 

a standard process integration model. The interaction model that is directly supported by 

WSDL is essentially a stateless model of synchronous or uncorrelated asynchronous 

interactions. Models for business interactions typically assume sequences of peer-to-peer 

message exchanges, both synchronous and asynchronous, within state enabled, long-running 

interactions involving two or more parties.   

4.1.2   BPEL4WS Processes and Business Protocols 

To define such business interactions, a formal description of the message exchange protocols 

used by business processes in their interactions can be implemented for BPEL4WS as a 

public process and added to the WSDL document.  The definition of such public business 

protocols involves precisely specifying the mutually visible message exchange behaviour of 

each of the parties involved in the protocol, without revealing their internal implementation. 

There are two good reasons to separate the public aspects of business process behaviour from 

internal or private aspects. One is that businesses may not wish to reveal all their internal 

decision making and data management to their business partners. The other is that, even 

where this is not the case, separating public from private process provides the freedom to 

change private aspects of the process implementation without affecting the public business 

protocol.  The viewpoint of interaction analysis in this work however, is aimed at the 

designers and implementers of the compositions and it is therefore necessary to analyse the 

private process and how its logical parts define the behaviour of what the composition 

execution may actually perform. A private process is implemented in BPEL4WS using a 

series of XML constructs (described later in this chapter) for basic logic, structural and 

concurrent activities in a separate document.  This document forms the executable process 

which we use as source for private process modelling.  In the later stages of analysis in our 

work, both public and private processes are collated to support a complete interaction 

analysis. 



Chapter 4.  Modelling Web Service Compositions 66

4.1.3   Private Process Structure 

A basic process in BPEL4WS 1.1 is defined as a root element, consisting of one or more 

child elements describing partners, variables, correlationsets, faultHandlers, 

compensationHandlers and core process sub-activities (as illustrated in Figure 4-1).   

 

Process

Partners Variables Correlation-
sets

Compensation
-handlers

Fault-
Handlers Activity

Catch / 
CatchAllActivity

o o o o

 
Figure 4-1  Basic BPEL4WS Process Structure and Activity Groups 

 

A BPEL4WS document is split into five areas of process definitions.  The first area of 

process elements covers process declarations.  These do not directly influence the behaviour 

of the process, but are used to declare process wide declarations (such as partners, data 

containers used by the process etc).  The declarations are used as reference in later stages of 

our modelling approach to associate interaction models between processes and its partners.  

The other areas of a BPEL4WS process specify the actual workflow of the process (e.g. 

interactions, conditional logic etc).  Firstly, a set of constructs are used to specify basic 

interactions in the process (such as service invocation or receiving a request from a partnered 

service). We describe these activities as “primitive” in that they perform basic operations on 

behalf of the process.  The second set of constructs defines the order in which activities are 

carried out.  Such activities provide sequences of execution or concurrent activity execution.  

The remaining sets of activities are formed from the traditional structured programming 

language concepts (such as structured sequencing, iteration etc) and for specifying specific 

fault tolerance and compensation handling activities.  We specifically group the conditional 

constructs of BPEL4WS, which we name “guarded process activities”, as they utilise a 

similar representation to that of guarded transitions in process algebras.  Guards define the 

flow of control in a computation, and how they may be translated under refinement is central 

to the formal treatment of models in model-checking techniques (Pavlovic and Smith 2002).   



Chapter 4.  Modelling Web Service Compositions 

 

67

The areas of a BPEL4WS process discussed here and associated activities are summarised in 

Table 4-1. 

 
Table 4-1  BPEL4WS Process Definitions, Activity Sets and Activity Constructs 

Element Description Section
Common Process Declarations 4.1 

Process Root process element – marks the start of process 4.1.1 

Partners The “actors” in the process 4.1.2 

Variables Specify variables for message data 4.1.2 

Correlation sets Correlating activities between partner and process execution 4.1.3 

Primitive Activities and Constructs  4.2 

Invoke Messages sent to partner services 4.2.1 

Receive Messages received from partners 4.2.1 

Reply Messages conveyed back to partners 4.2.1 

Wait Wait for specified period 4.2.2 

Empty No actual operation, used for synchronisation of activities 4.2.2 

Terminate End process at place in process 4.2.3 

Structured Activities 4.3 

Sequence Sequential execution of activities 4.3.1 

Flow                        Concurrent message transitions 4.3.2 

Links Transitional conditions between constructs 4.3.3 

Guarded Activities and Variable Abstraction 4.4 

Assign                     Message data that requires manipulation or evaluation 4.4.2 

While Process iterations 4.4.3 

Switch…Case Test and branch conditions 4.4.4 

Pick (OnMessage) Event driven selection of transitions 4.4.5 

Fault Tolerance and Compensation Handlers 4.5 

Scope Scope sub-process of activities for compensation 4.5 

FaultHandlers Define either global or scope fault handling  4.5.1 

Throw Throw a specific fault at point in process 4.5.2 

Compensate Force compensation of scope or enclosing scopes 4.5.3 

 

BPEL4WS also has a structure for standard-attributes and standard-elements for all activities 

used in a process.  Standard-attributes are provided to give each element instance a name, 

whether an activity join condition is applicable in this instance and whether a join failure is 

suppressed for this activity or not.  The Standard-Elements are related to links – in that target 

and source link elements can be used to designate respective link origin or destination.  A 

simplified structure representation of each of these constructs is illustrated in Figure 4-2. 

 



Chapter 4.  Modelling Web Service Compositions 68

 

 
Figure 4-2  Standard Transitional Attributes and Elements Tags of BPEL4WS Activities 

 

4.1.4   Mapping BPEL4WS Processes to FSP 

To analyse these processes, we firstly use the FSP notation to build a model of the semantics 

of a BPEL4WS process.  Although we could build representations in Labelled Transition 

Systems (LTS) directly, we have already discussed (in Chapter 3) how these representations 

work well with few states and that they become impractical when defining larger LTSs.   For 

this reason, (Magee, Kramer et al. 1997; Magee and Kramer 1999) proposed a simple 

process algebra notation called Finite State Processes (FSP) to textually specify LTSs. FSP is 

a specification language with well-defined semantics in terms of LTSs, which provides a 

concise way of describing LTSs. Each FSP expression E can be mapped onto a finite LTS.  

FSP introduces several operators, including an action prefix, choice, recursion, an end state, 

sequential and parallel composition and equivalence minimisation (a more detailed list is 

given in Appendix A).  A summary of the semantics for FSP are listed below. 

 

If x and y range over actions, and P and Q range over FSP processes, FSP introduces the 
following operators: 
 

• Action prefix “->”: (x->P) describes a process that initially engages in the action x and 

then behaves as described by the auxiliary process P. 

• Choice “|”: (x->P|y->Q) describes a process which initially engages in either x or y, 

and whose subsequent behaviour is described by auxiliary processes P or Q, respectively. 

• Recursion: the behaviour of a process may be defined in terms of itself, in order to express 

repetition. 

• End state “END”: describes a process that has terminated successfully and cannot perform 

any more actions. 

• Sequential composition “;”: (P;Q) where P is a process with an END state, describes a 

process that behaves as P and when it reaches the END state of P starts behaving as the 

auxiliary process Q. 

• Parallel composition “||”: (P||Q) describes the parallel composition of processes P and 

Q. 



Chapter 4.  Modelling Web Service Compositions 

 

69

• Trace equivalence minimisation “deterministic”: deterministic P describes 

the minimal trace equivalent process to P. If no terminating traces are proper prefixes of 

other traces, then it also preserves END states. 

• Strong semantic equivalence minimisation “minimal”: minimal P describes the 

minimal strong semantic equivalent process to P. 

 

4.2   Mapping Primitive Activities 

The basic activities in the BPEL4WS specification are formed from the constructs of Invoke, 

Receive, Reply, Terminate, and Wait.  The Receive, Reply and Wait activities are basic 

transition activities without additional complexity, however, the Invoke and Terminate 

activities hold additional properties, whereby invocations can be designated with either an 

expected reply or without.  Terminate is used to abruptly end a process, and is specified with 

an “eventual” end to running activities once initiated. 

4.2.1   Label Abstraction of Web Service Interactions 

In BPEL4WS, an activity consists of a parent element name and a series of attribute 

elements.  The activity that is modelled can be formed using a representative activity label 

structure associated with the transition of the activity in a model.  There are differences 

however in the elements that are used to build meaningful activity labelling depending on 

whether it is an interaction activity or an interaction dependency activity (such as links, 

conditional activities or fault/compensation handling).  The basic structure used for the 

activity process in our modelling is firstly the construct name (e.g. invoke), secondly the 

partner name (i.e. from the role designated in process) and thirdly the operation name (e.g. 

“getOrders”).  The three main interaction activities of invoke, receive and reply for message 

communication are equally modelled, in that activities are labelled with the same syntax but 

with different corresponding construct name.  This labelling structure is illustrated in Figure 

4-3.  Other constructs in BPEL4WS also have a scheme applied to constructing appropriate 

labelling.  However, we shall see that this naming convention changes when we introduce 

connectivity between interacting partners and their processes in section 5.2.1.  Further 

elaboration is also required to synchronise these interaction activities between compositions, 

which is discussed in chapters 5 and 6.   

 



Chapter 4.  Modelling Web Service Compositions 70

1

2

3

 

 

Service Interaction Activities Labels: 
<constructname_partner_operation> 

• Invoke construct. 
invoke_buyer_neworder 

• Receive construct. 
receive_seller_neworder 

• Reply construct. 
reply_seller_confirmation 

Figure 4-3.  Basic Service Activity Labelling 
 

4.2.2   Invoke, Receive, Reply 

The invoke activity specifies that a request message is to be sent to a designated partner of 

the process.  The style of invocation can differ depending on whether the activity is specified 

to be completed with a reply (i.e. a reply from a partner service operation), or is expected to 

be invoked without a operation reply (commonly known as a “request only invocation”).  

The latter provides scoping the invocation only for the additional fault or compensation 

handling actions.  We consider the difference in invocation style, in terms of service 

choreography, in Chapter 5.  The invoke activity may also contain optional correlation, fault 

tolerance and compensation activities.  These are also discussed separately in a later section.   

 

The Receive activity specifies that a message is to be received from a designated partner of 

the service.  The receive activity has an optional “createinstance” attribute which, if set to 

true, sets a process creation point on the message received, as a form of process trigger.  The 

semantics of this are unclear in the BPEL4WS specification, as the result of having multiple 

process creation points is highly non-deterministic.  In our work, we are concentrating on 

static analysis of these interactions and therefore assume that the process is created at the 

first activity specified in the process document. 

 

The Reply activity specifies that a reply message is to be sent back to a designated partner of 

the service.  This is specified on the assumption that a receive activity has successfully been 

carried out earlier in the process.  We discuss compatibility checking of the interaction 

between invoke, receive and reply activities, and process partners in detail in Chapter 5.  The 

forms of invoke, receive and reply activities are illustrated in Figure 4-4.  The semantics of 



Chapter 4.  Modelling Web Service Compositions 

 

71

invoke, receive and reply can be represented in FSP using a simple process transition.  In 

FSP a transition is represented by a process name and a labelled transition followed by an 

END process marker.  The synchronisation and concurrency of these basic activities enriches 

the semantics of how these activities affect process execution.  We consider this enrichment 

in section 4.3.  To illustrate the semantic mapping of these activities we present each in 

Figure 4-4, as BPEL4WS forms, FSP and graphically as a series of LTS processes. 

 

 

   
BASIC ACTIVITY BPEL4WS  BASIC ACTIVITY FSP 
<invoke partner=”p1” operation=”o1” /> 
<receive partner=”p2” operation=”o2” /> 
<reply partner=”p1” operation”o1” /> 
 

INVOKE =  (invoke_p1_o1 -> END). 
RECEIVE = (receive_p2_o2 -> END). 
REPLY =   (reply_p1_o1-> END). 

BASIC ACTIVITY LTS 

INVOKE RECEIVE REPLY

 

Figure 4-4  Invoke, Receive and Reply constructs and mapping to FSP  

4.2.3   Wait and Empty 

The wait activity specifies that a process be suspended for a duration or until a certain 

expression is satisfied (for example a date or time has passed).  Valid expressions are 

evaluated as either Boolean (true or false), as a duration (counter), a deadline (date and time) 

or the result of an assignment expressions.  Our semantics concentrate on static analysis and 

we translate the duration and deadline types of conditions to literal values.  The empty 

activity is used as a “placeholder” to provide activity linking synchronisation.  The semantics 

for this are elaborated upon in section 4.3.3.  Therefore both the wait and empty activities 

can also be represented in FSP with a process transition as with the other basic activities 

discussed previously. 



Chapter 4.  Modelling Web Service Compositions 72

4.2.4   Terminate 

The terminate activity specifies that a process be immediately terminated.  As specified in 

BPEL4WS, a terminated event in a process has varying effects on the activities currently 

being executed.  In this mapping, we have assumed that a termination will cause an 

immediate “STOP” state of the process.  Therefore, the terminate activity in BPEL4WS can 

be semantically mapped in FSP by using process composition, synchronised on a choice of 

either performing an activity of a set, or the terminate activity itself.  Figure 4-5 illustrates 

this mapping with an example of a concurrent execution of terminate with two other 

activities.  At any point in the process, a process termination may occur. 

 

TERMINATE BPEL4WS  TERMINATE FSP 
 <flow> 
  <invoke partner=”p1”     
      operation=”o1” /> 
  <invoke partner=”p2”  
      operation=”o2” /> 
  <terminate /> 
 </flow> 

 INVOKE1 = (invoke_p1_o1->END). 
 INVOKE2 = (invoke_p2_o2->END). 
 ||FLOW1 = (INVOKE1 || INVOKE2). 
 set ACTSET = {invoke_p1_o1,invoke_p2_o2} 
 TERMS = (ACTSET->TERMS | terminate->END). 
 ||TERMINATE = (FLOW1|| TERMS). 

TERMINATE LTS 

 

Figure 4-5  Example mapping of terminate activity as LTS process 
 

Note that in BPEL4WS, the sequence and flow constructs are used to denote these scopes yet 

are considered to be activities in their own right. 

4.3   Structured Activities 

In this section of the semantics mapping between BPEL4WS and FSP, we consider the 

transition of activities scoped within a sequence or concurrent order of execution.  In 

modelling terms, these are known as sequential or parallel compositions.  Modelling the 

possible paths of execution in sequential or parallel compositions provide rich details of the 

behaviour that the activities carried out could be undertaken in when the process is executed.  

 



Chapter 4.  Modelling Web Service Compositions 

 

73

4.3.1   Sequences of Activities 

The sequence activity construct is used to scope a sequence of activities in the order they 

given in that sequence scope.  For example, a BPEL4WS sequence form (illustrated in 

Figure 4-6) defines a sequence of activities that firstly invokes a partner service, receives a 

message from a partner service and then replies to the partner in sequence.  A sequence of 

activities in FSP is described using the notion of a sequence composition.  This is 

represented between the activities of the sequence using the ; operator.  The sequence 

activity may include any other BPEL4WS activity (including other sequence or flow 

activities).  For example, the sequence mapping from the form illustrated in the figure 

previously, is illustrated in Figure 4-6.  The mapping to FSP generates three processes (in 

this case invoke, receive and reply activities) and a process defines the sequence of these 

activities using the FSP sequence operator. 

 

SEQUENCE Construct 

 
SEQUENCE BPEL4WS  SEQUENCE FSP 
<sequence> 
 <invoke partner=”p1” operation=”o1”> 
 <receive partner=”p2” operation=”o2”> 
 <reply partner=”p1” operation=”o1”> 
</sequence> 

INVOKE1 = (invoke_p1_o1 -> END). 
RECEIVE1= (receive_p2_o2 -> END). 
REPLY1  = (reply_p1_o1 -> END). 
SEQUENCE = INVOKE1; RECEIVE1;  
           REPLY1; END. 

SEQUENCE LTS 

 

Figure 4-6  Sequence construct and mapping to FSP 

4.3.2   Concurrent Activities 

Concurrent activities in BPEL4WS are scoped using the flow construct.  The semantics for 

the scope are defined as that the flow completes when each activity contained within the 

flow scope has completed.  Each activity is executed concurrently; however, both the flow 



Chapter 4.  Modelling Web Service Compositions 74

and any activity within the flow scope may have external dependencies outside of the flow 

scope, specified in the links section of each activity.  The construct of the flow activity is 

formed as illustrated in Figure 4-7.  A flow activity creates a set of concurrent activities 

directly nested within it. It further enables expression of synchronization dependencies 

between activities that are nested directly or indirectly within it.   The link construct is used 

to express these synchronization dependencies. As with most other constructs in BPEL4WS 

a link has a name attribute, although in a flow this attribute name is used to identify the link 

in other parts of the process.  All the links of a flow activity must be defined separately 

within the flow activity. Source and target elements of an activity are used to link two 

activities. We consider the semantic mapping of Linked transitions in the next section of this 

chapter.  The basic flow activity in FSP is represented using the parallel composition 

operator, which is ||.   Parallel composition in FSP is defined as:  If P and Q are processes 

then (P || Q) represents the concurrent execution of P and Q.  This satisfies the concurrent 

execution of activities in the BPEL4WS flow construct.  Figure 4-7 provides an illustrated 

example of a concurrent set of BPEL4WS activities for invoking, receiving and replying. 
 

FLOW Construct 

 
FLOW BPEL4WS  
  <flow> 
 <invoke partner=”p1” operation=”o1”> 
 <receive partner=”p2” operation=”o2”> 
 <reply partner=”p1” operation=”o1”> 
</flow> 

FLOW FSP 
INVOKE1 = (invoke_p1_o1 -> END). 
RECEIVE1= (receive_p2_o2 -> END). 
REPLY1  = (reply_p1_o1 -> END). 
|| FLOW  =  (INVOKE1 || RECEIVE1 ||  
                      REPLY1).. 

FLOW LTS 

 

Figure 4-7  Flow construct and mapping to FSP for concurrent activities 



Chapter 4.  Modelling Web Service Compositions 

 

75

4.3.3   Linked Transitions 

Linked transitions are pre and post activity execution conditions.  They are used to determine 

when activity transitions can be made given the requirement that other activities have 

successfully completed.  The source of a link must provide a source element specifying the 

link's name and the target of the link must specify a target element specifying the link's 

name.  The source activity may also specify a transition condition through the 

transitionCondition attribute of the source element. If the transitionCondition attribute is 

omitted, it is deemed to be present with a value of "true".   Every link declared within a flow 

activity MUST have exactly one activity within the flow as its source and exactly one 

activity within the flow as its target. The source and target of a link MAY be nested 

arbitrarily deeply within the (structured) activities that are directly nested within the flow, 

except for the boundary-crossing restrictions.  Target and source links are represented in FSP 

as transition processes that are sequenced prior to or post the linked activity process, 

depending on whether it is a source or target link respectively.   As an example, Figure 4-8 

illustrates the target and source links that are used in an approval invocation service request 

in a “loan approval” process (as part of the example requirements scenario discussed in 

section 3.1).  Here, an “invoke_p1_o1” operation is only carried out after an approval is 

received and assessed, with links guarding the operation transition. 

 

LINKS BPEL4WS  LINKS FSP 
 <sequence> 
  <invoke partner=”p1”  
          operation=”o1”> 
     <target linkName="receive-to-   
              approval"/> 
     <target linkName="assess-to- 
              approval"/> 
     <source linkName="approval-to- 
              reply" /> 
  </invoke> 
 </sequence> 

LINK1 = (receive_to_approval->END). 
LINK2 = (assess_to_approval ->END). 
||TARGETLINKS = (LINK1 || LINK2). 
LINK3 = (approval_to_reply ->END). 
||SRCLINKS = (LINK3). 
INVOKE1 = (invoke_p1_o1 -> END). 
SEQUENCE  = TARGETLINKS; INVOKE1;  
            SRCLINKS; END. 
||LINKS = (SEQUENCE). 

LINKS LTS 

 

Figure 4-8  Mapping link Semantics for part of a loan approval process 
 



Chapter 4.  Modelling Web Service Compositions 76

Whilst the actual declaration of a link is simply referred to as a label, the representation of a 

process activity provides synchronisation of dependencies against other processes.   

Additionally the transitionCondition can be given for source links (as either a constant or 

variable Boolean expression).  This condition is represented in FSP as a guarded process 

activity.   

 

4.4   Guarded Process Activities 

The basic and structural activities in BPEL4WS do not require in-depth knowledge of data 

handling between partners and the state of a process, however, the conditional activities of 

the specification require expression evaluation to determine specific paths of execution.   For 

example, a while activity (based upon the traditional iteration programming language 

construct) contains a condition expression, which is evaluated against one of several value 

types defined in BPEL4WS.  All those activities, including the while activity, which require 

expression evaluation for conditional structured processing are described in this section, 

being mapped to FSP using the guarded action and process variable concepts. 

4.4.1   Variable Abstraction and Guards 

A key concept in BPEL4WS, for both message data and conditional processing flow, is the 

use of messages variables.  Variables (formally known as containers in earlier specifications) 

hold data between services invocations and replies, and are also used for a source of values 

in semantic expressions for some activities.  Variables take the form as illustrated in Figure 

4-9; 

 

 
Figure 4-9  The Variable form in BPEL4WS 

 

Variables are closely linked with message definitions and the abstract protocol (via the 

WSDL associated with the process).  Although variables are essentially type-less, the 

message format that variables hold are defined in the WSDL and contain type information as 

part of the WSDL XML schema specification.  A representation of the semantics of variable 



Chapter 4.  Modelling Web Service Compositions 

 

77

use in BPEL4WS is based upon a read-write model in a similar style to the “get or set” that 

used in traditional programming language variables.  In FSP, a variable can be associated 

with a set or a range of integer values.  To model the reading and writing of variable 

expressions an action label is used to represent a read or a write respectively.  Each variable 

used within the BPEL4WS may be modelled using this mechanism.  The range of values set 

for a variable can be determined during mapping, as activities access and assign values to 

variables.  The FSP code illustrated in Figure 4-10, defines such a read-write variable model. 

 

There is clearly a limitation imposed on the mapping of variables, in that we are mapping on 

the basis of a static data analysis and representation.  To provide some flexibility in 

determining how the values of variables affect the process execution path, we add further 

mapping to enumerate static values within the process.  For example, in the conditional 

guarded activities a “Switch..case” path is determined by which path of activity is 

undertaken.  By representing possible process path outcomes based upon each case value 

evaluation and each variable read-write mapping, all possible paths can be analysed.  The 

enumeration of variable values, from expressions, is discussed further in the following 

sections, as referenced with the assign activity.  An example variable model, in this case for 

the variable of sellerInfo and a variable part named “askingPrice”, is illustrated in Figure 

4-10.  The corresponding use of this model within further BPEL4WS activity mapping 

would assume that the variable is used twice, as the value range is set to 0..1 (such as the 

transition for askingPrice.write[0] or askingPrice.write[1]). 

 

/* FSP code for read-write variable model for a variable A with range VR. */ 
range VR = 0..1 
VARIABLE(A=0) = VARIABLE[A], 
VARIABLE[i:VR] = (write[j:VR]->VARIABLE[j]|read[i]->VARIABLE[i]), 
VARIABLE['null] = (write[j:VR]->VARIABLE[j]|read['null]->VARIABLE['null]). 
 

 

Figure 4-10  Read-write Models for BPEL4WS Variables.  FSP (top), LTS (bottom) 
 



Chapter 4.  Modelling Web Service Compositions 78

With the variable and condition mapping defined, all of the following guarded activities may 

be mapped with synchronisation against one or more variable definitions.   

4.4.2   Assign 

The assign activity reads a value from a source data element and writes to another data 

element.  The source may be a literal value, a variable, a partner, a variable property or a 

value expression.  For the purpose of mapping the assign activity to FSP, we reuse the read-

write model described previously, as the basis for assign activity processes.  In BPEL4WS, 

the assign activity takes the form illustrated in Figure 4-11.  The assign activity can also be 

linked for pre or post-conditional activities.  For each assign statement in the BPEL4WS 

implementation, an associated read or write is mapped to a process activity with a parameter 

representing the variable value assigned.  This may be an enumeration of an expression or a 

literal value.  For each variable in BPEL4WS, the read and write of variables used in assign 

statements is referenced.  In Figure 4-11, a BPEL4WS example illustrates how an assign is 

used to copy the expression “yes” to the approvalInfo variable.  The assign statement is 

linked to an “assess-to-setMessage” link declaration, which is sourced as a pre-condition 

elsewhere in the complete BPEL4WS implementation.  The assign statement also declares a 

source condition for another activity.  The corresponding FSP for the assign activity is 

generated with an enumeration of the possible values that a condition may evaluate in the 

scope of the process.  This is achieved by having a lookup table created and appended to as 

each assignment is made to a variable.  Regardless of the type of the from specification of 

the assign activity, an enumerated value is given to that from spec. The enumeration is 

created in the sequence that values are assigned, and a FSP write activity (as part of the read-

write model) represents the assign copy action for that assignment. 

4.4.3   While 

The while activity provides a construct to perform iterative execution of activities until a 

Boolean condition is evaluated to true.  The while activity is represented in FSP in two parts.  

Firstly using the variable expression evaluation described at the beginning of this section.  

The second part is to represent recursion and use the FSP if….then…else with alternative 

process transitions depending on whether the evaluation is true or false.  For example, if a 

condition is evaluated using an expression which considers whether a variable contains a 

“yes” value, the “yes” value can be associated with a integer value and compared with the 

actual value currently stored in the model guard variable.   



Chapter 4.  Modelling Web Service Compositions 

 

79

ASSIGN Construct Form 

 
 

ASSIGN BPEL4WS 
 

ASSIGN FSP 
 

<assign> 
   <target linkName="assess-to-    
           setMessage"/> 
   <source linkName="setMessage-to- 
           reply"/> 
   <copy> 
       <from expression="'yes'"/> 
       <to variable="approvalInfo"    
           part="accept"/> 
   </copy>  
</assign> 

<…variable range and process for enumerated yes 
      and no  - range 0 ,1…> 
LINK1 = (assess_to_setMessage->END). 
||TARGETLINKS = (LINK1). 
LINK2 = (setMessage_to_reply->END). 
||SRCLINKS = (LINK2). 
ASSIGN1 = (approvalInfo.accept.write[0] ->  
                     END). 
ASSIGNSEQ = TARGETLINKS; ASSIGN1;  
                     SRCLINKS; END. 
||ASSIGN = (ASSIGNSEQ). 

ASSIGN LTS 

 

 

Figure 4-11  Assign construct and FSP mapping 
 

The activities defined within the while activity are mapped as per the sequence construct 

detailed in section 4.3.1.  The example, illustrated in Figure 4-12, has an iterative body of 

receiving a message and replying to the service message.  The corresponding FSP mapping, 

illustrates how the conditional expression that “exp = yes” is mapped to a read process on the 

variable “exp” and the processes are synchronised in a parallel composition model. 

4.4.4   Switch..Case 

The Switch..Case structured activity supports conditional activity selection in a pattern that 

occurs quite often. The case branches of the switch activity are considered in the order in 

which they appear. The first branch whose condition holds true is taken and provides the 

activity performed for the switch. If no branch with a condition is taken, then the otherwise 

branch is taken. If the otherwise branch is not explicitly specified, then an otherwise branch 

with an empty activity is deemed to be present. 



Chapter 4.  Modelling Web Service Compositions 80

WHILE Construct Form 

 
 

WHILE BPEL4WS 
<while condition ="exp = 'yes'"> 
  <sequence> 

<receive partner="caller"  
    operation ="echo"  
    variable = "request" /> 
<reply partner="caller"       
    operation="echo"  
    variable="request" /> 

  </sequence> 
</while> 

WHILE FSP 
<…variable range and process for enumerated true  
      and false for while - range 0 ,1…> 
||WHILEEXP = exp:WHILE_variable. 
set WHILEEXP_alphabet = 
{exp.{read,write}.[Range]} 
WHILEEVAL = (exp.read[i:Range]-
>WHILEEVAL[i]), 
WHILEEVAL[i:Range] = if (i==0) 
then SEQ1; WHILEEVAL else END. 
RECEIVE1 = (receive_caller_echo -> END). 
REPLY1 = (invoke_caller_echo -> END). 
SEQ1 = RECEIVE1; REPLY1; END. 
WHILESEQ = WHILEEVAL; END + 
{WHILEEXP_alphabet}. 
||WHILE = (WHILESEQ). 

WHILE LTS 

 

 

Figure 4-12  While construct and mapping to FSP 
 

To map the Switch activity, we can again utilise the variable FSP read-write model.  An 

evaluation process is defined for each case defined in the body of the switch.  The 

conditional evaluation is identical to the while condition explained in section 4.4.3.  The 

mapping includes the requirement that if the Switch activity contains an “otherwise” 

condition (i.e. that if none of the case statement conditions evaluates to true) then this 

activity is executed.  The formation of this evaluation is then in a sequence of cases, or if 

none of these results in true, then the “otherwise” activity path must be followed.  Activities 

defined within each of the case clauses, is mapped as a sequential composition.  Figure 4-13 

illustrates a “Switch..Case” mapping to FSP, for a choice of whether a negotiation outcome 



Chapter 4.  Modelling Web Service Compositions 

 

81

results in a success or a failure.  The case condition (the value of sellerInfo variable), is 

evaluated and either the process CASE1 or OTHERWISE activity is executed. 

 

SWITCH Construct Form 

 
 

SWITCH BPEL4WS 
<switch> 
  <case condition=”bpws:getVariableData('sellerInfo', 'askingPrice')”> 
    <assign> <copy> 
         <from expression="'yes'"/> 
         <to variable="approvalInfo" part="accept"/> 
    </copy> </assign>   
  </case> 
  <otherwise> 
    <assign> <copy> 
         <from expression="'no'"/> 
         <to variable="approvalInfo" part="accept"/> 
    </copy> </assign>   
  </otherwise> 
</while> 

SWITCH FSP 
CASE1EVALC= (sellerInfo.askingPrice.read[i:MPRange]->CASE1EVALC[i]), 
CASE1EVALC[i:MPRange] = if (i==0) then CASE1; END else OTHERWISE; END. 
||CASE1EVAL = (CASE1EVALC). 
SUCCESSASSIGN = (negotiation.outcome.write[0] -> END). 
||CASE1 = (SUCCESSASSIGN). 
FAILEDASSIGN = (negotiation.outcome.write[1] -> END). 
||OTHERWISE = (FAILEDASSIGN). 
MARKETPLACESWITCH = CASE1EVALC; END. 
 

SWITCH LTS 

 

 

Figure 4-13  Switch/Case construct and mapping to FSP 



Chapter 4.  Modelling Web Service Compositions 82

4.4.5   Pick..onMessage 

The pick activity awaits the occurrence of one of a set of events and then performs the 

activity associated with the event that occurred. The occurrence of the events, as defined in 

the BPEL4WS specification, is often mutually exclusive (the process will either receive an 

acceptance message or a rejection message, but not both). If more than one of the events 

occurs, then the selection of the activity to perform depends on which event occurred first. If 

the events occur almost simultaneously, there is a race and the choice of activity to be 

performed is dependent on both timing and the actual implementation of a runtime 

BPEL4WS engine.  The Pick..onMessage construct takes the form illustrated in Figure 4-14.  

Each of the event types (either an onMessage or an OnAlarm) is triggered in BPEL4WS 

using a choice of event received.  In FSP, this corresponds directly to the notion of process 

choice, being specified using the FSP operator of |.   In addition to standard-element and 

attribute mappings (section 4.1.2), the mapping provides a choice of any OnMessage or 

OnAlarm activity.  The choice within a pick activity is then on the activities within each 

event, and this is mapped using the sequence mapping discussed in section 4.3.1.  Each of 

these sequences is placed in a “wrapper” pick process, delimited by the FSP choice operator.     

 

For example, in an ATM logon process, the event triggers of logon and disconnect can be 

modeled as an onMessage transition processes.  The pick sequence for each of these events is 

illustrated as FSP code in Figure 4-14.  Notice that there are two cases of the write process 

transition for the process variable connected.value.write.  As discussed in section 4.4.1, the 

variables possible values are enumerated based upon the types and number of assignments 

that the process defines.  In this case the logon is enumerated as condition 0 and disconnect 

enumerated as 1.  Therefore, further process activities which may read this variable would 

check for logon (0) or disconnect (1) using the enumerated lookup table generated.  In the 

case of the model presented here, we define the possible paths of a pick activity, for any 

logon or disconnect received by the process.  Figure 4-14 also illustrates a sample of 

Pick..OnMessage BPEL4WS, the FSP and a pick model as a graphical LTS.  Note that we do 

not model the timed or triggered event itself.  We abstract this and provide a process which 

represents an alternative possible path through the process model.  Therefore, it can be used 

to aid the validation and verification of if a particular event occurs, which path would be 

chosen. 

