
CCS with Priority Guards

Iain Phillips�

Department of Computing, Imperial College, London
iccp@doc.ic.ac.uk

Abstract. It has long been recognised that standard process algebra
has difficulty dealing with actions of different priority, such as for in-
stance an interrupt action of high priority. Various solutions have been
proposed. We introduce a new approach, involving the addition of “pri-
ority guards” to Milner’s process calculus CCS. In our approach, priority
is unstratified, meaning that actions are not assigned fixed levels, so that
the same action can have different priority depending where it appears
in a program. Unlike in other unstratified accounts of priority in CCS
(such as that of Camilleri and Winskel), we treat inputs and outputs
symmetrically. We introduce the new calculus, give examples, develop
its theory (including bisimulation and equational laws), and compare it
with existing approaches. We show that priority adds expressiveness to
both CCS and the π-calculus.

1 Introduction

It has long been recognised that standard process algebra [13,9,2] has difficulty
dealing with actions of different priority, such as for instance an interrupt action
of high priority. Various authors have suggested how to add priority to process
languages such as ACP [1,10], CCS [4,3] and CSP [8,7]. We introduce a new
approach, involving the addition of “priority guards” to the summation opera-
tor of Milner’s process calculus CCS. In our approach, priority is unstratified,
meaning that actions are not assigned fixed levels, so that the same action can
have different priority depending where it appears in a program. We shall see
that existing accounts of priority in CCS are either stratified [4], or else they
impose a distinction between outputs and inputs, whereby prioritised choice is
only made on inputs [3,5]. This goes against the spirit of CCS, where inputs and
outputs are treated symmetrically, and we contend that it is unnecessary. We
introduce the new calculus, give examples, develop its theory (including bisimu-
lation and equational laws), and compare it with existing approaches. We show
that priority adds expressiveness to both CCS and the π-calculus.
We start with the idea of priority. We assume some familiarity with CCS

notation [13]. Consider the CCS process a + b. The actions a and b have equal
status. Which of them engages in communication depends on whether the en-
vironment is offering the complementary actions ā or b̄. By “environment” we
� Partially funded by EPSRC grant GR/K54663

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 305–320, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

306 I. Phillips

mean whatever processes may be placed in parallel with a + b. We would like
some means to favour a over b, say, so that if the environment offers both, then
only a can happen. This would be useful if, for instance, a was an interrupt ac-
tion. We need something more sophisticated than simply removing b altogether,
since, if a cannot communicate, it should not stop b from doing so. This brief
analysis points to two features of priority: (1) Priority removes (“preempts”)
certain possibilities that would have existed without priority. Thus if a can com-
municate then b is preempted. (2) Reasoning about priority in CCS has to be
parametrised by the environment.
We now explain the basic idea of priority guards. Let P be a process, let a

be an action, and let U be some set of actions. Then we can form a new process
U :a.P , which behaves like a.P , except that the initial action a is conditional on
the environment not offering actions in Ū , the CCS “complement” of U . We call
U a priority guard in U :a.P . All actions in U have priority over a at this point
in the computation. We call our calculus CPG (for CCS with Priority Guards).
As a simple example, if we have a CCS process a.P + b.Q and we wish to

give a priority over b in the choice, we add a priority guard to get a.P + a :b.Q
(we omit the set braces around a). Priority is specific to this choice, since the
guard affects only the initial b, and not any further occurrences of b there may
be in Q.
Let us see how this example is handled in two existing approaches to priority.

Cleaveland and Hennessy [4] add new higher priority actions to CCS. They
would write our example as a.P + b.Q (high priority actions are underlined).
In their stratified calculus, actions have fixed priority levels, and only actions
at the same priority level can communicate. In this paper we are interested in
an unstratified approach, and so our starting point of reference is Camilleri and
Winskel’s priority choice operator [3]. In their notation the example becomes
a.P+〉b.Q. They make the priority of a over b specific to the particular choice,
so that b might have priority over a elsewhere in the same program. We shall
compare our approach with these two existing ones in Sect. 2.
A striking by-product of adding priority guards to CCS is that we can encode

mixed input and output guarded summation using priority guards and restricted
parallel composition. As a simple example, a.P+b̄.Q can be encoded with priority
guards as newc(c :a.(P |c̄)|c : b̄.(Q|c̄)) (where c is a fresh action). This expresses in
a natural way the preemptive nature of +, whereby pursuing one option precludes
the others. The same effect can be achieved in Camilleri and Winskel’s calculus
(but only for input guards): a.P + b.Q can be encoded as

new c ((c+〉a.(P |c̄)|(c+〉b.(Q|c̄)))

but of course here we are exchanging one form of choice for another. We shall
return to this encoding of summation in Sect. 6.
To end this section, we give an example, involving handling of hidden actions

and the scoping of priority. We wish to program a simple interrupt. Let P be a
system which consists of two processes A, B in parallel which perform actions a,
b respectively, while communicating internally to keep in step with each other.

