
CCS with Priority Guards 1

Iain Phillips2

Department of Computing
Imperial College London

London SW7 2AZ, England

Abstract

It has long been recognised that standard process algebra has difficulty dealing with actions of different
priority, such as for instance an interrupt action of high priority. Various solutions have been proposed.
We introduce a new approach, involving the addition of “priority guards” to Milner’s process calculus
CCS. In our approach, priority is unstratified, meaning that actions are not assigned fixed levels, so that
the same action can have different priority depending where it appears in a program. Unlike in other
unstratified accounts of priority in CCS (such as that of Camilleri and Winskel), we treat inputs and outputs
symmetrically. We introduce the new calculus, give examples, develop its theory (including bisimulation
and equational laws), and compare it with existing approaches. We use leader election problems to show
that priority adds expressiveness to both CCS and the π-calculus.

Keywords: CCS, priority, expressiveness, π-calculus

1 Introduction

It has long been recognised that standard process algebra [17,13,2] has difficulty
dealing with actions of different priority, such as for instance an interrupt action
of high priority. Various authors have suggested how to add priority to process
languages such as ACP [1,14], CCS [7,5] and CSP [11,10]. We introduce a new
approach, involving the addition of “priority guards” to the summation operator
of Milner’s process calculus CCS. In our approach, priority is unstratified, meaning
that actions are not assigned fixed levels, so that the same action can have different
priority depending where it appears in a program. We shall see that existing ac-
counts of priority in CCS are either stratified [7], or else they impose a distinction
between outputs and inputs, whereby prioritised choice is only made on inputs [5,8].
Such a distinction is somewhat restrictive, though one can probably work around
the issue in actual examples. Although one can see a technical need for the dis-
tinction in the case of [8], it is hard to see a fundamental reason why it should be

1 A shorter version of this paper appeared in Concur 2001 [24].
2 Email: iccp@doc.imperial.ac.uk

Phillips

needed. It also goes against the spirit of CCS, where inputs and outputs are treated
symmetrically. We contend that it is unnecessary.

We introduce the new calculus, give examples, develop its theory (including
bisimulation and equational laws), and compare it with existing approaches. We
use leader election problems to show that priority adds expressiveness to both CCS
and the π-calculus.

We start with the idea of priority. Recall that, in CCS, communication in-
volves exactly two parties, which experience the interaction simultaneously (so-
called “hand-shaking”). We assume some familiarity with CCS notation [17,19].
Consider the CCS process a + b. The actions a and b have equal status. Which of
them engages in communication depends on whether the environment is offering the
complementary actions a or b. By “environment” we mean whatever processes may
be placed in parallel with a+b. We would like some means to favour a over b, say, so
that if the environment offers both, then only a can happen. This would be useful if,
for instance, a was an interrupt action. We need something more sophisticated than
simply removing b altogether, since, if a cannot communicate, it should not stop b

from doing so. This brief analysis points to two features of priority: (1) Priority
removes (“preempts”) certain possibilities that would have existed without priority.
Thus if a can communicate then b is preempted. (2) Reasoning about priority in
CCS has to be parametrised by the environment.

We now explain the basic idea of priority guards. Let P be a process, let a be an
action, and let U be some set of actions. Then we can form a new process U :a.P ,
which behaves like a.P , except that the initial action a can only be performed if the
environment does not offer any action in U , the CCS “complement” of U . We call
U a priority guard in U :a.P . All actions in U have priority over a at this point in
the computation. We call our calculus CPG (for CCS with Priority Guards).

As a simple example, if we have a CCS process a.P + b.Q and we wish to give a

priority over b in the choice, we add a priority guard to get a.P + a : b.Q (we omit
the set braces around a). Priority is specific to this choice, since the guard affects
only the initial b, and not any further occurrences of b there may be in Q.

Let us see how this example is handled in two existing approaches to priority.
Cleaveland and Hennessy [7] add new higher priority actions to CCS. They would
write our example as a.P + b.Q (high priority actions are underlined). In their
stratified calculus, actions have fixed priority levels, and only actions at the same
priority level can communicate. In this paper we are interested in an unstratified
approach, and so our starting point of reference is Camilleri and Winskel’s priority
choice operator [5]. In their notation the example becomes a.P +〉 b.Q. They make
the priority of a over b specific to the particular choice, so that b might have priority
over a elsewhere in the same program. We shall compare our approach in detail
with these two existing ones in Section 2.

We have said that a priority guard prevents an action going ahead if a higher-
priority action is “offered” by the environment. This notion of “offer” needs to be
defined before we know what actions can actually take place. In CPG we take a very
simple view, which is that any immediately available action is offered, regardless of
whether it can actually occur. So an action can be offered, even though its partner
co-action is unavailable, and even if the action is preempted by other higher-priority

2

Phillips

actions. In this respect CPG differs radically from other treatments of priority,
which adopt what we call the “Principle of Limited Preemption” (Section 2.3),
meaning that an action which is itself preempted cannot preempt other actions.
In this paper we show that CPG-style preemption yields a successful and tractable
treatment of priority. Therefore there are apparently at least two different meanings
of “priority” in CCS. It remains an open question as to whether either meaning can
be shown to be consistent with an independent model.