 



Chapter 4.  Modelling Web Service Compositions 

 

83

PICK Construct Form 

 
 

PICK BPEL4WS (sample) 

      <pick createInstance="no"> 
         <onMessage partner="atmFrontEnd" operation="logoff" 
           variable="logoffReq"> 
            <assign><copy><from expression="false()"/> 
              <to variable="loggedon" part="value"/> 
             </copy></assign> 
         </onMessage> 
         <onMessage partner="atmFrontEnd" operation="disconnect"   
           variable="sessionMsg"> 
            <assign><copy><from expression="false()"/> 
              <to variable="connected" part="value"/> 
              </copy></assign> 
         </onMessage> 
      </pick> 
 
PICK FSP 

ATM_ONMESSAGE_DISCONNECT = (disconnect->END). 
DISCONNECT = (connected.value.write[1] -> END). 
ATM_ONMESSAGE_DIS_SEQ = ATM_ONMESSAGE_DISCONNECT; DISCONNECT; END. 
ATM_ONMESSAGE_LOGON = (logon->END). 
LOGON = (loggedon.value.write[0] -> END). 
ATM_ONMESSAGE_LOGON_SEQ = ATM_ONMESSAGE_LOGON; LOGON; END. 
||PICK = (ATM_ONMESSAGE_DIS_SEQ || ATM_ONMESSAGE_LOGON_SEQ). 
 

PICK LTS 

 

 

Figure 4-14  FSP Code for Pick..OnMessage event model for an ATM Logon 



Chapter 4.  Modelling Web Service Compositions 84

4.5   Fault and Compensation Handlers 

In BPEL4WS, fault and compensation handlers can be defined for one or many activities in 

activity scopes.  Scopes may also contain nested scopes.  In the case of compensation 

handlers, they may also be specified “inline” to an activity, which means that an activity has 

its own individual compensation routine.  A fault may be raised on the receipt of a message, 

or defined by the BPEL4WS engineer to be specifically thrown by way of the BPEL4WS 

throw activity.  Compensation handlers define part of the process behaviour that is meant to 

be reversible, for example, if a request is made to place an order, the compensation action 

may likely be to cancel the order.   

 

Compensation routines in BPEL4WS are self-contained blocks of code that are scoped the 

same as fault handlers, yet are only executed on the completion of a scope or on completion 

of a particular activity.  Fault handling in BPEL4WS is provided for two levels.  Firstly, the 

composition (process) may declare fault handling scopes that are focused on specific fault 

handling for a series of activity blocks, a “local scope”.  In this scope, specialised fault 

handling can be undertaken for events that occur in specific areas of the process.  

Alternatively or additionally to local fault handling, global handling routines may be 

specified that react to certain events at any point in the composition process.  Such fault 

handling can be a useful way to trap errors and respond to partners if a complete process 

must be completed in a usual reply, and any specific faults are not known or captured to a 

local scope.  Therefore, this level of fault handling is at a “global scope”.  For nested scope 

handlers, when a fault is raised the innermost enclosing scope is executed.  The BPEL4WS 

specification discusses how fault and compensation handling refers to data variables, with 

compensation handling having access to a snap-shot of the process data variable state.  Also, 

fault handlers may receive one of many fault types raised.   In our work we concentrate on 

the possible behaviour exhibited by faults raised and if compensation routines are undertaken 

in the event that a fault is raised in both local and global scopes. 

4.5.1   Modelling Fault Handling 

To model a fault handler we firstly build a representation of the fault Handler in BPEL4WS 

by mapping the activities of the handler to FSP.  Any activity described earlier in this section 

can be mapped as part of this modelling exercise.  If an error occurs inside a scope, a 

particular type of fault is generated.  A fault can also be thrown for a scope from code, if the 



Chapter 4.  Modelling Web Service Compositions 

 

85

BPEL4WS engineer adds this to the process code.  An interesting characteristic of fault 

handling in BPEL4WS is that if a fault is raised, then the remaining activities in the scope 

are automatically terminated.  An example form of a fault handler, within a scope is given in 

Figure 4-15.  The scope activity defines the start of the mapping, with two composition 

processes modelled as part of the fault handling and normal execution set of activities.  

Firstly, the activities are built as described by each element in the set, in our example 

previously; this would be a set of two processes executed as a sequential composition 

process.  Secondly, the fault handling process is modelled as a choice of fault types that 

could potentially be raised.  This is modelled in the same way as a Switch..Case activity, 

described in section 4.4.4.  The example in Figure 4-15, is given as sample BPEL4WS, FSP 

model and is modelled as a graphical LTS.  As the semantics of BPEL4WS includes this 

“scope termination” once a fault has been raised, then this is very similar to the example of 

the terminate activity we have discussed in section 4.2.4. The differences being that a choice 

of processes is carried out depending on the fault type caught, and that the termination does 

not finish the composition, but only the scope.  This is handled through the fault handling 

process being composed with the wider process and the scope end transition synchronising 

with the next activity in the composition process.  The BPEL4WS specification also provides 

a catchAll mechanism to provide faultHandling for any fault that is not caught by the choice 

of fault handling specifically defined.  We are limited in modelling this mechanism as a 

simple alternative (again as an additional case in a list of choices) such that an unknown fault  

is considered an alternative path of execution (e.g. faultxraised). 

4.5.2   Throw 

The throw activity is used to signal an internal fault explicitly.  As each fault is named 

uniquely within the process (given a qualified name), the throw activity specifies this name 

such that a fault handler sequence is identified and appropriate action is undertaken as a 

result of the fault signal.  To illustrate the semantic mapping of faults thrown, we provide the 

structure of the throw activity, the BPEL4WS form and the corresponding FSP model in 

Figure 4-16.  The FSP model composes the activity of a throw, with that of the action of an 

individual fault in the faultHandler model discussed previously.  This synchronisation of 

these activities causes the scope to terminate immediately following the faultHandler 

process, as it would if caught in from a fault raised by the BPEL4WS process 

implementation engine. 

 



Chapter 4.  Modelling Web Service Compositions 86

FAULT HANDLING Construct 

 

 

FAULT HANDLING BPEL4WS (example) 

             <scope> 
                         <flow> 
                                  <invoke partnerLink=”Seller” operation=”SyncPurchase”> 
                                  <invoke partnerLink=”Shipper” operation=”OrderShipment”> 
                         </flow> 
                         <faultHandlers> 
                                   <catch faultname=”fault1” faultVariable=”fault1var” /> 
                                   <catch faultname=”fault2” faultVariable=”fault2var” /> 
                         </faultHandlers>                         
             </scope> 
 
FAULT HANDLING FSP 
range Fault_IntRange = 0..1 
FAULTHAND1 = (fault.read[i:Fault_IntRange]->FAULTHAND1[i]), 
FAULTHAND1[i:Fault_IntRange] = if (i==0) then DOFAULT1; END else if (i==1) 
then DOFAULT2; END. 
DOFAULT1 = (fault1raised->END). 
DOFAULT2 = (fault2raised->END). 
INVOKE1 = (invoke_seller_SyncPurchase->END). 
INVOKE2 = (invoke_shipper_OrderShipment->END). 
ACTSEQ = INVOKE1 ; INVOKE2 ; END. 
||ACTIVITIES = (INVOKE1 || INVOKE2). 
set ACTSET = {invoke_seller_SyncPurchase,invoke_shipper_OrderShipment} 
TERMS = (ACTSET -> TERMS | fault1raised -> END | fault2raised -> END). 
||FAULTMON = (ACTIVITIES || TERMS || FAULTHAND1). 
 
 
FAULT HANDLING LTS 

Figure 4-15  LTS of Fault Handler and normal execution activity scope 



Chapter 4.  Modelling Web Service Compositions 

 

87

THROW Construct Form 

 
 

THROW BPEL4WS (sample) 

 <scope> 
   <flow> 
     <sequence> 
       <invoke partnerLink=”Seller” operation=”SyncPurchase”> 
       <throw faultName="fault1raised"  
              faultVariable=”faultvar”></throw> 
     </sequence> 
     <sequence> 
       <invoke partnerLink=”Shipper” operation=”OrderShipment”> 
       <throw faultName="fault2raised"  
              faultVariable=”faultvar”></throw> 
     </sequence> 
  </flow> 
  (see faultHandler BPEL4WS example in Figure 4-15) 
 </scope> 
 
THROW FSP 
range Fault_IntRange = 0..1 
FAULTHAND1 = (fault.read[i:Fault_IntRange]->FAULTHAND1[i]), 
FAULTHAND1[i:Fault_IntRange] = if (i==0) then DOFAULT1; END else if (i==1) 
 then DOFAULT2; END. 
DOFAULT1 = (fault1raised->END). 
DOFAULT2 = (fault2raised->END). 
INVOKE1 = (invoke_seller_SyncPurchase->fault.read[0]->END). 
INVOKE2 = (invoke_shipper_OrderShipment->fault.read[1]->END). 
ACTSEQ = INVOKE1 ; INVOKE2 ; END. 
||ACTIVITIES = (INVOKE1 || INVOKE2). 
 set ACTSET = {invoke_seller_SyncPurchase,invoke_shipper_OrderShipment} 
TERMS = (ACTSET -> TERMS | fault1raised -> END | fault2raised -> END). 
||FAULTMON = (ACTIVITIES || TERMS || FAULTHAND1). 

 
THROW LTS 

 

Figure 4-16  LTS of Throw activity model and process synchronisation 



Chapter 4.  Modelling Web Service Compositions 88

4.5.3   Modelling Compensation Handling 

To model compensation handling we can build a composition process for the compensation 

handler in a given activity or as part of an activity scope and then combine the compensation 

composition process with that of the normal execution activity process or activity scope.  As 

a set of compensation activities is only carried out at the end of an activity or a scope of 

activities, the composition of both activity groups yields a behavioural choice of execution 

paths in the BPEL4WS composition model.  A compensation handler takes on the forms as 

illustrated in Figure 4-17.  An example inline compensation handler in BPEL4WS is also 

illustrated as its form in Figure 4-17.  To map the compensation handlers for inline activity 

compensation, we build two processes in FSP, one representing the normal executed activity 

and the other the compensation activities undertaken if compensation would be undertaken.  

For the example given, this means a single process for the invocation of the Seller service 

operation “SyncPurchase” and then a process for the compensation activity of invoking the 

Seller service operation “CancelPurchase”.   

 

 

 

  

Figure 4-17  Compensation Handlers as inline (top-left) or scoped (top-right) and activity (bottom) 
 

 

Clearly, the compensation action here is to cancel the purchase made previously.  The model 

of this compensation needs to consider the choice of undertaking compensation or not.  In 

this way, we can reuse the mapping FSP for the Switch..case activity (described in section 

4.4.4).  With this conditional transition included in the model for the inline compensation we 

illustrate a composition choice path with a BPEL4WS sample, mapping to FSP and an LTS 

in Figure 4-18.  The other form of compensation handlers is as part of a scope.  We provide 

another example of a compensation handler, inside a scope of activities, in Figure 4-19.  The 

scope is considered to be the start point at which the compensation process is composed 

along with the normal execution process.  In this case, the two normal invoke activities, for 

the seller and supplier service operations, are composed with an alternative set of invoke 

activities and conditionally undertaken following normal execution as with the inline 



Chapter 4.  Modelling Web Service Compositions 

 

89

example previously.  The yielding model from mapping this scope of activities is given in 

Figure 4-19. 

 

COMPENSATE (inline) BPEL4WS 

 

             <invoke partnerLink=”seller” operation=”SyncPurchase”> 
                      <compensationHandler> 
                                 <invoke partnerLink=”seller” operation=”CancelPurchase” /> 
                      </compensationHandler> 
             </invoke> 
 
COMPENSATE (inline) FSP 

 
COMPENSATE = (compensate.read[i:TRUEFALSE_variable] 
->COMPENSATE[i]), 
COMPENSATE[i: TRUEFALSE_variable] = if (i=='true') then 
COMPENSATE_INVOKE; END else END. 
COMPENSATE_INVOKE = (invoke_seller_CancelPurchase -> END). 
INVOKE = (invoke_seller_SyncPurchase -> END). 
INVOKE_SEQ = INVOKE; COMPENSATE; END. 
||COMPENSATEEXAMPLE = (INVOKE_SEQ). 
 
 

COMPENSATE (inline) LTS 

 

 

Figure 4-18  Compensate (inline) choice of execution paths 
 

 

Lastly, the compensation handler process may be synchronised with the compensate activity, 

if directly specified in the BPEL4WS process code by the BPEL4WS Engineer.  Note that 

the default behaviour of BPEL4WS process compensation is to execute the scoped 

compensation handler.  If the scope is part of a nested scope, the engineer may instruct the 

process to execute a compensation routine out of the current scope.  Such an activity is 

modelled through synchronisation of the compensation handler process at the given point in 

the process mapping, using an alternative compensation process name. 

 



Chapter 4.  Modelling Web Service Compositions 90

COMPENSATE (scope) Construct 

 
COMPENSATE (scope) BPEL4WS 

             <scope> 
                         <sequence> 
                                  <invoke partnerLink=”Seller” operation=”SyncPurchase”> 
                                  <invoke partnerLink=”Supplier” operation=”ReqProd”> 
                         </sequence> 
                         <compensationHandler> 
                                <sequence> 
                                      <invoke partnerLink=”Seller” operation=”SyncPurchase”> 
                                      <invoke partnerLink=”Supplier” operation=”CancelSupplier”> 
                               </sequence> 
                         </ compensationHandler >                         
             </scope> 
 
COMPENSATE (scope) FSP 

 
COMPENSATE = (compensate.read[i:TRUEFALSE_variable]->COMPENSATE[i]),
COMPENSATE[i: TRUEFALSE_variable] = if (i=='true') then  
COMPENSATE_INVOKE; END else END. 
INVOKE3 = (invoke_seller_CancelPurchase->END). 
INVOKE4 = (invoke_supplier_CancelSupplier->END). 
COMPENSATE_INVOKE = INVOKE3; INVOKE4; END. 
INVOKE1 = (invoke_seller_CancelPurchase->END). 
INVOKE2 = (invoke_supplier_CancelSupplier->END). 
INVOKE_SEQ = INVOKE1; INVOKE2; COMPENSATE; END. 
||COMPENSATESCOPE = (INVOKE_SEQ). 
 

COMPENSATE (scope) LTS 

Figure 4-19  LTS of scoped compensation handler activities 
 

4.6   A Complete Example 

A complete example of modelling a web service composition process is taken from the 

BPEL4WS source samples provided by a BPEL4WS engine implemented called “BPWS4J” 



Chapter 4.  Modelling Web Service Compositions 

 

91

(Curbera, Duftler et al. 2004).  The example, an elaborated version of the “loan approval 

process” (as part of the example requirements scenario discussed in section 3.1), utilises a 

variety of the mapping concepts discussed in this chapter.  We present the process (with 

original source available as part of the tool discussed in Chapter 7) as a series of mappings 

for each of the activities and variable definitions in this example, and discuss the resulting 

composition from the view of a compiled LTS.  The example consists of a single concurrent 

activity (a flow element), with its child elements providing the loan approval process from a 

series of linked message exchanges between the process partners for a customer, a loan 

assessor and a loan approver.   The process behaviour begins with an initial receive activity 

(with its form illustrated in Figure 4-20), whereby a customer (partner) requests a loan 

approval and this activity is marked as the process begin point.  The request consists of 

various information, amongst which, one is the actual amount requested for the loan 

approval.  The activity also has two source transitionConditions (described in section 4.3.3).  

The conditions are evaluated for either the request amount being equal to or over 10000, or 

less than 10000.  An alternative of this strategy of linking would have been to include a 

Switch..Case activity block immediately following the receive activity and an expression 

evaluation used on the “equal to or greater than 10000” condition.  The model produced by 

this activity is composed of three processes.  Firstly, there is the simple transition process 

representing receiving the message itself.  Secondly, there is a guarded transition activity for 

the conditional link source to assess the request for loan approval (a “receive_to_assess” 

transition) and thirdly, there is a guarded transition activity for the conditional link source to 

approve the request for the loan (a “receive_to_approval” transition).  These processes are 

illustrated in Figure 4-20. 

 

The first link target upon receiving the request for loan approval is the activity connected to 

the receive-to-assess linkName.  This activity is the invocation of the operation “check” 

provided by the service partner “invokeAssessor”.  The form of this invoke activity is 

illustrated in Figure 4-21.  In the mapping, the invoke activity itself also creates a process 

transition, however, the semantics of the link target sub-element of the invoke activity means 

that a process transition must also be created to provide a synchronised process composition 

on the invoke activity and only when the guarded source link transition, “receive_to_assess”, 

has taken place.  The invoke also has two source links, which are again mapped to guarded 

process transitions.  The resulting models are illustrated as LTSs in Figure 4-21.   

 



Chapter 4.  Modelling Web Service Compositions 92

 

 

 

 

 

 
Figure 4-20  LoanApproval models (bottom) produced from Linked Receive Activity (top) 

 

 

 

 

 
Figure 4-21  LTS for models produced from InvokeAssessor Activity 

 

The second link from receiving a request for loan approval is the invokeApprover activity.  

In a similar way to that of the invokeAssessor activity, the invokeApprover activity also has 

target links, however, the invokeApprover draws upon source links which are guarded as 



Chapter 4.  Modelling Web Service Compositions 

 

93

both part of the receive and invokeAssessor activities.  The invokeApprover also has a 

source link of an “approval_to_reply”.  The form of this activity is illustrated in Figure 4-22.  

Again, the basic invoke activity is modelled as a simple process transition, however, the two 

target links (namely for “receive_to_approval” and “assess_to_approval”) can occur in any 

order, yet they both must occur for the invoke activity transition to be undertaken.  Therefore 

firstly, a parallel composition process is created for the target links and the invoke transition, 

secondly, a sequence process with two transitions is created for the invoke transition and the 

source link transition.  The resulting models are illustrated as LTSs in Figure 4-22.      

 

 

 

 

Figure 4-22  LTS for models produced from InvokeApprover Activity 
 

The result of the invoke approver activity is a source linked transition to the target linked 

activity of replying to the loan approval request.  However, the reply activity is also linked to 

the result of the assessment activity via an intermediate activity of assigning a value for the 

reply.  In this case, the activity is linked as a target of the “assess_to_setmessage”, which 

was created as part of a transitionCondition from the invokeAssessor activity earlier in the 

mapping.  The assign activity copies the value “yes” to the reply message if the invoke 

activity for invokeAssessor returned as value of “low” (risk) in its reply message.  The form 

of this assign activity is illustrated in Figure 4-23. 

 



Chapter 4.  Modelling Web Service Compositions 94

 
Figure 4-23  Assign activity to set reply message content 

 

The mappings of this assign activity forms three processes.  Firstly, the process of the target 

transition “assess_to_setMessage” is created and assigned to this process composition.  

Secondly, a write process transition is created to enumerate the assigning of the “yes” value 

to the message reply variable of “approvalinfo” and its variable part of “accept”.  The “yes” 

value is given an enumerated value of 0 as this is the first assignment to this variable part.  

Thirdly, the continuation of the transition link between assessor result and reply is given by 

another link transition process of “setmessage_to_reply”.  The sequential process 

composition from the mapping is illustrated in Figure 4-24. 

 

 

Figure 4-24  LTS for models produced from Reply Message Assign Activity 
 

The last activity to be mapped in this web service composition example is that of the reply to 

the original receive for a loan approval.  The reply activity is a target of both 

“setMessage_to_reply” (from the assign activity) and “approval_to_reply” (from the 

approver activity) respectively.  The form of the reply activity is illustrated in Figure 4-25. 

The mapping for the reply activity therefore is similar in model form to  invokeApprover 

activity, in that two target link transitions could occur in any order.  Therefore, the parallel 

composition process model is mapped such that the “setmessage_to_reply” and 

“approval_to_reply” can occur in any order before a process transition for the actual reply to 

customer is undertaken.  This is illustrated in Figure 4-25.  The final step of modelling the 

web service composition is to link all the process compositions (i.e. the individual process 

models produced by the mapping from BPEL4WS to FSP) into a complete system 

architecture and to request the process FLOW element scoping the activities through a 

parallel composition.     



Chapter 4.  Modelling Web Service Compositions 

 

95

 

 

Figure 4-25  LTS for model produced by mapping of reply activity 
 

In FSP, this architecture model is defined as follows and is illustrated in Figure 4-26. 

/* FSP code for architecture model of web service composition mappings. */ 
  ||ARCHMODEL = (LA_RECEIVESEQ || LA_INVOKEASSESSORLINKSEQ || LA_ASSIGNLINKSEQ ||    

  LA__INVOKEAPPROVERLINKSEQ || LA__REPLYLINKSEQ). 

4.7   Assumptions and Limitations 

Amongst the assumptions in our semantic mappings of BPEL4WS to FSP, we have 

considered that a process lifecycle begins at the first receive activity specified in the process 

document.  The possibility of multiple start points as part of a series of receive activities 

(discussed in section 4.2.2) would affect the order in which activities are executed.  Related 

to this is also a limitation on modelling the correlation attribute of activities, which are used 

to match returning or known clients to interact in long-running processes (in a message to 

correlation linking).  We have not implemented a synchronisation of such events, but we 

anticipate these mappings would be evolved to consider this in our future work.  Our 

mapping is also currently limited in the translation of variables, in that we are mapping on 

the basis of a static representation (to values enumerated based upon occurrence of 

conditional variable comparisons).  To provide some flexibility in determining how the 

values of variables affect the process execution path, we add further mapping to enumerate 

static values within the process.  The mapping does not consider translating event handling, 

as part of an activity scope.  Such a mapping would however, take a form similar to the fault 

and compensation handling although the semantics behind event handling are much more 

towards a time based simulation basis.          



 

 

 

 

 
Figure 4-26  Architecture Model of Loan Approval Web Service Composition

96                                                                                    C
hapter 4.  M

odelling W
eb Service C

om
positions    

 



Chapter 4.  Modelling Web Service Compositions 

 

97

We are seeking to evolve the methods described here to ease these limitations and provide a 

closer representation of a BPEL process model.  Our evaluation of modelling BPEL4WS 

implementations (section 8.1.2) also discusses the implication of a new standard (with few 

runtime implementations) and the impact of observing a standard compliant BPEL4WS 

engine’s behaviour against our own translation from specification to FSP. 

4.8   Summary and Discussion 

In this chapter we have described the semantics of BPEL4WS by way of mapping each of 

the BPEL4WS constructs to the FSP algebra and building a model of the process behaviour.  

With these mapping rules, we have described a modelling approach of a process defined for 

a single web service composition, however, this modelling is limited to a local view, or in 

other words, it can only be used to model the behaviour of a single process.  In the next 

chapter we further the semantic mapping to include web service composition interactions 

through modelling web service conversations and their choreography. In terms of the 

approach discussed in section 1.2, we have introduced the highlighted parts as those 

illustrated in Figure 4-27. 

 

 

Tool   

Designers Validation

validation results

.
models

Deployers

Implementers

Specification

verification results

Composition

Clients

Verification

Verified and 
Validated

Services

BPEL4WS 

implementations

Composition
Processes

Composition
Semantics

Requirements

Web 
Service

Standards

MSCs

BPEL4WS 
Specification

Composition
Specification

Web Services

Model Generation

synthesis

m
apping

abstraction

interactions

verification properties

validation traces

Partner
Service

Interfaces

Composition

Release
Request

Analysis
Choice

Construct

Construct

Reference

Reference

BPEL
Synthesis
To FSP

 
Figure 4-27.  Elements of approach discussed in chapter 4 



 

Chapter 5  

Modelling Web Service Choreography 
 

“If the constituent parts can be understood, the reasoning goes, some insight into the whole will follow….."  

(Sanmay Das, “Modelling Complexity - Agents of Creation”, The Economist, 2003) 

 

In chapters 3 and 4 the design and implementation of web service composition interactions 

was discussed and models were produced to provide a formal representation of the behaviour 

specified.  These models are useful to describe individual compositions; however, an 

elaboration of modelling is required to represent the behaviour of interacting compositions 

across partnered processes.  A series of compositions in web service choreography needs 

specific modelling activities that are not explicitly derived from an implementation.  In this 

chapter, we describe this elaboration of models to support a view of interacting web service 

compositions extending the mapping from BPEL4WS to FSP discussed in Chapter 4, and 

including web service interfaces (WSDL) for use in modelling between services. 

5.1   Web Service Interactions and Choreography 

In the previous chapters of this thesis, we have described how the process view of a web 

service (also known as a composition) takes focus of how a service interacts with other 

services as well as its own internal processing steps.  Whilst the other participants in a 

composition may simply be seen as another service, their compositions are equally important 

when describing the form of a conversation between participants in web services 

architecture.  The connective expression of these conversations provides the benefit of 

designing collaborative compositions or services in a given business scenario, yet as we 

discussed in Chapter 2, the choreography of these interactions is required to understand 



Chapter 5.  Modelling Web Service Choreography 

 

99

exactly what state a conversation is in, and on a broader view, how multiple conversations 

(as part of a scenario) are coordinated by state and goals.  In essence, web service 

choreography defines a kind of policy for “rules of engagement” in conversations 

implemented between partners in web services architecture, alongside operational state 

transfer for interactions indirectly between services (i.e. variable passing).  It defines the 

global interactions necessary to be controlled and enforced when two or more services are 

interacting to fulfil a goal in a scenario.  In this sense, the designer of partnered service 

choreography may specify global service interactions such that they form a policy of how the 

services should interact to complete a common goal.  The concept is illustrated in Figure 5-1, 

where a defined choreography specification (as a set of scenarios) is used as a policy for 

coordinating several service partners. 

 

Web Service

BPEL4WS
Process

<invoke>

Web Service

Process
<receive>Channel 1

<invoke>
<receive>

<reply>

Channel 1

Channel 2

Partner A Partner B

BPEL4WS

JAVA/EJB

Process
<receive>

<reply>

Partner x...

<invoke>
Channel 1

Choreography Specification

Interaction

<receive>
Channel 2

Partner_A Partner_B

request

reply

Scenarios
State
Transfer

Choreography Domain

Partner_B Partner_x

request

reply

 
Figure 5-1  View of multiple service compositions interacting and choreography layer 

 

Choreography describes the peer-to-peer collaboration between participants with designated 

roles in service interactions. Choreograph makes use of interaction and activity notation to 

define the relationships, which represents message exchanges between two web services 

participants.  Web Service Choreography differs from Web Service compositions in that it is 

a global view of interactions; in other words, it is a view of a series of process compositions 

that interact to fulfill a common goal.  Web Services Choreography explores the 



Chapter 6.  Analysis for the Service-Oriented Model 100

relationships, constraints and liveness of a series of interactions between two or more 

partners in a wider goal and with a standard (such as Web Service Choreography Description 

Language (WS-CDL) (Kavantzas, Burdett et al. 2004)) the aim is to provide a technology 

independent method of describing these through state collaboration and awareness at a 

higher level than individual service processes. WS-CDL suggests providing a design 

specification for choreography, which in turn is used for defining a contract for composition 

interactions.  It is anticipated that a designer would use a choreography editor which would 

generate WS-CDL and then either a centralized or distributed engine would carry out the 

necessary monitoring, reporting and rule-enforcement as part of the choreography 

specification. 

   

In this chapter we seek to further our modelling of web service interactions through two 

viewpoints.  Firstly, we examine the interactions within the choreography layer of web 

service compositions collaborating in a global goal.  Secondly, through further behaviour 

analysis, we model the interaction sequences built to support multiple-partner conversations 

across enterprise domains and with a view of wider goals.  We limit the scope of 

choreography analysis to that of interactions between compositions, and discuss the future 

work needed on state collaboration analysis in the evaluation sections of this thesis. 

5.2   Modelling Web Service Interactions 

5.2.1   Service Conversations 

Interactions of objects are carried out as part of a conversation.  A conversation however, is 

defined differently depending on the context it is used within.  For example, for a verbal 

conversation a definition is “the use of speech for informal exchange of views or ideas or 

information”, applied to interacting service components there are several definitions, 

however the W3C consortium defines a conversation as “…interfaces or public processes 

supported by a service. They differ from interfaces as defined by CORBA IDE or Java 

interfaces because they also specify the possible ordering of operations,”.  A composition 

interacting with other compositions or services employs the use of a web service 

conversation protocol (Banerji, Bartolini et al. 2002; Fu, Bultan et al. 2004b).  The W3C 

Web Service Conversation Language (WSCL) (Arkin, Askary et al. 2002) defines a standard 

for describing a conversation in terms of documents, interactions and transitions.  Whilst a 

document is the body of a message used in conversation, interactions model the exchanges of 



Chapter 5.  Modelling Web Service Choreography 

 

101

documents between two or more participants.  A transition specifies an ordering between a 

source interaction and a destination interaction.  A conversation defines how interactions can 

start and end depending on the goal of the conversation.  For example, between a customer 

and an ordering service, there may be several interaction scenarios including a “Login” 

scenario and a “Purchase” scenario.  A conversation therefore, also specifies the order in 

which these scenarios could occur (in a similar way to that of the hMSc in the design 

specification specifies the possible sequences of bMSCs discussed in Chapter 3). 

 

To model these conversations in the context of web service compositions we perform an 

analysis process on all the implementation processes and use an algorithm as part of this 

analysis to semantically check and link partner process interactions.  The algorithm uses as 

input partner service interfaces (in the form of a WSDL document) and the implementation 

models created in the initial implementation synthesis.  The output of the composition 

modelling is a list of composition mapping requirements (as input to the mapping stage 

discussed in later sections) and information on non-interaction activities encountered and 

unmatched partner process references.  These sub-actions of our approach are illustrated in 

Figure 5-2. 

  

Implementation

Models

Partner ServiceInterfaces
Composition

Mapping

Non-interaction
Activities

Undefined
Process Refs

Conversation
SemanticsModel Generation

m
apping

abstraction

interactions

synthesis

Composition
Interaction
Analysis

 
Figure 5-2.  Composition Interaction Analysis Sub-Action Diagram 

 

5.2.2   Service Partners and Roles 

A service conversation consists of a number of service partners and a service partner is 

considered in two ways.  Firstly, the partner’s service has a process role in the choreography 

of the service scenario (e.g. to provide a book ordering service).  Within that, or another 

service process, a partner of a service may be considered to have one or many roles 

depending on what behaviour the partner’s service provides.  For example, a service partner 



Chapter 6.  Analysis for the Service-Oriented Model 102

in a BPEL4WS composition may be labelled “Vendor”.  This partner can be designated with 

one or many roles, such as in this case, both a “Seller” and a “Shipper”.  The link to the 

partner and a list of their roles is defined by the client of the service composition.  Therefore 

the service partner role semantics are defined locally to the process.  The role indicator is 

used primarily to distinguish what the business process is referencing as part of the 

collaborative business service (for example, that the invocation from a buyer is in the buy 

context of conversation with another service acting as a seller). 

5.2.3   Linking Composition Interactions 

As part of the BPEL4WS specification, abstract processes (described as part of the WSDL 

interface) can be defined which hide the private implementation of interactions within the 

process.  These are not directly executable, but they can indirectly impose behaviour 

compliance upon private processes executed by the BPEL4WS engine server.   Abstract 

processes may assist in execution however, as a BPEL4WS engine server validates and 

assures public protocol conformance of executing processes.  Whilst abstract processes assist 

in this way, we scope this approach to the design of the core (private) process to capture the 

actual interaction and process of each BPEL4WS implementation, whilst using the abstract 

process as a reference point to link compositions together through the semantics of interface 

ports (described later).  The core semantics of BPEL4WS, as discussed in (Aalst, Dumas et 

al. 2003; Khalaf, Mukhi et al. 2003; Foster, Uchitel et al. 2003a) and by way of translation to 

FSP in Chapter 4, describes how the language provides interactions of web service 

compositions.  The interfaces are a key link between compositional partners in collaborating 

service scenarios.  To model interacting web service compositions there is clearly a need to 

elaborate our analysis of implementations by linking compositional interactions based upon: 

 

• activities within the process 

o identifying invocation style (rendezvous or request only) 

o identifying and recording the points at which interaction occurs 

• the abstract interface 

o linking between the private process activities and the public communication 

interface declared in the abstract WSDL service description 

 

To model the semantics of linking interactions between processes requires a mapping 

between activities in each of the processes translated (using the translation rules described in 



Chapter 5.  Modelling Web Service Choreography 

 

103

Chapter 4) and building a message port connector for each of the interaction activities 

linking invoke (input) with receives, and replies (output) and with the returned message to an 

invoke.  In addition to the executable process of BPEL4WS, the specification’s abstract 

process defines PartnerLinkTypes, which are used as a class or type of relationship between 

a web service partner’s invocation and a corresponding receiving service partner port.  These 

link types are then referenced in composition implementations to distinguish service 

interactions between two or more partners.  For example, the linking and dependency of 

service partners, roles, service interface (WSDL) and the executable composition 

(BPEL4WS), along with where a modelling port connector is positioned is illustrated in 

Figure 5-3. 