CCS with Priority Guards 307

P also has an interrupt process I which shuts down A and B when the interrupt
signal int is received.

P
df= newmid, intA, intB (A|B|I) A df= intA :a.mid.A+ intA

I
df= int.(intA.intB + intB .intA) B

df= intB :b.mid.B + intB

Without the priority guards in A and B, P could receive an int and yet A
and B could continue with a and b. Actions intA, intB have priority over a, b,
respectively. This only applies within the scope of the restriction. We can apply
the usual techniques of CCS (including removing τ actions) and get

P = a.P1 + b.P2 + int P1 = b.P + int P2 = a.P + int

which is what we wanted. We consider this example more precisely in Sect. 8.
Notice that in the system as a whole, once the high-priority interrupt action

is restricted, we have regained a standard CCS process without priority. Thus
priority can be encapsulated locally, which we regard as an important feature
when programming larger systems, where different priority frameworks may be
in use in different subsystems.
The rest of the paper is organised as follows: First we compare our approach

with related work (Sect. 2). Next we define the language of processes (Sect. 3).
Then we look at reactions (Sect. 4) and labelled transitions (Sect. 5). We then
look at bisimulation and equational theories for both the strong (Sect. 6) and
weak cases (Sect. 7). We then return to our interrupt example (Sect. 8), and
look at the extra expressiveness afforded by priority guards (Sect. 9). The paper
is completed with some brief conclusions.

2 Comparison with Related Work

We refer the reader to [5] for discussion of the many approaches taken by other
authors to priority. Here we restrict ourselves to comparison of our work with
that of Camilleri and Winskel [3] (referred to as CW for short) and Cleaveland,
Lüttgen and Natarajan [5] (CLN for short).

2.1 Camilleri and Winskel (CW)

As we have seen, CW’s CCS with a prioritised choice operator P+〉Q allows
priority to be decided in a way which is specific to each choice in a system.
The idea of a priority choice between processes is interesting and natural. The
authors present an operational semantics via a labelled transition relation, and
define a bisimulation-based equivalence. They also give an axiomatisation of this
equivalence which is complete for finite processes (i.e. those not using recursion).
They do not show how to hide the τ -actions resulting from communications
(though this is treated in [11]).
As we saw in the Introduction, reasoning about priority has to be

parametrised on the environment. The CW transition relation is parametrised

308 I. Phillips

on a set of output actions R. Thus �R P
α→ P ′ means that, in an environment

which is ready to perform precisely the actions R, the process P can perform an
action α to become P ′. For example, �R a+〉b a→ 0 (any R), while �R a+〉b b→ 0
provided ā �∈ R.
We have borrowed the idea of parametrisation on the environment for our

labelled transition system for CPG. For us P α→U P ′ means that, in an environ-
ment which offers no action in the set Ū , process P can perform α to become
P ′. Our most basic rule is essentially U :a.P a→U P , provided a �∈ U .

Note that the CW syntax shows the environment only in the prioritised
choice a.P+〉b.Q, and does this implicitly, in that b.Q’s “environment” is a.P ,
while a.P says nothing about the actual environment. In CPG the environment
is represented in the syntax directly.
There is a difference in expressiveness between CPG and CW’s calculus, in

that the latter cannot express cycles of priority, whereas we can in CPG. CW
consider the paradoxical example new a, b ((a+〉b̄)|(b+〉ā)). The problem is that
there is a circularity, with a having priority over b, as well as vice versa. Can the
system act? They decide to sidestep this question by breaking the symmetry in
CCS between inputs and outputs, and only allowing prioritised choice on input
actions. We feel that this complicates the syntax and operational semantics,
and should not be necessary. There seems to be no essential reason for CW not
to allow the system with circular priorities, since their environmental transition
relation should be able to handle it. In our approach the example is admitted, and
results in a deadlock, which would seem to be in keeping with CW’s approach.
We consider this example again at the end of Sect. 5.
Another reason why CW disallow priority choice on output actions is to

assist in obtaining the normal form they use for proving the completeness of
their equational laws for finite processes. However this normal form is still quite
complicated (consisting of a sum of priority sums of sums). In our calculus CPG
we have only one form of choice, and so completeness is technically simpler.