Since offers can only be made by immediately available actions, even silent (τ)
actions can delay an offer from being made. So the process τ.a is different from a,
in that the former does not offer a immediately. This difference is apparent when
we place the process a :b in parallel. Indeed, a | a :b cannot perform b (since, as we
shall see, b is preempted by the offer of a), whereas τ.a | a :b can perform b initially,
as a is not offered until τ has occurred.

In standard CCS, a process such as a | a can perform a communication, pro-
ducing a τ action. In CPG, such communications are no longer autonomous, but
are conditional on the environment. Thus the process b : a | a will only perform τ

if the environment is not offering b. Two CPG processes can only communicate if
for each process, the environment (which includes the other process) is not offering
any action corresponding to a priority guard of the process.

We start the technical development by defining the language of CPG and the
reaction and labelled transition relations. We then proceed to define appropriate
notions of strong and weak (i.e. taking into account silent actions) bisimulation.
The associated equivalences are shown to be congruences (Theorems 6.3 and 7.4).
The intuition behind our notion of bisimulation is that for processes to be equivalent
they must make the same offers, and for a process Q to simulate a process P , Q

must be able to do whatever P can, though possibly constrained by fewer or smaller
priority guards. For instance, we would expect the processes a + u : a and a to be
equivalent, since the priority guarded u : a is simulated by a. We develop simple
equational laws which are complete for finite processes in both the strong and weak
cases (Theorems 6.14 and 7.10). Even the weak laws are considerably simpler than
the ones Camilleri and Winskel give for the strong case.

We take care throughout that the new language is conservative over CCS. As
far as transitions are concerned, this requires that no new transitions are created
for standard CCS processes. But we also ensure that both the strong and the weak
congruences are conservative over the standard notions. To this end the language
incorporates priority actions, which are the only ones which have a preemptive
effect. This is not a stratification as such, since priority actions are only prioritised
where they appear in priority guards. If conservation over CCS was not an issue,
they could be dispensed with.

In applications we envisage that standard CCS reasoning can be used most of
the time, and CPG reasoning will only be needed in those subsystems which use
priority. As well as conservation, we rely here on a key feature of CPG, which is
that priority can be localised using the restriction operator; in fact, a process where
all priority names are restricted is equivalent to a CCS process (Proposition 6.7).
Priorities which are only relevant to subsystems can be encapsulated locally, and as a
result can be ignored outside their own subsystems. We regard this as an important

3

Phillips

feature when programming larger systems, where different priority frameworks may
be in use in different subsystems. Thus both conservation and localisability are
useful in building systems and reasoning about them in a modular fashion.

We now give an example to illustrate the handling of hidden actions and the
scoping of priority. We wish to program a simple interrupt. Let P be a system which
consists of two processes A, B in parallel which perform actions a, b respectively,
while communicating internally (on channel mid) to keep in step with each other.
P also has an interrupt process I which shuts down A and B when the interrupt
signal int is received.

P
def= new mid, intA, intB (A | B | I) A

def= intA :a.mid.A + intA

I
def= int.(intA | intB) B

def= intB :b.mid.B + intB

Without the priority guards in A and B, P could receive an int and yet A and B

could continue with a and b. Actions intA, intB have priority over a, b, respectively.
This only applies within the scope of the restriction. We can apply the usual
techniques of CCS (including removing τ actions) and get

P = a.P1 + b.P2 + int P1 = b.P + int P2 = a.P + int

which is what we wanted (equality here means weak bisimulation equivalence, which
is a congruence).

Notice that in the system as a whole, once the high-priority interrupt action is
restricted, we have regained a standard CCS process without priority, illustrating
the fact that priority can be encapsulated locally, as discussed above.

It is also worth noting that if we merely wanted to interrupt A and B, we could
have simply defined A′ def= intA :a.mid.A′, B′ def= intB :b.mid.B′. As soon as int occurs,
I offers intA, intB, so that A′ and B′ cannot perform a, b respectively according to
our rules. This shows that priority guards do not require summation to have an
effect. The summands intA, intB in A, B give us a way of gracefully recovering from
the interrupt so that further computation could take place (if programmed after the
intA, intB guards).

We shall return to this example to give more precise details in Section 8.
A striking by-product of adding priority guards to CCS is that we can encode

mixed input and output guarded summation using priority guards and restricted
parallel composition, provided the summands cannot react with each other (Propo-
sition 6.15). As a simple example, a.P + b.Q can be encoded with priority guards
as new c (c : a.(P | c) | c : b.(Q | c)) (where c is a fresh action). This expresses in
a natural way the preemptive nature of +, whereby pursuing one option precludes
the others. The same effect can be achieved in Camilleri and Winskel’s calculus
(but only for input guards): a.P + b.Q can be encoded as

new c ((c +〉 a.(P | c)) | (c +〉 b.(Q | c)))

but of course here we are simply exchanging one form of choice for another.
This encoding of summation is similar to Nestmann and Pierce’s encoding of

input-guarded summation in the asynchronous π-calculus [22], where the idea is

4

Phillips

that the summands compete in parallel to be the first to successfully interrogate a
lock. The Nestmann-Pierce encoding would also work without name passing, but it
does need asynchronous communication, whereas of course communication in CCS
is synchronous. In our case, the added power of priorities means that we are able
to handle certain mixed choices, and not just input-guarded choice.