 

Service Client Service Provider

WSDL

Web
Service

CompositionInvoke

Partner

Partners

Partner

PartnerLink / Role

PartnerLink / Role

PortType

Role

WSDL

Web
Service

Composition

PortType

Operation

Partners

Partner

PartnerLink

Receive
Partner

OperationOperation

Po
rt 

C
on

ne
ct

or
 

M
od

el

Reply

 
Figure 5-3.  Service Partners, PartnerLinks and Roles in Composition Linking 

 

In BPEL4WS, a partner link type characterizes the conversational relationship between two 

services by defining the "roles" played by each of the services in the conversation and 

specifying the portType provided by each service to receive messages within the context of 

the conversation. Figure 5-4 illustrates the structure of a partner link type declaration.  

BPEL4WS utilises the extensibility mechanism of WSDL (as in version 1.1). To define 

partnerLinkType as a new definition type to be placed as an immediate child element of a 

<wsdl:definitions> element in all cases. This allows reuse of the WSDL target namespace 

specification and, more importantly, its import mechanism to import portTypes.  For cases 

where a partnerLinkType declaration is linking the portTypes of two different services, the 

partnerLinkType declaration can be placed in a separate WSDL document (with its own 

targetNamespace).  The services with which a business process interacts are modeled as 

partner links in BPEL4WS. Each partner link is characterized by a partnerLinkType. More 

than one partner link can be characterized by the same partnerLinkType. For example, a 

certain procurement process might use more than one vendor for its transactions, but might 



Chapter 6.  Analysis for the Service-Oriented Model 104

use the same partnerLinkType for all vendors.  Figure 5-4 also illustrates the basic syntax of 

a partner link type declaration. 

 

The fundamental use of endpoint references is to serve as the mechanism for dynamic 

communication of port-specific data for services. An endpoint reference makes it possible in 

BPEL4WS to dynamically select a provider for a particular type of service and to invoke 

their operations. BPEL4WS provides a general mechanism for correlating messages to 

stateful instances of a service, and therefore endpoint references that carry instance-neutral 

port information are often sufficient. However, in general it is necessary to carry additional 

instance-identification tokens in the endpoint reference itself.  A partner link represents a 

conversational relationship between two partner processes; relationships with a business 

partner in general require more than a single conversational relationship to be established. To 

represent the capabilities required from a business partner, BPEL4WS uses the partner 

element. A partner is defined as a subset of the partner links of the process, as shown in the 

example below.  Partner definitions are optional and need not cover the entire partner links 

defined in the process. From the process perspective a partner definition introduces a 

constraint on the functionality that a business partner is required to provide. In this way, the 

same partner (e.g. a Vendor), may provide two roles in a set of interactions within a process.  

For example, a vendor could be the “seller” and the “shipper”.  Figure 5-4 also illustrates the 

syntax of a partner element.   

 

  
 

 
Figure 5-4.  PartnerLinkType, PartnerLink and Partner construct forms 

 



Chapter 5.  Modelling Web Service Choreography 

 

105

5.2.4   An Interaction Modelling Algorithm 

The physical linking of partnerlinks, partners and process models is undertaken as follows.  

For each invocation in a process, a messaging port is created.  BPEL4WS defines 

communication in a synchronous messaging model.  BPEL4WS process instance support in 

the specification specifies that in order to keep consistency between process activities, a 

synchronous request mechanism must be governed.  The synchronous model can be formed 

by the following process.   

 

For each composition process 

   For each process invoke service activity 

       Get invoke activity local partner 

       Lookup partnerlink using local partner 

       Get porttype using partnerlinktype 

       For each process interface definition 

   Lookup porttype using activity portype 

    Store matching partner 

   Lookup partner operation 

       End For 

   If invoke activity is in rendezvous style 

       Add invokeoutput action to activity model 

                Build reply-invokeoutput port 

            End If 

            Build invoke-receive connector partner labelling 

          End For 

      End For 

 

For every composition process selected for modelling we extract all the interaction activities 

in this process.  As mentioned previously, interaction activities are service operation 

invocations (requests), receiving operation requests and replying to operation requests.  In 

addition to an invocation request, we also add an invocation reply to synchronise the reply 

from a partner process with that of the requesting client process.  The list is then analysed for 

invocation requests, and for each one found a partner/port lookup is undertaken to gather the 

actual partner that is specified in a partnerlink declaration.  To achieve this, a partner list is 

used and the partner referenced in the invocation request is linked back to a partnerlink 

reference.  The partnerlink specifies the porttype to link operation and partner with an actual 



Chapter 6.  Analysis for the Service-Oriented Model 106

interface definition.  To complete the partner match, all interface definitions used in 

composition analysis are searched and matched on porttype and operation of requesting 

client process.  This concludes the partner match.  A port connector bridge is then built to 

support either a simple request invocation (with no reply expected) or in “rendezvous” style, 

building both invoke/receive and reply-invokeoutput models.  This supports the model 

mapping.  The sequence is then repeated for all other invocations in the selected composition 

process, and then looped again for any other composition processes to analyse.  We therefore 

specify an algorithm that will enable mechanical linking between activities, partners and 

process compositions.  The algorithm is illustrated in Figure 5-5 with a flow diagram. The 

algorithm supports a mechanical implementation of linking composition processes together 

based upon their interaction behaviour.  Two build phases are required as part of the 

algorithm, being that of building a reply-invokeoutput port and invoke-receive connector 

between partnered processes.    

 

 

Composition
List

Select
Activitiesyes

Select
Invoke
Activity

Partner
List

Get
Partner WSDL

List

Get
porttype

Select
Composition

Process

Lookup
Partner

Lookup
Operation

Rendezvous?

Add
Inputoutput

activity

Build
reply-receive

connector

yes

Start

End

More 
processes?

no

More
Activities?

no

yes

 
Figure 5-5.  Flow-chart of algorithm for Modelling Composition Interactions 

 

In summary, the algorithm described provides a port connector based implementation of the 

communication between two partner processes.  Where multiple partner communication is 

undertaken in a composition, a port connector is built between each instance of a message 

(and optionally a reply if used in rendezvous interaction style).  When each process is being 

translated in the synthesis step of this work’s approach, the viewpoint changes, but the 

activities are synchronised in parallel.  For example, an invoke is received by a partner 

process.  The receive activity is viewed, when translating the partner process, as a new 

connector, but synchronised with the invoke connector of the calling process.  We elaborate 

on how these connectors are formed in the following subsections. 



Chapter 5.  Modelling Web Service Choreography 

 

107

5.3   Building Interaction Models 

The activity of building port connectors for our integration mapping is based on the basic 

concept of message passing in the formation of web service composition communication.  

Messages can be sent directly to their destination partner process or indirectly via some 

intermediate entity.  Modelling these different types of messaging style has been considered 

in (Magee and Kramer 1999).  The essence of this work is that messages are passed through 

channels.  A channel connects two and only two processes, in which a single process sends 

to a channel and a destination process can receive from a channel.  The term connector is 

used to symbolise that a one-to-one channel is used in process synchronisation.  A connector 

is the implementation between port and channel, in that a sender port is connected to a 

sender-receiver channel.  An example between two processes is shown in Figure 5-6.   

 

Web Service

BPEL4WS
Process

<invoke>

Web Service

BPEL4WS
Process

<receive>Channel 1

<invoke>
<receive>

<reply>

Channel 1

Channel 2
 

Figure 5-6   Web Service Composition and Port Channels 
 

Applied to the context of web service composition processes, there are two views that 

process connection can take.  Let us consider this by example, viewed from either between 

the composition processes or externally at the higher level web service communication.   

5.3.1   Composition Process Interactions 

With the view of composition process actions, a process makes a request by passing an 

invocation message to a partner process.  A composition process is sequenced such that it 

either expects a message from a sender at a particular state or it rejects a request if this 

violates the process sequence (Figure 5-7).  The sender process will block execution of its 

current process thread of the invocation until a response is received.  The process may 

continue processing if the invocation is part of a concurrent execution thread (for example 

see Flow statement of BPEL4WS in section 4.3.2).  As described in the beginning of this 

chapter, in BPEL4WS there are two styles of invocation being that of rendezvous or invoke 



Chapter 6.  Analysis for the Service-Oriented Model 108

only.  The latter does not expect a partner service reply to be synchronised with the 

invocation, rather, it may suggest that the invoking process will expect a reply at a later part 

of the process execution.  This would be synchronised on a receive activity with a partner 

process invocation. 

 

Web Container Web Container

Web Container Web ContainerPolice Enquiry

WS

WS
WS

BPEL4WS
Process

WS

<receive>

<reply>

<invoke>
<receive>

<invoke>

Fingerprint
Enquiry

BPEL4WS
Process

<receive>

<reply>

<invoke>
<receive>

<invoke>

Vehicle Movement

BPEL4WS
Process

<receive>

<reply>

<invoke>
<receive>

<invoke>

Identity Check

BPEL4WS
Process

<receive>

<reply>

<invoke>
<receive>

<invoke>

<receive>

<invoke>

Web Container

WS

Web Container

WS

<invoke>

 
Figure 5-7.  View of Multiple Web Service Compositions Interacting in a Police Enquiry Scenario 

5.3.2   Connecting a Set of Processes 

To consider synchronising the connector models between composition partner processes we 

firstly examine how an unsynchronised communication model is represented.  Individual 

processes can be modelled as a set of partner interactions, with an inner process defining its 

internal behaviour around these partner interactions.  A process model commonly used to 

illustrate partnered compositions is that of a business Market Place, where a buyer and seller 

negotiation interactions are maintained and evaluated through a core process.  An example 

definition of requirements for these set of services is described with a related context 

diagram illustrated in Figure 5-8.  Transition semantics are labelled using the construct name 

(invoke or receive), partner (seller) name, partner process name (marketplace) and by the 

operation being requested (e.g. offer a product).  It is worthy to note that this is an extended 

labelling scheme from that of which was described in section 4.2.1.  These provide us with a 

set of labelled process transitions, such as “invoke_seller_marketplace_offer”.  If there is 

more than one invocation in the seller process, then this can be sequentially numbered.  

Equally, the receive activities in a Marketplace process example gives as an example 

translation of “receive_seller_marketplace_offer”. 



Chapter 5.  Modelling Web Service Choreography 

 

109

The marketplace provides three stages to a negotiation.  Firstly, a product may be either 

offered or requested.  The message is passed from the seller or buyer role respectively, and is 

received by the marketplace service.  Once a request is received, the marketplace instantiates 

a new transaction and awaits for either a seller or buyer to offer or request a similar product.  

This process matches a seller to a buyer.  A seller cannot be matched to another seller, and 

equally a buyer cannot be matched to another buyer.  When a match is recognized, the 

second stage is undertaken.  The second stage of the negotiation is to receive initial prices 

from the partners, for when satisfied, allows the workflow to proceed to the third stage.  The 

third stage provides an iterative negotiation of prices, with each partner able to specify a 

price and then place agreement as to whether a deal is made or terminated.   

 

Web
Service

BPEL4WS
Web Service

offer
product

seller
role MarketPlace

request
product

Web
Service

buyer
role

request
price

agree
price

offer
price

agree
price

 
Figure 5-8  Scenario and Diagram for a MarketPlace Service Composition 

 

The composition generates three process compositions, one for each of the partner processes 

in the scenario.  The FSP for these processes is illustrated in Figure 5-9.  Note that here we 

have simplified the FSP generated, by including only the activities for interaction and not the 

logic for conditional selection of when a price is agreed. 

5.3.3   Messaging Port Connector Models 

To build connected composition interactions, port connector channels are used for each of 

the invocation styles between two or more partnered compositions.  The algorithm is used 

from the viewpoint of a process composition at the “centre of focus”, that is, the one in 

which initial process analysis is being considered.  The interface of subsequent partner 

interactions is used in the algorithm to obtain a link between two partners and an actual 

operation.  For example in Figure 5-10, two BPEL4WS process interact using both a request 

only invocation (Channel A) and a Rendezvous style (Channel A and B).    



Chapter 6.  Analysis for the Service-Oriented Model 110

/* FSP code for seller service composition */ 
// SELLER PROCESS: FLOW MODEL OF TWO OFFERS 
SI1 = (invoke_seller_marketplace_offer->END). 
SR1 = (invoke_seller_marketplace_reply->END). 
SI2 = (invoke_seller_marketplace_offer2->END). 

SR2 = (invoke_seller_marketplace_reply2->END). 
SSEQ1 = SI1; SR1; END. 
SSEQ2 = SI2; SR2; END. 
||S_BPELModel = (SSEQ1 || SSEQ2). 

/* FSP code for buyer service composition */ 
// BUYER PROCESS: SEQUENCE MODEL OF A REQUEST AND REPLY 
BI1 =(invoke_buyer_marketplace_request->END). 
BR1 =(invoke_buyer_marketplace_reply->END). 
BSEQ1 = BI1; BR1; END. 
||B_BPELModel = (BSEQ1). 

/* FSP code for marketplace service composition */ 
      // MARKETPLACE PROCESS: RECEIVING AND REPLYING TO BUYER/SELLER 

MPSI1=(receive_seller_marketplace_offer-> END). 
MPSR1=(reply_seller_marketplace_offer->END). 

||MPSBR = (MPBSI1 || MPBSR1). 

MPBR1=(reply_buyer_mp_request -> reply_seller_mp_offer -> END). 
MPBSEQ1 = MPSBR; MPBR1; END. 

Figure 5-9.  FSP Code for Buyer and Seller Interactions with a MarketPlace Process 
 

Web Service

BPEL4WS
Process

Web Service

BPEL4WS
Process<invoke> <receive>

<reply>

Channel A

Channel B
<invoke 
output>

Port Connectors
Join sender activity 
with receiver activity 

via a channel

Composition of 
invocation and 
receive/reply 
activites are 
composed

 
Figure 5-10  Channels and Interaction Activities of Web Service Compositions 

 

Our model of interactions using channels is based upon the interaction state and not on the 

messaging architecture used for transport.  In this way, we do not consider synchronous 

against asynchronous messaging models for modelling the communication flow between 



Chapter 5.  Modelling Web Service Choreography 

 

111

compositions.  The model produced from analysis of the compositions is from the viewpoint 

of the composition performing as part of a role in choreography.  This makes the model an 

abstract view of interactions for the purpose of linking invocations and not on the actual 

order of messages received by the process host architecture (synchronous and asynchronous 

messaging models for web services can be referred to in (Fu, Bultan et al. 2004)). 

 

5.3.3.1  Request only invocation (Channel A) 

 

Web Service compositions specified with the invoke construct (see section 4.2.2) and only 

an input container attribute declare an interaction on a request only basis (there is no 

immediate reply expected).  More generally this requirement is for a reliable message 

invocation without any output response from the service host (other than status of receiving 

the request).  The message synchronisation for this port model is listed below with an 

example number of messages ranged from 1 to 3.  The model for this is illustrated as an LTS 

in Figure 5-11. 

 

/* FSP code for request-only service invocation model */ 

range MSG = 1..3 /* no of msgs */ 
CHANNELA = (invoke_input[v:MSG] -> receive[v] -> CHANNELA). 
||REQONLY_PORT = (CHANNELA). 
 

 
Figure 5-11  LTS of Model for Request Only Port Connector 

 

 

The process “ChannelA” is defined with two transitions, that of an invoke_input and a 

receive, followed by a recursive transition back to the start of the process.  Note that this 



Chapter 6.  Analysis for the Service-Oriented Model 112

model simply defines a send and receive mechanism, whereby the transitions are labelled 

invoke_input and receive respectively. 

 

5.3.3.2  Rendezvous style invocation (Channels A and B) 

 

“Rendezvous” (Request and Reply) invocations are specified in BPEL4WS with the 

<invoke> construct, with both input and output container attributes.  To model these types of 

interactions, we use a generic port model for each process port.  A synchronous messaging 

model in web services compositions (such as BPEL4WS) requires an additional activity of 

an “input_output” to link a reply in a partnered process to that of the caller receiving the 

output of the invoke, however, this is necessary only if the invocation style is that of 

rendezvous.  The message synchronisation for this port model is listed below with an 

example for a single message composition in Figure 5-12. 

 

/* FSP code for rendezvous service invocation model */ 

  range MSG = 1..1 /* one message example */ 
  CHANNELA = (reply[v:MSG] -> invoke_output[v] -> CHANNELA). 
  CHANNELB = (invoke_input[v:MSG] -> receive[v]-> CHANNELB). 
  ||RENDEZVOUS_PORT = (CHANNELA || CHANNELB). 
 

A corresponding model for this port connector is illustrated as an LTS in Figure 5-12. 

 

 
Figure 5-12.  LTS of Model for Synchronous Rendezvous Port Connector 

 

 

 

 



Chapter 5.  Modelling Web Service Choreography 

 

113

5.3.3.2  Mapping Process Activities to Port Connectors 

 

The next step in the port connector modelling process is to map the activities of the 

BPEL4WS process to the port connector activities.  This is achieved using the semantics of 

BPEL4WS for the interaction activities discussed earlier and replacing the port connector 

activities appropriately.  The invoke activity in BPEl4WS is mapped from the client process 

to the invoke_input action of the port connector – this represents the initial step of a request 

between web service partners.  The associated receiving action of the BPEL4WS partner 

process is mapped to the receive activity in the port connector.   The reply from the partner 

process to the client process is mapped to the reply in the partnered process.  Both receive 

and reply activities in the BPEL4WS are discovered as part of the interface analysis 

described in section 5.2.4 .  Figure 5-13 lists the mapping explained here. 

 

 

WS Interaction Port Action BPEL4WS Action (example) 

Invoke (Client) Invoke_input invoke_seller_marketplace_offer 

Receive (Partner) Receive receive_seller_marketplace_offer 

Reply reply_marketplace_seller_offer Reply (Parnter to 

Client) Invoke_output output_marketplace_seller_offer 

Figure 5-13.  Mapping Activities Between Port Connector and BPEL4WS for  
A Seller and Marketplace Example 

 

 

With both of the invocation model types, the connection interaction for invoke activities in 

BPEL4WS can be modeled effectively using transition links for send, receive and reply 

processes in FSP.  The task of modelling the invocation process and port is completed by 

using the re-labelling feature of FSP linking the appropriate activities between process and 

port.  At this point the interactions are mapped into a connector yet it is still an 

unsynchronised set of activities if aligned with the main BPEL4WS process models. 

Therefore we need to compose these activities with those specified in the BPEL4WS 

processes.  To complete the modelling of the compositions, we specify an architecture model 

composing the previous models for seller, seller port, marketplace, buyer port and buyer 

processes.  An example of applying this mapping to the Seller and Marketplace processes 

described earlier produces the FSP code as illustrated in Figure 5-14. 

.   



Chapter 6.  Analysis for the Service-Oriented Model 114

/* FSP code for building model of port connector in marketplace example */ 
 range MSG = 1..1 
 PORT_INVOKE=(invoke_seller_marketplace_offer[v:MSG] 
 ->receive_seller_marketplace_offer[v]->PORT_INVOKE). 
 PORT_REPLY=(reply_marketplace_seller_offer[v:MSG] 
 ->output_marketplace_seller_offer[v]->PORT_REPLY). 
 ||PORT_MODEL = (PORT_INVOKE || PORT_REPLY). 

/* mapping process and port connector transitions for request only conversation */ 
 / {invoke_seller_marketplace_offer / invoke_input, 

   {receive_seller_marketplace_offer / receive). 

/* mapping process and port connector transitions for rendezvous conversation */ 
  / {reply_marketplace_seller_offer / reply, 
   {output_seller_marketplace_offer / invoke_output). 

/* code for composition of processes and port connectors */ 
 ||CompArch = (Seller_BPELModel || Seller_Port || MP_BPELModel  

 || Marketplace_Port). 

Figure 5-14  FSP Code segments for mapping activities 
 
 

A partial set of interactions is modelled in Figure 5-15 as an LTS model for the seller and 

buyer with the Marketplace process.  The labels in this model have been shortened for 

presentation purposes and clarity.  The result of providing a complete model of interactions, 

as part of a conversation, is that a choreography specification can potentially be used as input 

to a verification process.  This verification process can highlight inconsistencies on a series 

of compositions and their interaction behaviours implemented.  We term this type of 

verification as “compatibility checking”, in the way that focus can be placed on how the 

compositions interact and if they are suitable to be used for choreography as part of a 

business process.  Although the choreography specifications are still being created, such as 

in the case of WS-CDL, these additional features will be key part in how choreography will 

be undertaken.  



 

 

 

 

 
Figure 5-15  LTS for Partial Set of Interactions between Seller, Buyer and Marketplace Compositions 

 

C
hapter 5.  M

odelling W
eb Service C

horeography                                                                                  115
  

 



Chapter 6.  Analysis for the Service-Oriented Model 116

5.4   Summary and Discussion 

In this chapter, we have described an elaboration of composition models to support a view of 

interacting web service composition processes extending the mapping from BPEL4WS to 

FSP discussed in Chapter 4, and introducing web service interfaces for use in modelling 

between services.  The ability to model these conversations is important to discovering how 

web service interactions fulfil a choreography scenario and if the conversation protocol 

implement (by way of interaction sequences) is compatible with that of partnered services.  

In essence, our view of modelling has moved from analysing a local process, or in other 

words a single composition, with that of other services and their interactions.   With both the 

local behaviour and mappings between compositions defined, we now have a sufficient 

model to perform analysis of service interaction for behaviour properties.  The approach to 

verifying and validating these properties is discussed in Chapter 6.  In terms of the approach 

overview discussed in section 1.2, we have introduced the highlighted parts as illustrated in 

Figure 5-16. 

 

Tool   

Designers Validation

validation results

.
models

Deployers

Implementers

Specification

verification results

Composition

Clients

Verification

Verified and 
Validated

Services

BPEL4WS 

implementations

Composition
Processes

Composition
Semantics

Requirements

Web 
Service

Standards

MSCs

BPEL4WS 
Specification

Composition
Specification

Web Services

Model Generation

synthesis

m
apping

abstraction

interactions

verification properties

validation traces

Partner
Service

Interfaces

Composition

Release
Request

Analysis
Choice

Construct

Construct

Reference

Reference

BPEL
Synthesis
To FSP

Port
Connector

Models

 
Figure 5-16.  Elements of the approach discussed in chapter 5.



 

 
 

Chapter 6  

Analysis for the  

Service-Oriented Model 
 

“Contrariwise," continued Tweedledee, “if it was so, it might be, and if it were so, it would be; but as it isn’t, it 

ain’t.  That’s logic!”  

(Lewis Carroll, Alice In Wonderland) 

 

In the previous chapters we have described an approach to design, implement and model web 

service compositions with respect to their specification processes and interactions.  These 

models provide a representation that can be used to perform verification and validation 

analysis using formal model checking techniques.  In this chapter we discuss this analysis 

and how software process model checking techniques are applied to the web service 

composition models to assist designers and implementers assess the correctness of 

compositional behaviour.  This chapter brings together the models of design and 

implementation for a service-oriented model and evaluates their behaviour in the form of 

obligations. 

6.1   Analysis of Web Service Compositions and Choreography 

6.1.1   Approach to Analysis of the SOM 

In the introduction to our work, we described verification of processes to be used to identify 

parts of the web service composition’s behaviour that have been implemented incorrectly, or 



Chapter 6.  Analysis for the Service-Oriented Model 118

perhaps have unforeseen interactions.  This aims to satisfy such questions as; does the 

implementation match the requirements and was the process built correctly? Additionally, 

we described validation as a mechanism to clarify the understanding of requirements against 

that of the implementation and that the result of validation is to ensure that the right process 

was built.  In chapter 2 we described the policies and goal states defined of the SOM (section 

2.4.5) related to service objectives and obligations, and why the analysis of web service 

compositions (and its related use in choreography) facilitates the construction and general 

engineering of web services.  The ability to perform verification and validation between 

implementations and design, and within the process compositions themselves, is a key 

requirement of the web services architecture specification (Booth, Haas et al. 2004). We 

portray this analysis through an approach to compare the design specification models against 

that of implementation models (and vice-versa), and report back on obligations specified by 

either service designer or implementer that result in implied scenarios or progress violations 

(as illustrated in Figure 6-1). 

 

Composition and Choreography 
Specification Models

Interaction
Scenarios

And
Obligations
(properties)

Analysis Domain

Formal Software Process Analysis
(Verification and Validation)

Officer_Device Police Enquiry Vehicle Enquiry

servicesclient

request

vehicle_reg

insurance_records

Insurance_Enq

Composition and Interaction
Implementation Models

Service Compositions and Interactions

Web Service
BPEL4WS

Process <invoke>

Web Service

Process
<receive>Channel 1

<invoke>
<receive>

<reply>

Channel 1

Channel 2

BPEL4WS

<invoke>

<receive>

Property ViolationsProperty Violations
 

Figure 6-1  Approach to analysis of Service Specifications and Implementation Models 
 

The use of MSCs to specify obligations of a service composition or choreography provides 

an accessible method for end-users to describe the sequence of interactions necessary to 

fulfil their requirements.  Whilst there exist other suggestions for describing web service 

policy standards through such work as WS-Policy (Bajaj, Box et al. 2004), which provides a 

general framework to specify constraints on web service communication, at the time of 

writing this work there is little on specifying interaction constraints in policies for decisions 

about anything other than security and resource access control permissions.  Perhaps the 

nearest exposure of obligations as part of a general web service policy framework is the 

eXtensible Access Control Markup Language (XACML) (Anderson, Nadalin et al. 2004) 



Chapter 6.  Analysis for the Service-Oriented Model 

 

119

which defines pre- and post conditions in terms of activities that a service participant must 

have carried out prior to or after requesting a service.  Due to the lack of available standards 

in this area, we assume that a general policy of desirable interactions can be defined 

sufficiently in a design specification (such as we used MSC specifications in Chapter 3).  

Additionally, for the purpose of our verification approach, we assume that a stated policy is 

to be upheld within the choreography model (regardless of duration of existence) relating to 

the interactions permissible in a given scenario of a businesses goal.  Collectively gathering 

scenarios and building a set of specifications forms a choreography verification set with 

which properties may be defined to analyse how implementations fulfil the set of 

specifications given in these sets.   

 

As an example, if a service choreography is defined between three different services and 

their tasks, the properties we are interested in is that the implementation has observable 

behaviour which satisfies the choreography rules and requirements.  We abstract away from 

the storing and passing of state values between choreography scenarios – however, the 

interaction state (whether a service request, request received or reply is given) is considered 

for state transition analysis.  The process in the web service context is that of a Web Service 

Composition’s tasks (or more generally seen as any service’s set of tasks).  For verification 

we analyse how web services, a service’s tasks (inner process), and actions specified in 

service compositions (referred to as activities in our models) fulfil several areas of analysis.  

Equally we also provide a mechanism for confirmation of the behaviour exhibited by a 

modelled composition, and allow the analyst or engineer to validate that the processes 

created are indeed the required behaviour for a solution to the requirements.  In this section 

we discuss the techniques for both of these methods and provide examples of undertaking 

them. 

6.1.2   Techniques used in the Analysis 

Verification is achieved through the use of formal software process model checking 

techniques, but we evaluate specific topics of our approach for web service compositions by 

wrapping and applying these techniques under the notions of deadlock freedom and safety 

and progress property analysis.  Firstly, we can check the behaviour of a composition or 

choreography is deadlock free (i.e. that there are no states with no outgoing transitions).  In a 

finite state model (such as the models we produced from design specification and 

implementations in chapters 3 and 4), a deadlock state is a state with no outgoing transitions 



Chapter 6.  Analysis for the Service-Oriented Model 120

in these models.  A process in such a state can engage in no further actions.  The deadlock 

states we are interested in are those that arise from a parallel composition of concurrent 

activities in a single composition, a number of interacting compositions and one or many 

compositions against that of their design specifications.   This analysis can be performed by 

input of a series of processes and using a parallel composition to build an architecture model.  

A breadth-first search of the model is then performed and trace results can be obtained of the 

activities taken from the start state to the state at deadlock.  An example of a deadlock state 

in web service choreography is that two services are waiting to receive a message from each 

other.  The processes of these services are clearly in a deadlock situation where one is 

awaiting the other, and will never transition past this state. 

 

Secondly, we can use safety property checking techniques to determine if given model 

properties are satisfied in one or many compositions.  Safety properties are distinguishable 

from deadlock states in that they result in an error state – identified uniquely within a trace of 

the given model analysed.  For example, if a safety property is composed with a given 

model, a safety check will result in error if the property is not preserved in the composed 

model.  Safety properties used on complex systems are usually better stated as what is 

required, rather than stating what is not required (Magee and Kramer 1999).  Thirdly, we can 

use progress properties (one of several liveness property analysis types) to assert that 

whatever state a process is in, it is always the case that a specified activity will eventually be 

executed.  Progress is the opposite of starvation, the name given in a concurrent 

programming situation in which an action is never executed.  Progress properties are simple 

to specify and are sufficiently powerful to capture a wide range of liveness problems in 

concurrent processes.   

 

For validation we provide additional mechanisms for designers to validate web service 

composition design specifications through simulation and animation.  Assertions are used to 

identify properties for service interactions in a simulation of the composition, again from the 

model built in previous chapters.  Animation is also provided, whereby designers are able to 

walkthrough scenarios of the composition, and selectively choose different paths of 

execution to check requirement scenarios are fulfilled in the given design or implementation.  

To perform direct process analysis we use model checking techniques (such as deadlock, 

safety and progress properties) to specify the checks we wish to perform against process 

models.  Whilst deadlock and safety can be performed generally (through direct instruction 



Chapter 6.  Analysis for the Service-Oriented Model 

 

121

to an analyser) safety and progress can also be applied subject to those properties of interest 

or required by an end-user (for example, to directly assert whether a system can perform a 

series of activities or that the system exhibits to necessary behaviour to complete and fulfil a 

property).  These more “end-user” properties are considered related to policy verification and 

validation.  Preparation for property checking using such concepts is discussed in the next 

section of this chapter.  

6.2   Preparation for Analysis 

Whilst the model synthesised from the MSC design of a web service composition (illustrated 

in chapter 3) is focused on service interactions, the implementation may also include 

additional representation in the form of conditions and constraints (also known as links in 

BPEL4WS).  The naming scheme of the MSC message interactions is also likely to be 

differing to that of the implementation specification naming standards for interaction 

activities.  It is necessary to abstract these additional representations away from the 

implementation by hiding or mapping them in the model composition. The common 

elements of the models produced for both the design and implementation of web service 

compositions are the interaction activities.  In essence, our preparation focuses on 

abstraction, applying a concise labelling scheme to the implementation specification, hiding 

implementation specific activities which are not based upon direct interaction messages and 

identifying a mapping between activities specified in the implementation and the design.  

These collectively fall under some common abstraction preparation activities.   

6.2.1   Types of Preparation Activities 

The techniques to apply for this abstraction against our earlier models is categorised under 

the area of abstraction with reference to model checking.  Abstraction is used to reduce the 

complexity of a model by including only the parts of the system necessary for the issues 

being investigated (Frantz 1995).  Engineers and scientists routinely use abstraction in 

problem solving.  Amongst the abstraction techniques used, the following are prominent in 

these works.  Variable elimination removes parts of a system that are not relevant to the 

properties and behaviour to be demonstrated or proven (Heitmeyer, Kirby et al. 1998; 

Bharadwaj and Heitmeyer 1999).  Irrelevant variables can be identified by looking at 

dependencies and then removed.  Enumeration is a technique that represents the range of the 

values of a continuous variable as a set of abstracted terms. The general approach is to 

partition the range of the variable into a set of subparts. Reduction is a technique that 



Chapter 6.  Analysis for the Service-Oriented Model 122

decreases the size of individual parts of a system while preserving relevant characteristics 

needed to verify the behaviour of the system. The reduction choices are made based upon 

what behaviour is to be investigated; this is the modelling perspective.  Performing 

abstraction by using non-determinism involves allowing arbitrary choices at decision or 

transition points in a model. In this technique, the details in the logic used to make a choice 

among alternatives are ignored.  Grouping is an explicit many-to-one mapping of variables 

or entities into a single descriptor. The issues the model is being used to explore as described 

in section 6.1 guides the grouping. The goal of this technique is to group entities into a 

smaller set or to regroup entities to facilitate modelling and analysis.  Decomposition is a 

technique for systematically partitioning a system into structural or functional components. 