2.2 Cleaveland, Lüttgen, and Natarajan (CLN)

In CLN’s basic approach [5], which is derived from earlier work of Cleaveland
and Hennessy [4], actions have priority levels. Mostly they consider just two
levels—ordinary actions and higher priority, underlined actions. Only actions
at the same level of priority can communicate, which is really quite restrictive
when one considers that two actions which are intended to communicate may
have quite different priorities within their respective subsystems. Silent actions
resulting from communication have preemptive power over all actions of lower
priority. The authors present both strong and weak bisimulation-based equiva-
lences (drawing on [15]), and axiomatise these for finite processes.
In our unstratified calculus CPG, by contrast, actions do not have priority

levels—each priority guard operates independently, in the spirit of [3].
We referred in the Introduction to the desirability of encapsulating priorities

locally. This encapsulation is present in Camilleri and Winskel’s calculus (and in

CCS with Priority Guards 309

our own), but not in Cleaveland and Hennessy’s, since a high priority τ is treated
differently from a standard τ . However, the development in [5] goes beyond the
basic Cleaveland and Hennessy calculus to consider distributed priorities, where
preemption is decided locally rather than globally. Consideration is also given
to extending the distributed priority calculus to allow communication between
actions at different levels. The authors identify a problem with associativity of
parallel composition. Consider the system

(a+ b)|(b̄+ c)|c̄

where communication is allowed between complementary actions at different
levels. If this associates to the left, then a is preempted by b; however if it
associates to the right then b is preempted by c, and so a is not preempted. A
similar problem is encountered when extending the distributed calculus to allow
more than two levels. CLN’s proposed solution is to follow CW by only allowing
priorities to be resolved between input actions, while treating all output actions
as having equal priority. We have already mentioned our reservations about
this. Nevertheless the distinction between inputs and outputs gives a workable
“mixed-level” calculus (distributed, multi-level, with communication between
different levels). It is particularly nice that CLN show that the CW calculus can
be translated faithfully and naturally into this mixed-level calculus.
It is striking that both CW and the mixed-level calculus of CLN adopt the

same syntactic restriction on inputs and outputs, and also that only strong equiv-
alence (τ actions not hidden) is presented for the mixed-level calculus. We shall
present a weak equivalence for CPG.

3 The Language CPG

We shall denote our augmentation of CCS with priority guards by CPG (CCS
with Priority Guards). First we define the actions of CPG. In standard CCS [13,
Part I] there is a set of names N and a disjoint set of co-names N̄ , together
with a single silent action τ . To these standard names N we shall add a new
disjoint set of names U and a dual set Ū . These are the actions which can be
used in priority guards; they can also be used in the standard way. They need to
be kept separate from standard actions, since we have to be careful with them
in reasoning compositionally about processes.
To see why we take this approach, consider the law P = τ.P , which is valid

for CCS processes.1 In CPG, if a can be a priority guard then a �= τ.a since
there is a context in which the two sides behave differently. Indeed, a|ā :b cannot
perform b (since, as we shall see, b is preempted by the offer of a), whereas
τ.a|ā :b can perform b initially, as a is not offered until τ has occurred. However
if we know that a is a standard name then we do have a = τ.a. So we can retain
CCS reasoning when processes only involve standard names.
1 We are following the formulation of CCS in [13] rather than that of [12]. Processes
such as P + (Q|R) are not allowed, only guarded choices ∑

αi.Pi.

310 I. Phillips

We define Std = N ∪N̄ , Pri = U ∪Ū , Vis = Std∪Pri and Act = Vis∪{τ}. We
let u, v, . . . range over Pri, a, b, . . . over Vis and α, β, . . . over Act. Also S, T, . . .
range over finite subsets of Vis, and U, V . . . over finite subsets of Pri. If S ⊆ Vis,
let S̄ denote {ā : a ∈ S}, where if ā ∈ N̄ ∪ Ū then ¯̄a = a.

Now we define processes:

Definition 1. (cf [13, Definition 4.1]) P is the smallest set such that whenever
P, Pi are processes then P contains

1.
∑

i∈I Si : αi.Pi (guarded summation: I finite, each Si finite)
2. P1|P2 (parallel composition)
3. new a P (restriction)
4. A〈a1, .., an〉 (identifier)

P is ranged over by P,Q,R, . . . We let M,N, . . . range over (guarded) summa-
tions. We assume that each identifier A〈b1, .., bn〉 comes with a defining equation
A(a1, .., an)

df= P , where P is a process whose free names are drawn from a1, .., an.
We will tend to abbreviate a1, .., an by −→a . We write the empty guarded sum-
mation as 0 and abbreviate S : α.0 by S : α. It is assumed that the order in a
summation is immaterial. We abbreviate ∅ :α by α. Definition 1 is much as in
standard CCS except for the priority guards Si. The meaning of the priority
guard S : α is that α can only be performed if the environment does not offer
any action in S̄ ∩ Pri. Clearly, any names in S − Pri have no effect as guards,
and can be eliminated without changing the behaviour of a process. We allow
them to occur in the syntax, since otherwise we could not freely instantiate the
parameters in an identifier. We write u : α instead of {u} : α. Restriction is a
variable-binding operator, and we write fn(P) for the free names of P .
Two sublanguages of CPG are of interest:

Definition 2. Let PStd be the sublanguage of standard processes generated as
in Definition 1 except that all names are drawn from Std (i.e. we effectively take
U = ∅ and Si = ∅ in clause (1)). Let PUg be the sublanguage of unguarded
processes generated as in Definition 1 except that all priority guards are empty
(i.e. Si = ∅ in clause (1)).