We conclude the paper by studying the expressiveness of CPG via leader election
problems, building on the work of Palamidessi [23] and Ene and Muntean [9]. We
show that the leader election problem can be solved uniformly for any size of network
in CPG (Theorem 9.10). Here “uniformly” means that the individual processes have
a definition which is independent of the size of the network. This illustrates the
fact that in CPG high priority actions can have a “broadcast” effect over their
environment, in that a single process can simultaneously interrupt several other
processes. By contrast, CCS and π-calculus communication are always one-one. We
then use Theorem 9.10 to show that CPG cannot be encoded in the π-calculus [20]
under certain conditions (Theorem 9.16). Since CCS can be seen as a subcalculus
of the π-calculus, this shows that adding priority guards produces an increase in
expressive power in the case of both CCS and the π-calculus. Of course, adding
expressive power has been the very intention of all proposals for introducing priority
constructs, but, as far as we are aware, it has not been proved previously that any
notion of priority adds expressiveness to a process calculus.

Palamidessi showed that the π-calculus is more expressive than CCS by showing
that the leader election problem can be solved for a ring of four processes in the
π-calculus, but not in CCS. We show that in fact CPG is powerful enough to solve
the problem for a ring of size four (Proposition 9.23), but not of size any composite
(non-prime) number larger than four (Theorem 9.24). Noting that Palamidessi’s
work easily leads to a solution in the π-calculus for rings of any size, we deduce that
the π-calculus is not encodable in CPG (Theorem 9.27) under certain conditions.

The rest of the paper is organised as follows. First we compare our approach
with related work (Section 2). Next we define the language of processes (Section 3).
Then we look at reactions (Section 4) and labelled transitions (Section 5). We then
look at bisimulation and equational theories for both the strong (Section 6) and
weak cases (Section 7). We then return to our interrupt example (Section 8), and
look at the extra expressiveness afforded by priority guards (Section 9). The paper
is completed with some brief conclusions.

2 Comparison with Related Work

We refer the reader to [8] for discussion of the many approaches taken by other
authors to priority. Here we restrict ourselves to comparison of our work with that
of Camilleri and Winskel [5] (referred to as CW for short) and Cleaveland, Lüttgen
and Natarajan [8] (CLN for short).

2.1 Camilleri and Winskel (CW)

As we have seen, CW’s CCS with a prioritised choice operator P +〉 Q allows priority
to be decided in a way which is specific to each choice in a system. The idea of a
priority choice between processes is interesting and natural. The authors present an

5

Phillips

operational semantics via a labelled transition relation, and define a bisimulation-
based equivalence. They also give an axiomatisation of this equivalence which is
complete for finite processes (i.e. those not using recursion). They do not show how
to hide the τ -actions resulting from communications (though this is treated in [15]).

As we saw in the Introduction, reasoning about priority has to be parametrised
on the environment. The CW transition relation is parametrised on a set of output
actions R. Thus `R P

α→ P ′ means that, in an environment which is ready to
perform precisely the actions R, the process P can perform an action α to become
P ′. For example, `R a +〉 b

a→ 0 (any R), while `R a +〉 b
b→ 0 provided a 6∈ R.

We have borrowed the idea of parametrisation on the environment for our la-
belled transition system for CPG. For us P

α→U P ′ means that, in an environment
which offers no action in the set U , process P can perform α to become P ′. Our
most basic rule is essentially U :a.P

a→U P , provided a 6∈ U .
Note that the CW syntax shows the environment only in the prioritised choice

a.P +〉 b.Q, and does this implicitly, in that b.Q’s “environment” is a.P , while a.P

says nothing about the actual environment. In CPG the environment is represented
in the syntax directly.

There is a difference in expressiveness between CPG and CW’s calculus, in that
the latter cannot express cycles of priority, whereas we can in CPG. CW consider
the paradoxical example new a, b ((a +〉 b) | (b +〉 a)). The problem is that there is a
circularity, with a having priority over b, as well as vice versa. Can the system act?
They decide to sidestep this question by breaking the symmetry in CCS between
inputs and outputs, and only allowing prioritised choice on input actions. We feel
that this complicates the syntax and operational semantics, and should not be
necessary. There seems to be no essential reason for CW not to allow the system
with circular priorities, since their environmental transition relation should be able
to handle it. In our approach the example is admitted, and results in a deadlock,
which would seem to be in keeping with CW’s approach. We consider this example
again in Section 5.

Another reason why CW disallow priority choice on output actions is to assist
in obtaining the normal form they use for proving the completeness of their equa-
tional laws for finite processes. However this normal form is still quite complicated
(consisting of a sum of priority sums of sums). In our calculus CPG we have only
one form of choice, and so completeness is technically simpler.

There seems to be no telling reason for priority choice to be attached to in-
put guards rather than output guards. Perhaps the intuition is that it should be
easier to implement, much in the way that input choice is considered easier to im-
plement than output choice in the π-calculus (being encodable in the asynchronous
π-calculus [22]). In Prasad’s calculus CBS (with broadcast rather than hand-shaking
communication) priorities are similarly localised to one of the partners in a com-
munication [27]. But in this case they are attached to output actions, which makes
sense, since they are the autonomous ones. Preempting an input would make no
sense, since the absence of an input does not inhibit an output.