While this approach is not traditionally considered an abstraction technique, it is effective in 

helping to make decisions about what is needed in a model and what is not and in 

understanding individual components of a system and their interrelationships. 

6.2.2   Preparation for Composition Abstraction and Mappings 

Our approach to modelling has at its core; synthesis, mapping and abstraction.  We describe 

the model abstraction steps for web service compositions as consisting of a series of tasks 

given input from the synthesis of initial design and implementation models and 

specifications and semantics of the processes modeled.  The composition model preparation 

is illustrated in Figure 6-2.       

 

Implementation

Models

DesignModels

Specifications
And Semantics

Composition

Mapping

Non-interaction
Activities

Undefined
Process Refs

VerificationMapping

Analysis and 
Abstraction

Understanding

Model Generation

m
apping

abstraction

interactions

synthesis

Validation

validation results

models

verification results

Verification
verification properties

validation traces

 
Figure 6-2.  Behaviour Refinement through Analysis and Abstraction 

 

The process of abstraction is decomposed in to analysis of non-interaction activities in 

implementation (reduction), joining actions between design and implementation through 

specification semantics (grouping) and linking interactions between compositions through 

service interface models (further mapping). 



Chapter 6.  Analysis for the Service-Oriented Model 

 

123

 

The output of the abstraction steps are enhanced models including mapping information that 

can be used for joining composition process models, reducing the activities which are 

considered in the behaviour analysis and verifying models of design against implementation 

models.  The inputs to behaviour abstraction are the models from synthesis of a design and 

models from the translation of implementation discussed in the previous chapter.  In addition 

to these models, the composition standards specifications and design model semantics are 

passed on through to assist in analysis of the elaboration techniques discussed later in this 

chapter.  The service composition standards are formed from those used in the BPEL4WS 

specification - providing syntactic standards and suggesting semantics of how BPEL4WS 

processes are defined, implemented and formed and provide information on those activities 

which are candidates for reduction.  The WSDL specification also provides semantics of 

service binding and linking with BPEL4WS partner interface extensions (as described in 

Chapter 5).   We now discuss the steps in this abstraction within our approach, by firstly 

considering the refinement of translated models with reference to the semantic information 

from the specifications. 

6.2.3   Sample Scenario for Verification and Validation 

In this chapter we refer to a simple yet illustrative composition example, being a simple 

service which receives a message from a client to log a message by way of an audit provider.  

The audit is an additional service which is invoked from an echo service provider.  The 

initial requirements for this composition example are given in Figure 6-4. 

 

The Echo-Audit composition is carried out by three partners.  The Echo client requests 

a message to the Echo service provider.  In turn, the request is processed and an Audit 

Service is requested by the Echo service provider to record the message.  The Audit 

service logs the message and returns a status to the Echo service provider.  The Echo 

service provider acknowledges the Audit request.  This can occur before the Audit 

Service returns the actual Audit status.  The Echo client can continue with other 

actions once the reply is given from the Echo service provider. 

Figure 6-3  Example scenario of activities in a Message Auditing Service Composition 
To consider how the design and implementation models generated through the modelling as 

described in chapters 3, 4 and 5.would be analysed for the example scenario given, we begin 



Chapter 6.  Analysis for the Service-Oriented Model 124

by considering what the models exhibit that is not required in the analysis, such that we have 

a refined model. 

6.3   Refining Composition Behaviour Models 

6.3.1   Reduction of Implementation Specific Activities 

The BPEL4WS specification includes a subset of a traditional programming language, 

having structured and variable statements to define conditional process flow.  Whilst some 

activities can be treated as primitive processing directives (such as assignments between 

variables in the process), they cannot be removed completely from the implementation 

process model as a different interaction model would be produced (e.g. when the next path of 

a variable expression is evaluated).  This part of the preparation for verification specifies 

which activities can be abstracted to be verified in the BPEL4WS models, for the analysis of 

process interactions.  These are identified as transitions in the BPEL4WS that are concerned 

with assignments, switch conditions, end actions and initiators.  This reduction does not 

change the behaviour of the model, but hides the activities from the set used in model 

analysis.  The alphabet of the model produced from the BPEL4WS translation will include 

assignments, switch statements and other conditional processing which is unlikely to be 

specified in a design.  A sample alphabet of a BPEL4WS model produced prior to 

abstraction is illustrated in Figure 6-4. 

 

Process: 

   echostring_echoslt_echo 

Alphabet: 

{invoke_audit_echo,invoke_audit_echo_reply, 

invoke_echoprovider_echo,invoke_echoprovider_echo_reply, 

receive_caller_echo,reply_caller_echo, 

assign.client.message,assign.audit.message, 

assign.audit.result, assign.client.result} 

Figure 6-4.  Composition Implementation Alphabet before Reduction 
 

Notice that the alphabet includes activities starting with the invoke, receive, reply and assign 

constructs.  In addition to the re-labelling operator (used in Chapter 5), the FSP language 

includes a hiding operator to conceal (and “reduce”) a set of activities in a specified model so 

that they are not witnessed a process trace.  To specify this in FSP, the \ operator is used.  



Chapter 6.  Analysis for the Service-Oriented Model 

 

125

The hiding for the Echo_Audit example is given as follows to illustrate abstracting the 

assignment constructs. 
 

/* FSP code for hiding non-observable activities in BPEL4WS composition 

model */ 
   \ {assign.client.message,assign.audit.message, 

   assign.audit.result, assign.client.result}. 

 

6.3.2   Grouping Design and Implementation Activities between Models 

The models produced as part of the design specification and BPEL4WS implementations 

may have different process alphabets.  An alphabet in terms of a finite state machine is the 

string of symbols that are read by a machine.  In machine state transition, the next state is 

determined using the current state and the symbol next in the alphabet (or the empty string).  

When the machine has finished reading, it is said to be in an accepting state, otherwise it is 

said to reject the string.  Clearly, where activities are thought equivalent in the alphabet sets, 

these must match between design and implementation.  The designer’s choice of labelling 

interactions may have different forms of expression to describe each of the required activities 

as part of a service process composition requirement specification.  In a similar way to 

mapping activities for interaction port connectors, as described in chapter 5, we are required 

to provide a mapping (or “bridge”) between the activity alphabets compiled in the translation 

from the BPEL4WS source implementation to the message sequence chart model produced 

as part of the design composition steps.  The mapping can be achieved by re-using the notion 

of re-labelling.  FSP supports relational re-labelling.  The relation operator applies a relation 

to a process, which can result in replacing many labels with a single label and replacing one 

label with multiple labels.  The re-labelling relation is defined by a set of pairs.  Each pair 

takes the form newlabel/oldlabel.  Sets of labels and the replication construct permit the 

concise definition of the re-labelling relation.  Re-labelling occurs before a parallel 

composition of processes – therefore before we combine the implementation with design 

processes (this is discussed in section 6.4.1).   

 

An example of re-labelling activity labels from the synthesis of the MSC specifications and 

translation of BPEL4WS to FSP is given in Table 6-1.  This example shows how the receive, 

invoke and reply activities contained within a partner process are mapped to the alphabet of 



Chapter 6.  Analysis for the Service-Oriented Model 126

activities defined in a service composition design.  The result is a model that both MSC and 

BPEL4WS reflect the same alphabet. 

 

Table 6-1  Mapping Activities as part of model abstraction 
MSC 
Action 

BPEL4WS FSP Action Source Code for FSP Mapping 

call_echo receive_caller_echoprovider_echo 

call_audit invoke_echoprovider_audit_echo 

reply_audit reply_audit_echoprovider_echo 

reply_echo reply_echoprovider_caller_echo 

/{call_echo/ 

receive_caller_echoprovider_echo, call_audit/ 

invoke_echoprovider_audit_echo, 

reply_audit/reply_audit_echoprovider_echo, 

reply_echo/reply_echoprovider_caller_echo }. 

 

The tasks of abstracting implementation specific activities, labelling appropriately in service 

interaction activities, hiding implementation specific activities and mapping between 

implementation and design composition models provides a typical set of characteristics in 

abstracting models for model verification and validation (Gluch, Cormella-Dorda et al. 2001; 

Engels, Kuster et al. 2003).   

6.3.3   Building an Architecture Model for Analysis 

A final preparation activity to perform analysis for verification and validation requires that 

these models are composed together to produce a model which represents a minimal, 

deterministic representation (Erdogmus 1997).  A minimal model means that a trace in the 

original process leads to an END state if and only if the trace leads to an END state in a 

determinised process.  The step combines the original synthesis of the composition design 

MSCs, the translation from BPEL4WS to FSP and the abstraction mappings described 

previously.  An architecture model is produced by composing these models and mappings 

together.  The models are tagged prior to compilation so that the FSP compiler performs the 

necessary abstractions.  Figure 6-5 illustrates an example of FSP code for composing an 

architecture model for composition analysis.  Note that the Client, Provider and Audit 

BPEL4WS architecture models have previously been translated and mapped with port 

connectors to produce the “BPEL_ArchitectureModel” process.  The FSP code here 

composes the architecture models of MSC and BPEL4WS, with additional abstraction (a 

subset of the MSC and BPEL4WS activity mappings). 

  



Chapter 6.  Analysis for the Service-Oriented Model 

 

127

/* FSP code for architecture models of MSC and BPEL4WS compositions, specifying 

mapping between models */ 

       ||MSC_ArchitectureModel = (Client || Provider || Audit). 

       || BPEL_ArchitectureModel = BPELModel /   

{invoke.echo.provider/invoke_client_echo}. 

       ||ArchitectureModel = (MSC_ArchitectureModel || BPEL_ArchitectureModel). 

Figure 6-5  FSP code for Refined Composition Architecture Model 
 

6.4   Analysis of Composition Behaviour Models 

In this section we describe the verification part of the approach, which considers analysing 

the architecture models of the compositions produced in section 6.3, and specifying 

properties of interest to provide greater assurance that compositions hold the required 

behaviour.  The essence of the tasks performed here is to give greater assurance of 

compositions correctness, through equivalence checking of implementation and design 

models (termed trace equivalence).  The behaviour model abstraction tasks that have been 

discussed in previous sections of this chapter, illustrate how we deduce what is not required 

to be “observed” or “witnessed” in the trace equivalence verification – i.e. we specified parts 

that differed between design and implementation, and thus reduced the set of observable 

activities from the combined model.  The result of which is used in model checking (in order 

to prove properties of the compositions) consisting of; liveness (paths contain positive 

transitions), safety (paths do not contain negative transitions), and specific compatibility 

reasoning in the implementation models.  For example, that two partnered processes have 

sufficient liveness that the interfaces between the processes are fulfilled.     The following 

inputs are required to support the verification process, and form the inputs to this step in the 

approach.  Firstly, the original implementation and design models accompanied by the 

mappings through interaction analysis, and mapping through abstraction, are required as the 

model input to verification.  Secondly, a set of analysis properties to check are required as 

pre-requisites to checking the models.  These are discussed in the following sections as to the 

format and nature of these properties.  We consider verification in terms of trace equivalence 

(checking the implementations against specification models), interface compatibility – 

ensuring that interactions following the web service conversation standards and that 

interaction activities are suitably placed in processes to provide progress of a process, and 

thirdly a mechanism to check general properties in terms of both safety and progress.  The 



Chapter 6.  Analysis for the Service-Oriented Model 128

output from this verification is a set of trace results which can be used to determine the cause 

of why any property violations occur, or indeed if a successful result is obtained.  The steps 

described here are illustrated in Figure 6-6. 

 

Validation

models
Verification

results

verification properties

validation traces

Implementation
Models

DesignModels

Mappings

M
odel C

om
pilation 

and Traces

Verification

mappings

Trace
Equivalence

Interface
Compatibility

General
ProgressVerific

ation

Propertie
s

Verification
/ Checking

 
Figure 6-6  Approach for Verification Analysis of Composition Models 

 

6.4.1   Composition Design and Implementation Equivalence 

The primary role of verification in our approach is to assist in checking whether the 

implementation of web service composition requirements and the related designs are 

equivalent.  Equivalence verification has been reported in various themes.  Amongst these 

are strong and week equivalence (Milner 1989), and traces and failure-divergence 

equivalence (Hoare 1985) are commonly referenced.   In the context of this thesis we 

leverage trace equivalence to support our approach upholding the requirement that a 

composition that is tested equivalent provides at least the necessary behaviour to fulfil the 

test specification.  In summary, the main property that will be considered in trace 

equivalence is that the BPEL4WS implementation exhibits the necessary behaviour to fulfil 

the requirements that are described in the MSC design. 

 

The essence of this verification is to prove that a property exists in the composition 

modelling of combined implementation and design models.  In section 6.3.3 we built a 

combined architecture model of the implementation and design models, specifying additional 

abstraction rules based upon our understanding of the composition environment and 

implementation semantics.  This is used as source for the trace equivalence verification.  

Furthermore, any additional behaviour can be fed back to the implementer as counter 

examples.  It is also the case that by definition of trace equivalence, the MSC design can be 

checked against that of the implementation.  However, this may appear less useful in the 



Chapter 6.  Analysis for the Service-Oriented Model 

 

129

design approach of web service compositions, but essentially this also provides a technique 

for future re-engineering and checking against existing compositions where the 

implementation is the initial requirements in focus.  In summary, the equivalence verification 

may also be used to check that a MSC design specification exhibits the behaviour of a 

BPEL4WS implementation.  The requirements to trace equivalence verification of web 

services composition design and implementations are listed in Table 6-2.  We continue to use 

the Echo-Audit web service composition example (specified in section 6.1) for ease of 

following the approach steps, and to illustrate how this verification is undertaken with the 

composition models.  We begin with the synthesized model of the MSC design.  From the 

Echo-Audit composition example, we build a scenario which provides a sample sequence of 

interactions between client and the services (Provider and Audit).  In this scenario we 

describe a call to the provider (call_echo) and it’s reply back to the client (reply_echo), and a 

call to the audit service (call_audit) and it’s reply back to the provider service.  Given the 

initial requirements specification back in Figure 6-3, the designer would construct a series of 

bMSC to specify required design components and interactions.  The resulting bMSCs that 

would be produced by this exercise would be similar to those illustrated in Figure 6-7.   

 

 

Table 6-2  Trace Equivalence Verification Requirements 
Approach Item Product Role in verification 

Design 

Specifications 

Message Sequence Charts Input model for requirements of service 

composition 

Implementations BPEL4WS processes Input model for service implementation 

Abstractions BPEL4WS process 

refinements 

Refine BPEL4WS model for verification if 

process contains non-interaction elements 

Mappings Mapping activities Map activities between input models 

Properties Equivalence property Verification properties 

 

 

 



Chapter 6.  Analysis for the Service-Oriented Model 130

Client Provider Audi

call echo

servicesclients

 
a)  Client request scenario 1 

Client Provider Audi

call audit

servicesclients

 
b)  Provider request audit scenario 

Client Provider Audit

reply echo

reply audit

servicesclients

 
c) Audit reply scenario 1 

Client Provider Audit

reply echo

reply audit

servicesclients

 
d)  Audit reply scenario 2 

Figure 6-7  bMSCs for scenarios in the echo-audit service composition 
 

 

A corresponding hMSC (Figure 6-8) would also be specified to sequence the scenarios 

constructed earlier.  In this example, the initial scenario is sequenced as 1) client request (to 

provider), 2) audit request (from provider to audit service), either the audit service replies to 

provider and then provider to client, or alternatively the provider replies to client and audit to 

provider.   

 

 

Start ClientRequest AuditRequest

Audit-Sc1

Audit-Sc1

End

 
Figure 6-8  hMSC of echo-audit service composition 

 

 

We introduce the notion of choice here to consider alternative paths of execution in the 

composition example.  A labeled transition system is then generated from this model, using 



Chapter 6.  Analysis for the Service-Oriented Model 

 

131

the technique described in section 3.4.  The model represents the finite state machine of the 

design built as messages between three components (that of requester, provider and audit).  

A graphical view of the LTS for this model is illustrated in Figure 6-9. 

 

 

 
Figure 6-9  LTS model for MSC scenario Echo-Audit Composition 

 

Each component in the MSC specification represents a service in the web service 

composition.  Notice however, that the synthesis for this MSC model includes an endAction 

transition.  The endAction transition provides a synchronized way of ensuring that the 

process terminates between components in the bMSC and a sequence of processes in the 

hMSC.  We are now required to implement such a service architecture, however, for this 

example we illustrate building this using just one service composition and its interactions.  A 

good example for verification is the provider service (effectively a coordinator service 

between client and audit).  Note that the provider is a good example as it includes receiving, 

invoking and replying to services, all the types we can model in the MSC design 

specification.  The structure of the BPEL4WS process used to implement this service is 

given in Figure 6-10. 

 

 
Figure 6-10  BPEL4WS Process Structure for  
Provider Service in Echo-Audit Composition 

 



Chapter 6.  Analysis for the Service-Oriented Model 132

A labeled transition system is then generated from this BPEL code, using the technique 

described in Chapter 4.  The full source for this service example is given in the appendix of 

the thesis.  The model represents the finite state machine of the BPEL process as activities 

between the client and audit services.  A graphical view of this model is illustrated in Figure 

6-11. 

 

 
Figure 6-11  LTS model for BPEL4WS Provider Service Activities in Echo-Audit Composition 

 

A brief comparison of the models shows that there are clearly differences between the 

possible paths in the MSC over that defined by the BPEL4WS implementation.  The main 

difference is clearly that in the specification, the reply to a client (reply_echo) and the reply 

from the audit service (reply_audit) could happen concurrently.  In other words, the design 

specifies that either execution path of replies could occur. Also notice that the activities are 

labeled differently (in this case, we have singled out the provider service and the viewpoint 

has changed from an invoke activity by the client, to a receive activity by the provider).  This 

is where we use the mapping discussed in 6.3.2.  The mappings group the activities in these 

models and assign the semantics of implementation from that of the design and requirements.  

The mappings (listed in Table 6-3), are applied to the LTS model of the BPEL4WS process.  

The resulting model has the same structure as the original BPEL4WS process, but with the 

naming scheme applied from the MSC designs.  This model can then be used for trace 

equivalence verification.  This mapped model is illustrated in Figure 6-12. 

  

Table 6-3  Mapping from MSC design to BPEL4WS  
activities for Echo-Audit  Composition Example 

MSC Action BPEL4WS Action 

call_echo receive_client_provider_echo 

call_audit invoke_provider_audit_log 

reply_audit reply_audit_provider_log 

reply_echo reply_provider_client_echo 

 

 



Chapter 6.  Analysis for the Service-Oriented Model 

 

133

 

 
Figure 6-12  LTS model for BPEL4WS Provider Service mapped to MSC activities 

 

Although the task of comparing models is easier in simple processes, more complex 

processes require an in-depth and time-consuming comparison.  Model checking can then be 

performed to formally test that a BPEL4WS implementation provides the necessary activities 

to meet the MSC specification, through a model trace.  Additionally, the aim is to provide as 

much a mechanical verification as possible, so that observation is not required by human eye 

in larger more complex processes.  Although we have built models of both MSC and 

BPEL4WS activities, we are interested in the minimal trace equivalence in both these 

models.  To specify this in FSP, we use the deterministic operation on the given MSC model 

and include abstracting the endAction transition as it is not included in the BPEL4WS model.  

A complete analysis model is created by combining these models together to form an 

ArchitectureModel, as discussed in section 6.3.3.   We are also required to specify the 

property we are seeking to trace in the software model analysis.  The properties of interest 

for verification are specified in FSP using the property function of the FSP language.  The 

property of verification in this case is on equivalence checking of the BPEL4WS 

implementation against that of the MSC specification (our main property stated earlier).  The 

property function creates a process by assignment of another process.  For equivalence, we 

assign the property “BIS_MSCBPEL” as the deterministic MSC model giving a complete 

representation as the requirement for our verification check as the MSC specification.   

 

The final activity in constructing the model for equivalence is to produce a parallel 

composition of the property model and the BPEL4WS model.  This is achieved using the 

standard parallel composition operator of FSP.  An example FSP code for checking trace 

equivalence of a MSC LTS model and BPEL4WS LTS model is given in Figure 6-13.  The 

result of performing a trace operation on this composition is that of checking each and every 

transition of the MSC against that of the BPEL model and reporting on any violations where 

one has a transition that the other does not exhibit.   For example a sample trace from 

checking the equivalence of the Echo_Audit service and MSC design given previously is 

listed in Figure 6-14.    



Chapter 6.  Analysis for the Service-Oriented Model 134

/* FSP code for equivalence checking of MSC and BPEL4WS compositions, with the 

property that BPEL4WS implementation should uphold activities of MSC design */ 

       MSC_ArchitectureModel = MSC composition model FSP 

       BPEL_ArchitectureModel = BPEL composition model FSP + mappings… 

       deterministic ||DetMSC = MSC_ArchitectureModel \ equ. 

       property ||Bis_MSCBPEL = DetMSC. 

       ||CheckBPEL = (Bis_MSCBPEL || BPEL_ArchitectureModel). 

Figure 6-13  FSP code for equivalence verification of BPEL4WS against MSC models 
 
/* Trace run example from Equivalence Verification of MSC over BPEL4WS */ 

Trace to property violation in 

Bis_MSCBPEL: 

  receive_client_provider_echo 

  invoke_provider_audit_echo 

  reply_audit_provider_echo 

  

Figure 6-14  Trace run example of trace equivalence of MSC and BPEL4WS models 
 

The reason for this property violation is that the reply_echo activity is permitted in the 

specification before the reply_audit activity but the BPEL4WS process model does not allow 

this (in equivalent mapped actions).  Studying the BPEL4WS source for this example, and 

highlighting the implementer’s decision to only allow a sequence of activities for the 

reply_echo and reply_audit is the source of this problem.     The implementer can correct this 

issue by adding a concurrent activity execution statement (the flow element in the BPEL4WS 

source) or changing the existing sequential execution statement to concurrent.  Similarly, a 

check of the specification for the composition against that of the implementation can be 

undertaken.  We recode the FSP to have as source the BPEL4WS model as the property, and 

the MSC as the model to check.  The modified code is given in Figure 6-15. 

 

/* FSP code for equivalence checking of MSC and BPEL4WS compositions, with the 

property that MSC design should uphold activities of BPEL4WS implementation */ 

       deterministic ||DetBPEL = BPEL_ArchitectureModel \ {endAction}. 

       property ||Bis_BPELMSC = DetBPEL. 

       ||CheckBPEL = (Bis_BPELMSC || MSC_ArchitectureModel). 

Figure 6-15  FSP code for equivalence verification of BPEL4WS against MSC models 



Chapter 6.  Analysis for the Service-Oriented Model 

 

135

We provide more detailed examples of equivalence verification of web service compositions 

as a result of a case study in Chapter 7.  With the results gathered in equivalence checking, 

and primarily checking that the implementation fulfils the design specification provided 

against client requirements, the implementers can be assured that the web service 

composition process (using a standard such as BPEL4WS) will exhibit the behaviour 

necessary to fulfil these requirements.  By way of behaviour equivalence verification it is not 

the purpose however, to guarantee that the messages passed between services is suitable to 

carry out the operations specified.  This requires data analysis and possibly a run-time 

verification for checking its suitability (e.g. as expressions are evaluated within a process).  

Equivalence verification in the context of web service compositions ultimately allows the 

designer and implementer to compare interactions between models produced from their 

works.  In an increasingly distributed environment and as design and implementation 

professions are frequently separated, the use of this activity provides early results in the 

success of executing such compositions. 

6.4.2   Compatibility of Service Composition Interactions 

As we discussed in Chapters 3 and 5, compatibility verification is an important aspect of 

behaviour requirements between different clients of compositions.  Clients will likely 

anticipate different behaviour depending on their individual requests and therefore the 

composition must be tested against various scenarios to reflect these different sequences of 

activities.  There is also an assumption that a web service composition will work in any 

process environment (not just the original development domain).  A greater level of 

assurance in compatibility can be given if interacting services are checked whether a 

composition exhibits the correct behaviour for its own use.  Web Service compositions can 

also be seen as the implementation layer of a multi-stakeholder distributed system (MSDS) 

(Hall 2003).  An MSDS is defined as; “a distributed system in which subsets of the nodes are 

designed, owned, or operated by distinct stakeholders.  The nodes of the system may, 

therefore, be designed or operated in ignorance of one another, or with different, possibly 

conflicting goals”.  The focus is on interaction with multiple parties and the behaviour could 

be somewhat ad-hoc depending on the requirements of the partner services.   However, three 

basic levels of compatibility for component compositions have been previously reported in 

(Larrson and Crnkovic 1999).  These are defined as interface, behaviour and input-output 

(data) compatibility.  Whilst input-output data compatibility is of interest, it is not the main 

focus of this verification work.  We would however, expect a related growth of data analysis 



Chapter 6.  Analysis for the Service-Oriented Model 136

work to monitor and analyse service messages.  We now apply the first two of the concepts 

discussed for compatibility, and describe interface compatibility specifically for web service 

compositions as; the activity of correlating invocations against receiving and message 

replies between partner processes, such that invoke, receive and reply activities are 

synchronised. 

 

In our compatibility checking, the focus is currently only on the implementations and does 

not introduce another specification standard for compatibility in choreography (although this 

may be added at a later stage).  Given a series of service implementations (in the form of 

BPEL4WS processes) the approach elaborates on the interaction mappings between 

processes and further inputs from port connectors between interaction activities in these 

processes.  The requirements to compatibility verification of web services interactions are 

listed in Table 6-4: 

 

Table 6-4  Compatibility Verification Requirements 
Approach Item Product Role in verification 

Implementations BPEL4WS processes and partner  

interface definitions (WSDLs) 

Input model for service implementations 

and interface activities 

Abstraction BPEL4WS process refinements Refine BPEL4WS model for verification 

Interactions Service interaction models Translate BPEL4WS into a model 

representation (FSP) and assign related 

interface activities from partners (WSDL) 

Mappings Mapping activities Map activities between input models 

Properties Safety properties for 

compatibility checking 

properties to analyze those compatibility 

requirements are held for conversations 

where specified interactions exist 

 

We expand on our example from the trace equivalence verification by providing all three 

processes in BPEL4WS.  The structure of these processes takes the form as illustrated in 

Figure 6-16. The process for performing compatibility verification focuses on the 

interactions between processes, rather than comparing activities between design and 

implementation (although this can be performed as a secondary verification step).  The 

essence of the verification relies on our choreography modelling, as discussed in Chapter 5.  

For each BPEL4WS process there is a corresponding service interface defined.  This is in the 

format of a WSDL document.     



Chapter 6.  Analysis for the Service-Oriented Model 

 

137

 
 

 

 

Client Service Process Provider Service Process Audit Service Process 

Figure 6-16  BPEL4WS Process Structures for Services in Echo-Audit Composition Example 
 

The set of BPEL4WS processes and WSDL interface definitions are translated and 

abstracted, and the algorithm for building port connectors (chapter 5 section 5.2.4) is 

performed for each invocation or reply in a given process.  Thus, an iterative modelling 

exercise is undertaken starting with the first process input, and finishing with the last in the 

set.  A sample port connector for the modelling of interactions between client and provider 

services in our example is listed in Figure 6-17.   

 

/* FSP code Client-Provider port connector model and mappings */ 
CLIENT_ECHO_PORT_REPLY =  

  (reply_provider_client_echo-> 

   output_provider_client_echo->CLIENT_ECHO_PORT_REPLY). 
CLIENT_ECHO_PORT_INVOKE =  

  (invoke_client_provider_echo-> 

   receive_client_provider_echo->CLIENT_ECHO_PORT_INVOKE). 
||CLIENT_ECHO_PORT = (CLIENT_ECHO_PORT_INVOKE || CLIENT_ECHO_PORT_REPLY). 

||CLIENT_PROVIDER_PORT_MAPPING = (CLIENT_ECHO_PORT)  

/{reply_provider_client_echo/reply,output_provider_client_echo/input_output,invoke_

client_provider_echo/invoke,receive_client_provider_echo/receive}. 

Figure 6-17  FSP code for Client-Provider port connector model 
 

For the client, provider and audit processes, the port connector interaction models (between 

client and provider, and provider and audit) are listed in Figure 6-18.  Compatibility 

verification is the trace result of a parallel composition of input BPEL4WS models and the 

port connector models.  We perform a safety deadlock check on this new composition 

architecture model to ensure that each of the interaction activities are resolved in the port 

connector models.  The FSP code for this parallel composition model is listed in Figure 6-19. 

 



Chapter 6.  Analysis for the Service-Oriented Model 138

  
Client-Provider Port Connector Provider-Audit Port Connector 

Figure 6-18  Port Connectors for Services in Echo-Audit Composition Example 
 

/* FSP code for parallel composition of BPEL4WS service models and ports */    

||CompositionModel =  

    (CLIENT_BPELModel || CLIENT_PROVIDER_PORT_MAPPING ||                                   

     PROVIDER_BPELModel || PROVIDER_AUDIT_PORT_MAPPING ||  

    AUDIT_BPELModel). 

Figure 6-19  FSP code for parallel composition of BPEL4WS services and port connectors 
 

Again, it is possible to witness errors in building compositions correctly for partnered 

processes only if the process is of an applicable size to an observer’s comprehension.  The 

model checking facilities of deadlock analysis provides us with a suitable compatibility 

checking mechanism to check larger process compositions.  If, for example, an invoke 

activity in one service process does not have a suitable reply in a partnered service process, a 

deadlock trace may give the result listed in Figure 6-20. 

 

/* Trace run example from compatibility verification of BPEL4WS interactions */ 

Trace to DEADLOCK:  

invoke_client_provider_echo 
invoke_provider_audit_log 
reply_provider_client_echo 
invoke_audit_log_echo 
output_audit_provider_echo 

Figure 6-20  Deadlock example of compatibility verification BPEL4WS and partnered services 
 

The output_audit_provider_echo activity built in the port connector between provider and 

audit services has detected that a path to reply to the provider has not been modelled (and as 



Chapter 6.  Analysis for the Service-Oriented Model 

 

139

such terminates before the provider reply is received).  This indicates that a reply activity has 

not been given in the audit service, or was omitted in error.  The BPEL4WS engineer can 

then revisit the BPEL4WS implementations and adjust accordingly.  Repeat tests may 

exhibit further interactions that violate the standards of web service conversations or indeed, 

assure that the composition interactions are compatible. 

 

In summary, compatibility verification provides a BPEL4WS engineer and any partnered 

BPEL4WS engineers to check the suitability of service conversations in composition 

implementations.  This is important in two ways.  The first is that a process may be required 

to behave in different ways for differing partner interactions, and that other service processes 

in the same domain have to be capable of interacting appropriately to fulfil there own 

progress and liveness.  Secondly, in system decomposition (where a business or other 

process is split into several services) the engineers can check that responsibility to carry out a 

task has been split safely between services and that the complete goal is fulfilled by a 

complete trace model.  Generally however, we expect this technique to be used with more 

emphasis on the first case, providing engineers with a safety check of collaborating services 

with partnered services (where the engineers may exist in different problem domains).  

Compatibility verification is undertaken by the input of a series of service compositions, 

service interfaces and through the generation of service port connectors.  A safety check of 

deadlock analysis results in success if no deadlock (or a trace to deadlock) is detected as a 

violation in compatibility. 

6.4.3   Other Properties 

Our third set of verification checking is more general than the previous two.  By specifying 

particular properties of interest, engineers can check whether a web service composition can 

reach a particular state in terms of its obligations in more general cases (over that of 

individual scenarios used in section 6.4.1).  This assists in building reusable SOM 

architectures, for which a policy states obligations in which web service choreography may 

be undertaken.  We describe the model checking techniques for general properties of the 

composition models under two different types in our approach, categorised as; 

 

• Safety – providing assurance that the composition is checked for partial correctness of 

transitions for a given property within the model, e.g. that a partner service 

invocation is always logged following an failure 



Chapter 6.  Analysis for the Service-Oriented Model 140

• Progress – providing assurance against starvation of progress in the composition, 

such that, whatever state the composition is in, an activity will always be executed 

e.g. that a reply is always sent back to the original requester. 

 

For both property types, we can reuse the model building steps described for trace 

equivalence (Table 6-2 - excluding the design specification requirement) and compatibility 

checking (Table 6-4).  The building step requirements for including one or many processes is 

dependent on the source in question, or in other words, whether it is that the property must 

be tested on one composition or over a choreographed domain of processes.  In this section 

we simplify the examples by concentrating on one composition to illustrate how each of the 

property checks are carried out in analysis.  