Clearly PStd ⊆ PUg ⊆ P. Note that PStd is effectively standard CCS. The un-
guarded processes PUg differ from PStd in that they may contain names in Pri.
Such processes cause no problems for strong equivalence (Proposition 4), but
care is needed with weak equivalence (Sect. 7), since e.g. u and τ.u (u ∈ Pri) are
not weakly equivalent, as remarked above.

4 Offers and Reaction

Structural congruence is the most basic equivalence on processes, which facili-
tates reaction by bringing the subprocesses which are to react with each other
into juxtaposition. It is defined as for CCS:

CCS with Priority Guards 311

Definition 3. (cf [13, Definition 4.7]) Structural congruence, written ≡, is the
congruence on P generated by the following equations:

1. Change of bound names (alpha-conversion)
2. P |0 ≡ P , P |Q ≡ Q|P , P |(Q|R) ≡ (P |Q)|R
3. new a (P |Q) ≡ P |new a Q if a �∈ fn(P);
new a 0 ≡ 0, new a new b P ≡ new b new a P

4. A〈−→b 〉 ≡ {−→
b /−→a }P if A(−→a) df= P

Recall that a guarded action S : a is conditional on other processes in the en-
vironment not offering actions in S̄ ∩ Pri. Before defining reaction we define for
each process P the set off(P) ⊆ Pri of “higher priority” actions “offered” by P .

Definition 4. By induction on P ∈ P:

1. off(
∑

i∈I Si :αi.Pi) = {αi : i ∈ I, αi ∈ Pri, αi �∈ Si}
2. off(P1|P2) = off(P1) ∪ off(P2)
3. off(new a P) = off(P)− {a, a}
4. off(A〈−→b 〉) = off({−→

b /−→a }P) if A(−→a) df= P

In item 1 the reason that we insist αi �∈ Si is that we want to equate a process
such as u : u with 0, since u : u can never engage in a reaction. Note that if
P ∈ PStd then off(P) = ∅.
In CPG, a reaction can be conditional on offers from the environment. Con-

sider u : b|b̄. This can react by communication on b, b̄. However b is guarded
by u, and so the reaction is conditional on the environment not offering ū. We
reflect this by letting reaction be parametrised on sets of actions U ⊆ Pri. The
intended meaning of P →U P ′ is that P can react on its own, as long as the
environment does not offer ū for any u ∈ U (in our parlance, “eschews” U).

Definition 5. Let P ∈ P and let S ⊆ Act be finite. P eschews S (written
P eschewsS) iff off(P) ∩ S̄ = ∅.

Definition 6. (cf [13, Definition 4.13]) The reaction relation on P is the small-
est relation → on P × ℘(Pri)× P generated by the following rules:

S :τ.P +M →S∩Pri P

S :a.P +M eschewsT T : ā.Q+N eschewsS
(S :a.P +M)|(T : ā.Q+N) →(S∪T)∩Pri P |Q

P →U P ′ Q eschewsU
P |Q →U P ′|Q

P →U P ′

new a P →U−{a,ā} new a P ′
P →U P ′ P ≡ Q P ′ ≡ Q′

Q →U Q′

We abbreviate P →∅ P ′ by P → P ′.

312 I. Phillips

The second clause of Definition 6 is the most important. In order for an action
a to react with a complementary ā, the two sides must not preempt each other
(i.e. they must eschew each other’s guards). Furthermore the reaction remains
conditional on the environment eschewing the union of their guards. The re-
striction rule shows how this conditionality can then be removed by scoping.
Notice that if we restrict attention to the unguarded processes PUg (i.e. we let
U = ∅) we recover the usual CCS reaction relation. So the new reaction relation
is conservative over the old.

5 Labelled Transitions

As in standard CCS, we wish to define a transition relation on processes P α→ P ′

meaning that P can perform action α and become P ′. As we did with reaction,
we refine the transition relation so that it is parametrised on sets of actions
U ⊆ Pri. The intended meaning of P α→U P ′ is that P can perform α as long as
the environment eschews U . Our definition is inspired by the transition relation
in [3], which is parametrised on what set of output actions the environment is
ready to perform.