In CCS, only silent (τ) actions are autonomous. In CPG, we shall allow them
to be prefaced by priority guards, and thereby to be preempted. But of course
τ actions are meant to represent a handshake between an action and a co-action.

6

Phillips

Unlike in CBS, both sides of the handshake are needed, and we allow priority guards
to be attached to either side. In order for a handshake to go ahead, neither side
must be preempted by its environment.

2.2 Cleaveland, Lüttgen and Natarajan (CLN)

In CLN’s basic approach [8], which is derived from earlier work of Cleaveland and
Hennessy [7] (referred to as CH for short), actions have priority levels. Mostly CLN
consider just two levels—ordinary actions and higher priority, underlined actions.
Only actions at the same level of priority can communicate, which is really quite
restrictive when one considers that two actions which are intended to communicate
may have quite different priorities within their respective subsystems. Silent actions
resulting from communication have preemptive power over all actions of lower pri-
ority. The authors present both strong and weak bisimulation-based equivalences
(drawing on [21]), and axiomatise these for finite processes.

In our unstratified calculus CPG, by contrast, actions do not have priority
levels—each priority guard operates independently, in the spirit of [5].

Even disregarding the issue of priority levels, there is a difference between pre-
emption in [7,8] and in CPG, since in CPG preemption is done entirely by the
environment. Consider the process a + τ . According to CH, this process cannot
perform a, since it is preempted by τ (similarly, for CW the process τ +〉 a is equiv-
alent to τ). However if we translate a + τ into CPG as U :a + τ (where the set of
actions U , with a 6∈ U , is chosen to be as large as necessary), we find that by con-
trast U :a+τ

a→U 0. So the a is not preempted, but only downgraded (performance
of a depends on the environment not offering any action in U).

Another example illustrates the opposite effect. For CH, a | b
a→ b, but the

translation U :a | b (with b ∈ U) cannot perform a at all, since the environment (in
the form of b) is offering an action which preempts a. Here we see that, in CPG,
a high priority action can preempt a low priority action in a parallel composition,
even without being able to engage in a reaction.

This difference in the handling of preemption means that there is no obvious
translation of CPG into the framework of CLN, or vice versa.

We referred in the Introduction to the desirability of encapsulating priorities
locally. This encapsulation is present in CW’s calculus (and in our own), but not
in CH’s, since they treat a high priority τ differently from a standard τ . However,
the development in [8] goes beyond the basic CH calculus to consider distributed
priorities, where preemption is decided locally rather than globally.

CLN motivate this by the example of an application which fetches data from
two memory benches alternately. In CCS this can be modelled as

Appl
def= fetch1.fetch2.Appl

These benches are also connected to a direct-memory-access (DMA) controller. This
DMA access should have lower priority than the fetch access by the application.
However a straightforward assignment of high priority to application access and
low priority to DMA access fails, since one or other of the fetches is always enabled,
so that DMA access never takes place.

7

Phillips

Their example can be encompassed easily in our unstratified approach. Define

Benchi
def= fetchi.Benchi + fetchi :dma.Benchi (i = 1, 2)

Sys
def= new fetch1, fetch2 (Appl | Bench1 | Bench2)

Then Sys has the desired behaviour, since one or other dma action can always take
place. In Section 8 we show that Sys = P , where P

def= dma.P .
The next step CLN take is to consider extending the distributed priority calculus

to allow communication between actions at different levels. The authors identify a
problem with associativity of parallel composition. Consider the system

(a + b) | (b + c) | c

where communication is allowed between complementary actions at different levels.
If this associates to the left, then a is preempted by b; however if it associates to
the right then b is preempted by c, and so a is not preempted. A similar problem is
encountered when extending the distributed calculus to allow more than two levels.
CLN’s proposed solution is to follow CW by only allowing priorities to be resolved
between input actions, while treating all output actions as having equal priority. We
have already mentioned our reservations about this. Nevertheless the distinction
between inputs and outputs gives a workable “mixed-level” calculus (distributed,
multi-level, with communication between different levels). It is particularly nice
that CLN show that the CW calculus can be translated faithfully and naturally
into this mixed-level calculus. This shows that the underlying model of preemption
is the same in both cases, and, apparently, different from that of CPG.

It is striking that both CW and the mixed-level calculus of CLN adopt the same
syntactic restriction on inputs and outputs, and also that only strong equivalence
(τ actions not hidden) is presented for the mixed-level calculus. We shall present a
weak equivalence for CPG.

2.3 The Principle of Limited Preemption

It can plausibly be argued that an action which is itself preempted should not
be allowed to preempt another action. Let us call this the Principle of Limited
Preemption (PLP):

• A disabled process (or action) cannot perform any preemption.

Disabling could be either through lack of a partner process/action, or through pre-
emption by some higher priority process/action.

