
Reversing Algebraic Process Calculi

Iain Phillips1 and Irek Ulidowski2

1 Department of Computing, Imperial College London, England
iccp@doc.ic.ac.uk

2 Department of Computer Science, University of Leicester, England
iu3@mcs.le.ac.uk

Abstract. Reversible computation has a growing number of promising
application areas such as the modelling of biochemical systems, program
debugging and testing, and even programming languages for quantum
computing. We formulate a procedure for converting operators of stan-
dard algebraic process calculi such as CCS, ACP and CSP into reversible
operators, while preserving their operational semantics.

1 Introduction

Reversible computation has a growing number of promising application areas
such as the modelling of biochemical systems [8], program debugging and test-
ing [20], and even programming languages for quantum computing [2]. Lan-
dauer [15] showed how irreversible computation generates heat; the efficient op-
eration of future miniaturised computing devices could depend on exploiting
reversibility [7]. We have been inspired to look at this area by the work of Danos
and Krivine on reversible CCS [8, 9, 10] and Abramsky on mapping functional
programs into reversible automata [1].

We wish to investigate reversibility for algebraic process calculi in the style
of CCS [16], with Structural Operational Semantics (SOS) [19] rules. Given
a forward labelled transition relation (ltr) → we are interested in obtaining a
reverse ltr which is the inverse of →. This can always be done, but if we
just reverse a standard process language we end up with too many possibilities,
since processes do not “remember” their past states. Danos and Krivine solve
this problem by storing “memories” of past behaviour which are carried along
with processes. Memories also keep track of which thread or threads performed
an action. This has the effect that backtracking does not have to follow the exact
order of forward computation in reverse. To take a simple example, suppose that
the process a.b | c performs a followed by b and then c (here “.” and “|” are the
prefixing and the parallel composition of CCS, respectively). The process can
backtrack by reversing b, then a and finally c. However, a cannot be reversed
before b has been reversed.

We wish to produce reversible process calculi without relying on external
devices such as memories. Our starting point is that irreversibility in a language
such as CCS comes from the consumption of guards and alternative choices.
We therefore decide to leave these in place, so that process structure remains

fixed throughout a computation. Returning to the example of a.b | c, we might
let the state after a, b and c have been performed be denoted by a.b | c, where
the underlined actions are past actions. There is plainly just the right amount
of information here to reverse the process, while allowing c to be reversed in-
dependently of b and a. This approach allows us also to keep track of unused
alternatives discarded during computation. Consider a.b + c, where “+” is the
choice operator of CCS. After the initial a, the alternative c is discarded and we
can only proceed with b. This state is represented as a.b + c; it is clear which
alternative was taken and what will happen next.

Reversibility can help to some extent to distinguish concurrency from cau-
sation. In the reversible world, Milner’s expansion law does not hold: we have

a | b 6= a.b + b.a since a | b
a
→

b
→ a | b

a
 but a.b + b.a

a
→

b
→ a.b + b.a

a

6 .

When we come to consider autoconcurrency and communication we find that
the simple method just outlined arguably discards too much information. For
instance, the processes a | a and a.a cannot be distinguished by the above argu-
ment, as we are not able to tell apart the two occurrences of a. Moreover, the
process a | a can evolve by a communication between a and the complementary
action a to yield a | a. This state could also have been reached by performing
the two actions separately, and there is nothing in the notation to stop us from
undoing the two actions separately. But if the communication represents a bind-
ing between two (biological) entities, then such separate backtracking of a and
a is not reasonable.

Our solution is to use a more expressive form of past actions, where each
occurrence of action a is “marked” by a fresh identifier m and written as a[m].
Also, we insist that the two parties to a communication between action a and a
agree on this identifier or communication key which is unique to that communi-
cation. This means that a and a are now locked together and can only be undone
together. Now, we can deal with the autoconcurrency example. Process a | a can
perform the a actions with keys m and n to produce a[m] | a[n], and then reverse
these actions in any order. However, a.a cannot match this behaviour: after the
a actions with keys m and n, the process a[m].a[n] cannot reverse on a[m].

We propose a method for reversing process operators that are definable by
SOS rules in a general format. As far as we are aware, this is the first time
this has been done for algebraic process calculi. As we have described informally
above, we rely on reformulating operators of standard process calculi into new
operators that can be easily reversed, while preserving their operational meaning.
In this paper we attempt to balance the generality of the format on one hand and
the technical simplicity of the proposed method on the other hand. The chosen
format is general enough for the definitions of the majority of useful process
operators, and the method presented is intuitive and easy to apply.

Our format is a subformat of the path format [3] and consists of dynamic rules,
where the operator is destroyed by a transition, and static rules, where the oper-
ator remains present after the transition. Reversing static rules is easier because
they preserve the context during execution. Dynamic rules, however, consume
the context, removing the unused alternatives. The kernel of our method is to

transform dynamic rules into static-like rules. Auxiliary operators and predicates
are used to keep the structure of terms unchanged and to enforce correct use
of subterms in the reformulated contexts. Once SOS rules for operators are re-
formulated as above, the reverse SOS rules are obtained simply as symmetric
versions of the forward rules.