Definition 7. (cf [13, Definition 5.1]) The transition relation on P is the small-
est relation → on P ×Act× ℘(Pri)× P generated by the following rules:

(sum) M + S :α.P +N
α→S∩Pri P if α �∈ S ∩ Pri

(react)
P1

a→U1 P
′
1

P2
ā→U2 P

′
2

P1 eschewsU2 P2 eschewsU1

P1|P2
τ→U1∪U2 P

′
1
|P ′

2

(par)
P1

α→U P ′
1 P2 eschewsU

P1|P2
α→U P ′

1|P2

P2
α→U P ′

2 P1 eschewsU

P1|P2
α→U P1|P ′

2

(res)
P

α→U P ′

new a P
α→U−{a,ā} new a P ′ if α /∈ {a, ā}

(ident) {−→
b /−→a }P

α→U P ′

A〈−→b 〉 α→U P ′ if A(−→a) df= P

We abbreviate P α→∅ P ′ by P α→ P ′ and ∃P ′.P α→U P ′ by P α→U .

Proposition 1. If P α→U P ′ then α /∈ U and U is finite. Moreover,

{u ∈ Pri : ∃U.P u→U} ⊆ off(P) .

To see that off(P) can be unequal to {u ∈ Pri : ∃U.P u→U}, consider u :v.0|ū.0.
We see that off(u :v|ū) = {v, ū}, but u :v|ū cannot perform v.

As with reaction, note that if we restrict attention to the unguarded processes
PUg (i.e. we let U = ∅) we recover the usual CCS transition relation. So the new
transition relation is conservative over the old. In applications we envisage that

CCS with Priority Guards 313

the standard CCS transition relation can be used most of the time. The CPG
transition relation will only be needed in those subsystems which use priority.
As an illustration of the design choices embodied in our definitions, consider

the circular example of Camilleri & Winskel (Subsect. 2.1):

P
df= u.a+ u : v̄ Q

df= v.b+ v : ū R
df= new u, v (P |Q)

In P action u has priority over v̄, while in Q action v has priority over ū. We
have P u→ a, Q ū→v 0. For a u communication to happen, by rule (react) we need
v̄ /∈ off(P), but off(P) = {u, v̄}, so that the u communication cannot happen.
Similarly the v communication cannot happen, and so R is strongly equivalent
to 0 (strong offer equivalence is defined in the next section).

6 Strong Offer Bisimulation

Similarly to standard CCS, we define process equivalences based on strong and
weak bisimulation. We consider strong bisimulation in this section and weak
bisimulation (i.e. with hiding of silent actions) in the next.
The intuition behind our notion of bisimulation is that for processes to be

equivalent they must make the same offers, and for a process Q to simulate a
process P , Q must be able to do whatever P can, though possibly constrained
by fewer or smaller priority guards. For instance, we would expect the processes
a+u :a and a to be equivalent, since the priority guarded u :a is simulated by a.

Definition 8. (cf [13]) A symmetric relation S ⊆ P ×P is a strong offer bisim-
ulation if S(P,Q) implies both that off(P) = off(Q) and that for all α ∈ Act,

if P α→U P ′ then for some Q′ and V ⊆ U , we have Q α→V Q′ and S(P ′, Q′)

Definition 9. Processes P and Q are strongly offer equivalent, written P
off∼ Q,

iff there is some strong offer bisimulation S such that S(P,Q).

Proposition 2. (cf [13, Prop 5.2]) ≡ is a strong offer bisimulation. Hence ≡
implies off∼. ��

Proposition 3. (cf [13, Theorem 5.6]) P τ→U≡ P ′ iff P →U P ′ ��

Theorem 1. (cf [13, Proposition 5.29]) Strong offer equivalence is a congru-
ence, i.e. if P off∼ Q then

1. S :α.P +M
off∼ S :α.Q+M

2. new a P
off∼ new a Q

3. P |R off∼ Q|R
4. R|P off∼ R|Q ��

314 I. Phillips

Note that if P,Q ∈ PUg then P
off∼ Q iff P ∼ Q, where P ∼ Q denotes that

P and Q are strongly equivalent in the usual sense of [13]. So off∼ is conservative
over ∼. In fact we can say more:

Proposition 4. Let P,Q ∈ PUg. If P ∼ Q then C[P] off∼ C[Q], for any context
C[·]. ��

So we can reuse all the known equivalences between CCS processes when working
with CPG processes.