 

In safety analysis of the compositions, we are seeking to assist the engineer to specify 

properties (or activities in the composition) that should be upheld in the composition.  For 

example, the engineer may want to revisit the requirements for the service to be provided and 

note a series of conditional processing dependent on a sequence of activities having been 

carried out.  In the Echo-Audit example, we can give a simple example that the Provider 

process must request the audit log of each request made to it (the LTS model for the provider 

service process was illustrated in Figure 6-11). To model check this and perform a safety 

analysis we can use the FSP syntax of property to describe the safety property of interest in 

our model.  A safety property defines a deterministic process that asserts that any trace 

including actions in the alphabet of the process P, is accepted by P.  The property syntax for 

the audit after request requirement is listed in Figure 6-21. 

 

/* FSP code for safety property that a request to the provider will be logged by request 

to the audit service */ 

property REQUESTAUDITCHECK =  

          (receive_client_invoke_echo->invoke_audit_echo->END). 

||PROVIDER_BPELArchitectureModel =  

          (PROVIDER_BPELModel || REQUESTAUDITCHECK). 

Figure 6-21  FSP code for safety property that a request to log a client is made 
 

Compiling the PROVIDER_BPELArchitectureModel  in this model, composed with the 

safety property process provides the expected reassurance of no violation to our property, as 

the model built earlier clearly provides this activity following receiving a request from a 



Chapter 6.  Analysis for the Service-Oriented Model 

 

141

client.  If however, the engineer was interested in whether a log was made prior to receiving 

a client request, then we could reverse the order of the property and rerun the model 

compilation.  The result of this produces a model which includes the error state (Figure 

6-22).  Notice how the model reflects that each state is in violation of the property, which 

causes an immediate transition to the error state (identified by a state transition of -1).  By 

iteratively specifying key properties of the requirements and safety checking the 

composition, the engineer can be given greater assurance in releasing the composition for 

deployment.   

 

 

 
Figure 6-22  LTS model of a violation of a safety property in the Provider Service Composition 

 

 

It is important to note that safety properties are usually given as those properties required by 

the composition, rather than those that are not.  In this way, it is a much simpler and shorter 

task to perform, as it may be a tedious task to try and consider all the possible undesirable 

behaviours of a process rather than those which are easily identified as required. 

 

Progress analysis is similarly specified by activity properties, but the focus is on those 

properties which will eventually happen (such as the example given previously, that a reply 

will always be given back to a requestor to a service).  In FSP, the syntax for defining 

progress properties uses the progress keyword.  A progress P = {a1,a2…an} defines a 

progress property P which asserts that in an infinite execution of a target system, at least one 

of the actions a1,a2….an will be executed infinitely often.  This definition allows us to specify 

a range of progress properties, with the condition that at least one must be upheld in a service 

composition.  By way of example, we use the provider service model to check whether a 

reply to client to always given.  A progress property for this requirement is listed in Figure 

6-23. 



Chapter 6.  Analysis for the Service-Oriented Model 142

 

/* FSP code for progress property that a reply is always given to a client */ 

progress ALWAYSREPLYCLIENT = {reply_provider_client_echo} 

PROVIDER_BPELArchitectureModel =  

          (PROVIDER_BPELModel || REQUESTAUDITCHECK). 

Figure 6-23  FSP code for progress property that a reply to a client is always made 
 

 

A repeat of compiling the PROVIDER_BPELArchitectureModel  in this model, composed 

with the progress property specified again provides the expected reassurance of no violation 

to our property, as the model built earlier provides this activity as a terminating state.  If 

however the process did not include a reply to the client, then the result of compilation 

produces a model which includes a set of terminal actions (Figure 6-24). 

 

/* FSP code for progress property that a reply is always given to a client * 

Progress violation:     

ALWAYSREPLYCLIENT 

Trace to terminal set of states: 

     receive_client_provider_echo  

     invoke_provider_audit_log 

Cycle in terminal set: 

Actions in terminal set: 

   {output_audit_provider_log} 

 

 

 

Figure 6-24  FSP code for equivalence verification of BPEL4WS against MSC models 
 

The trace of the provider composition implemented in error, shows that there is no reply 

activity transition prior to the terminal state in the model, and that the terminating state of 

receiving a reply from the audit service is the last activity in the process.   Clearly, an 

engineer can use this information to investigate the process and in this case, add an activity 

to reply to the client before the process ends.  The task here may involve iterations of 

checking the composition, obtaining results of progress checks and adjusting the 

composition’s activities, until the checks yield satisfactory results. 



Chapter 6.  Analysis for the Service-Oriented Model 

 

143

6.5   Validation Analysis of Behaviour Models 

In the previous sections of this chapter we have described how to fulfil the requirements of 

the verification aspect of our approach using model checking techniques for equivalence 

implementations against design, safety and progress properties being upheld within the 

model and the specification and checking of general action activities using policy 

declarations.  The other feature that facilitates a rigorous approach to engineering web 

service compositions is the provision and undertaking of validation of the composition for 

both designer and potentially, also to service clients.  In the latter, it is to give assurance that 

requirements have been met and for the designers, that they have specified appropriate 

activities for the composition to be implemented.  Modelling techniques (from boxes-and-

arrows diagrams to logical formalisms) with varying degrees of analytical support are 

offered to assist requirements engineers in these tasks. The objective, in these “late-phase” 

requirements engineering tasks, is to produce a requirements document to pass on 

downstream to the developers, so that the resulting system would be adequately specified 

and constrained, often in a contractual setting (Yu 1997).  This is particularly important as 

the service composition may be released in to a wider enterprise domain and reused by 

potentially a unknown number of clients, where there has been no previous verification with 

other compositions that already exist.   

 

In this section we describe how this validation is undertaken using the model created as part 

of verification (but with the purpose of validation) and how features of simulation and 

animation can assist the designer in the requirements engineering issues discussed 

previously.  The validation approach consists of taking as input the same inputs that were 

used in verification analysis, but with the exception that a set of validation properties are 

known by the end-user who is undertaking the validation, rather than a machine processable 

set used in verification.  Therefore the inputs are the design models, implementation models 

and mappings.  The process of validation is split between a focus of animation, simulation or 

an interactive trace.  The output of the validation process is a set of results related to the 

validation properties used (for example, a general property would be that the behaviour 

defined in the models provides sufficient behaviour to support the initial requirements 

given).  The sub-actions of our approach are illustrated in Figure 6-25. 

 



Chapter 6.  Analysis for the Service-Oriented Model 144

Validation

models
Validation
Results

verification properties

validation traces

Implementation
Models

DesignModels

Mappings V
alidation

Assessm
ent

Verification

mappings

Animation

Simulation

Interactive
TraceValidation

Traces

Validation
Analysis

 
Figure 6-25 Approach for Validation Analysis of Composition Models 

 

 

Other approaches have introduced the notion of validation of web service compositions 

against requirements using different source representations, such as in (Pistore, Roveri et al. 

2004).  The basis of these works is to have a high-level business requirements model.  We 

believe however, that it is more important to have an easily definable business requirements 

model (such as in our Message Sequence Charts) to be able to validate and verify 

requirements for web services and their compositions.  The basis of generating behaviour 

models for validation however is the same compared with these works. 

6.5.1   Composition Validation through Animation 

Simulation is described in (Balci 1994) as “the process of constructing a model of a system 

which contains a problem and conducting experiments with the model (on a computer) for a 

specific purpose of experimentation to solve the problem”.  In addition simulation software 

specifically has been described in (Schumaker 1999) as "a software package that re-creates 

or simulates, albeit in a simplified manner, a complex phenomena, environment, or 

experience, providing the user with the opportunity for some new level of understanding.”.  

These propositions brought together, fulfil simulating compositions through software process 

models, and enabling its validation through simulation software.  Our aim is to provide a 

simulation feature in the approach such that web service compositions can be analysed by 

requirement and BPEL4WS engineers for the purpose of validating that the behaviour given 

in designs and implementations meets stakeholder requirements.  Indeed, requirements 

engineers must not only elicit and document requirement scenarios, but also validate that 

these are indeed what stakeholders want (Nuseibeh and Easterbrook 2000).  The technique of 

simulation through animation is an effective validation technique, whereby in its simplest 

form, stakeholders can step through sequences of events dictated by a behaviour model 



Chapter 6.  Analysis for the Service-Oriented Model 

 

145

(Uchitel, Chatley et al. 2004).  We begin by illustrating this through animation of the 

Echo_Audit composition example used in the verification sections of this chapter. 

 

As we have shown previously, the Echo_Audit composition may come in two forms, either 

in that of a design or implementation.  The assumption here is that if an implementation 

composition is used as source for validation, then it has been verified against a design prior 

to validation being carried out.  Ideally, the requirements would be validated prior to any 

implementation being carried out.  However, for the purpose of post-implementation 

validation, such as future client assessment for use within their own processes, either source 

is suitable for validation depending on the needs of the situation in focus.  The behaviour 

model is a key output of design or implementation synthesis, and is the source model used in 

validation animation.  Given a composition behaviour model, the client may step through the 

sequence of events exposed by this model.  An example validation sequence performed using 

the Animator feature of the LTSA tool (described in the next chapter) is illustrated in Figure 

6-26. 

 

 

 

 

 
Figure 6-26  A sample validation of a sequence using LTSA Animator function 

 

 

Here, the user steps through each state of the composition design (from state 0, labelled 

call_echo in this example, to state E – the end state).  Whilst the sample given is just one 

sequence, more complex compositions may introduce alternative paths to the end state (such 

as the model presented earlier in Figure 6-9).  In the earlier loan selection composition 

example (introduced in Chapter 3) there are several alternative paths of execution to the end 

state of the composition.  For example, a “credit check” may result in either a state of check 

ok or check failed.  The initial assumption is that if a credit check fails, then the entire 

request fails.  If however, the credit check is ok, then the full sequence of the composition is 

carried out.  Using animation, the designer can validate that these two possible sequences are 

acceptable and fulfil the requirements from path start to path end, in the service composition 



Chapter 6.  Analysis for the Service-Oriented Model 146

to be provided.  A sample validation sequence in the position just prior to the credit check 

choice is given in Figure 6-24.  Continuing to validate this composition, introduces two paths 

as described previously.  Either the result can lead to a check_fail or a check_ok.  Sample 

animation steps are listed in Figure 6-28  for both paths. 

 

 
Figure 6-27  A sample validation of alternative paths using LTSA Animator function 

 

 

  
Credit Check Failed path Credit Check OK path 

Figure 6-28  The alternative paths available using LTSA Animator function 
 

 

If we assume the credit check is successful (i.e. that the check_ok is the next transition to 

occur), then there is a clear issue with these animated traces of the composition.  At state 4, 

either getloanoffer_1 or getloanoffer_2 activities may take place.  This is presented as a 

choice to the user, but upon selection of either one of these activities, the composition selects 



Chapter 6.  Analysis for the Service-Oriented Model 

 

147

that given path and does not enforce that both must eventually complete in order for the 

composition to give a selective reply to the user.  The composition is lacking in that these 

alternative activities must both happen, but not necessarily at the same time.  In this case the 

designer may revisit the original composition design, and address these issues by adjustment 

of the MSC (e.g. checking scenarios and adapting the higher sequence diagram).   

6.6   Summary and Discussion 

In this chapter we have discussed the verification and validation steps, and how software 

process model checking techniques are applied to the web service composition models to 

provide trace results back to designers and implementers, and to facilitate the overall 

objectives of a service-oriented model and its goals, policies and obligations.  We have 

shown that through verification, greater assurance can be given on the implementation of a 

web service composition before it is deployed in to a distributed environment.  This rigorous 

approach to verifying and validating compositions prior to deployment is a key objective of 

our work, but to assess this we need to examine a case study from industry and evaluate how 

effective it is to web service practitioners.  In terms of the approach overview discussed in 

section 1.2, we have introduced the highlighted parts as illustrated in Figure 6-29.     

 

Tool   

Designers Validation

validation results

.
models

Deployers

Implementers

Specification

verification results

Composition

Clients

Verified and 
Validated

Services

BPEL4WS 

implementations

Composition
Processes

Composition
Semantics

Requirements

Web 
Service

Standards

MSCs

BPEL4WS 
Specification

Composition
Specification

Web Services

Model Generation

synthesis

m
apping

abstraction

interactions

verification properties

validation traces

Partner
Service

Interfaces

Composition

Release
Request

Analysis
Choice

Construct

Construct

Reference

Reference

Verification

 
Figure 6-29.  Elements of the approach discussed in chapter 6. 



 

Chapter 7  

Tool Support and Case Study 
 

“I view the problems created by Technology as simply opportunities for new tool making…”  

(from Tools Are The Revolution, Kevin Kelly, 2000) 

 

In the previous chapters of this work, we have described an approach for designing, 

implementing, modelling and verifying web service compositions with respect to their 

behaviour.  The undertaking of the approach has until this point, been suggested in a manual 

way.  In other words, each step has been described as though it would be carried out by hand.  

We now present a tool which provides an implementation of this approach and features 

functionality to offer an interface for this design, implementation and verification 

mechanisms on compositions, in an integrated development environment (IDE).  As a base 

for evaluating the approach and the tool, we also provide a case study of using the approach 

for a real-world industry project. 

7.1   Tool Support 

The tool requires a composed set of modules to mechanically provide the steps necessary to 

implement the approach described in earlier chapters.  These modules can be expressed 

individually with regards to the design (Message Sequence Charts) models, implementation 

(BPEL4WS), specifying model abstraction and mappings, and executing the verification and 

validation steps.  It is only when they are brought together however, that they ideally assist in 

ease of iterative design and implementation process.  The integrated tool (Foster 2003b), 

which we call LTSA-WS is built upon the Labelled Transition System Analyser (LTSA) 

written by Jeff Magee in Java.  The LTSA has, since its introduction, been expanded with a 



Chapter 7. Tool Support and Case Study 

 

149

plug-in framework to support various modelling design specifications, including work by 

Robert Chatley and Sebastian Uchitel on Message Sequence Charts (LTS-MSC) (S.Uchitel, 

R.Chately et al. 2003), and also Animation with Web Page Simulation enhancements 

(Chatley, Kramer et al. 2003).  It is a well known and structured tool to encourage 

contributions by further applications.  Our LTSA extensions were implemented in two 

phases.  The first concentrated on functional requirements, building upon the current plug-in 

framework of the LTSA tool suite, and interacting with other plug-ins.  The second phase 

considered broadening the application of the tool by migrating the LTSA-WS plug-in across 

to the Eclipse Integrated Development Environment and more specifically, encouraging its 

review by peers of the Eclipse community alongside their other BPEL4WS works.  The 

Eclipse Innovation programme hosts a central research community, awarding those with 

ideas and projects to contribute to Eclipse.  In addition to the community benefits of 

migrating to Eclipse, our work also demonstrates that our tool is flexible to be moved into 

different development environments.  We now describe the key features of each of these 

phases. 

7.1.1   Tool Architecture 

The LTSA-WS plug-in architecture (Figure 7-1) is built in the commonly known model-

view-controller pattern. 

 

Multi-page Editor

LTSA
BPEL

Translator

BPEL
Editor View

MSC
Synthesis

FSP
Editor View

MSC
Editor View

Result Views

Compiler
View

LTS Draw
View

LTS 
Animator

translateviewtranslate

results

view

action

state

composeview

lts

 
Figure 7-1  LTSA-WS Tool Component Architecture 

 

The architecture of the tool consists of two models.  Firstly, the BPEL4WS XML source 

code is used as the model for standard XML editing.  The BPEL4WS source is also parsed to 



Chapter 7. Tool Support and Case Study 150

provide useful editor functions, such as content outline and syntax highlighting.  Parsing is 

also performed upon restore or save actions, whereby the translation function is called to 

view activities specified in the composition.  The BPEL4WS engineer is able to build one or 

many web service compositions which aids in integrated enterprise service decomposition.  

For each composition selected, the engineer can either translate a single composition (by way 

of a mechanical implementation of translation rules described in Chapter 4) or compose 

multiple compositions for choreography and translate them in to FSP (as described in 

Chapter 5).  The translation module is written as an independent module (itself potentially a 

web service), which takes as input one or more BPEL4WS implementations and in turn, 

traverses the source building a representation model in FSP.  Multiple composition 

translation includes interaction mapping by using a mechanical implementation of the 

algorithm discussed in Chapter 5, to model partner links between services invoke, receive 

and reply actions.  In addition, the composition design specifications (discussed in Chapter 

3) in the form of MSCs can be synthesized to FSP models and included in the composed 

model.  To enable this, a visual mapping table is available to the engineer to link activities in 

design and implementation models (as discussed under abstraction in Chapter 6).  Results of 

checks provide implementers and designers with useful details such as missing interaction 

cycles (e.g. a missing receive or reply action).  Checks are undertaken by the main LTSA 

function module.  An output view summaries actions undertaken by the LTS compiler, and 

reports on property violations, such as deadlock, liveness or other safety properties 

(discussed in Chapter 6). 

7.1.2   Initial Prototype as Plug-in for LTSA 

The initial prototype was written as an extension plug-in to LTSA, with a web service 

implementation, abstraction, mapping and translation interface.  The plug-in adds a tab to the 

plug-in views of LTSA allowing an implementer to specify a series of web service 

compositions in BPEL4WS and then by the selection of a menu or action bar item, 

mechanically translate the composition into the FSP notation.  A single composition may be 

edited at a time; however, managing a series of compositions is supported in a listed project.  

The LTSA-MSC, included as another plug-in into the framework, provides a designer with 

an editor pane to build the composition design specifications and features actions to 

mechanically synthesise them into FSP.  Both the hMSC specifications (Figure 7-2) and the 

bMSC specifications (Figure 7-3) can be described. 



Chapter 7. Tool Support and Case Study 

 

151

Figure 7-2  LTSA-MSC: hMSC Figure 7-3  LTSA-MSC: bMSC 
 

 

The LTSA-WS plug-in enables the mapping of these MSCs with the BPEL4WS 

compositions by way of the engineer selecting a FSP file for one or a series of compositions.  

This selected model is included at the point of translation, and abstractions and mappings 

included as part of the translation.  This action provides the pre-requisites to verification and 

validation of design against implementation (and vice-versa as discussed in Chapter 6).  The 

BPEL4WS interface, illustrated in Figure 7-4, provides a view of these model 

representations to the BPEL4WS engineer.  Through the click of a button (or selection of a 

menu item), the engineer can generate the FSP model for the process currently being edited.  

Additionally the interface (WSDL documents) to this composition (used in the interaction 

modelling between partnered compositions) is edited in a sub-pane of the view.  The 

mappings are also listed in a sub-pane (to the middle-left of the editing pane), such that when 

translation is invoked – the translator automatically includes any mappings specified (to hide 

or re-label appropriately).  Two lists (for a series of compositions and WSDL documents) are 

in sub-panes below the mapping view.  This enables the engineer to manage and specify the 

modelling of multiple-compositions and to automatically instruct the translator to include 

port connector mappings in the models produced by translation.  The aim is to provide a 

single view (with multiple sub-panes) such that both compositions and interfaces are easily 

managed.    

 



Chapter 7. Tool Support and Case Study 152

 
Figure 7-4  LTSA-WS Interface and LTSA plug-in framework 

 

When the user selects that the BPEL4WS is translated to models, an FSP editor view is 

automatically presented to the engineer (Figure 7-5), so that any additional verification 

properties may be defined.  The Safety Check (Verification) option informs of any deadlocks 

or errors (Figure 7-6). 

 

Figure 7-5  LTSA-WS:  FSP Figure 7-6  LTSA-WS: Verification 

 



Chapter 7. Tool Support and Case Study 

 

153

Additionally, validation (as described in chapter 6) is undertaken using the Animator 

extension to the LTSA tool.  Figure 7-7 illustrates stepping through a BPEL4WS 

composition using the animator action selection features. 

 

 
Figure 7-7  LTSA-WS:  Validation and Animation 

7.1.3   Migrating the tool to the Eclipse Environment 

Using the Eclipse framework opens the potential to link the tool with a network of other 

Eclipse plug-in contributions and aims to simplify the number of different, bespoke tools 

used in software engineering as a whole.  Indeed, amongst these contributions are 

commercial BPEL4WS graphical editors (we currently only provide a basic XML editor), 

although the reader is invited to browse plug-in web sites as the list of contributors is 

continuously expanding.  To migrate the prototype plug-in to the Eclipse environment 

consisted on rebuilding the model, views and controller pattern using the Eclipse Plug-in 

development environment.  The plug-in views described here are based upon a migration of 

the Java modules from the original prototype.  Core LTSA Java modules could be 

successfully imported into the Eclipse plug-in development environment however; 

rebuilding view modules has required some changes, particularly when moving the LTS 

Draw view from the Swing/AWT API to SWT API (the GUI API used by Eclipse).  Aside 

from these differences however, current view migration has mapped conveniently onto the 

standard views provided by the Eclipse framework (Editor, Outline, Console etc).  A view of 

the integrated Eclipse plug-in is illustrated in Figure 7-8. 



 

LTS
Draw
View

LTS
Animator

MSC
Editor
View

BPEL
Editor
View

Compiler
Output

Process
Outline

Process
Folders

 
Figure 7-8  Web Service Composition Development with LTSA-Eclipse 

 154                                                                                                   C
hapter 7  Tool Support and Evaluation   

 



Chapter 7. Tool Support and Case Study 155

7.2   Case Study: UK National Police IT Web Service Compositions 

7.2.1   Introduction 

Our industry case study is taken from a national development currently underway by the 

Police IT Organisation (PITO) in the United Kingdom.  PITO provides information 

technology and communication systems to the police service and criminal justice 

organisations in the UK.  PITO’s vision is “to be a trusted and valued partner in the delivery 

and operation of information and communication solutions to meet the needs of the police 

service and its partners and stakeholders”.  In this way, one of the highest priorities for PITO 

is its ability to provide secure, reliable, and available services on demand and to provide 

highly accurate information as a part of the processes carried out to fulfil service requests.  In 

this project the view is to consolidate distributed national police services and to form a set of 

core processes by which the national police force may use without directly connecting to 

separate data sources in the process.  Our work runs alongside reported findings so far in the 

progress of the project, detailing the consideration of moving to a service-oriented 

architecture and its quality of service provision and expectations (Hu 2003; Hu 2004).  Our 

contribution is to assist in analysing the initial development of web service compositions, to 

support a series of different police enquiry types. 

 

We present here a study of some scenarios described within the scope of interacting police 

enquiry services.  We follow the approach described in our work to concisely model the 

interaction behaviour of the compositions built from the scenarios gathered as part of a 

business requirements building exercise.  The scenarios given in this example case study are 

representative of the interactions used in providing solutions to the business requirements 

gained, however, due to the nature of the business of PITO and sensitivity in the detail of 

systems, these examples remain representative and may not illustrate exact developments. 

7.2.2   Scope 

The scope of these compositions to date consists of a number of web services implemented 

to support some basic enquiry types of PITO systems.  The position of PITO is to have core 

enquiry processes running on a central business process architecture (themselves deployed 

web services) which interact with other services provided by local force system owners.  

These central service enquiry compositions form key interactions to providing a distributed 



Chapter 7. Tool Support and Case Study 156

yet consolidated view of the data and business process representations spread throughout the 

organisation and its associated forces.  The initial pilot project consists of a series of web 

services providing functionality for; “Vehicle Enquiry” – matches vehicle details based upon 

enquiry search criteria, “Motor Insurance Enquiry” linking vehicle details with motor 

insurance details, “Nominal Enquiry” – matches person details based upon search criteria, 

“ANPR Enquiry” – provides primary vehicle identification given a Automotive Number 

Plate Recognition image pattern, and “Finger Print Enquiry” – provides DNA or Finger Print 

matches to Nominal details.  Collectively the scope of the pilot architecture is as illustrated 

in Figure 7-9.  

  

Web Services
Composition & Choreography

Architecture
Vehicle

Web Services
Motor 

Insurance
Web Service

Finger-Print
Enquiry

Web ServiceANPR
Enquiry

Web Service

Nominal
Enquiry

Web Service

User
Applications

System 
Applications

 
Figure 7-9  PITO Web Services Architecture Scope 

 

 

Within this scope is an aggregation of services and the pilot project considers how these 

services can be combined, what the required behaviour of such compositions is, and how 

these compositions fulfil a goal in a series of web service choreography specifications. 

7.2.3   Issues and Our Contribution 

Within the scope of the pilot project for the centralised service architecture is a range of two 

issue sets.  The first, the long term strategy for PITO and the UK Police Service as a whole, 

has been reported in (ACPO 2002), which described how the current situation focused less 

on information being a service asset and that this information was often inaccessible by those 



Chapter 7. Tool Support and Case Study 

 

157

who actually need to use it.  The issues were clearly focused on providing a service-

orientation to the current enterprise police information technology solutions, describing the 

localised practice of information storing and retrieval restricting the use of data across the 

enterprise.  The second set of issues was formed locally within the PITO service and was 

centered on the provision of services to support the ACPO policies recommendations.  The 

core attribute of their issues is in service aggregation, and how service capabilities, a unified 

interface, co-ordinated behaviour and a combined Service Level Agreement (SLA) can be 

obtained through a definition of quality of service.  Through our approach, we believed that 

some of these issues could be addressed through greater understanding and manageability of 

the behaviour exhibited by compositions, equally from the first time they are created and 

deployed, and also when compositions evolved to support elaborated client interactions and 

requirements.  Our case study began with modelling the pilot project scenario, chosen for its 

breadth of service inclusion. 

7.2.4   Requirements 

The pilot project’s initial requirements were based upon the core function of facilitating a 

police officer’s enquiry.  The basis for this scenario is that when a request is made, a series 

of requests to various services are called to facilitate building an overall view to assist the 

officer make a informed decision on demand.  Initially, the context of a request is built with 

a variety of linked information, with each request supplying the information for the next 

request.  The scope of the sample is to address vehicle checks with that of the owner’s 

collective state in the police IT network.  A textual representation of this example scenario is 

given in Figure 7-10. 

 

 

A suspicious vehicle with the number plate “xxxxxxxxx” has been identified by a police 

officer in Northern England.  The officer launches a formal police enquiry about the vehicle 

including its registration record, insurance details, the registered owner’s criminal records (if 

any) and DNA/fingerprint of the owner, as well as checking the vehicle’s movement in the 

last 24 hours at key points in Scotland. 

Figure 7-10  A Pilot Project Scenario for Web Service Composition in PITO 
 



Chapter 7. Tool Support and Case Study 158

7.2.5   Specification 

The specification of this scenario is built by abstracting the interaction components from the 

requirements scenario.  In this case, the officer makes a request through some device 

(whether it is a Personal Data Assistant, Internet enabled Phone or locally via a personal 

computer).  The interactions are then added to support the steps described in the scenario.  

The composition in this scenario is a police enquiry composition service.  Initially, the only 

client in the scenario, the device component, simply has two interactions, for that of making 

a request and receiving a reply from the composition service.  For each enquiry the police 

enquiry composition makes a request using key search criteria (such as vehicle registration 

no.).  A bMSC view of this specification is given in Figure 7-11.   

 

Officer_Device Police Enquiry Vehicle Enquiry

servicesclient

Nominal Enquiry ANPR Enquiry Fingerprint EnqInsurance Enq

request

vehicle_reg

lookup_records_by_person_id

vehicle_reg

vehicle_id

person_id

owner_reg_doc

person_record

insurance_records

hit_locations

hit_locations

reply
 

Figure 7-11  Initial specification for a PITO police enquiry web service composition 
 

The specification illustrated is quite simple, in that it assumes that each enquiry is performed 

sequentially from a central enquiry process (i.e. the composition service) and that alternative 

scenarios are not possible.  Studying this sample however, highlights possible areas of 

composition improvement through concurrent behaviour (a goal from “quality of service” in 

this case study), for example both vehicle records and vehicle insurance enquiries use the 

vehicle registration details concurrently between the vehicle enquiry and insurance enquiry 

components.  This elaboration of requirements yields additional scenarios for the 

specification.  The amendment to the original specification is focused on a subsequent 



Chapter 7. Tool Support and Case Study 

 

159

scenario of a permissible sequence of interactions following the initial enquiry request.  A 

partial view of the amended parts to the original specification is illustrated in Figure 7-12. 

 

 

Officer_Device Police Enquiry Vehicle Enquiry

servicesclient

request

vehicle_reg

owner_reg_doc

Insurance_Enq

 

Officer_Device Police Enquiry Vehicle Enquiry

servicesclient

request

vehicle_reg

insurance_records

Insurance_Enq

 
Figure 7-12  Concurrent interactions introduced in to the PITO composition specification 

 

 

The additional specification scenarios pose a series of questions over that of the behaviour 

constructed initially.  Firstly, how does the introduction of this concurrency effect the 

remaining interactions of the composition?  Clearly, by introducing the possibility that two 

service requests can be performed concurrently suggests that a series of actions may or may 

not occur within the duration of these initial service requests.  Furthermore, can the response 

from each of the service requests based upon vehicle registration exist over the entire 

duration of the composition?  A partial answer to this question can be found by revisiting the 

initial specification and identifying that a vehicle id is used in another service request, that is, 

to the ANPR Enquiry service.  Therefore, it is evident that one of the two service requests 

must be completed to provide the composition with sufficient detail to pass as parameters to 

the ANPR service call.  Considering this leads a designer to enhance the specification to 

include the possibility of either the Vehicle Enquiry or Vehicle Insurance Enquiry replying 

and subsequently the ANPR Enquiry service being called.  We illustrate this in further 

scenarios, such as that for a Vehicle Enquiry request followed by a Vehicle Insurance 

Request, then a Vehicle Enquiry reply, then an ANPR Enquiry request and a Vehicle 

Insurance reply.  This is illustrated in Figure 7-13. 

 

Further consideration of the initial specification highlights that there is another constraint 

required for other possible concurrent interactions.  The Nominal Enquiry is requested with 

person identification as part of its required parameters.  This identification is also taken from 

the result of either Vehicle or Insurance Enquiry service request.   

 



Chapter 7. Tool Support and Case Study 160

Officer_Device Police Enquiry Vehicle Enquiry

servicesclient

Nominal Enquiry ANPR EnquiryInsurance Enq

request

vehicle_reg

vehicle_reg

vehicle_id

owner_reg_doc

insurance_records

hit_locations

 
Figure 7-13  Partial scenario for Vehicle Enquiry reply and ANPR request constraint 

 

 

The two services based upon person, being Nominal and Fingerprint enquiries, must be 

sequenced with this initial request if an improvement to have these performed concurrently is 

desired.  An amended specification for the Nominal (Person) enquiry requirement is 

illustrated in Figure 7-14. 

 

 

Officer_Device Police Enquiry Vehicle Enquiry

servicesclient

request

vehicle_reg

owner_reg_doc

Insurance_Enq

lookup_person

Nominal_Enq

 
Figure 7-14  Partial specification scenario to constrain nominal enquiry with result of insurance enquiry 
 

 

Equally we can define this constraint against that as being that the Nominal Enquiry request 

can not made unless the Vehicle Enquiry has been completed.  This further alternative 

scenario is illustrated in Figure 7-15. 

 



Chapter 7. Tool Support and Case Study 

 

161

Officer_Device Police Enquiry Vehicle Enquiry

servicesclient

request

vehicle_reg

owner_reg_doc

Insurance_Enq Nominal_Enq

lookup_person

 
Figure 7-15  Partial specification scenario to constrain nominal enquiry with result of vehicle enquiry 

 

 

At this stage in defining the web service composition specification, the design has moved 

focus from initially specifying a composition consisting of a sequence of service interactions, 

to reviewing the order in which interactions are made.  The revised specification consists of a 

series of individual scenarios together with a scenario composition diagram specified in a 

hMSC (for the composed series of constraint scenarios).  These specifications are illustrated 

in Figure 7-16. 

 

Vehicle Enq 
and ANPR 
before Veh 
Insurance

Basic
Police 

Enquiry
Sequence

Officer
ReplyOfficer

Request

Vehicle Ins 
and ANPR 
before Veh 

Enquiry

Vehicle Enq
Nominal Enq

Fingerprint Enq
Insurance Enq

ANPR Enq

Insurance Enq
Nominal Enq

Fingerprint Enq
Vehicle Enq
ANPR Enq

 
Figure 7-16  hMSC for PITO Police Enquiry composition 

 

 

By starting with a series of basic interactions and formulating an elaboration through a 

higher level sequence chart, the interactions can be concurrent (where permissible) and 



Chapter 7. Tool Support and Case Study 162

composed in one or many specifications.  We now consider how the case study would 

implement such a web service composition in one or more BPEL4WS processes. 