In the case of the example from Subsection 2.1 with circular priorities, both
actions (a and b) are preempted, and therefore cannot perform any preemption.
So, according to PLP, both a and b can react. Clearly CPG does not conform to
the PLP, since it allows the environment to preempt even if it is itself preempted,
so that the circular example deadlocks. Both CW and CLN do conform to PLP;
however they rule out the circular example, which is a particularly strong test case
for PLP.

Returning to the example (a + b) | (b + c) | c of Subsection 2.2, we see that,
according to PLP, a should not be preempted, since it is preempted by b, which is

8

Phillips

itself preempted. In CPG, a is preempted. Again this example is ruled out by CW
and CLN.

The example can be generalised to a chain of preemption such as the CPG
process

a1 | (a1 + a1 :a2) | (a2 + a2 :a3) | · · · | (an−1 + an−1 :an) | an

Here if we follow PLP we find that a2, a4, . . . are preempted (by a1, a3, . . .), while
a1, a3, . . . can react. Such calculations can become intricate. In CPG, only a1

can react. In designing CPG, we wished to have the simplest possible notion of
preemption.

Unlike CW and CLN, we wish to allow such distributed chains of priorities,
partly to avoid arbitrary syntactic complications, and partly to see whether it is
possible to allow them. We contend that no harm comes of violating PLP, and
considerable simplification in the semantics of preemption is achieved. It may well
be possible to include the problematic examples and conform to PLP, but it would
seem to lead to complications.

3 The Language CPG

We shall denote our augmentation of CCS with priority guards by CPG (CCS with
Priority Guards). First we define the actions of CPG. In standard CCS [19, Part I]
there is a set of names N and a disjoint set of co-names N = {a : a ∈ N}, together
with a single silent action τ . To these standard actions we shall add a new disjoint
set of priority names U and a dual set U . These are the actions which can be used
in priority guards; they can also be used in the standard way. They need to be kept
separate from standard actions, since we have to be careful with them in reasoning
compositionally about processes.

To see why we take this approach, consider the law P = τ.P , which is valid for
CCS processes. 3 In CPG, if a can be a priority guard then a 6= τ.a, since, as we saw
in the Introduction, the two sides behave differently in the context · | a :b. However
if we know that a is a standard name then we do have a = τ.a. So we can retain
CCS reasoning when processes only involve standard names.

We define Std = N ∪N (the standard visible actions), Pri = U ∪U (the priority
actions), Vis = Std∪Pri (the visible actions), and Act = Vis∪ {τ} (all actions). We
let a, b, . . . range over N ∪U ; u, v, . . . over Pri; λ, . . . over Vis; and α, β, . . . over Act.
Also S, T, . . . range over finite subsets of Vis, and U, V . . . over finite subsets of Pri.
If S ⊆ Vis, let S denote {a : a ∈ S}, where if a ∈ N ∪U then a = a. For λ ∈ Vis we
define name(λ) to be λ if λ ∈ N ∪ U and λ if λ ∈ N ∪ U .

Now we define processes:

Definition 3.1 (cf. [19, Definition 4.1]) P is the smallest set such that whenever
P, Pi are processes then P contains

(i)
∑

i∈I Si :αi.Pi (guarded summation: I finite, each Si finite)

(ii) P1 | P2 (parallel composition)

3 We are following the formulation of CCS in [19] rather than that of [17]. Processes such as P + (Q | R)
are not allowed, only guarded choices

P
i∈I αi.Pi.

9

Phillips

(iii) new a P (restriction)

(iv) A〈a1, .., an〉 (identifier)

P is ranged over by P,Q,R, . . . We let M,N, . . . range over (guarded) summations.
We assume that each identifier A comes with a defining equation A(a1, .., an) def= P ,
where a1, .., an are all distinct and P is a process all of whose free names are drawn
from a1, .., an. We will tend to abbreviate a1, .., an by a. We write the empty
guarded summation as 0 and abbreviate S : α.0 by S : α. It is assumed that the
order in a summation is immaterial. We abbreviate ∅ : α by α. The prefixed
operations (new a and S : α.) bind most tightly, followed by parallel composition
and finally summation.

Definition 3.1 is much as in standard CCS, except for the priority guards Si.
The meaning of the priority guard S : α is that α can only be performed if the
environment does not offer any action in S ∩ Pri. Clearly, any actions in S − Pri
have no effect as guards, and can be eliminated without changing the behaviour
of a process. We allow them to occur in the syntax, since otherwise we could not
freely instantiate the parameters in an identifier. We write u :α instead of {u} :α.
Restriction is a variable-binding operator, and we write fn(P) for the free names of
P .

Definition 3.2 (Free names) We define fn(P) ⊆ N ∪ U by induction on P ∈ P:

fn(
∑

i∈I Si :αi.Pi)

= {n ∈ N ∪ U : ∃i ∈ I.n ∈ Si ∪ {αi} ∨ n ∈ Si ∪ {αi} ∨ n ∈ fn(Pi)}

fn(P1 | P2) = fn(P1) ∪ fn(P2)

fn(new a P) = fn(P)− {a}

fn(A〈a1, . . . , an〉) = {a1, . . . , an}

Two sublanguages of CPG are of interest:

Definition 3.3 Let PUg be the sublanguage of unguarded processes generated as in
Definition 3.1 except that all priority guards are empty (i.e. Si = ∅ in clause (1)).