Proposition 5. (cf [13, Proposition 5.21]) For all P ∈ P,

P
off∼

∑
{U :α.Q : P α→U Q}

Proposition 6. The following laws hold:

M + S :α.P off∼ M + (S ∩ Pri) :α.P (1)

M + U :α.P off∼ M if α ∈ U ⊆ Pri (2)

M + U :α.P + (U ∪ V) :α.P off∼ M + U :α.P (3)

(
∑

Ui :αi.Pi) | (
∑

Vj :βj .Qj)

off∼
∑

{Ui :αi.(Pi|(
∑

Vj :βj .Qj)) : ∀j.βj �∈ Ūi} (4)

+
∑

{Vj :βj .((
∑

Ui :αi.Pi)|Qj)) : ∀i.αi �∈ V̄j}
+

∑
{(Ui ∪ Vj) :τ.Pi|Qj : αi = β̄j ∈ Vis,∀i′, j′.αi′ �∈ V̄j , βj′ �∈ Ūi}

new a (
∑

Ui :αi.Pi)
off∼

∑
((Ui − {a, ā}) :αi.new a Pi : αi �= a, ā} (5)

Definition 10. Let AS be the following set of axioms: the axioms of structural
congruence ≡ (Definition 3) together with the five laws of Proposition 6.

Theorem 2. The set of axioms AS is complete for off∼ on finite CPG processes
(a CPG process is finite if it contains no identifiers). ��

As mentioned in the Introduction, we can encode mixed input and output
guarded summation using priority guards and restricted parallel composition.

CCS with Priority Guards 315

Proposition 7. Suppose that {αi : i ∈ I} are actions which cannot react with
each other, i.e. there do not exist i, j ∈ I and a ∈ Vis such that αi = a and
αj = ā. Then

∑
Si :αi.Pi

off∼ new u (
∏
(Si ∪ {u} :αi(Pi|ū)))

where u ∈ Pri is some fresh name not occurring in
∑

Si :αi.Pi and
∏

denotes
parallel composition. ��
The non-reaction condition in Proposition 7 is needed, since otherwise the right-
hand side would have extra unwanted reactions. The condition is not unduly
restrictive, since if we have a system where the same channel a is used to pass
messages both to and from a process, we can simply separate a out into two
separate channels, one for each direction.

7 Weak Offer Bisimulation

We now investigate weak bisimulation, where reactions are hidden.

Definition 11. P ⇒U P ′ iff P
id= P ′ or ∃U1, . . . , Un.P →U1 · · · →Un P ′ with

U = U1 ∪ · · · ∪ Un (n ≥ 1). We abbreviate P ⇒∅ P ′ by P ⇒ P ′.
P

α⇒U P ′ iff ∃U ′, U ′′.P ⇒U ′ P ′′ α→U ′′ P ′′′ ⇒ P ′ with U = U ′ ∪ U ′′ and
off(P ′′) ⊆ off(P).

Here P id= P ′ means that P and P ′ are identically equal. So P ⇒U P ′ al-
lows zero or more internal transitions with guards included in U . The condition
off(P ′′) ⊆ off(P) is needed to obtain a weak equivalence which is a congruence.
The reason why we allow priority guards before performing a visible action, but
not after, is as follows: For Q to simulate P a→U P ′, Q must expect an environ-
ment offering Ū up to and including performing a. After this, the environment
has changed, and might be offering anything. So Q can perform further reac-
tions to reach Q′ simulating P ′, but these reactions must not be subject to any
priority guards.

Definition 12. A symmetric relation S ⊆ P × P is a weak offer bisimulation
if S(P,Q) implies both that off(P) = off(Q) and that:

if P →U P ′ then for some Q′ and U ′ ⊆ U , we have Q ⇒U ′ Q′ and S(P ′, Q′),
and for all a ∈ Vis,

if P a→U P ′ then for some Q′ and U ′ ⊆ U , we have Q a⇒U ′ Q′ and S(P ′, Q′).

On the sublanguage PStd (which corresponds to CCS) weak offer bisimulation
is the same as for CCS [13, Proposition 6.3].

Definition 13. Processes P and Q are weakly offer equivalent, written P
off≈ Q,

iff there is some weak offer bisimulation S such that S(P,Q).

316 I. Phillips

Proposition 8. For any P,Q, if P off∼ Q then P
off≈ Q. ��

Theorem 3. (cf [13, Proposition 6.17])
off≈ is a congruence. ��

So we have a congruence which conservatively extends CCS.
We now turn to the equational theory of weak offer equivalence. In CCS we

have the law P ≈ τ.P [13, Theorem 6.15]. However in CPG, u �off≈ τ.u. This is
because off(u) = {u} whereas off(τ.u) = ∅. However the usual CCS equivalence
laws will still hold for the standard processes PStd (recall that for P ∈ PStd,
off(P) = ∅).
Proposition 9. (cf [13, Theorem 6.15]) The following laws hold:

τ.P
off≈ P if off(P) = ∅ (6)

M +N + τ.N
off≈ M + τ.N if off(N) ⊆ off(M) (7)

M + α.P + α.(τ.P +N)
off≈ M + α.(τ.P +N) (8)