7.2.6   Implementation and Analysis 

In this case study, we have assumed that the implementation is undertaken in BPEL4WS and 

that the design specification has been generated and passed to the implementers to replicate 

the possible process transition paths in the implementation.  The BPEL4WS process takes 

focus on the Police Enquiry service, the central composition in the pilot project.  The process 

consists of a series of workflow statements described in BPEL4WS (as we illustrated in 

Chapter 4).  To illustrate iterative development using the approach in our work, the 

implementation begins by building the initial process, where all the interactions are 

sequenced.  The outline structure of this process, with service interaction activities shown 

only, is illustrated in Figure 7-17. 

 

 

 
Figure 7-17  PITO Police Enquiry Basic BPEL4WS Process structure (interactions only) 

 

 

The assignments part of the process forms the remainder of the process structure, and 

outlines the passing of search criteria between service invocations and replies.  The initial 

request message part of vehicle registration is the first to be assigned, to both message 

variables for input to Vehicle and Insurance record enquires.  We illustrate part of this 

assignment process structure in Figure 7-18. 

 



Chapter 7. Tool Support and Case Study 

 

163

 
Figure 7-18  Partial PITO Police Enquiry Basic BPEL4WS Process with assignments  

 

This basic process is modelled as a simple sequence of activities, as described in section 

4.3.1.  Each receive or invoke activity, for example the initial request by the officer, is 

undertaken in the order specified in the sequence.  The begin and end of the process is 

marked by the receive, and final activity of a reply, before the process terminates.  Each new 

request by an officer creates a new instance of the process, signified by the createinstance 

attribute on the initial receive activity.  In addition to the interactions, the process 

composition is also modelled with variable assignment, as partially illustrated in Figure 7-19. 

 

 

 
Figure 7-19  Partial BPEL4WS Process sequence with assignments 

 

 

Whilst the engineer can attempt to perform a full trace equivalence against the specification 

at this point, the sequence is perhaps too trivial to expect any relationship of implementation 

against design.  Yet even at this stage in implementation, this implementation may be 

partially fulfilling the specification through one such scenario (in this case the first 

sequenced scenario).  We therefore use the trace equivalence verification method discussed 

in section 6.4.1 to perform such a check at this stage.  The preparation of the implementation 

process has been discussed in section 6.3.  To perform trace equivalence the non-interaction 

activities are marked as being non-observable in the implementation model.  In this case, we 

use the hide operator of these activities.  The tool mapping function generates the FSP code 



Chapter 7. Tool Support and Case Study 164

through its compilation feature.  A LTS model of this refined model is illustrated in Figure 

7-20. 

 

 

 
Figure 7-20  Graphical LTS view of Police Enquiry Composition with abstraction 

 

 

The composition engineer then specifies the mappings between the interactions modelled in 

the composition with that of the design specification to be verified against.  The mappings 

are selected against a list of activities presented in the tool.  A summary of mappings is listed 

in Table 7-1.  Note that the replies to the composition process are specified in this mapping 

as a default of the invocation name mapping with the addition of a “_reply” as a suffix.  The 

question of reply interaction verification is not possible on a single composition and we are 

not able to determine when replies are actually made by a partner that has not included a 

process in the analysis.  Therefore the equivalence is based upon the initial request (receive), 

invocations to other services (with either an immediate or no reply) and the reply to the 

initial requestor. 

 

Table 7-1  Mapping Activities for initial PITO Police Enquiry composition 
MSC Action BPEL4WS Action 

request receive_officer_process_enquiry 

vehicle_reg_enq invoke_vehiclerecords_getvehiclerec 

owner_reg_doc invoke_vehiclerecords_getvehiclerec_reply 

Lookup_records_by_person_id invoke_pncservice_getpersonrecord 

Person_record invoke_pncservice_getpersonrecord_reply 

avehicle_reg_ins invoke_insuranceservices_getvehicleinsurance 

Insurance_records invoke_insuranceservices_getvehicleinsurance_reply

vehicle_id invoke_forensics_getanprhits 

vehicle_hits invoke_forensics_getanprhits_reply 

person_id invoke_forensics_getdnarecords 

dna_hits invoke_forensics_getdnarecords_reply 

reply reply_officer_process 



Chapter 7. Tool Support and Case Study 

 

165

With the mappings, the model of the BPEL4WS process now takes the form of an LTS with 

label names assigned with the equivalent transition names as used in the design specification.  

The inputs for an initial analysis of trace equivalence of the BPEL4WS composition against 

that of the design specification are listed in Table 7-2. 

 

Table 7-2  Mapping Activities for initial PITO Police Enquiry composition 
Approach Step Product of step Performed by tool, user or engineer 

Design Specifications Model produced as part 

of section 7.2.4. 

Design engineer input and model produced 

through tool as described in section 3.4    

Implementations Model produced from 

BPEL4WS Process 

BPEL4WS process built by engineer. 

Tool translates to FSP model. 

Abstractions Refined model without 

assignment activities 

Tool generates FSP code to provide 

refined model of BPEL4WS process. 

Mappings Composition interactions 

mapped to design activity 

labels 

BPEL4WS Engineer assigns interactions 

to design specification using tool mapping 

functionality. 

Properties Equivalence property 

added to as additional 

process model 

Tool option to run trace equivalence of 

BPEL4WS implementation against MSC 

specification. 

 

Using the tool, the trace equivalence is undertaken to check that the BPEL4WS satisfies 

(albeit partially) the scenarios covered in the specification. 

 

/* Trace run of equivalence property check of BPEL4WS process over MSC */ 
Composition: 

CheckBPEL = MSCArchitecture_Model || 

Abs_Process_BPEL.ECHOSTRING1_BPELArchitectureModel.ECHOSTRING1_BPEL

Model.ECHOSTRING1_SEQUENCE1 

State Space: 

13 * 13 = 2 ** 8 

Analysing...Depth 13 -- States: 13 Transitions: 12 Memory used: 

5104K 

No deadlocks/errors 

Analysed in: 0ms 

Figure 7-21  Results of trace equivalence test to check BPEL4WS partially fulfils MSC specification 
 



Chapter 7. Tool Support and Case Study 166

Further analysis is also possible, even at this initial stage of implementation.  As we are able 

to determine whether the BPEL4WS fulfils one scenario of the MSC specification, we are 

also able to describe what additional scenarios the BPEL4WS is missing.  To achieve this, 

we swap the model that is used as the property for verification.  In this case, we analyse the 

specification model against that of the BPEL4WS implementation model.  Executing this 

verification yields the result listed in Figure 7-22. 

 

/* Trace run of equivalence property check of BPEL4WS process over MSC */ 

Composition: 

CheckMSC = BPEL4WSArchitectureModel || Abs_Process_SPEC.ArchitectureModel.FingerprintEnquiry || 

Abs_Process_SPEC.ArchitectureModel.VehicleEnquiry || 

Abs_Process_SPEC.ArchitectureModel.NominalEnquiry || 

Abs_Process_SPEC.ArchitectureModel.InsuranceEnquiry || 

Abs_Process_SPEC.ArchitectureModel.PoliceEnquiry || 

Abs_Process_SPEC.ArchitectureModel.Officer_Device || 

Abs_Process_SPEC.ArchitectureModel.ANPREnquiry 

State Space: 

 13 * 2 * 4 * 4 * 4 * 15 * 4 * 6 = 2 ** 20 

Analysing...Depth 2 -- States: 2 Transitions: 3 Memory used: 5607K 

/* Trace run example from Equivalence Verification of MSC over BPEL4WS */ 

Trace to property violation in BPEL4WSArchitectureModel: 
 receive_officer_pitobasic_process 

 invoke_pitobasic_insuranceservices_getvehicleinsurance 

 

Figure 7-22  Results of trace equivalence test to check scenarios not covered by BPEL4WS composition 
 

The trace that is listed has highlighted that the BPEL4WS does not exhibit the behaviour to 

support a Vehicle Insurance Enquiry (stated by the transition violation of a request followed 

by a lookup_vehicle_insurance transition).  The engineer may wish to discuss this with the 

designer, however, with our initial knowledge of the specification’s requirements, the project 

is keen that either service may be initiated first so that concurrency of activities may be 

utilised to increase performance of the composition.  The BPEL4WS engineer therefore 

revisits the composition again and studies how this requirement can be implemented.  A 

solution appears to be to introduce the FLOW concurrent activity execution construct in 



Chapter 7. Tool Support and Case Study 

 

167

BPEL4WS (discussed in section 4.3.2).  The modified BPEL4WS process structure is 

illustrated in Figure 7-23. 

 

 

 
Figure 7-23  Modified BPEL4WS Process to support FLOW of Vehicle Enquiry and Insurance 

Invocations 
 

Performing the verification against this modified process however, highlights a further issue.  

Notice that in the modified BPEL4WS process we have specified that the remaining 

interaction activities are in sequence following the completion of the concurrent flow of 

vehicle enquiries.  This raises the violation (listed in Figure 7-24) that a Nominal Enquiry (to 

lookup a person record) cannot occur until both vehicle enquiries have successfully 

completed.  This issue requires further elaboration on the BPEL4WS process to introduce 

further concurrency but linked to each of the vehicle enquiries in completion. 

 

/* Trace run of equivalence property check of modified BPEL4WS process over MSC */ 

Trace to property violation in BPEL4WSArchitectureModel: 
receive_officer_pitobasic_process 

invoke_pitobasic_vehiclerecords_getvehiclerec 

reply_vehiclerecords_pitobasic_ownerregdoc 

invoke_pitobasic_insuranceservices_getvehicleinsurance 

 

Figure 7-24  Trace equivalence verification to check current vehicle enquiries in BPEL4WS composition 



Chapter 7. Tool Support and Case Study 168

What is now required is a link between the source of acquiring the person id (through either 

of the Vehicle Enquiry service invocations) and the target of performing the Nominal 

Enquiry (lookup_person_record).  In BPEL4WS, this can be achieved through the use of 

linked transitions (discussed in section 4.3.3).  The newly modified BPEL4WS process now 

includes this constraint on transition, by firstly placing all the partner service interactions in 

an additional FLOW, and then adding a source link to the invocation (and reply) of the 

Vehicle Enquiry and a target link (of the same name) to the invocation of the Nominal 

Enquiry. 

 

 

 
Figure 7-25  Modified BPEL4WS Process to support LINKED transitions of Vehicle Enquiry and 

Nominal Enquiry 
 

 

Further analysis suggests that the linking is also required to fulfil the other set of scenarios, 

detailing the constraint that the ANPR Enquiry may also follow the Vehicle Enquiry (as 

illustrated previously in Figure 7-13).  The engineer therefore adds a further source link to 

the Vehicle Enquiry (VehicleIDAcquired) and a target link to the ANPR Enquiry service 

invocation activity.  The last link is considered against the Fingerprint/DNA Enquiry.  This 

can only occur if the Nominal Enquiry has completed.  The engineer completes the links 

constraints by placing a source on the Nominal Enquiry invocation and target on the 

Fingerprint Enquiry invocation.  To complete the process, the engineer adds a FLOW 

wrapper to the ANPR and Fingerprint Enquiries such that either activity may commence 

after the Nominal Enquiry has completed.  This updated process is illustrated in Figure 7-26.  

A final verification for trace equivalence is made on this final process, with results listed in 

Figure 7-27.  



Chapter 7. Tool Support and Case Study 

 

169

 

 
Figure 7-26  Final BPEL4WS process for verification 

 

 

/* Trace run of equivalence property check of final BPEL4WS process over MSC */ 
State Space: 

13 * 13 = 2 ** 8 

Analysing...Depth 13 -- States: 13 Transitions: 12 Memory used: 

5104K 

No deadlocks/errors 

Figure 7-27  Final BPEL4WS process verification against MSC specification 
 

 

The engineer has constructed a single BPEL4WS process for the Police Enquiry composition 

and has verified that the basic sequence (where all activities are completed in turn, with no 

initial links between activities) can be fulfilled by the process through a trace verification of 

the process model against the design specification model.  The process can then be extended 

to support additional scenarios, where the invocation of Vehicle Enquiry and Insurance 

Enquiry could occur in parallel.  Through further verification, it was established that this 

alone would not fulfil the additional scenarios, as a constraint was required to support the 

linking of Vehicle and Nominal Enquiries (of which the latter is dependent on completion of 

the first).  These steps fulfilled the implementation of the first set of scenarios in the pilot 



Chapter 7. Tool Support and Case Study 170

project case study.  In a wider context, the pilot project also considerd how multiple 

compositions would be composed and we suggest how this is covered in choreography for 

the pilot project. 

7.2.7   Choreography 

The choreography aspect of this project work focuses back on the example from our original 

motivation for the approach (Chapter 1, Figure 1-1).  The police enquiry composition will 

interact with other services, themselves potentially compositions.  Here we consider how 

these compositions can be verified together, for elaboration of scenarios in web service 

choreography.  Addressing choreography takes us back to the designer, who may reuse 

existing composition scenarios to act as a source for interactions observed in those 

compositions.  For example in the ANPR Enquiry (used as part of the vehicle movement 

checking requirement) the ANPR Enquiry service may consist of other traffic related service 

enquiries.  Ideally we would assume that the service will eventually reply to a ANPR 

Enquiry.  However, as we discussed previously, choreography provides a global view of 

requirements for one or more scenarios – such as in this case, that the ANPR does eventually 

reply to the Police Enquiry.  Additionally, the engineer can gain greater confidence in the 

composition working alongside other partnered compositions.  As choreography describes 

the global goal and more noticeably an understanding of a global state we introduce a third 

service into the PITO Police Enquiry requirements.  The requirements are expanded to 

include an authorisation service which holds state of enquiry requests and provides a control 

on which services may be accessed in an enquiry type.  The requirements are detailed in 

Figure 7-28. 

 

 

A suspicious vehicle with the number plate “xxxxxxxxx” has been identified by a police 

officer in Northern England.  The officer launches a formal police enquiry about the vehicle 

including its registration record and checking the vehicle’s movement in the last 24 hours at 

key points in Scotland.  Each enquiry type must be authorised and recorded at each request 

in the process. 

Figure 7-28  A Pilot Project Scenario for Web Service Composition in PITO 
 

 



Chapter 7. Tool Support and Case Study 

 

171

The Authorisation Service composition process is a key to the service choreography, by 

which each enquiry service must request authorisation before proceeding in the officer’s 

request.  Reusing the composition for Police Enquiry and ANPR (Vehicle Movement) 

composition, our domain of interest is depicted as in Figure 7-29. 

 

 

CompositionComposition

Web Server Web Server

Web Server Web Server

Police Enquiry

Web
Service

BPEL4WS
Process

< receive>

<reply >

< invoke>
< receive>

Vehicle Movement
BPEL4WS

Process
< receive>

<reply>

< invoke>
< receive>

< invoke>< invoke>

Choreography Domain

Web
Service

Web

Web
Service

Composition
Authorisation

BPEL4WS
Process<

reply<
receive

<receive> <invoke>

receive<
reply

<receive> <invoke>

Web Server

Audit
Web

Service

invoke<
Web

 
Figure 7-29  Overview of choreography of elaborated composition scenario 

 

 

The designer specifies the choreography requirements in a further scenario.  As we discussed 

in Chapter 3, the choreography is spread across components in the specification, with 

interactions occurring between multiple-parties, such that the police enquiry is not the single 

focus.  The specification for this choreography scenario is illustrated in Figure 7-30.  Notice 

that for each enquiry request, an invocation of the authorisation service is undertaken.  The 

reply of a result from the authorisation is taken as the request has been granted in the current 

request’s state.  For simplicity, the designer has specified only one scenario for this 

choreography, and as such the behaviour of all compositions and services within the 

implementation of this choreography must exhibit behaviour suitable for this interaction 

sequence.  As with the composition implementation we build the compositions supporting 

this requirement in BPEL4WS and then use verification, and specifically compatibility 

verification to ensure that the behaviour of these collaborating compositions is suitable to 

fulfil the requirements in the design specification. 



Chapter 7. Tool Support and Case Study 172

Officer_Device Police Enquiry Vehicle Enquiry

servicesclient

ANPR Enquiry

request

vehicle_reg

vehicle_id

owner_reg_doc

hit_locations

reply

Authoisation

vehenq_authorisation

vehenq_authorisation_result

anpr_auth

anpr_auth_result

police_enquiry_auth

police_enquiry_result

 
Figure 7-30  Specification for scenario of Vehicle, ANPR and Authorisation Enquiries 

 

The BPEL4WS compositions consist of a Police Enquiry process, a Vehicle Enquiry process, 

ANPR Enquiry process and Authorisation process.  Again, we have simplified the processes 

to support this scenario as a base for creating extended processes supporting other enquiry 

types.    The Police Enquiry composition process is a subset of the interactions built in the 

process used previously.  Indeed, it is the case that this additional scenario may be simply 

included in the current process, with the use of a SWITCH statement to distinguish which 

type of Police Enquiry is undertaken.  However, for clarity we build a new Police Enquiry 

composition process outlining just the interactions in this authorisation scenario, with the 

distinct additions of invoke_enquiry_auth and invoke_enquiry_result activities. 

 

 
Figure 7-31  Police Enquiry composition in Choreography example 



Chapter 7. Tool Support and Case Study 

 

173

Similarly, the composition processes are built for Vehicle and ANPR Enquiries.  In this 

example, these act simply as a wrapper enquiry composition, supporting the authorisation 

and invocation of support services to provide vehicle and plate recognition hits respectively. 

 

 
Figure 7-32  Vehicle Enquiry composition in Choreography example 

 

 

 
Figure 7-33  ANPR Enquiry (Traffic Services)  in Choreography example 

 

 

Lastly the authorisation process is built as a simple composition which accepts an 

authorisation request document, containing the enquiry type (policeenquiry, vehiclecheck or 

ANPRHit enquiry) and replies with whether the enquiry type is authorised or not for the 

given service session.  This composition therefore takes the form of a sequence with a 

receive and reply activity only. 

 

The process of compatibility verification is undertaken by specifying these three 

compositions, along with their related WSDL interface documents, in the compilation of 

models to analyse.  The algorithm that we described in section 5.2.4 is executed and a series 

of port connectors built to link between the compositions.  One such connector, in this case 

for the PoliceEnquiry and VehicleCheck compositions, is illustrated in Figure 7-34.   

 



Chapter 7. Tool Support and Case Study 174

 

 
Figure 7-34  Port Connector model between Police Enquiry and Vehicle Enquiry compositions 

 

 

Firstly, we perform a safety analysis of the choreography model, analysing it for deadlock 

freedom.  The result of such verification is illustrated in Figure 7-35. 

 

/* Trace run example from compatibility verification of BPEL4WS service processes 

and partnered process interactions in the PITO Police Enquiry example*/ 

     Trace to DEADLOCK:  

 receive_officer_pitobasic_process 

invoke_pitobasic_authoriser_authorise 

 invoke_pitobasic_vehicleenquiry_getvehiclerec 

 reply_pitobasic_officer_process 

 
Figure 7-35  Deadlock example of compatibility verification BPEL4WS and partnered compositions 

 

The reason for this deadlock is suggested in the last action of the trace – if we study the 

process illustrated back in Figure 7-32, we can observe that there is no Vehicle enquiry reply 

action specified.  Consequently, the port models cannot be synchronised and a trace to 

deadlock is observed in the verification.  To solve this issue, the engineer can add a reply and 

complete the model.  A subsequent compatibility verification of the choreography provides 



Chapter 7. Tool Support and Case Study 

 

175

the engineer with a suitable “no deadlocks/errors found” successful result.  Again, we can 

also perform the trace equivalence of this composed model against the specification by 

repeating the method described in the composition analysis example previously.  Note that 

we have not given an example of mapping labels back to the specification here – it is 

assumed that as part of the composition builds, the engineer has repeated this task again.  

Running the trace equivalence test provides the results as illustrated in Figure 7-36. 

 

/* Trace run of equivalence property check of BPEL4WS process over MSC */ 
State Space: 

 3 * 2 * 2 * 2 * 2 * 6 * 4 * 2 * 2 = 2 ** 13 

Analysing... 

Depth 10 -- States: 18 Transitions: 25 Memory used: 4116K 

No deadlocks/errors  

Analysed in: 0ms 

Figure 7-36  Results of trace equivalence test to check BPEL4WS partially fulfils MSC specification 
 

7.2.8   Summary and Discussion 

In this section of our work, we have described a mechanical tool as an implementation of the 

approach and a series of work undertaken as part of the scope for a pilot project within the 

Police IT Organisation in the UK.  The focus of this pilot project so far has been limited to 

trialling a centralised composition that sequences a series of calls to a number of web 

services.  As part of our work, we have introduced the choreography aspect, which is an 

anticipated evolution of the actual pilot project adopted by PITO.  As the number of 

compositions grows, the more difficult the observation of how the separate compositions will 

work together will be and specifically, what possible interactions could occur in various 

scenarios.  Realising this through an extended example, we have aimed to illustrate that the 

approach and tool supporting our work can be used to consolidate these scenarios and 

compose models for easier assessment of combined compositional behaviour.  Furthermore, 

the results gained from this initial case study have provided a real evaluation ground, in 

terms of real actors, scenarios and environments to evaluate the approach and tool away from 

our academic focus.  This concludes describing the practicalities of the case study.  We 

evaluate fully the effectiveness of the approach taken in this case study, the results acquired 

and feedback from the designers and implementers of using the tool and approach in the 

following sections.   



 

 

Chapter 8  

Evaluation and Conclusions 
 

“The medium, the process of our time – electric technology… 

 it is causing us to rethink and re-evaluate practically every thought, every action!”  

(Marshall McLuhan, Theorist and Educator, 1911-1980) 

 

A key goal of the work in this thesis has been to describe an approach to designing and 

implementing concurrent and distributed web service compositions in a service-oriented 

architecture.  A starting point was to examine the behaviour of components or services in this 

service-oriented architecture, and through design specifications, realise how developers 

could gain greater assurance by performing verification and validation analysis of 

implementations using formal software process modelling techniques.  Our work has resulted 

in an approach which identifies key artefacts to use in this analysis, and key processes in 

performing verification and validation against these artefacts.  The nature of web service 

interactions has provided the detail to which tasks these key processes must undertake to 

provide useful results for this assurance reasoning.  In this chapter we evaluate our approach. 

 

8.1   Evaluation of Approach 

In this section, with provide an evaluation of the approach described in this thesis and from 

the case study in section 7.2.  Using the results and feedback gathered by way of the case 

study, and through our experience of engineering web service compositions with and without 

the approach we evaluate the steps and their results.  The evaluation of the approach is split 



Chapter 8. Evaluation and Conclusions 

 

177

between the theory and its practical usage with a view of clarifying the features that make it 

rigorous. 

8.1.1   On Design Specifications 

The first aspect of the approach we consider is that of the early requirements gathering steps 

and by way of describing these as specifications, how this captures the essence of 

interactions between web service compositions.  At a level aimed at designers, in other 

words those who do not build the service components but specify what service components 

are involved in a process composition, the design specifications provide a high level 

description of how the services communicate and more specifically, which order the 

conversations made in communication occur.  The ability to describe sufficient information 

in these high level interactions is obviously a prerequisite to being able to use models of 

these specifications in analysis and verification.  Whilst it is possible to elaborate on 

interactions and specify some internal activities (such as a repetition of interaction or 

alternatively called self-interaction) this does not provide a useful mechanism to describe 

web service compositions or other services included in the scenarios described in a 

choreography domain (e.g. state management). The reasons for our use of message sequence 

charts are described as three main objectives.  Firstly, sequence charts are a graphical tool 

with which provides an intuitive interface to describing the sequence of component 

communication.   Secondly, the formation of scenarios is consistent with the protocol in 

which to define basic message sequence charts (bMSC) for each alternative communication 

sequence anticipated by the composition designer.  Thirdly, by the nature of sequence chart 

interaction transitions, charts may be synthesised to formal models and used in further 

analysis through formal process modelling techniques.  We have demonstrated how this 

technique can be used in the context of describing web service composition interactions, yet 

clearly, the domains in which this can be applied is not limited to this domain. 

 

Our approach and tool support for MSCs design of web service compositions is presently 

limited in several ways.  Firstly, the designer is unable to represent data dependencies 

between partners which therefore constrain interaction descriptions to the point of a type of 

message rather than a value of a message being passed between partners.  In compositional 

design this is not highly detrimental to the conciseness of interactions, yet when describing 

choreography rules (where state and message part values are equally important) this will 

impact the verification approach’s effectiveness in modelling conditions to analyse.  



Chapter 8. Evaluation and Conclusions 178

Secondly, the set of basic message charts and its higher level sequence chart can become 

complex to manage in itself.  This complexity is exhibited when there evolves a high number 

of alternative scenarios to describe and sequence.  If for example, a concurrent set of five 

interactions are permissible in a section of a composition, then the designer must describe 

each alternative case for invocation and reply of these five interactions.  Through 

undertaking the case study in section 7.2, it was found that designers do not naturally think 

of concurrent requests and replies, highlighted by the observation that the designer 

considered it much greater effort to build many alternative scenarios.  Yet at the same time 

however the designers considered the approach as an aid to a more rigorous design than had 

previously been undertaken. 

 

Furthermore, at the time of writing this work, several consortiums are compiling 

specification languages to describe interactions, monitor and provide state transfer between 

choreography scenarios, yet it appears there is overwhelming support by the authors of these 

specifications, that describing these in a practical approach will be with a suitable sequence 

chart representation.  Indeed, earlier work using message charts, in a similar way we make 

use of its notation for interaction specifications, has commented on the ability for developers 

(designers in this context) to easily specify what is required in scenarios. This related work 

has been reported on using extensions to the standard UML notation, in addition to sequence 

charts, to provide a level of design for the web service components themselves (Nüttgens 

2003).  Additional practical support for this design approach is given by Rational Software 

corporation in extensions to UML Specification 1.1 (RATIONALSOFTWARE 1997; 

Nüttgens 2003).  This work however, still centralises on an approach to define core 

components, in a now commonly used object-oriented analysis and design of components 

with the focus on attributes and methods (and associated message calls to other methods).  

Where this approach gains in the detail of exact operations and attributes within components, 

it is felt that it lacks in observing the nature of service behaviour, in other words, the 

potentially ad-hoc conversations that may occur in architectures of partnered processes.  

Kept a high level, such as message sequence charts, the key interactions in one or many 

scenarios can be captured and used in formal verification.  Additionally, other uses of MSCs, 

such as for negative scenarios or implied scenarios, can be captured to describe detailed 

constraints on interaction scenarios permissible in a given composition. 



Chapter 8. Evaluation and Conclusions 

 

179

8.1.2   On Modelling Implementations 

Our approach to modelling implementations has focused on the standards used to compose 

web services, the semantics of those standards and a model representation of abstracted 

interactions from these composition processes.  Amongst those standards, BPEL4WS 

appeared the most completed notation and has been reported under consideration for both 

academic and industry projects.  We approached modelling the web service composition 

implementations by way of three steps.  Firstly, the engineer builds the composition 

processes in the standard notation (in this case BPEL4WS).  Secondly, a mechanical process 

abstracts the interactions and constructs that affect interaction behaviour from the 

composition processes and builds a model representing these interactions in a finite state 

machine representation.  The semantics used to build the model are discussed in Chapter 4.  

The core of this semantic translation is based upon the semantics as defined for the Finite 

State Process (FSP) notation.  This notation has gathered a strong user base, and has also 

been used in various other research projects.  The ability to translate BPEL4WS to FSP is 

core to building the model of the composition process.  Other process languages have been 

used in a translation similar to ours including (Wohed, Aalst et al. 2002; Duan, Bernstein et 

al. 2004; Hamadi and Benatallah 2004; Fu, Bultan et al. 2004b).  Our approach to modelling 

implementations does not differ greatly to the steps described in these works. Indeed, it is 

encouraging to read that the workflow expressions of BPEL4WS have been translated in the 

same way, albeit to another process language as an end result.  We have added to this 

translation, an interpretation of those activities which are interaction or non-interaction 

based, and also the wider choreography rules through process interaction mapping (as 

discussed in Chapter 5). 

 

Our work has relied greatly on the ability to translate the semantics of BPEL4WS to that of 

FSP, and yet at the same time aiming to preserve the behaviour that would be executed by a 

standard compliant BPEL4WS process engine.  The translation of BPEL4WS was originally 

based on the specification version 1.0 (Curbera, Goland et al. 2002) and then updated to 

include changes to naming and semantics as defined in version 1.1 (Curbera, Goland et al. 

2002; Iyengar 2003).  The work was, at the time of writing this thesis, wholly dependent on 

our view of the mapping between BPEL4WS and the FSP notation.  At the time of 

completing this work there are emerging implementations of BPEL4WS, such as the open 

source BPEL engine of ActiveBPEL LLC (ActiveBPEL 2005), the IBM BPEL engine 



Chapter 8. Evaluation and Conclusions 180

project (Curbera, Duftler et al. 2002) and the ORACLE BPEL process manager (ORACLE 

2005).  A potential validation of our mapping could utilise the behaviour of these engines 

with respect to the logging functions of their service interactions.  This is discussed further in 

the future work section of this chapter.  There are however, already some key issues in 

assumptions used within this translation from the BPEL4WS specification.  For example, the 

specification for the Terminate construct in BPEL4WS is officially described as that any 

activity in current execution will eventually terminate.  This is not concrete enough to be able 

to simulate a terminate (and it’s effect) for each differing construct of the specification.  Our 

assumption has been to translate this to a STOP process in the FSP algebra but may require 

further interpretation.  In addition, the fault tolerance and compensation sections of 

BPEL4WS used in this work, have not been discussed to a great extent.  We are keen to 

expand the approach to include this, but potentially this impacts a wider scope than just the 

compositions and interaction choreography.  The global state will be affected by any 

compensation action that takes place in composition.  The reason for this is if either a fault is 

raised due to a service failure (be it technically or business process driven) then any partners 

of that composition will need to be notified to take appropriate actions if necessary.  The 

modelling therefore covers a much broader scope than we have covered in this thesis to date.  

Further  specifications, such as the WS-CDL (Kavantzas, Burdett et al. 2004)  should be 

useful in linking with modelling choreography to determine the effects on other services not 

necessarily directly partnered with a composition service. 

 

Lastly, a comment on transitional representation of data variables used within a composition 

process.  Both compositions and choreography implementations can contain activities which 

are constrained by data values either returned by a interaction with other partnered services, 

or are dependent upon values stored within the composition or choreography itself.  For 

example, a decision point within a composition can be represented by the switch/case 

statement pair.  This evaluates an expression, and takes one of a selection of activity paths 

based upon the result of the expression.  In our modelling, we have used an enumeration to 

label each possible path with a unique identifier.  When these enumerations are built as part 

of the model, the compiled state machine builds a path for each alternate activity route.  

Further data analysis would bring us closer to modelling with dynamic analysis to determine 

actual values or possible values passing between the service components. 



Chapter 8. Evaluation and Conclusions 

 

181

8.1.3   On Verification and Validation 

Fred Brooks observed that to achieve a dramatic reduction in development time, a new 

technology would have to simplify the essence of software development (Brooks 1987).   

The general observation was that the more a technology strikes at the essence of what makes 

software development difficult (duration, maintaining and cost), the better the results will be.  

We believe in addition to this that providing an easy to learn, easy to use and repeatable 

verification and validation process yields further gains against the issues in software 

development.   

 

We have described a verification approach of building design models suitable for the 

analysis and verification of implementation processes that could be deployed into a, 

potentially global, distributed environment.  Through our goal of facilitating greater 

assurance to composition engineers, these processes can collaboratively integrate into this 

distributed environment, and that the result obtained through verification yields suitably rich 

information such that engineers can adjust either design or implementation to provide greater 

stability to such a deployed process. 

 

Notably, the key step of mapping activities between the models is still something that 

inhibits a fully mechanical approach.  As we discussed in refining the service composition 

models for verification (section 6.3) a mapping of activities is required to perform trace 

equivalence of the implementation against design.  This can only be achieved through a 

common understanding between implementation engineer and the service designer.  One 

method to ease this mapping task is for the designer to follow a concise labelling of 

activities, whereby the interaction is labelled in the same style as generated in our translation 

whilst this does not have to be exact to the implementation labelling generation,  We have 

also chosen to centralise focus on the trace equivalence of implementation models against 

design models yet the verification is not limited to this.  Further work can be undertaken to 

provide other types of verification, such as extended safety and liveness properties, which is 

likely to be more useful when addressing choreography issues with partnered processes that 

are not necessarily linked directly to interactions in a given composition process.  Other 

types of verification, such as fluent properties (Miller and Shanaham 1999), will provide a 

greater range of analysis techniques to evolve this approach. 