As an illustration of the method we consider the CCS choice operator +. We
reformulate it as a static operator and use predicate std, meaning that the argu-
ment is a standard term that uses no past actions (and no keys), to control when
arguments can fire in rules. The reverse rules (on the right) for the converted +
are then obtained by symmetry:

X
a
→ X ′ std(Y)

X + Y
a
→ X ′ + Y

Y
a
→ Y ′ std(X)

X + Y
a
→ X + Y ′

X
a
 X ′ std(Y)

X + Y
a
 X ′ + Y

Y
a
 Y ′ std(X)

X + Y
a
 X + Y ′

We prove a number of results to show that our method yields well-behaved
transition relations. We show that the new forward ltr is conservative over the
standard ltr (Theorem 5.8). Also the new forward and reverse ltrs satisfy cer-
tain confluence properties (Propositions 5.4 and 5.5). The processes which are
reachable from standard processes by forward-only transitions are closed under
reverse transitions, meaning that a process can never reverse into an “incon-
sistent” past (Proposition 5.6). We also formulate a notion of forward-reverse
bisimulation, which is a congruence (Theorem 6.7).

The rest of the paper is structured as follows. In Section 2 we define the
simple process calculi which we shall be making reversible, and in Section 3 we
describe our procedure for generating the new reversible calculi. In Section 4
we illustrate our method by applying it to CCS. We also discuss related work,
and in particular RCCS [9]. In Section 5 we prove various results about the new
reversible transition relations, and in Section 6 we define an appropriate notion
of bisimulation. Section 7 indicates how to adapt the method to a more general
format that contains constants and predicates. We end with some conclusions.

The proofs of the presented results, further results, examples and discussion
are available in the full version of this paper [18].

2 Process Calculi

In this section we describe the process calculi to which we shall apply our pro-
cedure for generating reversible calculi.

A signature is a set Σ of operator symbols, each with a particular arity. The
set of terms over Σ is denoted by T (Σ). We shall tend to refer to terms as
processes. We let P, Q, . . . range over processes.

A process calculus L = (Σ, A, R), is given by a signature Σ, a set of actions A
and a set R of SOS rules. We shall apply our procedure to a “standard” calculus
LS = (ΣS, Act, RS). Its terms are called standard terms and are denoted by
Std. We shall assume that the only operator of arity zero (i.e. constant) is the
deadlocked process 0. We let f, . . . range over ΣS; a, b, c, . . . range over Act.

We next describe the rules R and their operational semantics.

The SOS theory gives us the flexibility and the benefits of working with whole
classes of process calculi rather than with individual process calculi that are
limited to a small number of operators. Typically, a class of operators is defined
by a format of SOS rules that can be used to define them operationally. In this
paper we shall consider simple path rules without copying [3]. More specifically,
our rules will be mostly of the simpler pxyft and pxyf forms, where terms in the
premises are variables and the source of the conclusion is a term constructed
with a single operator.

Definition 2.1. Simple path (forward) rules are expressions of the form

{ Xi
ai→ X ′

i }i∈I { pj(Xj) }j∈J

f(X1, . . . , Xn)
a
→ t(X ′

1, . . . , X
′
n)

and
{ pj(Xj) }j∈J

p(f(X1, . . . , Xn))

where all variables Xi (Xj) and X ′
i are distinct, and variables X ′

i are such that
X ′

i = Xi when i /∈ I. Moreover, I, J ⊆ {1, . . . , n}.
The sets of transitions and predicate expressions above the horizontal bars in

the rules above are called premises. Let r be the first rule above. Operator f is
the operator of r. The transition below the bar in r is the conclusion of r. Action
a in the conclusion is the action of r and f(X1, . . . , Xn) and t(X ′

1, . . . , X
′
n) are

the source and target of r, respectively. The i-th argument is active in r if r
has a transition for Xi in the premises. The i-th argument of f is active if it is
active in some rule for f . In the second rule, p is the predicate of the rule and
the predicate expression below the bar is the conclusion.

With any calculus L = (Σ, A, R), all of whose rules are in simple path format,
we associate an ltr → with labels A, together with a set of predicates, in the
standard way; for details see [3]. Our standard calculus LS will have all its rules
RS in simple path format. It will have no predicates in its rules. We shall write
its ltr as →S, and use this in writing down its rules for clarity.

We now define the precise form of SOS rules that operators of LS can have.
Consider an n-ary operator f ∈ ΣS (n ≥ 1). The set of arguments of f is
Nf = {1, . . . , n}. Operator f can have three kinds of rules: static rules, choice
rules and choice axioms. We describe each in turn.

Definition 2.2. Static rules of f are of the following form, where I 6= ∅:

(I)
{Xi

ai→S X ′
i}i∈I

f(
−→
X)

a
→S f(

−→
X ′)

We require that if two static rules for f have the same premises then they have
the same conclusion (i.e. the action of the conclusion is unique). Let Sf ⊆ Nf

be the set of all arguments occurring in the premises of static rules of f , and let
Ef = Nf \ Sf . Arguments in Sf are called static arguments.