We stated (6), (7) and (8) because in many situations it is convenient to use
conventional CCS reasoning. The next result gives the “intrinsic” τ -laws of CPG:

Proposition 10. The following four laws hold:

M + U :τ.M
off≈ M (9)

M + U :τ.(N + V :τ.P)
off≈ M + U :τ.(N + V :τ.P) + (U ∪ V) :τ.P (10)

If off(N + V :a.P) ⊆ off(M):

M + U :τ.(N + V :a.P)
off≈ M + U :τ.(N + V :a.P) + (U ∪ V) :a.P (11)

M + U :α.P + U :α.(τ.P +N)
off≈ M + U :α.(τ.P +N) (12)

We can derive (7) from (10) and (11). Also we can derive:

τ.M
off≈ M if off(M) = ∅ (13)

from (9), (10), (11). Recall that every process is strongly equivalent to a sum-
mation (Proposition 5), and so (13) is effectively as strong as (6).

Definition 14. Let AW be the axioms AS (Definition 10) together with (9),
(10), (11) and (12).

CCS with Priority Guards 317

Theorem 4. The axioms AW are complete for
off≈ on finite processes. ��

Proposition 11. (cf [13, Theorem 6.19]) Unique solution of equations. Let −→
X

be a (possibly infinite) sequence of process variables Xi. Up to
off≈, there is a

unique sequence −→
P of processes which satisfy the formal equations:

Xi
off≈

∑

j

Uij :aij .Xk(ij)

(notice that τs are not allowed). ��

8 Example

We now revisit the interrupt example from Sect. 1. Recall that we had:

P
df= newmid, intA, intB (A|B|I) A df= intA :a.mid.A+ intA

I
df= int.(intA.intB + intB .intA) B

df= intB :b.mid.B + intB

We want to show P
off≈ Q, where

Q
df= a.Q1 + b.Q2 + int Q1

df= b.Q+ int Q2
df= a.Q+ int

Clearly intA, intB ∈ Pri. We take a, b,mid, int ∈ Std. This means that Q ∈ PStd.
We can use Laws (4), (5) to get:

P
off∼ a.P1 + b.P2 + int.P3

P1
off∼ b.P4 + int.τ P2

off∼ a.P4 + int.τ P3
off∼ τ.τ + τ.τ P4

off∼ τ.P + int.τ.P3

where P1, P2, P3, P4 are various states of P . We can use law (6) to get:

P1
off≈ b.P4 + int P2

off≈ a.P4 + int P3
off≈ 0 P4

off≈ τ.P + int

Then we use law (7) to get τ.P + int
off≈ τ.P . Notice that this needs off(P) = ∅,

i.e. a, b, int �∈ Pri. Finally:

P
off≈ a.P1 + b.P2 + int P1

off≈ b.P + int P2
off≈ a.P + int

By Proposition 11 we get P
off≈ Q as we wanted.

Our reasoning was presented equationally, but could equally well have been
done using bisimulation. We first unfolded the behaviour of P . Since all pri-
oritised actions were restricted, the system P had no priorities as far as the
environment was concerned. We could therefore remove silent actions and sim-
plify using standard techniques of CCS.
In the Introduction we used plain equality (=) when talking about equiva-

lence between CPG processes. This is to be interpreted as
off≈.

318 I. Phillips

9 Expressiveness

In this section we show that priorities add expressive power to both CCS and the
π-calculus [14,13]. As far as we are aware, this has not been previously shown for
any notion of priority in process algebra. We use the work of Ene and Muntian
[6], which was inspired by that of Palamidessi [16].

Definition 15. [16] An encoding [[·]] is a compositional mapping from (the pro-
cesses of) one calculus to another. It is called uniform if [[P |Q]] = [[P]]|[[Q]] and,
for any renaming σ, [[σ(P)]] = σ([[P]]). A semantics is reasonable if it distin-
guishes two processes P and Q whenever in some computation of P the actions
on certain intended channels are different from those of any computation of Q.

Definition 16. (slight modification of [16, Definition 3.1]) A process

P = P1| · · · |Pn

is an electoral system if every computation of P can be extended (if necessary)
to a computation which declares a leader i by outputting ōi, and where no com-
putation declares two different leaders.

The intuition behind the following theorem is that priorities give us something
of the power of one-many (broadcast) communication, in that a single process
can simultaneously interrupt several other processes. By contrast, π-calculus
communication is always one-one.

Theorem 5. There is no uniform encoding of CPG into the π-calculus preserv-
ing a reasonable semantics.

Proof. (Sketch) We follow the proof of Ene and Muntian’s result that the broad-
cast π-calculus cannot be encoded in the π-calculus [6]. The network of CPG
processes P1| · · · |Pn is an electoral system, where Pi

df= u :a.(ū|ōi)|ā. If Pi man-
ages to communicate on a then Pi declares itself the leader. No other process
can now do this, since Pi is preventing all the other processes from performing
a by offering ū.