Let PStd be the sublanguage of standard processes generated as in Definition 3.1
except that all priority guards are empty and all names (whether free or bound) are
standard (i.e. belong to N).

Clearly PStd ⊆ PUg ⊆ P. Note that PStd is effectively standard CCS. The un-
guarded processes PUg differ from PStd in that they may contain actions in Pri.
Such processes cause no problems for strong equivalence (Proposition 6.5), but care
is needed with weak equivalence (Section 7), since e.g. u and τ.u (u ∈ Pri) are not
weakly equivalent, as remarked above.

4 Offers and Reaction

In this section we define the reaction relation. This will be parametrised on the set
of priority actions offered by the environment.

10

Phillips

Process contexts are defined much as in CCS:

Definition 4.1 (cf. [19, Definition 4.4]) A process context is given by

C ::= [·] | S :α.C + M | new a C | C | P | P | C

The elementary contexts are S :α.[·] + M , new a [·], [·] | P and P | [·].

An equivalence relation is a congruence if it is preserved by all elementary contexts
(which is equivalent to being preserved by all contexts).

Structural congruence is the most basic equivalence on processes, which facili-
tates reaction by bringing the subprocesses which are to react with each other into
juxtaposition. It is defined as for CCS:

Definition 4.2 (cf. [19, Definition 4.7]) Structural congruence, written ≡, is the
congruence on P generated by the following equations:

(i) Change of bound names (alpha-conversion)

(ii) Reordering of terms in a summation

(iii) P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R
(iv) new a (P | Q) ≡ P | new a Q if a 6∈ fn(P);

new a 0 ≡ 0, new a new b P ≡ new b new a P

(v) A〈b〉 ≡ {b/a}P if A(a) def= P

In item (i) we require that the distinction between standard names in N and priority
names in U is observed: a bound name in N can only be replaced by another name
in N , and the same for U .

To see why we forbid α-conversion between standard and priority names, consider
the example newu(u :a | u). Here a cannot occur, since it is inhibited by its priority
guard, as the environment is offering u. But if we were permitted to α-convert u to
a standard name b, we would get the process new b (b :a | b), which can perform a,
since standard names have no effect in priority guards.

It is easy to see that PUg is closed under ≡; however PStd is not, because of the
law new a 0 ≡ 0. If a ∈ U then we have 0 ∈ PStd, but new a 0 /∈ PStd. However it
turns out that structural congruence when restricted to standard processes is just
standard structural congruence. Let ≡Std be defined just as in Definition 4.2, except
that we confine attention to processes and contexts in PStd.

Proposition 4.3 If P,Q ∈ PStd then P ≡ Q iff P ≡Std Q.

Proof. (⇒) Suppose P ≡ Q. Then there is a chain P = P0 ≡ · · · ≡ Pk = Q, such
that for each i = 0, . . . , k − 1 there are processes Qi, Ri with Qi ≡ Ri or Ri ≡ Qi

obtained by substitution from one of the generating equations of ≡, and there is a
context Ci with Pi = Ci[Qi], Pi+1 = Ci[Ri]. Our task is to alter the chain in such a
way that all the processes and contexts belong to PStd. We work along the chain
from P to Q. The only issue is the law new a 0 ≡ 0, when used from right to left.
If for some i we have Qi = 0 and Ri = new u 0 (where u ∈ U), then we alter Ri to
R′

i = new a 0, where a ∈ N is some fresh standard name. We furthermore change
any subsequent related occurrence of new u to new a . By this means we obtain a

11

Phillips

valid chain entirely within PStd, showing that P ≡Std Q.
(⇐) Immediate from the definitions. 2

Proposition 4.3 shows that structural congruence on P is conservative over the usual
structural congruence on standard processes.

Recall that a guarded action S :α is conditional on other processes in the envi-
ronment not offering actions in S ∩ Pri. Before defining reaction we define for each
process P the set off(P) ⊆ Pri of “higher priority” actions “offered” by P .

Definition 4.4 (Offers) For P ∈ P and u ∈ Pri we define the relation P off u

(“P offers u”) by the following rules:

M + S :u.P + N off u if u /∈ S

P off u

P | Q off u

Q off u

P | Q off u

P off u

new a P off u
if a 6= name(u)

{b/a}P off u

A〈b〉 off u
if A(a) def= P

We furthermore define off(P) = {u ∈ Pri : P off u}.

In the first rule, the reason that we insist u 6∈ S is that we want to equate a process
such as u :u with 0, since u :u can never engage in a reaction. Note that if P ∈ PStd

then off(P) = ∅.
A process can offer an action without being able to perform the corresponding

transition. For instance, the process u : v | u offers v, but we shall see in Section 5
that it cannot perform v, since the environment u prevents this.

Lemma 4.5 For any P ∈ P:

(i) fn(P) is finite;

(ii) off(P) ⊆ (fn(P) ∪ fn(P)) ∩ Pri;

(iii) if P ≡ Q then fn(P) = fn(Q) and off(P) = off(Q).