 



Chapter 8. Evaluation and Conclusions 182

On the validation of web service compositions, we have described this through model 

simulation and animation (in section 6.5).  In this work we provided a simple validation 

mechanism illustrated through step-by-step interaction analysis of the model selected for 

validation.  Whilst this is not exclusively reserved for design, it is felt that in the approach a 

designer would gain the most benefit by observing interactively what has been described in 

the models produced by MSC synthesis.  The essence of the simulation aspect of validation 

is also provided through this animation mechanism.  A trace run can be analysed 

interactively, yet there is scope of improved simulation by way of allowing the user to 

specify certain conditions (in terms of conditional statements) which can allow for testing of 

various scenarios in the environment.  An example of this may be to introduce certain faults 

and ascertain how the composition recovers from this failure, and how the partnered 

compositions process is similarly affected. 

8.1.4   On Iteration 

The principle of our approach is to provide mechanical verification in an evolutionary style 

of development.  It is hypothesised that the steps of the approach (through design, 

implementation and verification) will not be undertaken in a waterfall development approach 

style, such as the Spiral Model described in (Boehm 1988).  Moreover, it is anticipated that 

the style of web service composition development will be more akin to Rapid Application 

Development (RAD) approaches, such as the Dynamic Systems Development Methodology 

(DSDM) (DSDM 1995).  Our reasoning for this is that with reusable components, an initial 

requirements baseline is considered when the first deployment occurs.  The expectations of 

these components will quickly be exhausted as new requirements and further functionality 

are required by additional partners in a composition (Larrson and Crnkovic 1999; Yang and 

Papazoglou 2003).  Thus, the approach we describe has also the thought that it must support 

a highly iterative process.  We feel that the approach has clear boundaries in terms of inputs 

required and outputs gained which assists in this repetition.  For example, there are two 

consistent sets of input criteria.  Firstly, there is the set of compositional definitions 

(specification, implementation, interfaces and web service standards) which remains 

consistent in each iteration of the approach.  Secondly, aligned with the compositional 

definitions, is a set of verification and validation properties that the composition must fulfil.  

We describe these as consistent in the sense that there is no fluctuation in the number of sets 

for input or output.  It is expected that the contents of these sets will change as each iteration 

is undertaken.   



Chapter 8. Evaluation and Conclusions 

 

183

8.2   Evaluation of Tool Support 

For the tool support evaluation, we appropriately split the discussion into a series of criteria 

for evaluation taken from the work in (Clarke and Wing 1996).  This criteria considers tool 

support from several viewpoints including; ease of learning, early payback, efficiency of 

developer’s time, increase in benefits, error detection, integrated development environment 

enabled, focus on analysis and support for evolutionary development. 

8.2.1   Ease of learning 

“Notations and tools should provide a starting point for writing formal specifications for 

developers who would not otherwise write them. The knowledge of formal specifications 

needed to start realizing benefits should be minimal” (Clarke and Wing 1996). 

Our approach and the tool built to support it, aims at providing the following criteria for its 

ease of learning and carrying out verification and validation.   

 

• The design specifications are based on the scenario approach, and the use of bMSC and 

hMSC sequence charts is widely undertaken and understood in industry.  Where other 

work has concentrated on specifying formal algebraic notations for specifications, we 

provide a graphical interface so that the user does not have to learn these sometimes 

complex notations. 

• The implementations are constructed either directly in the tool or through a third-party 

tool such that the BPEL4WS engineers are not restricted in a particular editor 

implementation or feature list to use our approach.  There is already evidence of several 

BPEL4WS editors in the Eclipse development environment. 

• Verification properties can be specified by reusing the approach for building design 

specifications.  For example, the designer, in addition to building a complete set of 

service scenarios for equivalence verification, may also submit further safety or liveness 

properties by way of constructing bMSCs that specify these individual requirements. 

• Validation is undertaken through an animated label transition system interface.  

Validation can be undertaken with two views.  Firstly, the designer can animate their 

design specification and make initial assessment of what composition interactions should 

occur, in which order and in relation to other compositions for choreography scenarios.  

Secondly, the BPEL4WS engineer can verify implementations of composition process 



Chapter 8. Evaluation and Conclusions 184

interaction through the same interface.  Either party can examine counterexamples 

generated by the verification steps in our approach through this interface. 

• Results can be translated back in the format in which specifications were generated (i.e. 

both in bMSC scenarios).  Counterexamples show were differences have been detected, 

and iterative checking can be used to manage each scenario and how each change made 

to a composition affects the set of interactions covering all scenarios. 

8.2.2   Early Payback 

"Methods and tools should provide significant benefits almost as soon as people begin to use 

them". (Clarke and Wing 1996). 

 

Early payback is a key objective of the approach.  As we discussed in Chapter 1, Section 1.1   

in terms of motivation for this work, our aim is to support answering questions highlighted 

by the distributed nature of web service compositions and on consideration of the pattern by 

which these compositions may interact.  Clearly, the benefits of using such an approach will 

require early feedback to the developers so that assurance can be given, in both design and 

implementation activities, as earlier as possible.  We achieve this by separating the tool 

between design and implementation, and consolidate their output to provide another view for 

analysis.  The iterative development does not necessarily suggest that service compositions 

will be designed and implemented in isolation; moreover, we believe that compositions will 

be part of collaborative developments cross-enterprise and yet still between several 

development teams.  An example of this is from the Police Enquiry case study discussed 

earlier.  The initial specification and composition design suggested a simple sequence of 

interactions between one compositions interacting with up to five partnered services.  Further 

elaboration of the scenarios possible from that composition illustrated that the other 

partnered services may also be compositions.  Indeed, one of the last elaborations in the case 

study suggested that several compositions all communicated with an “Authorizer” 

composition.  Clearly, it can be seen that several design specifications and implementation 

models may be used in this case study, which are not necessarily undertaken by a single 

developer or engineer.  By providing early feedback, in terms of verification and validation, 

these types of projects can resolve local differences and yet at the same time consolidate 

global requirements for choreography scenarios. 



Chapter 8. Evaluation and Conclusions 

 

185

8.2.3   Efficiency 

“Tools should make efficient use of a developer’s time. Turnaround time with an interactive 

tool should be comparable to that of normal compilation. Developers are likely to be more 

patient, however, with completely automatic tools that perform more extensive analysis” 

(Clarke and Wing 1996) 

 

We have not given in depth analysis on the efficiency of our approach in this work.  We have 

provided some examples, such as in the Police Enquiry case study and in the evaluation 

sections of this chapter to how the complexity of design specifications, joined with complex 

composition implementations yield large process machines for analysis.  Further work must 

be undertaken to assess where efficient changes to analysis and associated algorithms are 

streamlined to given optimal performance.  Clearly, our approach relies heavily on and is 

limited by, the efficiency of the underlying model checking technology. However, state of 

the art model checkers, such as LTSA, have proven to manage efficiently large behaviour 

models (Cleaveland and Smolka 1996). 

8.2.4   Incremental gain for incremental effort 

“Benefits should increase as developers get more adept or put more effort into writing 

specifications or using tools” (Clarke and Wing 1996). 

 

The most complex part of our approach is in determining the composite interactions in web 

service choreography.  Our work utilizes an algorithm to link compositions and by way of 

elaborated design specifications, these interactions are compared with those of the 

choreography requirements.  The developers do not have to use the approach in such a way, 

for example, they may simply chose to isolate verification at a single compositional level 

(examining one process against its interactions with other, black box, services), yet it is 

believed that as the developers become used to the approach that they will seek further 

assurance in wider, cross-enterprise solutions.   

8.2.5   Orientation toward error detection 

“Methods and tools should be optimised for finding errors, not for certifying correctness. 

They should support generating counterexamples as a means of debugging” (Clarke and 

Wing 1996). 



Chapter 8. Evaluation and Conclusions 186

 

The essence of our approach is to highlight inconsistencies between interactions specified in 

composition implementations against that of those given in design specifications.  We do not 

aim to clarify notational and specification semantic correctness, although that can be 

achieved to a degree by user validation through animation.  We assume that correctness of 

implementations is a given attribute of the inputs submitted for observing errors against 

design specification scenarios, and as such, this provides orientation of our approach towards 

error detection rather than correctness of these artifacts. 

8.2.6   Integrated use 

“Methods and tools should work in conjunction with each other and with common 

programming languages and techniques_ Developers should not have to buy into a new 

methodology completely to begin receiving benefits.  The use of tools for formal methods 

should be integrated with that of tools for traditional software development.   E.g. compilers 

and simulators.” (Clarke and Wing 1996) 

 

From a technical implementation perspective, we wished to provide the tool as much as a 

reusable service as that of which it is used to verify.  In this way, we have scoped the 

architecture for the tool to be extendable and integrated without a presumption of which 

interfaces would be used to build the inputs to the tool core.  In other words, the BPEL4WS 

engineers are free to build the compositions in any supporting editor, yet on the one 

condition that the output from these editors conforms with the same specification supported 

by our tool.  We also do not believe in forcing a new methodology upon developers by way 

of the tool, but support various methodologies in the tasks that must be undertaken regardless 

of the actual steps of a methodology e.g. verification and validation can be undertaken in 

either design, implementation or maintenance. 

8.2.7   Focused Analysis 

“Methods and tools should be good at analysing at least one aspect of a system well, for 

example, the control flow of a protocol. They need not be good at analysing all aspects of a 

system” (Clarke and Wing 1996). 

 

In a similar way as we discussed in section 8.2.5, we believe that our focus is on providing 

verification analysis of composition implementations against those built as design 



Chapter 8. Evaluation and Conclusions 

 

187

specifications from web service composition requirements.  Validation has been discussed, 

but is really an additional benefit to building the core software process models.  This is the 

core analysis that we perceive such an approach will be undertaken, yet an alternative view is 

that this can also lead to other forms of analysis, such as checking fluent properties (Uchitel, 

Chatley et al. 2004). 

8.2.8   Evolutionary Development 

“Methods and tools should support evolutionary system development by allowing partial 

specification and analysis of selected aspects of a system”. (Clarke and Wing 1996). 

 

By the nature of web service compositions, they may represent only one part of a service-

oriented architecture.  From the discussions above, it is clear that our approach provides an 

incremental, elaborative approach to building compositions and realising the effects of 

changes as they are introduced in the life-time of service.  What is perhaps more interesting 

is that as a software engineering community we are used to hearing about lifecycles of 

systems, and yet the service-oriented architecture (implemented in one part through web 

services compositions) can be seen to avoid that practice.  In other words, individual 

components of architecture may be removed or replaced, yet the service may still exist.  

Related to this, we still need to undertake further work in providing greater assurance to 

developers in areas such as fault tolerance, compensation and upholding choreography 

policies. 

8.3   Summary of Contributions 

The main contribution of this thesis is to provide an approach, which when implemented 

within a tool, demonstrates a mechanical verification of properties of interest to both 

designers and implementers of web service compositions.  The use of a formal, well defined, 

process algebra (in this case FSP) provided a semantic mapping between the composition 

implementation (in the BPEL4WS specification for web service compositions), and we were 

fortunate to be able to leverage some work previously reported in (Uchitel 2003) for the 

synthesis of design specifications, in the form of message sequence charts, to the same 

process algebra.  These two representations as models form the basis to provide further 

model-based verification.   

 



Chapter 8. Evaluation and Conclusions 188

Furthermore, our contribution consisted of several specific features.  Firstly we built 

behaviour models of both design specifications and implementation processes on the basis 

that they modelled web service compositions, providing a guide to how this was achieved for 

both local and global compositions and their choreography.  Secondly, we provided a guide 

on how to translate the semantics of the BPEL4WS specification to FSP and map 

implementation abstractions which preserve the interaction behaviour between services, yet 

also disposing of process characteristics which are not required in the analysis.  Thirdly, we 

elaborated these models to analyse the conversations of compositions across choreography 

scenarios, providing both interface and behavioural compatibility verification processes.  

Fourthly, we collaborated with the UK Police IT Organisation to illustrate a real and 

practical example of how our approach may assist in web service composition development.  

This not only provided a ground to prove our approach and gain feedback from users, but 

also gains invaluable experience where currently there is a lack of reported findings in real-

world situations.  Finally, we have contributed a plug-in tool for both the existing LTSA 

plug-in architecture but also contributed to the open community through development of an 

equal plug-in feature for the Eclipse development environment. 

8.4   Future Work 

Fundamentally, the future opportunities from undertaking this work have been discovered 

through some of the limitations observed in the evaluation section of this chapter, and by the 

dynamic and evolving nature of the service industry and research.   

 

Firstly, on the current approach, the method of constructing design specifications, in the form 

of basic message sequence charts provides further opportunity to allow message data 

dependencies of composition behaviour to be considered.  The aspects of this that would 

most benefit our approach would be to observe how different message part values (between 

service partners) yields alternative scenarios that can be verified against implementations of 

compositions and choreography policies.  For example, the state of a choreography 

enactment between several service partners can only be verified if the differing values of 

state are known at design time.  In an order processing choreography, this would naturally 

include such state as “order placed” or “order could not be placed” for example.  

Choreography defines how this state affects partnered processes which are not necessarily 

involved in direct interactions.  Related to this is the data representation within the 



Chapter 8. Evaluation and Conclusions 

 

189

composition implementations.  Future work could evolve this representation to provide 

expressions of data values within process algebra models.   

 

The types of property used in verification are also open to a much broader range than 

suggested in this work. The aspect of goal-based objectivies of a system is a particular 

opportunity through the concept of checking fluent properties.  Fluents are abstractions of 

system state specified in terms of the occurrence of events. (Miller and Shanaham 1999) 

informally define (propositional) fluents as follows: “Fluents (time-varying properties of the 

world) are true at particular time-points if they have been initiated by an event occurrence at 

some earlier timepoint, and not terminated by another event occurrence in the meantime. 

Similarly, a fluent is false at a particular time-point if it has been previously terminated and 

not initiated in the meantime.”  This type of property provides useful state analysis over the 

period that a service choreography is undertaken, raising the scope of verification from 

composition and interactions to choreography policies.  Within this future work, we wish to 

continue describing behaviour by elaborating on the wider choreography aspects of partnered 

service compositions.  This includes considering fault, compensation and transactional 

integrity within and between distributed processes.  As part of this we are closely working 

with consortiums, such as the W3C, on their work with choreography architectures and 

specifications.  It is anticipated that the result of their work could be incorporated into our 

approach to provide an extension to the choreography elements we have considered thus far.  

To assess our assumptions in translation of BPEL4WS semantics to that of FSP semantics,  

we are also seeking to provide a mechanism to check the models produced in this approach 

against trace runs output from BPEL4WS process engine instances.  This is one way to 

evaluate how accurate the translation is, although consequently, there is always the question 

of whether the engine itself has been built to standards.  We can therefore only compare 

expected with actual results based upon an assumption that the implementation engine and 

execution of a process are on best endeavours. 

 

Secondly, the web services field is very much standards driven, and by the very nature of 

standards, complying means keeping up-to-date on standards released and supporting new or 

amended features.  The expectation of this is that whilst BPEL4WS is the standard for web 

service compositions as of this date, newer alternatives may superceed BPEL4WS.  We 

believe the principles applied in this work however (for verification and validation of 

processes), will remain consistent but will require updated work in the translation of these 



Chapter 8. Evaluation and Conclusions 190

notations to software process models.  Furthermore, we are not independent of other closely 

related work in the techniques used in our approach.  For example, the support in scenario-

based elaboration and implied scenarios is providing easier and accurate methods to support 

describing requirements using such techniques as message sequence charts.  Lastly, we also 

believe we can extend the mechanism to resolve issues highlighted in the results from 

verification and validation, by for example, tracing and highlighting parts of 

implementations that relate to violations in the models analysed.  We currently support 

presentation in the form that the designer builds scenarios in a MSC editor, yet equally, the 

BPEL4WS engineer should also have an accessible view as to which part of the composition 

it relates to (by for example, MSC representations or syntax highlighting).   

8.5   Closing Remarks 

The need for pre-development and pre-deployment reasoning about the system behaviour has 

been addressed by software engineers and software engineering researchers for many years. 

To this end, a significant effort has been made in developing modelling notations, automated 

analysis techniques and tool support. However, providing an intuitive interface to building 

design models of service compositions and verifying these against implementations has been 

largely neglected. Model construction and elaboration are engineering activities in their own 

right, and developing support for these activities is a key challenge. Support which 

complements existing behaviour modelling notations, analysis techniques and tools should 

provide sound model-based engineering methods for software development. 

 

 



 

 

Bibliography 
 
Aalst, W. M. P. v. d. (2004). Pi calculus versus Petri nets: Let us eat "humble pie" rather than 
further inflate the "Pi hype". 

Aalst, W. M. P. v. d., M. Dumas, et al. (2003). Web Service Composition Languages: Old 
Wine in New Bottles? Proceeding of the 29th EUROMICRO Conference: New Waves in 
System Architecture, Los Alamitos, CA, IEEE Computer Society. 

Abadi, M. and L. Lamport (1993). "Composing specifications." ACM Transactions on 
Programming Languages and Systems 15(1): 73-132. 

Abadi, M. and L. Lamport (1995). "Comjoining specifications." ACM Transactions on 
Programming Languages and Systems 17(3): 507-534. 

ACPO (2002). Association of Chief Police Officers (ACPO), ACPO Information Systems 
Strategy - Version 2.0. United Kingdom. 

ActiveBPEL (2005). ActiveBPEL - The Open Source BPEL Engine.  Available from: 
http://www.activebpel.org/, ActiveBPEL LLC. 

Anderson, A., A. Nadalin, et al. (2004). "eXtensible Access Control Markup Language 
(XACML) - Committee draft 04, 6 Dec." from http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml. 

Ankolekar, A., M. Burstein, et al. (2002). DAML-S:  Web Service Description for the 
Semantic Web. 1st International Semantic Web Conference (ISWC), Sardinia, Italy. 

Arkin, A. (2002). "Business Process Markup Language (BPML) Specification Version 1.0." 
from http://www.bpmi.org/_vti_bin/shtml.exe/bpml-spec.htm. 

Arkin, A., S. Askary, et al. (2002). Web Service Choreography Interface (WSCI) 1.0 - W3C 
Note 8 August 2002, W3C - Web Services Choreography Working Group. 

Austin, M. (2004). "ENSE 622: Systems Engineering Requirements, Design, and Trade-Off 
Analysis." from http://www.isr.umd.edu/~austin/ense622.html. 

Bajaj, S., D. Box, et al. (2004, September 2004). "Web Services Policy Framework (WS-
Policy)."  s. 2004, from http://www-106.ibm.com/developerworks/library/specification/ws-
polfram/. 

http://www.activebpel.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.bpmi.org/_vti_bin/shtml.exe/bpml-spec.htm
http://www.isr.umd.edu/~austin/ense622.html
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/


Bibliography 192

Balci, O. (1994). Validation, Verification, and Testing Techniques Throughout the Life 
Cycle of a Simulation Study. 26th conference on Winter simulation, Orlando, Florida, USA. 

Banerji, A., C. Bartolini, et al. (2002). "Web Services Conversation Language (WSCL) 
v1.0." from http://www.w3.org/TR/wscl10/. 

Basten, T. (1998). In Terms Of Nets: Systems Design with Petri Nets and Process Algebra. 
Eindhoven, Endhoven University of Technology. PhD Thesis: 237. 

Bergstra, J. A., A. Ponse, et al. (2001). Handbook of Process Algebra, ELSEVIER. 

Berners-Lee, T. (2000). Weaving the Web. San Francisco, HarperBusiness. 

Berners-Lee, T., R. Fielding, et al. (1998). Uniform Resource Identifiers (URI): Generic 
Syntax, Internet Engineering Task Force. 

Bharadwaj, R. and C. Heitmeyer (1999). "Model Checking Complete Requirements 
Specifications Using Abstraction." Automated Software Engineering 6(1): 37-68. 

Boehm, B. (1988). "A Spiral Model of Software Development and Enhancement." IEEE 
Computer 21(5): 61-72. 

Bolcer, G. A. and R. N. Taylor (1998). "Advanced workflow management technologies." 
Software Process - Improvement and Practice 4(3): 125-171. 

Bolognesi, T. and E. Brinksma (1987). Introduction to the ISO Specification Language 
LOTOS. Computer Networks and ISDN Systems. 

Bonett, M. (2001). Personalization of Web Services: Opportunities and Challenges. Ariadne. 
June. 

Booth, D., H. Haas, et al. (2004). "Web Services Architecture - W3C Working Group Note 
11 February 2004."   Retrieved 7th January, 2004, from http://www.w3.org/2002/ws/arch/. 

Booth, D., H. Haas, et al. (2004, 28 October 2002). "Web Services Architecture (WS-A) - 
W3C Working Group Note 11 February 2004."   Retrieved 7th January, 2004, from 
http://www.w3.org/TR/ws-arch/. 

Box, D., D. Ehnebuske, et al. (2000). Simple Object Access Protocol (SOAP) 1.1. See: 
http://www.w3.org/TR/SOAP/, W3C SOAP WORKING GROUP. 

Brogi, A., C. Canal, et al. (2004). Formalizing Web Services Choreographies. 1st 
International Workshop on Web Services and Formal Methods (WS-FM 2004), Pisa, Italy. 

Brooks, F. P. (1987). "No Silver Bullets - Essence and Accidents of Software Engineering." 
IEEE Computer: 10-19. 

Bukhres, O. and C. J. Crawley (1996). Failure Handling in Transactional Workflows 
Utilizing CORBA 2.0. 10th ERCIM Database Research Group Workshop on Heterogeneous 
Information Management, Prague. 

Cabrera, F., G. Copeland, et al. (2002). Web Services Coordination (WS-Coordination), 
BEA Systems, IBM, Microsoft Corporation. 

http://www.w3.org/TR/wscl10/
http://www.w3.org/2002/ws/arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/SOAP/


Bibliography 

 

193

Carbone, M., K. Honda, et al. (2005). "Programming interaction with Types." from 
http://lists.w3.org/Archives/Public/public-ws-chor/2005Dec/0002.html. 

Carbone, M., K. Honda, et al. (2005). A Theoretical Basis of Communication-Centred 
Concurrent Programming, Available from: http://lists.w3.org/Archives/Public/public-ws-
chor/2005Nov/att-0015/part1_Nov25.pdf. 

Castilho, M., L. A. Kunzle, et al. (2004). A Petri Net Based Representation for Planning 
Problems. 5th International Conference on Knowledge Based Computer Systems, 
Hyderabad, India. 

Chandy, K. M. and A. Rifkin (1996). "Systematic Composition of Objects in Distributed 
Internet Applications: Processes and Sessions." Computer Journal 40(8). 

Chatley, R., J. Kramer, et al. (2003). Model-based Simulation of Web Applications for 
Usability Assessment. The workshop on Bridging the Gaps between Software Engineering 
and Human-Computer Interaction. 

Checkland, P. (1982). Systems Thinking, Systems Practice. Chichester, UK, John Wiley and 
Sons. 

Checkland, P. (1990). Soft Systems Methodology in Action. Chichester, UK, John Wiley and 
Sons. 

Christensen, E., F. Curbera, et al. (2001). Web Services Description Language (WSDL) 1.1 - 
W3C Note 15 March 2001. Internet, W3C XML Activity on XML Protocols. 

Christensen, E., F. Curbera, et al. (2003). Web Services Description Language (WSDL) 1.2, 
W3C. 

Clarke, E. M., O. Grumberg, et al. (1994a). "Model Checking and modular verification." 
ACM Transactions on Programming Languages and Systems 16(3): 843-871. 

Clarke, E. M., O. Grumberg, et al. (1994b). "Model Checking and Abstraction." ACM 
Transactions on Programming Languages and Systems 16(5): 1512-1542. 

Clarke, E. M. and J. M. Wing (1996). "Formal Methods: State of the Art and Future 
Directions." ACM Computing Surveys 28(4): pp626-643. 

Cleaveland, R., J. Parrow, et al. (1993). "The concurrency workbench:A semantics-based 
tool for the verification of concurrent systems." ACM Transactions on Programming 
Languages and Systems 15(1): 36 –72. 

Cleaveland, R. and S. A. Smolka (1996). "Strategic Directions in Concurrency Research." 
ACM Computing Surveys 28(4): 607-625. 

Curbera, F., M. J. Duftler, et al. (2002). "BPWS4J: A platform for creating and executing 
BPEL4WS processes." 

Curbera, F., M. J. Duftler, et al. (2004). "The IBM Business Process Execution Language for 
Web Services JavaTM Run Time (BPWS4J) - V2.1 - April 13, 2004." 2004, from 
http://www.alphaworks.ibm.com/tech/bpws4j. 

http://lists.w3.org/Archives/Public/public-ws-chor/2005Dec/0002.html
http://lists.w3.org/Archives/Public/public-ws-chor/2005Nov/att-0015/part1_Nov25.pdf
http://lists.w3.org/Archives/Public/public-ws-chor/2005Nov/att-0015/part1_Nov25.pdf
http://www.alphaworks.ibm.com/tech/bpws4j


Bibliography 194

Curbera, F., Y. Goland, et al. (2002). Business Process Execution Language For Web 
Services, Version 1.0. 

Damianou, N., N. Dulay, et al. (2001). The Ponder Specification Language. Workshop on 
Policies for Distributed Systems and Networks (Policy2001), HP Labs, Bristol, UK. 

De-Leon, H. and E. Grumberg (1993). "Modular Abstractions for Verifying Real-Time 
Distributed Systems." Formal Methods in System Design 2(1): 7-43. 

DSDM. (1995). "The Dynamic Systems Development Methodology - Version 2.0." 

Duan, Z., A. Bernstein, et al. (2004). Semantics Based Verification and Synthesis of 
BPEL4WS Abstract Processes. 3rd IEEE International Conference on Web Services, San 
Diego, CA. 

Duftler, M. J., N. K. Mukhi, et al. (2001). "Web Services Invocation Framework (WSIF)." 
2004, from http://www.research.ibm.com/people/b/bth/OOWS2001/duftler.pdf. 

Edelstein, H. (1994). "Unraveling Client/Server Architecture." DBMS 7(5): 34. 

Engels, G., J. M. Kuster, et al. (2003). "Model-Based Verification and Validation of 
Properties." Electronic Notes in Theoretical Computer Science 82(7). 

Erdogmus, H. (1997). "Architecture-Driven Verfication of Concurrent Systems." Nordic 
Journal of Computing 4(NRC 41549): 380-413. 

Ferrara, A. (2004). Web Services: A Process Algebra Approach. The 2nd International 
Conference on Service Oriented Computing (ICSOC'04), New York City, NY, USA, ACM 
Press. 

Foster, H. (2003b). "LTSA-BPEL4WS Tool." from http://www.doc.ic.ac.uk/ltsa/bpel4ws. 

Foster, H. (2004b). "BPEL Code Samples." from 
http://www.bpelsource.com/resources/code.html. 

Foster, H., S. Uchitel, et al. (2003a). Model-based Verification of Web Service 
Compositions. Eighteenth IEEE International Conference on Automated Software 
Engineering (ASE), Montreal, Canada, IEEE. 

Foster, H., S. Uchitel, et al. (2004a). Compatibility for Web Service Choreography. 3rd IEEE 
International Conference on Web Services (ICWS), San Diego, CA, IEEE. 

Foster, H., S. Uchitel, et al. (2005). Tool Support for Model-Based Engineering of Web 
Service Compositions. 3rd IEEE International Conference on Web Services (ICWS2005), 
Orlando, FL, IEEE. 

Foster, H., S. Uchitel, et al. (2005). Using a Rigorous Approach for Engineering Web 
Service Compositions: A Case Study. 2nd IEEE International Conference on Services 
Computing (SCC2005), Orlando, FL, IEEE. 

Fowler, M. (2003). "Components and the World Of Chaos." IEEE Software 3(3): 83-85. 

http://www.research.ibm.com/people/b/bth/OOWS2001/duftler.pdf
http://www.doc.ic.ac.uk/ltsa/bpel4ws
http://www.bpelsource.com/resources/code.html


Bibliography 

 

195

Frantz, F. K. (1995). A Taxonomy of Model Abstraction Techniques. the Winter Simulation 
Conference, New York, NY, Association for Computing Machinery. 

Fu, X. (2004d). Formal Specification and Verification of Asynchronously Communicating 
Web Services, Phd. Thesis. Santa Barbara, CA, USA, University of California. 

Fu, X., T. Bultan, et al. (2004). "Conversation Protocols: A Formalism Specification and 
Verification of Reactive Electronic Services." 

Fu, X., T. Bultan, et al. (2004). WSAT:  A tool for Formal Analysis of Web Services. 16th 
International Conference on Computer Aided Verification (CAV), Boston, MA. 

Fu, X., T. Bultan, et al. (2004b). Analysis of Interacting BPEL Web Services. 3rd IEEE 
International Conference on Web Services (ICWS), San Diego, CA. 

Gardner, T. (2003). UML Modelling of Automated Business Process with Mapping to 
BPEL4WS. European Workshop on Object Orientation and Web Services, Darmstadt, 
Germany. 

Gardner, T. (2003). UML Modelling of Automated Business Processes with a Mapping to 
BPEL4WS. First European Workshop onWeb Services and Object Orientation (ECOOP 
2003), Darmstadt, Germany. 

Garg, P. K. and W. Scacchi (1989). "ISHYS: Design of an Intelligent Software Hypertext 
Environment." IEEE Expert 4(3): 52-63. 

Gluch, D. P., S. Cormella-Dorda, et al. (2001). Model-Based Verification: Abstraction 
Guidelines. Pitssburgh, PA, Software Engineering Institute. 

Graubmann, P. (2003). "Describing interactions between MSC components: the MSC 
connectors." The International Journal of Computer and Telecommunications Networking 
42(3): 323-342. 

Gudgin, M. and M. Hadley (2003). Web Services Description Language (WSDL Binding) 
1.2 - W3C Working Draft 8 December 2004. Internet, W3C Web Services Activity. 

Gudgin, M. and M. Hadley (2004). Web Services Description Language (WSDL Binding) 
1.2 - W3C Working Draft 8 December 2004. Internet, W3C Web Services Activity. 

Gudgin, M., A. Lewis, et al. (2004). "Web Services Description Language (WSDL) Version 
2.0 Part 2: Message Exchange Patterns - W3C Working Draft 26 March 2004." from 
http://www.w3.org/TR/2004/WD-wsdl20-patterns-20040326/. 

Haas, H. (2002). Web Services Activity - W3C Web Services Activity Group. 

Hailpern, B. and P.Santhanarn (2002). "Software debugging, testing and verification." IBM 
Systems Journal 41(1): 4-12. 

Hall, R. J. (2003). Open Modeling in Multi-stakeholder Distributed Systems: Model-based 
Requirements Engineering for the 21st Century. Proc. First Workshop on the State of the Art 
in Automated Software Engineering, U.C. Irvine Institute for Software Research. 

http://www.w3.org/TR/2004/WD-wsdl20-patterns-20040326/


Bibliography 196

Hamadi, R. and B. Benatallah (2004). A Petri Net-based Model for Web Services 
Composition. 3rd IEEE International Conference On Web Services (ICWS), San Diego, CA. 

Heitmeyer, C., J. Kirby, et al. (1998). "Using Abstraction and Model-Checking to Detect 
Safety Violations in Requirements Specifications." IEEE Transactions on Software 
Engineering 24(11): 932-941. 

Hoare, C. A. R. (1985). Communicating Sequential Processes, Pentice-Hall. 

Hogg, T. and B. A. Huberman (1991). "Controlling chaos in Distributed Systems." IEEE 
Transactions on Systems Management and Cybernetics 21: 1325-1332. 

Holzmann, G. J. (1997). "The Model Checker SPIN." IEEE Transactions on Software 
Engineering 23(5): 1-17. 

Holzmann, G. J. (1997). "The Model Checker Spin." IEEE Transactions on Software 
Engineering 23(5): pp. 279-295. 

Holzmann, G. J. (2003). The SPIN Model Checker: Primer and Reference Manual, Addison-
Wesley Professional. 

Hruby, P. (1998). Specification of Workflow Management Systems with UML. OOPSLA 
Workshop on Implementation and Application of Object-oriented Workflow Management 
Systems, Vancouver, BC. 

Hu, M. (2003). Web Services Composition, Partition, and Quality of Service in Distributed 
System Integration and Re-engineering. XML Conference 2003, Philadelphia, PA, 
IDEAlliance. 

Hu, M. (2004). Quality of Service Composition and Factoring In Composite Web Services 
Based Business Process. XML Conference 2004, Washington D.C., USA, IDEAlliance. 

Huff, K. E. and V. R. Lesser (1989). A Plan-Based Intelligent Assistant that Supports the 
Software Development Process. Third Software Engineering Symposium on Practical 
Software Development Environments. 

IBM. (2004). "IBM Eclipse Innovation Awardees." from http://www-
306.ibm.com/software/info/university/products/eclipse/eig-2004.html. 