The arguments of the CCS and CSP [14] parallel composition operators are
static, as are those of the CCS restriction and relabelling operators and the CSP
hiding operator.

Next we describe the choice rules.

Definition 2.3. A choice rule of f is a rule of the following form:

(II)
Xd

a
→S X ′

d

f(
−→
X)

a
→S X ′

d

We require that d ∈ Ef . Let Df be the set of all arguments d occurring in the
premises of choice rules of f . Arguments in Df are called dynamic arguments.
Each dynamic argument d is required to be permissive, meaning that for each
a ∈ Act there is a rule of type (II).

Note that Df ⊆ Ef , so that a dynamic argument cannot be static.
The choice operator of CCS has two dynamic arguments, both of which

are permissive. The external choice operator of CSP also has two dynamic ar-
guments, but they are not permissive: although they have choice rules for all
a ∈ Act \ {τ}, they have no such rules for the τ—the rules for τ are static (see
Section 7).

We also wish to encompass operators that have choice rules with empty
premises such as, for example, CCS prefixing and CSP internal choice. This
leads us to the third and final type of rule:

Definition 2.4. A choice axiom of f is a rule r of the following form:

(III) r
f(
−→
X)

act(r)
→ S Xta(r)

Here ta(r) is the target argument. We require ta(r) ∈ Ef .

Next, we define the class of simple process calculi that we shall reverse.

Definition 2.5. A process operator f is simple if either f is the deadlocked
process 0, or f has a nonzero arity and all its rules are as in Definitions 2.2, 2.3
and 2.4. A process calculus is simple if all its operators are simple.

In what follows we omit the subscripts of the three sets of arguments where no
confusion can arise.

We shall require that LS is simple. Note that we leave out rules with pred-
icates at this stage. This allows us to keep the presentation side of the work
manageable. As a result, the main application of this work is to reformulate
and reverse Milner’s CCS, and many other operators from the process calculi
ACP [4] and CSP [14] and their descendants.

3 The Procedure for Generating a Reversible Calculus

We shall transform LS into an operationally equivalent calculus which is easily
reversible. For this we shall need to augment the processes and reformulate the
rules of LS.

Let K be an infinite set of communication keys (or just keys for short), ranged
over by m, n, The set of past actions, or actions marked with keys, is denoted

by ActK = Act×K. We write the ordered pair (a, m) as a[m]. We let µ, . . . range
over ActK, and s, t, . . . range over ActK∗.

We introduce the signature ΣA of auxiliary operators fr[m], where r is a rule
of type (III) for an operator f of RS, and m ∈ K. We let ΣSA = ΣS ∪ ΣA, and
let Proc = T (ΣSA). Clearly, Std ⊆ Proc.

Our reformulation and reversing method relies on auxiliary unary predicates
on Proc, namely std(P) and fsh[m](P) (all m ∈ K). Informally, std(P) holds
if P ∈ Std and fsh[m](P) holds if key m is fresh (i.e. not used) in P . The
predicates are defined below, where the last four rules are rule schemas for all
relevant operators and keys, and m 6= n in the last rule schema.

std(0)

{std(Xi)}i∈N

std(f(
−→
X)) fsh[m](0)

{fsh[m](Xi)}i∈N

fsh[m](f(
−→
X))

{fsh[m](Xi)}i∈N

fsh[m](fr[n](
−→
X))

Note that if std(P) then fsh[m](P) for every m ∈ K. Let RP be the set of rules
for the predicates std and fsh[m] for all m ∈ K.

We define how to transform rules of type (I), (II) and (III) into rules in simple
path format that can be easily reversed.

Definition 3.1. For every operator f in ΣS, every static rule of type (I) for f
is converted into

(1)
{Xi

ai[m]
→ X ′

i}i∈I {std(Xe)}e∈E {fsh[m](Xi)}i∈S\I

f(
−→
X)

a[m]
→ f(

−→
X ′)

where X ′
i = Xi for all i /∈ I. The reverse version is

(1R)
{Xi

ai[m]
 X ′

i}i∈I {std(Xe)}e∈E {fsh[m](Xi)}i∈S\I

f(
−→
X)

a[m]
 f(

−→
X ′)

Note that (1) and (1R) are rule schemas for keys m. Also, I ∩ E = ∅, and
so predicates only apply to inactive arguments. This contributes to making our

rules easily reversible. Finally note that we shall be able to prove that if P
a[m]
→ P ′

then fsh[m](P) (Lemma 5.2).

Definition 3.2. For every operator f in ΣS, every choice rule of type (II) for
f is converted into

(2)
Xd

a[m]
→ X ′

d {std(Xe)}e∈E\{d} {fsh[m](Xi)}i∈S

f(
−→
X)

a[m]
→ f(

−→
X ′)

where X ′
i = Xi for all i 6= d. The reverse version of (2) is

(2R)
Xd

a[m]
 X ′

d {std(Xe)}e∈E\{d} {fsh[m](Xi)}i∈S

f(
−→
X)

a[m]
 f(

−→
X ′)

Again (2) and (2R) are rule schemas for keys m, and again predicates are only
applied to inactive arguments, since d /∈ S.