Proof. Straightforward and omitted. 2

In CPG, a reaction can be conditional on offers from the environment. Consider
u : b | b. This can react by communication on b and b. However b is guarded by
u, and so the reaction is conditional on the environment not offering u. We reflect
this by letting reaction be parametrised on sets of actions U ⊆ Pri. The intended
meaning of P →U P ′ is that P can react on its own, as long as the environment
does not offer u for any u ∈ U (in our parlance, “eschews” U).

Definition 4.6 Let P ∈ P and let S ⊆ Vis be finite. P eschews S (written
P eschews S) iff off(P) ∩ S = ∅.

Proposition 4.7 Let P ∈ P and let S ⊆ Vis be finite.

(i) If P eschews S and T ⊆ S then P eschews T .

(ii) If P eschews S and Q eschews S then (P | Q) eschews S.
2

12

Phillips

Definition 4.8 (cf. [19, Definition 4.13]) The reaction relation on P is the smallest
relation → on P × ℘(Pri)× P generated by the following rules:

S :τ.P + M →S∩Pri P

S :a.P + M eschews T T :a.Q + N eschews S

(S :a.P + M) | (T :a.Q + N) →(S∪T)∩Pri P | Q
P →U P ′ Q eschews U

P | Q →U P ′ | Q

P →U P ′

new a P →U−{a,a} new a P ′
Q ≡ P P →U P ′ P ′ ≡ Q′

Q →U Q′

We abbreviate P →∅ P ′ by P → P ′. A reaction P → P ′ is said to be unconditional.

The second clause of Definition 4.8 is the most important. In order for an action a to
react with a complementary a, the two sides must not preempt each other (i.e. they
must eschew each other’s guards). Furthermore the reaction remains conditional
on the environment eschewing the union of their guards. The restriction rule shows
how this conditionality can then be removed by scoping. Notice that if we restrict
attention to the unguarded processes PUg then whenever P →U P ′ we have U = ∅,
and we recover the usual CCS reaction relation. So the new reaction relation is
conservative over the old.

Reactions cannot introduce new free names:

Lemma 4.9 If P →U P ′ then fn(P ′) ⊆ fn(P).

Proof. Straightforward and omitted. 2

Lemma 4.9 will be useful when we consider networks and electoral systems in Sec-
tion 9.

5 Labelled Transitions

As in standard CCS, we wish to define a transition relation on processes P
α→ P ′

meaning that P can perform action α and become P ′. As we did with reaction,
we refine the transition relation so that it is parametrised on sets of actions U ⊆
Pri. The intended meaning of P

α→U P ′ is that P can perform α as long as the
environment eschews U . Our definition is inspired by the transition relation in [5],
which is parametrised on what set of output actions the environment is ready to
perform.

Definition 5.1 (cf. [19, Definition 5.1]) The transition relation on P is the small-

13

Phillips

est relation → on P × Act× ℘(Pri)× P generated by the following rules:

(sum) M + S :α.P + N
α→S∩Pri P if α 6∈ S ∩ Pri

(react)
P1

λ→U1 P ′
1 P2

λ→U2 P ′
2 P1 eschews U2 P2 eschews U1

P1 | P2
τ→U1∪U2 P ′

1
| P ′

2

(par)
P1

α→U P ′
1 P2 eschews U

P1 | P2
α→U P ′

1 | P2

P2
α→U P ′

2 P1 eschews U

P1 | P2
α→U P1 | P ′

2

(res)
P

α→U P ′

new a P
α→U−{a,a} new a P ′

if α /∈ {a, a}

(ident)
{b/a}P α→U P ′

A〈b〉 α→U P ′
if A(a) def= P

We abbreviate P
α→∅ P ′ by P

α→ P ′ and ∃P ′.P
α→U P ′ by P

α→U .

Proposition 5.2 Let P, P ′ ∈ P, α ∈ Act and U ⊆ Pri.

(i) If P
α→U P ′ then

• α ∈ fn(P);
• α /∈ U and U is finite; and
• if u ∈ U then name(u) ∈ fn(P) and u belongs to some priority guard occurring

in P .

(ii) If P
u→U then P off u.

Proof. Straightforward and omitted. 2

To see that the converse to Proposition 5.2(ii) does not hold in general, consider
u :v | u. As we noted in Section 4, u :v | u off v but u :v | u cannot perform v.

As with reaction, note that if we restrict attention to the unguarded processes
PUg then whenever P

α→U P ′ we have U = ∅, so that we recover the usual CCS
transition relation. Thus the new transition relation is conservative over the old. In
applications we envisage that the standard CCS transition relation can be used most
of the time. The CPG transition relation will only be needed in those subsystems
which use priority.

As an illustration of the design choices embodied in our definitions, consider the
circular example of Camilleri and Winskel (Subsection 2.1):

P
def= u.a + u :v Q

def= v.b + v :u R
def= new u, v (P | Q)

In P action u has priority over v, while in Q action v has priority over u. We
have P

u→ a, Q
u→v 0. For a u communication to happen, by rule (react) we

need v /∈ off(P), but off(P) = {u, v}, so that the u communication cannot happen.
Similarly the v communication cannot happen, and so R is strongly equivalent to
0 (strong offer equivalence is defined in the next section).