IBM. (2005). "IBM Eclipse Innovation Awardees." from http://www-
306.ibm.com/software/info/university/products/eclipse/eig-2004.html. 

ISO (1995). Open Distributed Processing - Reference Model - Part2: Foundations, 
International Standard 10746-2 / ITU-Recommendation X.902. 

ITU (1996). Message Sequence Charts, Recommendation Z.120, International 
Telecommunications Union. Telecommunication Standardisation Sector. 

Iyengar, S. (2003). Business Process Integration Using UML and BPEL4WS. XML 
Conference & Exposition 2003, Philadelphia, PA, IDE Alliance. 

Iyengar, S. (2003). Business Process Integration Using UML and BPEL4WS. XML 
Conference and Exposition 2003, Philadelphia, PA. 

http://www-306.ibm.com/software/info/university/products/eclipse/eig-2004.html
http://www-306.ibm.com/software/info/university/products/eclipse/eig-2004.html
http://www-306.ibm.com/software/info/university/products/eclipse/eig-2004.html
http://www-306.ibm.com/software/info/university/products/eclipse/eig-2004.html


Bibliography 

 

197

Jacobson, I., J. Rumbaugh, et al. (1999). The Unified Software Development Process, 
Addison-Wesley, Harlow, UK. 

Jiang, P., Q. Mair, et al. (2003). Using UML to design distributed collaborative workflows: 
from UML to XPDL. Twelfth IEEE International Workshops on Enabling Technologies: 
Infrastructure for Collaborative Enterprises (WETICE), Linz, Austria. 

Johnson, J., T. L. Roberts, et al. (1989). "The Xerox "Star": A Retrospective." IEEE 
Computer 22(9): pp 11-29. 

Karamanolis, C., D.Giannakopoulou, et al. (1999). Modelling and Analysis of Workflow 
Processes. London, Imperial College of Science, Technology and Medicine. 

Kavantzas, N., D. Burdett, et al. (2004). Web Service Choreography Description Language 
(WS-CDL) - W3C Working Draft 17 December 2004, W3C - Web Services Choreography 
Working Group. 

Kavantzas, N., D. Burdett, et al. (2004). "Web Services Choreography Description Language 
Version 1.0 - W3C Working Draft 17 December 2004." from 
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/. 

Khalaf, R., N. Mukhi, et al. (2003). Service-Oriented Composition in BPEL4WS. The 
Twelfth International World Wide Web Conference, Budapest, HUNGARY, WWW2003. 

Kling, R. and W. Scacchi (1982). "The Web of Computing: Computer Technology as Social 
Organization." Advances in Computers 21: 1-90. 

Koshkina, M. (2003). Verification of Business Processes for Web Services. Department of 
Computer Science. Toronto, Ontario, York University. 

Lamsweerde, A. v. (2001). Goal-Oriented Requirements Engineering: A Guided Tour. 5th 
IEEE Intl. Sym. on Requirements Engineering (RE'01), Toronto, Canada. 

Larrson, M. and I. Crnkovic (1999). New Challenges for Configuration Management. 9th 
Software Configuration Management Workshop, Toulouse, France. 

Larrson, M. and I. Crnkovic (1999). New Challenges for Configuration Management. the 
SCM-9 workshop, Toulouse, France, Springer-Verlag. 

Leiner, B. M., V. G. Cerf, et al. (2002). "A Brief History of the Internet."  version 3.32. from 
http://www.isoc.org/internet/history/brief.shtml. 

Levi, K. and A. Arsanjani (2002). "A goal-driven approach to enterprise component 
identification and specification." Communications of the ACM 45(10): pp 45-52. 

Leymann, F. (2001). Web Services Flow Language (WSFL 1.0), IBM Academy Of 
Technology. 

Lynch, A. N. and M. R. Tuttle (1987). Hierarchical Correctness Proofs for Distributed 
Algorithms. 6th Annual Symp. on Principles of Distributed Computing, Vancouver, Canada. 

Magee, J. and J. Kramer (1997). Exposing the Skeleton in the Coordination Closet. 2nd 
International Conference COORDINATION '97, Berlin, Germany. 

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/
http://www.isoc.org/internet/history/brief.shtml


Bibliography 198

Magee, J. and J. Kramer (1999). Concurrency - State Models and Java Programs, John 
Wiley. 

Magee, J., J. Kramer, et al. (1997). Analysing the Behaviour of Distributed 
SoftwareArchitectures: a Case Study. 5th IEEE Workshop onFuture Trends of Distributed 
Computing Systems, Tunisia. 

Magee, J., J. Kramer, et al. (1999). Behaviour analysis of Software Architectures. 1st 
Working IFIP Conference On Software Architecture (WICSA1), San Antonio, TX, USA. 

Maghrabi, T. H. (2004). "ICS 411 "Senior Project" (032) - Research-Based Projects." 2004, 
from http://faculty.kfupm.edu.sa/ics/maghrabi/ics411-032/ics-topics.doc. 

Mantell, K. (2003). From UML to BPEL. Available from: www-
128.ibm.com/developerworks/webservices/library/ws-uml2bpel, IBM. 

Microsoft (2001).NET: Driving Business Value with the Microsoft Platform, Microsoft 
Corporation. 

Miller, R. and M. Shanaham (1999). "The Event Calculus in Classical Logic - Alternative 
Axiomatisations." Linkoping Electronic Articles in Computer and Information Science 
4(16): p 1-27. 

Milner, R. (1980). A Calculus of Communicating Systems. 

Milner, R. (1989). Communication and Concurrency. Upper Saddle River, NJ, USA, 
Prentice-Hall, Inc. 

Milner, R., J. Parrow, et al. (1992). "A Calculus of Mobile Processes." Information and 
Computation 100(1): 1-40. 

Murata, T. (1989). "Petri Nets: Properties, Analysis and Applications." Proceedings of the 
IEEE 77(4): 541-580. 

Nakajima, S. (2002). Model-Checking Verification for Reliable Web Service. OOPSLA 
2002 Workshop on Object-Oriented Web Services, Seattle, Washington. 

Nakajima, S. (2002). On Verifying Web Service Flows. SAINT 2002 Workshop - WebSE 
2002. 

Narayanan, S. and S. A. Mcllraith (2002). Simulation, Verification and Automated 
Composition of Web Services. Eleventh International World Wide Web Conference 
(WWW-11), Honolulu, Hawaii. 

Nuseibeh, B. and S. Easterbrook (2000). Requirements engineering: A roadmap. 
International Conference on Software Engineering (ICSE'00), Limerick. 

Nüttgens, M. (2003). "Business Process Modeling with EPC and UML Transformation or 
Integration?" 

OASIS (1993). Organization for the Advancement of Structured Information Standards 
(http://www.oasis-open.org). 

http://faculty.kfupm.edu.sa/ics/maghrabi/ics411-032/ics-topics.doc
http://www.oasis-open.org)/


Bibliography 

 

199

OMG (2002). Unified Modelling Language, Available at: http://www.omg.org. 

ORACLE (2005). ORACLE BPEL Process Manager. Available from: 
http://www.oracle.com/technology/products/ias/bpel/index.html. 

Osterweil, L. (1987). Software processes are software too. the 9th International Conference 
on Software Engineering, Monterey, CA USA. 

Paananen, J. (1995). Introduction to and comparison of formalisms. Tik-110.501 Seminar on 
Network Security.  Available at: http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/intfo.html. 
Helsinki University of Technology. 

Papazoglou, M. and J. Yang (2002). "Design Methodology for Web Services and Business 
Pro- cesses." Lecture Notes in Computer Science 2444. 

Pavlovic, D. and D. R. Smith (2002). Guarded Transitions in Evolving Specifications. 9th 
International Conference on Algebraic Methodology And Software Technology (AMAST 
2002), St. Gilles les Bains, Reunion Island, France, Springer-Verlag LNCS. 

Petri, C. A. (1966). Technical Report RADC-TR-65-377. New York, Griffiss Air Force 
Base: Vol 1. Suppl 1. 

Pistore, M., M. Roveri, et al. (2004). Requirements-driven Verification of Web Services. 1st 
International Workshop on Web Services and Formal Methods (WS-FM 2004), Pisa, Italy. 

RATIONALSOFTWARE. (1997). "UML Extension for Business Modeling version 1.1." 
Unified Modeling Language version 1.1, from 
http://www.rational.com/uml/documentation.html. 

Roberts, L. G. and B. D. Wessler (1970). Computer Network Development to Achieve 
Resource Sharing. Spring Joint Computer Conference, AFIPS Proceedings. 

Ross-Talbot, S. (2004). "Web Services Choreography and Process Algebra." 2004. 

Salaun, G., A. Ferrara, et al. (2004). Negotiation Among Web Services Using 
LOTOS/CADP. European Conference on Web Services (ECWS2004), Erfurt, Germany. 

Scacchi, W. (2000). "Understanding software process redesign using modeling, analysis and 
simulation." Software Process–Improvement and Practice. 

Schlimmer, J. C. (2002, 28 October 2002). "Web Services Description Requirements."   
Retrieved 7th January, 2002, from http://www.w3.org/TR/ws-desc-reqs/. 

Schumaker, K. (1999). "A Taxonomy of Simulation Software." from 
http://antioch.rice.edu/etrac/lester/thesaurus_br.html. 

Seeley, R. (2003). "Berners-Lee: Integrate Web services and Semantic Web.  Quote from 
Gartner Web Services and Application Integration conference." from 
http://www.adtmag.com/article.asp?id=7662. 

Sherman, D., D. Shaffer, et al. (2002). Orchestrating Asynchronous Web Services, Collaxa. 

http://www.omg.org/
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/intfo.html
http://www.rational.com/uml/documentation.html
http://www.w3.org/TR/ws-desc-reqs/
http://antioch.rice.edu/etrac/lester/thesaurus_br.html
http://www.adtmag.com/article.asp?id=7662


Bibliography 200

Siegel, J. (2003). Using OMG’s Model Driven Architecture (MDA) to Integrate Web 
Services, Object Management Group. 

Soley, R. (2003). White paper: Model-Driven Architecture, Object Management Group 
(OMG). 

Srivastava, B. and J. Koehler (2003). Web Service Composition - Current Solutions and 
Open Problems. The 13th International Conference on Automated Planning & Scheduling 
(ICAPS), Trento, Italy. 

Stevens, P. (1999). Tools and Algorithms for the Construction and Analysis of Systems. 5th 
International Conference, TACAS'99, Held as Part of the Joint European Conferences on 
Theory and Practice of Software, ETAPS'99, Amsterdam, The Netherlands. 

Subramanian, S. (1993). A Mechanized Framework for Specifying Problem Domains and 
Verifying Plans. Department Of Computer Science. Austin, Texas, University of Texas. 

Sun (2001). Implementing Services on Demand With the Sun Open Net Environment - Sun 
ONE. Sun Professional Services White Paper. I. Sun Microsystems. Palo Alto, CA. 

Thatte, S. (2001). XLANG - Web Services For Business Process Design, Microsoft 
Corporation. 

Uchitel S., R.Chately, et al. (2003). LTSA-MSC: Tool Support for Behaviour Model 
Elaboration Using Implied Scenarios. Ninth International Conference on Tools and 
Algorithms for the Construction and Analysis of Systems (TACAS), Warsaw, Poland. 

Uchitel, S. (2003). Incremental Elaboration of Scenario-Based Specifications and Behaviour 
Models Using Implied Scenarios. Distributed Software Engineering. London, Imperial 
College London. 

Uchitel, S., R. Chatley, et al. (2004). Fluent-Based Animation: Exploiting the Relation 
between Goals and Scenarios for Requirements Validation. Requirements Engineering 
(RE'04). 

Uchitel, S., J.Magee, et al. (2001). Detecting Implied Scenarios in Message Sequence Chart 
Specifications. 9th European Software Engineering Conferece and 9th ACM SIGSOFT 
International Symposium on the Foundations of Software Engineering (ESEC/FSE'01), 
Vienna, Austria. 

Uchitel, S. and J. Kramer (2001). A Workbench for Synthesising Behaviour Models from 
Scenarios. the 23rd IEEE International Conference on Software Engineering (ICSE'01), 
Toronto, Canada. 

W3C-Org (1994). W3C - The World Wide Web Consortium (http://www.w3c.org). 

Winograd, T. and F. Flores (1986). Understanding Computers and Cognition: A New 
Foundation for Design. Lexington, MA, Ablex Publishers. 

Wohed, P., W. M. P. v. d. Aalst, et al. (2002). Pattern Based Analysis of BPEL4WS. 
Brisbane, Queensland University of Technology. 

http://www.w3c.org)/


Bibliography 

 

201

Woodman, S., D. Palmer, et al. (2004). Notations for the Specification and Verification of 
Composite Web Services. 8th IEEE International Enterprise Distributed Object Computing 
(EDOC) Conference, Monterey, California. 

Yang, J. and M. P. Papazoglou (2003). "Service Components for Managing the Life-Cycle of 
Service Compositions." Information Systems. 

Yi, X. and K. J.Kochut (2004). Towards Efficient Integration of Complex Web Services 
Using a Unified Model for Protocol and Process. 5th International Conference on Internet 
Computing (IC 2004), Las Vegas, Nevada, USA. 

Yi, X. and Krys.J.Kochut (2004). Process Composition of Web Services with Complex 
Conversation Protocols: a Colored  Petri Nets Based Approach. Design, Analysis, and 
Simulation of Distributed Systems Symposium, Washington DC, USA. 

Yu, E. (1997). Towards Modeling and Reasoning Support For Early Requirements 
Engineering. 3rd International Symposium on Requirements Engineering (RE '97), 
Annapolis, MD. 



 

Appendix A – WS-* 
A.1   Web Service Standards 

Layer Standards Description 

Profile WS-I Basic Profile Standard to ensure that vendors and web service providers meet an agreed usage 
of standards below. 

WS-BPEL/BPEL4WS 
(Business Process Execution 
Language) 

The BPEL4WS specification defines a notation for specifying business process 
behaviour based on Web Services.  BPEL4WS focuses on orchestration rather 
than choreography (i.e. by using a single controller) 

Composition 
and 
Choreography WS-CDL 

(Choreography Description 
Language) 

Transactions among Web services and their clients must clearly be well defined at 
the time of their execution, and may consist of multiple separate interactions 
whose composition constitutes a complete transaction. This composition, its 
message protocols, interfaces, sequencing, and associated logic, is considered to 
be choreography. 

WS-Transaction 
 

This specification describes coordination types that are used with the extensible 
coordination framework described in the WS-Coordination specification. It 
defines two coordination types: Atomic Transaction (AT) and Business Activity 
(BA). 

WS-Coordination This specification (WS-Coordination) describes an extensible framework for 
providing protocols that coordinate the actions of distributed applications. Such 
coordination protocols are used to support a number of applications, including 
those that need to reach consistent agreement on the outcome of distributed 
activities. 

Transaction 

OASIS BTP At a most simple level BTP allows a set of remote calls to be grouped together 
and the outcomes tied together.  It allows for; all or nothing outcome; mixed 
outcome; service alternative recognition and selection; time qualification and 
exception reporting. 

WS-Reliability WS-Reliability is a specification for open, reliable Web services messaging 
including guaranteed delivery, duplicate message elimination and message 
ordering, enabling reliable communication between Web services. 

Reliability 

WS-ReliableMessaging This specification (WS-ReliableMessaging) describes a protocol that allows 
messages to be delivered reliably between distributed applications in the presence 
of software component, system, or network failures. 

WS-Security 
 

A mechanism for incorporating security information into XML messages 

XML Encryption 
 

Standard for encrypting and decrypting parts of xml documents 

Security 

SAML Security Assertions Markup Language for role-based permissions on resources 
used by a web service 

WSDL The Web Service Description Language is an XML format for describing network 
services as a set of endpoints 

Discovery 
UDDI 
(Universal Description, 
Discovery and Integration). 

UDDI stands for Universal Description, Discovery and Integration. The UDDI 
specification enables businesses to quickly, easily, and dynamically find and 
transact with one another. UDDI enables a business to (i) describe its business 
and its services, (ii) discover other businesses that offer desired services, and (iii) 
integrate with these other businesses. 

SOAP a lightweight xml protocol intended for exchanging structured information in a 
decentralized, distributed environment. 

UBL a standard library of XML business documents (purchase orders, invoices, etc.) 
by modifying an already existing library of XML schemas to incorporate the best 
features of other existing XML business libraries 

Message 
Format 

ebXML ebXML intends to develop a technical framework that will enable XML to be 
utilized in a consistent manner for the exchange of all electronic business data 

Transport 
Mechanism 

HTTP - HyperText 
Transfer Protocol 

The protocol for moving hypertext (or other) files across the Internet. 

WS-Policy 
WS-SecurityPolicy 

Policies 
XACML 

 
Policy frameworks and specifications for access control and obligations 
 

 



 

Appendix B  

FSP SEMANTICS 
B.1  FSP Process Syntax 

A process is defined by one or more local processes separated by commas.  The definition is 

terminated by a full stop.  STOP and ERROR are primitive local processes. 

Examples:  1. Process = (a -> Local), 2. Local = (b -> STOP). 

 
Table B-1  FSP Process Operators 

Operator Description 
Action prefix  
-> 

(x->P) describes a process that initially engages in the action x and then 
behaves as described by the auxiliary process P 

Choice “|” (x->P | y->Q) describes a process which initially engages in either x or 
y, and whose subsequent behaviour is described by auxiliary processes P or 
Q, respectively 

Recursion the behaviour of a process may be defined in terms of itself, in order to 
express repetition 

End state  
END 

describes a process that has terminated successfully and cannot perform any 
more actions 

Alphabet Extension 
+ 

The alphabet of a process is the set of actions in which it can engage.  P + S 
extends the alphabet of the process P with the actions in the set S. 

B.2  Composite Processes 

A composite process is the sequential or parallel composition of one or more processes.  The 

definition of a sequential composite process is proceeded by ; (semi-colon) whereas a 

parallel composite process is proceeded by ||. 

Example:  1. Sequence = P ; Q; END.  2. ||Composite = (P || Q). 

 

Table B-2  FSP Composite Process Operators 
Operator Description 
Sequential composition  
; 

(P;Q) where P is a process with an END state, describes a process that 
behaves as P and when it reaches the END state of P starts behaving as the 
auxiliary process Q 

Parallel composition || (P||Q) describes the parallel composition of processes P and Q 
Replicator 
forall 

Forall [i:1..N] P(i) is the parallel composition (P(1) || ... || P(N)) 

Process Labelling 
: 

a:P prefixes each label in the alphabet of P with a. 

Process Sharing 
:: 

{action1..actionx}::P replaces every label n in the alphabet of P with the 
labels action1.n , actionx.n.  Further, every transition (n->Q) in the definition 
of P is replaced with the transitions ({action1.n,..,actionx.n}->Q). 



Appendix B 204

B.3  Common Operators 

The operators listed in table B-1 are common to both processes and composite processes. 

Table B-3  FSP Composite Process Operators 
Operator Description 
Condiitional 
if then else 

The process (if B then P else Q) behaves as the process P if the condition B 
is true otherwise it behaves as Q.  If the else Q is omitted and B is false then 
the process behaves as STOP. 

Relabelling 
/ 

Re-labelling is applied to a process to change the names of action labels.  
The general form of re-labelling is / {newlabel/oldlabel}. 

Hiding 
\ 

When applied to a process P, the hiding operator \ {action1, actionx} 
removes the action names from the alphabet of P and makes these concealed 
actions “silent”.  These silent actions are labelled tau.  Silent actions in 
different processes are not shared. 

Interface 
@ 

When applied to a process P, the interface operator @{action1, actionx….} 
hides all actions in the alphabet of P not labelled in the set action1…actionx. 

 

B.4  Properties 

Table B-4 FSP Process Properties 
Operator Description 
Trace equivalence 
minimisation  
deterministic 

deterministic P describes the minimal trace equivalent process to P. 
If no terminating traces are proper prefixes of other traces, then it also 
preserves END states 

Strong semantic equivalence 
minimisation  
minimal 

Minimal P describes the minimal strong semantic equivalent process to P 

Safety 
property 

A safety property P defines a deterministic process that asserts that any trace 
including actions in the alphabet of P, is accepted by P. 

Progress 
progress 

progress P = {action1, …actionx} defines a progress property P which 
asserts that in an infinite execution of a target system, at least one of the 
actions action1…actionx will be executed infinitely often. 

 



 

Appendix C  

BPEL4WS To FSP 
C.1  Primitive Activities to FSP 

BPEL4WS 
Construct 

FSP Process Example Comments 

(primitive activities) 
Invoke 
Receive 
Reply 

INVOKE = (invoke_p1_o1 -> END). 
RECEIVE = (receive_p1_o1 -> END). 
REPLY = (reply_p1_o1 -> END). 

Where p1 is a named 
partner, and o1 is a named 
operation. 

Terminate INVOKE1 = (invoke_p1_o1 -> END). 
INVOKE2 = (invoke_p2_o2 -> END). 
Set ACTSET = {invoke_p1_o1,invoke_p2_o2} 
TERMS = (ACTSET->TERMS | terminate->END). 
||TERMINATE = (INVOKE1 || INVOKE2 || 
TERMS). 
 

Where p1 and p2 are 
named partners, and o1 
and o2 are named 
operations. 

C.2  Structured Activities to FSP 

BPEL4WS 
Construct 

FSP Process Example Comments 

Sequence INVOKE = (invoke_p1_o1 -> END). 
RECEIVE = (receive_p2_o2 -> END). 
SEQUENCE = INVOKE; RECEIVE; END. 

Where p1 and p2 are 
named partners, and o1 
and o2 are named 
operations. 

Flow INVOKE = (invoke_p1_o1 -> END). 
RECEIVE = (receive_p2_o2 -> END). 
FLOW = (INVOKE || RECEIVE). 

Where p1 and p2 are 
named partners, and o1 
and o2 are named 
operations. 

Links TLINK1 = (target_link -> END). 
||TARGETLINKS = (TLINK1). 
SLINK1 = (source_link -> END). 
||SOURCELINKS = (SLINK1). 
INVOKE = (invoke_p1_o1 -> END). 
SEQUENCE =   
TARGETLINKS; INVOKE; SOURCELINKS; END. 
||LINKPROCESS = (SEQUENCE). 

a) Where target_link is a 
named target operation 
link and source_link is a 
named source operation 
link.   
b) Where p1 is a named 
partner, and o1 is a named 
operation. 
 
Links are pre and post 
guarded transitions for an 
operation or a scope of 
operations.  To model the 
synchronisation of linked 
transitions, the link 
process is composed with 
the source and target 
processes. 
 



Appendix C 206

C.3  Guarded Activities to FSP 

BPEL4WS 
Construct 

FSP Process Example Comments 

(variable constructs – read/write operator process) 
range VR = 0..n (where n is a possible range of values for evaluation) 
VARIABLE(A=0) = VARIABLE[A}, 
VARIABLE[i:VR] = (write[j:VR]->VARIABLE[j] | read[i] ->VARIABLE[i]), 
VARIABLE[‘null] = (write[j:VR]->VARIABLE[j] | read[i] -> VARIABLE[‘null]).
 
Assign ASSIGN1 = (assign_variable[x] -> END. Where assign_variable is 

a process variable used in 
the composition, and x is 
an enumerated value to 
read or store. 
 

BPEL4WS 
Construct 

FSP Process Example Comments 

While WHILEAB = exp:WHILE_variable. 
set WHILEEXP_alphabet = 
{exp.{read,write}.[Range]} 
WHILEEVAL = (exp.read[i:Range]-
>WHILEEVAL[i]), 
WHILEEVAL[i:Range] = if (i==0) 
then SEQ1; WHILEEVAL else END. 
RECEIVE1 = (receive_p1_o1 -> END). 
SEQ1 = RECEIVE; END. 
WHILESEQ = WHILEEVAL; END + 
{WHILEAB_alphabet}. 
||WHILE = (WHILESEQ). 
 

a) where exp is of type 
WHILE_variable which is 
a declared read/write 
operator process. 
b) where p1 is a named 
partner, and o1 is a named 
operation. 

Switch CASE1EVALC = (exp.read[i:Range] 
->CASE1EVALC[i]), 
CASE1EVALC[i: Range] = if (i==0) then 
CASE1; END else OTHERWISE; END. 
||CASE1EVAL = (CASE1EVALC). 
case1process = (exp.write[0] ->END). 
||CASE1 = (case1process). 
case2process = (exp.write[1] -> END). 
||OTHERWISE = (case2process). 
MARKETPLACESWITCH = CASE1EVALC; END. 
 

a) where exp is of type 
WHILE_variable which is 
a declared read/write 
operator process. 
 

Pick ATM_ONMESSAGE_DISCONNECT =  
(disconnect->END). 
DISCONNECT =  
(connected.value.write[1] –>END). 
ATM_ONMESSAGE_DIS_SEQ = 
ATM_ONMESSAGE_DISCONNECT; DISCONNECT; END. 
ATM_ONMESSAGE_LOGON = (logon->END). 
LOGON = (loggedon.value.write[0] -> END). 
ATM_ONMESSAGE_LOGON_SEQ 
ATM_ONMESSAGE_LOGON; LOGON; END. 
PICK = (ATM_ONMESSAGE_DIS_SEQ || 
ATM_ONMESSAGE_LOGON_SEQ). 

Each onMessage activity 
is translated to a process 
and composed as an 
alternative message path 
in the parallel 
composition process. 

 

 

 



Appendix C 207

C.4  Fault Handling Activities to FSP 

BPEL4WS 
Construct 

FSP Process Example Comments 

Fault Handlers 
(inline) 

FAULTHAND1 = 
(fault.read[i:Compensate_IntRange]-
>FAULT1[i]), 
FAULTHAND1[i:Compensate_IntRange] = if 
(i==0) then DOFAULT1; END else if (i==1) 
then DOFAULT2; END. 
DOFAULT1 = (fault1raised->END). 
DOFAULT2 = (fault2raised->END). 
INVOKE1 =(invoke_seller_SyncPurchase->END). 
INVOKE2 =(invoke_shipper_OrderShipment-
>END). 
ACTSEQ = INVOKE1 ; INVOKE2 ; END. 
||ACTIVITIES = (INVOKE1 || INVOKE2). 
set ACTSET = {invoke_seller_SyncPurchase, 
invoke_shipper_OrderShipment} 
TERMS = (ACTSET -> TERMS | fault1raised -> 
END | fault2raised -> END). 
||FAULTMON =(ACTSEQ || TERMS || FAULTHAND1). 
 

Each faultHandler 
type of fault is 
modelled as an 
alternative process 
path in the 
composition.   
 
As a fault is raised, 
all remaining 
activities in the 
scoped faultHandler 
are terminated.  The 
process therefore is a 
choice of paths (e.g. 
TERMS). 

Compensation 
Handlers 
(inline) 

COMPENSATE = 
(compensate.read[i:TRUEFALSE_variable] 
->COMPENSATE[i]), 
COMPENSATE[i: TRUEFALSE_variable] = if 
(i=='true’) then COMPENSATE_INVOKE; END else 
END. 
COMPENSATE_INVOKE = 
(invoke_seller_CancelPurchase -> END). 
INVOKE = (invoke_seller_SyncPurchase -> 
END). 
INVOKE_SEQ = INVOKE; COMPENSATE; END. 
||COMPENSATEEXAMPLE = (INVOKE_SEQ). 

A compensation 
Handler (inline) is 
represented as an 
alternative process 
path in the 
composition of a 
single activity.  If an 
evaluation at the end 
of the normal process 
execution results to 
TRUE, then the 
compensation process 
if followed.   
 

BPEL4WS 
Construct 

FSP Process Example Comments 

(scoped) COMPENSATE = 
(compensate.read[i:TRUEFALSE_variable]-
>COMPENSATE[i]), 
COMPENSATE[i: TRUEFALSE_variable] = if 
(i=='true’) then  
COMPENSATE_INVOKE; END else END. 
INVOKE3 = (invoke_seller_CancelPurchase-
>END). 
INVOKE4 = (invoke_supplier_CancelSupplier-
>END). 
COMPENSATE_INVOKE = INVOKE3; INVOKE4; END. 
INVOKE1 = (invoke_seller_CancelP->END). 
INVOKE2 = (invoke_supplier_CancelS->END). 
INVOKE_SEQ = INVOKE1; INVOKE2; COMPENSATE; 
END. 
||COMPENSATESCOPE = (INVOKE_SEQ). 
 

A compensation 
Handler (scoped) is 
represented as an 
alternative process 
path in the 
composition of a 
process of one or 
many activities.  If an 
evaluation at the end 
of the normal process 
execution results to 
TRUE, then the 
compensation process 
if followed.  

 


	Motivation
	The Approach
	Motivating Example
	Contributions
	Thesis Outline
	Evolution of the Computing Network
	Evolution of Distributed Computing
	Web Services Architecture
	Web Service Behaviour
	The Problem Domain
	Web Service Interfaces
	Web Service Compositions
	Web Service Choreography
	The Service-Oriented Model (SOM)
	Service Goals, Policies and Obligations
	Goal-Oriented Requirements Engineering

	Software Process Analysis
	Software Process Models
	π-calculus
	Petri-Nets
	Finite State Process
	Comparison

	Review of Related Work
	Web Service Specifications
	Modelling Web Service Compositions and Choreography
	Verification and Behaviour Analysis
	Tool Support and Case Studies
	Summary of related work and our approach

	Summary and Discussion
	Specifying Web Service Compositions
	The Scenario Approach
	Basic Message Sequence Charts (bMSC)
	High Level Message Sequence Charts (hMSC)

	MSCs, Compositions and Choreography
	Mapping MSCs elements to Web Service Composition Behaviour
	Web Service Compositions as MSCs
	Web Service Choreography as MSCs

	Synthesising MSCs to Labeled Transition Systems
	Summary and Discussion
	Modelling BPEL4WS Processes
	Overview of BPEL4WS
	BPEL4WS Processes and Business Protocols
	Private Process Structure
	Mapping BPEL4WS Processes to FSP

	Mapping Primitive Activities
	Label Abstraction of Web Service Interactions
	Invoke, Receive, Reply
	Wait and Empty
	Terminate

	Structured Activities
	Sequences of Activities
	Concurrent Activities
	Linked Transitions

	Guarded Process Activities
	Variable Abstraction and Guards
	Assign
	While
	Switch..Case
	Pick..onMessage

	Fault and Compensation Handlers
	Modelling Fault Handling
	Throw
	Modelling Compensation Handling

	A Complete Example
	Assumptions and Limitations
	Summary and Discussion
	Web Service Interactions and Choreography
	Modelling Web Service Interactions
	Service Conversations
	Service Partners and Roles
	Linking Composition Interactions
	An Interaction Modelling Algorithm

	Building Interaction Models
	Composition Process Interactions
	Connecting a Set of Processes
	Messaging Port Connector Models

	Summary and Discussion
	Analysis of Web Service Compositions and Choreography
	Approach to Analysis of the SOM
	Techniques used in the Analysis

	Preparation for Analysis
	Types of Preparation Activities
	Preparation for Composition Abstraction and Mappings
	Sample Scenario for Verification and Validation

	Refining Composition Behaviour Models
	Reduction of Implementation Specific Activities
	Grouping Design and Implementation Activities between Models
	Building an Architecture Model for Analysis

	Analysis of Composition Behaviour Models
	Composition Design and Implementation Equivalence
	Compatibility of Service Composition Interactions
	Other Properties

	Validation Analysis of Behaviour Models
	Composition Validation through Animation

	Summary and Discussion
	Tool Support
	Tool Architecture
	Initial Prototype as Plug-in for LTSA
	Migrating the tool to the Eclipse Environment

	Case Study: UK National Police IT Web Service Compositions
	Introduction
	Scope
	Issues and Our Contribution
	Requirements
	Specification
	Implementation and Analysis
	Choreography
	Summary and Discussion

	Evaluation of Approach
	On Design Specifications
	On Modelling Implementations
	On Verification and Validation
	On Iteration

	Evaluation of Tool Support
	Ease of learning
	Early Payback
	Efficiency
	Incremental gain for incremental effort
	Orientation toward error detection
	Integrated use
	Focused Analysis
	Evolutionary Development

	Summary of Contributions
	Future Work
	Closing Remarks
	Bibliography
	Appendix A – WS-*
	A.1   Web Service Standards

	Appendix B
	FSP SEMANTICS
	B.1  FSP Process Syntax
	B.2  Composite Processes
	B.3  Common Operators
	B.4  Properties

	Appendix C
	BPEL4WS To FSP
	C.1  Primitive Activities to FSP
	C.2  Structured Activities to FSP
	C.3  Guarded Activities to FSP
	C.4  Fault Handling Activities to FSP



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