In order to make operators f with rules of type (III) static we shall use
auxiliary operators. These operators have their own rules (type (3′) below) which
propagate the actions of a single argument leaving other arguments unchanged.

Definition 3.3. For every operator f in ΣS, every rule r of type (III) for f is
converted into the rule schemas below for all b ∈ Act and keys m, n:

(3)
{std(Xe)}e∈E {fsh[m](Xi)}i∈S

f(
−→
X)

act(r)[m]
→ fr[m](

−→
X)

(3 ′)
Xta(r)

b[m]
→ X ′

ta(r) {std(Xe)}e∈E\{ta(r)} {fsh[m](Xi)}i∈S

fr[n](
−→
X)

b[m]
→ fr[n](

−→
X ′)

m 6= n

The reverse versions of rule schemas of type (3) and (3 ′) are

(3R)
{std(Xe)}e∈E {fsh[m](Xi)}i∈S

fr[m](
−→
X)

act(r)[m]
 f(

−→
X)

(3 ′R)
Xta(r)

b[m]
 X ′

ta(r) {std(Xe)}e∈E\{ta(r)} {fsh[m](Xi)}i∈S

fr[n](
−→
X)

b[m]
 fr[n](

−→
X ′)

m 6= n

Again predicates are only applied to inactive arguments.

Now we are ready to define our procedure that reformulates standard opera-
tors and produces automatically their new forward and reverse rules. Note that
all rules mentioned in Definitions 3.1, 3.2 and 3.3 are in the simple path format.

Definition 3.4 (Conversion Procedure). A simple process calculus LS =
(ΣS, Act, RS) generates a reversible process calculus with communication keys
L = (ΣSA, ActK, RF, RR) as follows:

1. ΣSA
df
= ΣS ∪ ΣA. The operators in ΣSA are called reversible operators.

2. The forward rule set RF is the least set such that

(a) RP ⊆ RF, where RP is the set of rules for predicates defined above;

(b) for every rule r ∈ RS for f of type (I) or (II) the set RF contains the
converted rules r′ of the corresponding type (1) or (2) as required by
Definitions 3.1 and 3.2;

(c) for every rule r ∈ RS for f of type (III) the set RF contains the converted
rule r′ of type (3), and all the rules of type (3 ′) for the auxiliary operators
fr[m] as required by Definition 3.3.

3. The reverse rule set RR is defined like RF, except that we use the reverse
forms of the rules as in Definitions 3.1, 3.2 and 3.3.

Once L is generated by the procedure in Definition 3.4, we associate with L,
in the standard way [3], the forward and reverse ltrs → and over Proc with
labels drawn from ActK, together with the set of predicates Pred that interpret
std and fsh[m] (for m ∈ K) over Proc.

We illustrate the application of the conversion procedure on two operators
that use the three allowed types of rules. Firstly, we consider the internal choice
“⊓” of CSP, which may be defined by two choice axioms (τ ∈ Act):

X ⊓ Y
τ
→S X X ⊓ Y

τ
→S Y

Arguments X and Y both belong to E. Definition 3.3 requires two families of
auxiliary operators “⊓1[m]” and “⊓2[m]” for all m ∈ K. To save space, we only
give the converted rules and the reverse rules for the first argument X :

std(X) std(Y)

X ⊓ Y
τ [m]
→ X ⊓1 [m]Y

X
a[n]
→ X ′ std(Y)

X ⊓1 [m]Y
a[n]
→ X ′ ⊓1 [m]Y

m 6= n

std(X) std(Y)

X ⊓1 [m]Y
τ [m]
 X ⊓ Y

X
a[n]
 X ′ std(Y)

X ⊓1 [m]Y
a[n]
 X ′ ⊓1 [m]Y

m 6= n

Next, we convert Milner’s interrupt operator “ˆ” [16] defined by the first two
rule schemas below (all a, b ∈ Act). We have S = I = {X}, D = {Y }, E = D and
Y is permissive. Definitions 3.1 and 3.2 give us the last two forward rule schemas
below, and the reverse rules are simply symmetric versions of the forward rules.

X
a
→S X ′

X ˆY
a
→S X ′ˆY

Y
b
→S Y ′

X ˆY
b
→S Y ′

X
a[m]
→ X ′ std(Y)

X ˆY
a[m]
→ X ′ˆY

Y
b[n]
→ Y ′ fsh[n](X)

X ˆY
b[n]
→ X ˆY ′

4 CCS with Communication Keys

In this section we convert CCS to a reversible process calculus, which we call
CCSK (CCS with communication Keys), following Definition 3.4. Let τ ∈ Act.
We assume the following standard signature of finite CCS:

ΣS = {0} ∪ {a. | a ∈ Act} ∪ { \A, [f] | A ⊆ Act \ {τ}, f : Act → Act} ∪ {+, |}

The single argument of prefixing is neither dynamic nor static, and prefixing
has a choice axiom rule (type (III)). By Definition 3.3 CCSK contains a family
of auxiliary operators a[m]. (past action prefixing) for all a ∈ Act and m ∈ K.
Both arguments of + are dynamic and permissive, and obviously non-static.
Parallel composition, restriction and relabelling are operators with static rules.
The well-known SOS rules for CCS, which can be found in [16], are converted
into the rules in Figure 1. The rules for the reverse ltr for CCSK are got by
simply changing → into throughout. As is usual, we omit trailing 0s.

std(X)

a.X
a[m]
→ a[m].X

X
b[n]
→ X ′

a[m].X
b[n]
→ a[m].X ′

m 6= n

X
a[m]
→ X ′

std(Y)

X + Y
a[m]
→ X ′ + Y

Y
a[m]
→ Y ′

std(X)

X + Y
a[m]
→ X + Y ′

X
a[m]
→ X ′

fsh[m](Y)

X | Y
a[m]
→ X ′ | Y

Y
a[m]
→ Y ′

fsh[m](X)

X | Y
a[m]
→ X | Y ′

X
a[m]
→ X ′ Y

a[m]
→ Y ′

X | Y
τ [m]
→ X ′ | Y ′

X
a[m]
→ X ′

X\A
a[m]
→ X ′\A

a /∈ A
X

a[m]
→ X ′

X[f]
f(a)[m]
→ X ′[f]

Fig. 1. Forward SOS rules for CCSK

As an extension, we could add recursion recX.P to CCSK by introducing
the structural congruence ≡ generated by the law recX.P ≡ P{recX.P/X}. We
would then add a Structural Congruence Rule schema as in [17] to the rules in
Figure 1. The schema links structural congruence with deriving transitions of

terms: X
a[m]
→ X ′ can be derived if X ≡ Y , Y

a[m]
→ Y ′ and Y ′ ≡ X ′ for all labels

a[m]. To incorporate this extension into our format from Sections 2 and 3, we
would need to work with formats with structural congruence (cf. [17]).

Example 4.1. In CCSK we keep track of the identities of actions that com-
municate so that when we reverse we undo the correct past actions. Consider
P = (a.b | a.c | a.d | a.e)\a. Here the restriction of a prevents a and a being
performed except as part of a communication. Suppose that a.b communicates
with a.d and then a.c with a.e. In CCSK we write this as follows:

P
τ [m]
→ (a[m].b | a.c | a[m].d | a.e)\a

τ [n]
→ (a[m].b | a[n].c | a[m].d | a[n].e)\a

Note that the process a[m].b | a.c | a[m].d | a.e cannot regress by reversing a[m]
alone because key m is not fresh in a.c | a[m].d | a.e. The fact that m appears
in a.c | a[m].d | a.e which is in parallel with a[m].b proves that the processes
communicated a and a.

Our notation does not allow us to backtrack by undoing a different pair of
actions, but clearly we can change the order of reversing actions τ [m] and τ [n]:

(a[m].b | a[n].c | a[m].d | a[n].e)\a
τ [m]
 (a.b | a[n].c | a.d | a[n].e)\a

τ [n]
 P

4.1 Related Calculi

The present work is mainly to be compared with Danos and Krivine’s RCCS [9],
but also in some sense to an earlier approach by Boudol and Castellani [6].

To aid comparison we give a simple example: the processes (a | a.b)\a and
τ.b. We might reasonably expect them to be equivalent, and indeed they are

FR-bisimilar as stated in Section 6. We have (a | a.b)\a
τ [m]
→ (a[m] | a[m].b)\a

and τ.b
τ [m]
→ τ [m].b. In RCCS since 〈 〉 ⊲ νa (a | a.b) ≡ νa (〈1〉 ⊲ a | 〈2〉 ⊲ a.b) we

write these transitions as

νa (〈1〉 ⊲ a | 〈2〉 ⊲ a.b)
〈1〉,〈2〉:τ
→ νa (〈〈2〉, a,0〉 · 〈1〉 ⊲ 0 | 〈〈1〉, a,0〉 · 〈2〉 ⊲ b)

and 〈 〉⊲ τ.b
〈 〉:τ
→ 〈∗, τ,0〉⊲ b, respectively. In RCCS transition labels contain extra

information concerning which threads contribute. As a result it is harder to show
that the processes are equivalent. Presumably one would have to abstract away
from the thread information.

We might therefore say that, on the spectrum from intensionality to exten-
sionality, the present work is more extensional than RCCS, though we see from
the examples in Section 6 that CCSK definitely has a “true concurrency” flavour
in terms of which processes it equates.

In [6] Boudol and Castellani developed event systems. Similarly to our ap-
proach, they keep track of the whole past of a transition by recording past
actions and choices that have been made. These are recorded in the syntax of
terms and, unlike in our approach, in the transition labels themselves. For ex-

ample, where we write (a | a.b)\a
τ [m]
→ (a[m] | a[m].b)\a, in event systems this is

(a | a.b)\a
\a(a,a)
−→ (a | a.b)\a and one needs to use additional rules to work out

that the action label of the transition is a τ .