The rest of the proof is as in [6]. Suppose that we have an encoding [[·]] of CPG
into the π-calculus. Let σ(oi) = om+i, with σ the identity otherwise. Consider
P1| · · · |Pm+n. This is an electoral system and so the encoding [[P1| · · · |Pm+n]]
must be also. But

[[P1| · · · |Pm+n]] = [[(P1| · · · |Pm)|σ(P1| · · · |Pn)]]
= [[P1| · · · |Pm]]|[[σ(P1| · · · |Pn)]]

So we have two electoral systems of m and n processes respectively, which can be
run independently in the π-calculus to produce two winners. Contradiction. ��
Since CCS can be encoded in π-calculus, it follows that CPG has greater expres-
sive power than CCS. It also follows that we can add expressive power to the
π-calculus by adding priority guards.

CCS with Priority Guards 319

Theorem 6. There is no uniform encoding of the π-calculus into CPG preserv-
ing a reasonable semantics.

Proof. Much as in [16], where it is shown for CCS rather than CPG. ��
The results of this section apply equally to Camilleri-Winskel and Cleaveland-
Hennessy-style priority.

10 Conclusions

We have introduced priority guards into CCS to form the language CPG. We
have defined both strong and weak bisimulation equivalences and seen that they
are conservative over the CCS equivalences, and that they are congruences. We
have given complete equational laws for finite CPG in both the strong and weak
cases. Conservation over CCS has the consequence that in verifying CPG systems
we can often use standard CCS reasoning, as long as we take some care with
actions in the set of prioritised actions Pri.
CPG overcomes the asymmetry between inputs and outputs present both in

Camilleri andWinskel’s calculus and in the corresponding calculus of Cleaveland,
Lüttgen and Natarajan.
Finally, we have seen that priority guards add expressiveness to both CCS

and the π-calculus.
We wish to thank Philippa Gardner, Rajagopal Nagarajan, Catuscia Palami-

dessi, Andrew Phillips, Irek Ulidowski, Maria Grazia Vigliotti, Nobuko Yoshida
and the anonymous referees for helpful discussions and suggestions.

References

1. J.C.M. Baeten, J. Bergstra, and J.-W. Klop. Syntax and defining equations for
an interrupt mechanism in process algebra. Fundamenta Informaticae, 9:127–168,
1986.

2. J. Bergstra and J.-W. Klop. Process algebra for synchronous communication.
Information and Computation, 60:109–137, 1984.

3. J. Camilleri and G. Winskel. CCS with priority choice. Information and Compu-
tation, 116(1):26–37, 1995.

4. R. Cleaveland and M.C.B. Hennessy. Priorities in process algebra. Information
and Computation, 87(1/2):58–77, 1990.

5. R. Cleaveland, G. Lüttgen, and V. Natarajan. Priority in process algebra. In
J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra.
Elsevier, 2001.

6. C. Ene and T. Muntian. Expressiveness of point-to-point versus broadcast commu-
nications. In FCT ’99, volume 1684 of Lecture Notes in Computer Science, pages
258–268. Springer-Verlag, 1999.

7. C.J. Fidge. A formal definition of priority in CSP. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):681–705, 1993.

8. H. Hansson and F. Orava. A process calculus with incomparable priorities. In
Proceedings of the North American Process Algebra Workshop, pages 43–64, Stony
Brook, New York, 1992. Springer-Verlag Workshops in Computer Science.

320 I. Phillips

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
10. A. Jeffrey. A typed, prioritized process algebra. Technical Report 13/93, Dept. of
Computer Science, University of Sussex, 1993.

11. C.-T. Jensen. Prioritized and Independent Actions in Distributed Computer Sys-
tems. PhD thesis, Aarhus University, 1994.

12. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
13. R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100:1–77, 1992.

15. V. Natarajan, L. Christoff, I. Christoff, and R. Cleaveland. Priorities and ab-
straction in process algebra. In P. S. Thiagarajan, editor, Foundations of Software
Technology and Theoretical Computer Science, 14th Conference, volume 880 of
Lecture Notes in Computer Science, pages 217–230. Springer-Verlag, 1994.

16. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. In Proceedings of the 25th Annual Symposium on Principles
of Programming Languages, POPL ’97, pages 256–265. ACM, 1997.

	Introduction
	Comparison with Related Work
	Camilleri and Winskel (CW)
	Cleaveland, L{accent 127 u}ttgen, and Natarajan (CLN)

	The Language CPG
	Offers and Reaction
	Labelled Transitions
	Strong Offer Bisimulation
	Weak Offer Bisimulation
	Example
	Expressiveness
	Conclusions