5 Properties of the Transition Relations

In this section we establish various properties of the forward and reverse transi-
tion relations defined earlier. In particular we show that the forward-reachable
processes are closed under reverse transitions (Proposition 5.6); also that the new
forward transition relation is in a sense conservative over the standard transition
relation (Theorem 5.8).

We start by noting that the reverse transition relation inverts the forward
transition relation:

Proposition 5.1. Let P, P ′ ∈ Proc and µ ∈ ActK. Then P
µ
→ P ′ iff P ′ µ

 P .

Each process has a set of keys. The set keys(P) of keys occurring in a process

P ∈ Proc is defined as follows: keys(0)
df
= ∅, keys(f(

−→
P))

df
=

⋃

i∈N keys(Pi) and

keys(fr[m](
−→
P))

df
= {m} ∪

⋃

i∈N keys(Pi). Clearly P ∈ Std iff keys(P) = ∅. Also
fsh[m](P) iff m /∈ keys(P).

Any forward transition uses a fresh key:

Lemma 5.2. Let P, P ′ ∈ Proc. If P
a[m]
→ P ′ then m /∈ keys(P) and keys(P ′) =

keys(P) ∪ {m}.

Let P → Q iff P
µ
→ Q for some µ. Let →∗ denote the reflexive and transitive

closure of →.

Definition 5.3. A process P ∈ Proc is reachable if it can be reached by a finite
sequence of forward transitions from a process in Std, i.e. there is Q ∈ Std such
that Q →∗ P . Let Rch denote the set of reachable processes.

It is easy to check that if P ∈ Rch and P ′ is a subterm of P then also P ′ ∈ Rch.
It follows from Lemma 5.2 that if P ∈ Rch then every →-computation from a
process Q ∈ Std to P must have length |keys(P)|.

Of course, not every process is reachable. In CCSK, a.b[m] is not reachable.
A more interesting example is a[m].b[n] | b[n].a[m]. Here the names and keys
match up, but there is a causal inconsistency.

A “diamond” confluence property holds for reverse transitions:

Proposition 5.4 (Reverse Diamond Property). Let P, Q, R ∈ Proc.

1. If P
a[m]
 Q and P

b[m]
 R then a = b and Q = R.

2. If P
a[m]
 Q and P

b[n]
 R with m 6= n, then there is S such that Q

b[n]
 S and

R
a[m]
 S.

Proposition 5.4 implies that the reverse transition relation is finitely branching,
since the number of reverse transitions of P ∈ Proc is bounded by |keys(P)|.

The analogue of Proposition 5.4 does not hold for forward transitions, since

two forward transitions P
a[m]
→ Q and P

b[n]
→ R may conflict. However we can

complete the diamond if the forward transitions are compatible, in the sense
that Q and R can reach a common process S by forward moves:

Proposition 5.5 (Forward Diamond Property). Let P, Q, R, T ∈ Proc.

1. If P
a[m]
→ Q

s
→ T and P

b[m]
→ R

t
→ T then a = b and Q = R.

2. If P
a[m]
→ Q

s
→ T and P

b[n]
→ R

t
→ T with m 6= n, then there is S such that

Q
b[n]
→ S, R

a[m]
→ S and S

s\b[n]
→ T , S

t\a[m]
→ T .

(Here for any s ∈ ActK∗ and µ ∈ ActK, s\µ is s with all instances of µ removed.)

The reachable terms are closed under reverse transitions, meaning that a
process can never reverse into an “inconsistent” past:

Proposition 5.6. If P ∈ Rch, µ ∈ ActK and P
µ
 P ′ then P ′ ∈ Rch.

We now turn to showing that the new forward transition relation → is es-
sentially conservative over the standard transition relation →S. We have to take
into account the fact that we have introduced auxiliary operators and keys. A
nonstandard process can be converted to a corresponding standard process by
“pruning” the auxiliary operators (cf. the forgetful map of [9]):

Definition 5.7. The pruning map π : Proc → Std is defined as follows:

π(0)
df
= 0

π(f(
−→
P))

df
=

π(Pd) if d ∈ Df ∧ ¬std(Pd) ∧ ∀e ∈ Ef \ {d}. std(Pe)

f(
−−−→
π(P)) if ∀e ∈ Ef . std(Pe)

0 otherwise

π(fr[m](
−→
P))

df
=

{

π(Pta(r)) if ∀e ∈ Ef \ {ta(r)}. std(Pe)
0 otherwise

for any choice axiom r for f , and where
−−−→
π(P) is the vector π(P1), . . . , π(Pn).

Clearly, if P ∈ Std then π(P) = P . It can easily be shown that the third case for

π(f(
−→
P)) and the second case for π(fr(

−→
P)) will not arise with reachable terms.

Theorem 5.8 (Conservation). Suppose P ∈ Proc.

1. If P
a[m]
→ P ′ then π(P)

a
→S π(P ′).

2. If π(P)
a
→S P ′ then for any m ∈ K\keys(P) there is P ′′ such that P

a[m]
→ P ′′

and π(P ′′) = P ′.

6 Forward-Reverse Bisimulation

We can show that the reversible transition relation → induces essentially the
same bisimulation equivalence on processes as the standard transition relation
→S. We first recall standard strong bisimulation on the standard terms:

Definition 6.1. A symmetric relation S on Std is an S-bisimulation if whenever
S(P, Q) then if P

a
→S P ′ then there is Q′ such that Q

a
→S Q′ and S(P ′, Q′). We

define P ∼S Q iff there is an S-bisimulation S such that S(P, Q).

The corresponding notion for forward transitions on Proc and predicates Pred is

Definition 6.2. A symmetric relation S on Proc is an F-bisimulation if S(P, Q)
implies

– p(P) ⇔ p(Q) for all p ∈ Pred;

– if P
µ
→ P ′ then there is Q′ such that Q

µ
→ Q′ and S(P ′, Q′).

We define P ∼F Q iff there is an F-bisimulation S such that S(P, Q).

Note that the first item in Definition 6.2 could be written as keys(P) = keys(Q),
since fsh[m](P) ⇔ m /∈ keys(P) and std(P) ⇔ keys(P) = ∅.

F-bisimulation is conservative over S-bisimulation by the following result:

Proposition 6.3. Let P, Q ∈ Proc. Then P ∼F Q iff π(P) ∼S π(Q) and p(P) ⇔
p(Q) for all p ∈ Pred.

Proposition 6.4. The relation ∼F is a congruence with respect to all the oper-
ators of Proc.

We now define bisimulation for both forward and reverse transitions:

Definition 6.5. A symmetric relation S on Proc is a forward-reverse (FR)
bisimulation if whenever S(P, Q) then

– p(P) ⇔ p(Q) for all p ∈ Pred;

– if P
µ
→ P ′ then there is Q′ such that Q

µ
→ Q′ and S(P ′, Q′);

– if P
µ
 P ′ then there is Q′ such that Q

µ
 Q′ and S(P ′, Q′).

We define P ∼FR Q iff there is an FR bisimulation S such that S(P, Q).

Proposition 6.6. Let P, Q ∈ Proc. If P ∼FR Q then P ∼F Q.

The converse does not hold. For instance we have a | a ∼F a.a, but a | a 6∼FR a.a.

This is because a | a
a[m]
→

a[n]
→ a[m] | a[n]

a[m]
 a | a[n] and m 6= n. This sequence of

transitions cannot be matched by a.a: we have a.a
a[m]
→

a[n]
→ a[m].a[n]

a[m]

6 . Similarly
a | b ∼F a.b + b.a, but a | b 6∼FR a.b + b.a.

On the positive side, we can show that for any P ∈ Std, P + P ∼FR P . We
can also show that for any P ∈ Std, (a | a.P)\a ∼FR τ.(P \a).

Theorem 6.7. The relation ∼FR is a congruence with respect to all the operators
of Proc.

Several notions of bisimulation taking into account backward as well as for-
ward moves have been discussed in the literature. The back and forth bisimulation
of [11] is constrained to only go back along the path that brought a process to
its current state. Back and forth bisimulation where any reverse path can be
followed is discussed in [5] both for transition systems and event structures. Es-
sentially the same notion, but called backward-forward bisimulation, is defined
in [13] for occurrence transition systems. The non-interleaving semantics com-
munity has proposed several bisimulation-like equivalences [12] and we intend to
investigate how FR bisimulation compares with them.

7 Extensions

Our conversion procedure can be extended in several directions so that it ap-
plies to a wider class of operators. Naturally, this would result in extending the
forms of SOS rules in Definitions 3.1–3.3. However, the extensions we now briefly
describe mostly do not go beyond the simple path format as in Definition 2.1.

ACP action constants can be defined analogously to prefixing of CCS. We
have the constant ε (successful termination) and constants a for each a ∈ Act.

The defining rules a
a
→S ε are converted to a

a[m]
→ a[m], where a[m] are auxiliary

constants for all m ∈ K. There are no forward SOS rules for the auxiliary
constants and no transition rules for ε.

The next extension is to allow predicates in SOS rules. An example is the
successful termination predicate trm in the rules for ACP’s sequential composi-
tion “·” below [4]. Care needs to be taken when adding predicates to premises
in order to avoid lookahead in the reverse rules.

X
a
→S X ′

X ·Y
a
→S X ′ ·Y

Y
b
→S Y ′ trm(X)

X ·Y
b
→S Y ′

With some simplifications, the converted and reverse rules are

X
a
→ X ′ std(Y)

X ·Y
a
→ X ′ ·Y

Y
b
→ Y ′ trm(X)

X ·Y
b
→ X ·Y ′

X
a
 X ′ std(Y)

X ·Y
a
 X ′ ·Y

Y
b
 Y ′ trm(X)

X ·Y
b
 X ·Y ′

(Here we extend trm to cover nonstandard processes.)
Finally, to allow the external choice operator of CSP we need to relax the

condition that static arguments cannot be dynamic. The defining rules for “�”
are given below, where the last two rules are rule schemas for all a ∈ Act \ {τ}.

X
τ
→S X ′

X � Y
τ
→S X ′ � Y

Y
τ
→S Y ′

X � Y
τ
→S X � Y ′

X
a
→S X ′

X � Y
a
→S X ′

Y
a
→S Y ′

X � Y
a
→S Y ′

By introducing an auxiliary predicate before(P), which holds if P ∈ Std or P is
a derivative from a standard term via a sequence of silent actions, we obtain the
following converted rules:

before(Y) X
µ
→ X ′

X � Y
µ
→ X ′ � Y

before(X) Y
µ
→ Y ′

X � Y
µ
→ X � Y ′

8 Conclusions

There has been much recent interest in reversible computing, including the pi-
oneering work of Danos and Krivine on reversible CCS. We have introduced a
method for converting standard irreversible operators of algebraic process calculi
such as CCS into reversible operators. As far as we are aware, this is the first
time that such a method has been proposed in the context of general process
calculi. Our method works on operators with rules of a simple form. We arrive
at new rules which preserve the structure of the terms. An important feature of
our method is the introduction of keys to bind synchronised actions together.
We have also obtained an appropriate notion of bisimulation on terms. Our work
demonstrates that it is possible to make many standard operators reversible in
a manner which is both algebraic and tractable.

Acknowledgements

We wish to thank Philippa Gardner, Daniele Varacca, Nobuko Yoshida, Shoji
Yuen and the referees for helpful discussions and comments. The second author
would like to thank the University of Leicester for granting study leave, and
acknowledge gratefully support from Nagoya University during a research visit.

References

[1] S. Abramsky. A structural approach to reversible computation. Theoretical Com-

puter Science, 347(3):441–464, 2005.
[2] T. Altenkirch and J. Grattage. A functional quantum programming language. In

Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science,

LICS 2005, pages 249–258. IEEE Computer Society Press, 2005.
[3] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational

semantics with predicates. In Proceedings of 4th International Conference on Con-

currency Theory, CONCUR ’93, volume 715 of LNCS, pages 477–492. Springer-
Verlag, 1993.

[4] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1990.
[5] M.A. Bednarczyk. Hereditary history preserving bisimulations or what is the

power of the future perfect in program logics. Technical report, Institute of Com-
puter Science, Polish Academy of Sciences, Gdańsk, 1991.

[6] G. Boudol and I. Castellani. Flow models of distributed computations: three
equivalent semantics for CCS. Information and Computation, 114:247–314, 1994.

[7] H. Buhrman, J. Tromp, and P. Vitányi. Time and space bounds for reversible
simulation. In Proceedings of 28th International Colloquium on Automata, Lan-

guages and Programming, ICALP 2001, volume 2076 of LNCS, pages 1017–1027.
Springer-Verlag, 2001.

[8] V. Danos and J. Krivine. Formal molecular biology done in CCS-R. In Proceedings

of BioConcur, Marseille, 2003.
[9] V. Danos and J. Krivine. Reversible communicating systems. In Proceedings of the

15th International Conference on Concurrency Theory, CONCUR 2004, volume
3170 of LNCS, pages 292–307. Springer-Verlag, 2004.

[10] V. Danos and J. Krivine. Transactions in RCCS. In Proceedings of the 16th

International Conference on Concurrency Theory, CONCUR 2005, volume 3653
of LNCS, pages 398–412. Springer-Verlag, 2005.

[11] R. De Nicola, U. Montanari, and F. Vaandrager. Back and forth bisimulations.
In Proceedings of CONCUR ’90, Theories of Concurrency: Unification and Ex-

tension, volume 458 of LNCS, pages 152–165. Springer-Verlag, 1990.
[12] R.J. van Glabbeek and U. Goltz. Refinement of actions and equivalence notions

for concurrent systems. Acta Informatica, 37:229–327, 2001.
[13] U. Goltz, R. Kuiper, and W. Penczek. Propositional temporal logics and equiv-

alences. In Proceedings of 3rd International Conference on Concurrency Theory,

CONCUR ’92, volume 630 of LNCS, pages 222–235. Springer-Verlag, 1992.
[14] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[15] R. Landauer. Irreversibility and heat generated in the computing process. IBM

Journal of Research and Development, 5:183–191, 1961.
[16] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[17] M.R. Mousavi and M.A. Reniers. Congruence for structural congruences. In Pro-

ceedings of the 8th International Conference on Foundations of Software Science

and Computation Structures, FOSSACS 2005, volume 3441 of LNCS, pages 47–62.
Springer-Verlag, 2005.

[18] I.C.C. Phillips and I. Ulidowski. Reversing algebraic process calculi. Technical
Report CS-06-01, Department of Computer Science, Leicester University, 2006.

[19] G.D. Plotkin. A structural approach to operational semantics. Journal of Logic

and Algebraic Programming, 60-61:17–139, 2004.
[20] Virtutech. Simics Hindsight. http://www.virtutech.com, 2005.