Structural congruence respects transition:

14

Phillips

Lemma 5.3 (cf. [19, Lemma 5.2]) Let P, P ′ ∈ P, α ∈ Act, U ⊆ Pri. If P ≡ α→U P ′

then P
α→U≡ P ′.

Proof. Let C[·] be a process context. We must show that if P ≡ Q is a generating
case of Definition 4.2, and C[Q] α→U P ′ and then C[P] α→U Q′ ≡ P ′, for some Q′.
The proof is by cases on the rules for → and the generating equations of ≡. The
interesting case is the law (P1 | P2) | P3 ≡ P1 | (P2 | P3). We consider two example
transitions of (P1 | P2) | P3, and omit the many other similar cases.

Suppose first that P1 moves on its own in (P1 | P2) | P3, so that

(P1 | P2) | P3
α→U (P ′

1 | P2) | P3 .

We have P1
α→U P ′

1 and so P2 eschews U and P3 eschews U . By Proposition 4.7 we
deduce that (P2 | P3) eschews U . Hence

P1 | (P2 | P3)
α→U P ′

1 | (P2 | P3) .

Now suppose that P1
a→U P ′

1 and P2
a→V P ′

2, and that

(P1 | P2) | P3
τ→U∪V (P ′

1 | P ′
2) | P3 .

We have P1 eschews V , P2 eschews U and P3 eschews U ∪ V . By Proposition 4.7 we
deduce that P3 eschews V and (P2 | P3) eschews U . Therefore P2 | P3

a→V P ′
2 | P3,

and
P1 | (P2 | P3)

τ→U∪V P ′
1 | (P ′

2 | P3) .

2

Lemma 5.4 (cf. [19, Lemma 5.5]) Let P, P ′ ∈ P, λ ∈ Vis, U ⊆ Pri. If P
λ→U P ′

then P and P ′ can be expressed, up to ≡, as

P ≡ new a ((S :λ.Q + M) | R) P ′ ≡ new a (Q | R)

(some a, S,Q,M,R) with λ, λ /∈ a and U = S ∩ Pri.

Proof. By induction on the derivation of P
λ→U P ′. We omit the details. 2

Silent transitions agree with reaction:

Proposition 5.5 (cf. [19, Theorem 5.6]) Let P, P ′ ∈ P, U ⊆ Pri. Then P
τ→U≡ P ′

iff P →U P ′.

Proof. (⇒) It is enough to show that P
τ→U P ′ implies P →U≡ P ′. By induction

on the proof of P
τ→U P ′. For case (react) we employ Lemma 5.4. We omit the

details.
(⇐) By induction on the proof of P →U P ′. For the rule for structural congru-

ence we use Lemma 5.3. We omit the details. 2

Labelled transitions cannot introduce new free names (cf. Lemma 4.9):

Lemma 5.6 If P
α→U P ′ then fn(P ′) ⊆ fn(P).

15

Phillips

Proof. Straightforward and omitted. 2

Lemma 5.6 will be used in Sections 6 and 9.

6 Strong Offer Bisimulation

Similarly to standard CCS, we shall define process equivalences based on strong
and weak bisimulation. We consider strong bisimulation in this section and weak
bisimulation (i.e. with hiding of silent actions) in the next. We shall give a set of
axioms which is complete for strong bisimulation on finite processes (Theorem 6.14).
We shall also show that in certain circumstances priority guards can be used together
with parallel composition to encode summation (Proposition 6.15).

As we said in the Introduction, for processes to be equivalent they must make
the same offers, and for a process Q to simulate a process P , Q must be able to do
whatever P can, though possibly constrained by fewer or smaller priority guards.
Thus a + u :a and a will be equivalent, since u :a is simulated by a.

Definition 6.1 (cf. [19]) A symmetric relation S ⊆ P ×P is a strong offer bisim-
ulation if S(P,Q) implies both that off(P) = off(Q) and that for all α ∈ Act, if
P

α→U P ′ then for some Q′ and V ⊆ U , we have Q
α→V Q′ and S(P ′, Q′). Processes

P and Q are strongly offer equivalent, written P
off∼ Q, iff there is some strong offer

bisimulation S such that S(P,Q).

In view of the general theory of bisimulation [19, Section 3.3], off∼ is an equivalence
relation, and is itself a strong offer bisimulation.

Proposition 6.2 (cf. [19, Theorem 5.13]) ≡ is a strong offer bisimulation. Hence
≡ implies off∼.

Proof. By Lemma 5.3. 2

Theorem 6.3 (cf. [19, Proposition 5.29]) Strong offer equivalence is a congruence.

Proof. The case of parallel composition is the most interesting. Suppose P
off∼ Q.

We must show P | R off∼ Q | R.
Clearly if off(Q) = off(P) then off(Q | R) = off(P | R).
Suppose P | R

α→U P ′ | R is derived from P
α→U P ′. Then R eschews U and

Q
α→U ′ Q′ with U ′ ⊆ U and P ′ off∼ Q′. So clearly R eschews U ′ and Q | R α→U ′ Q′ | R.
Now suppose P | R α→U P | R′ is derived from R

α→U R′. Then P eschews U . So
Q eschews U and we have Q | R α→U Q | R′.

Now suppose P | R
τ→U∪V P ′ | R′ is derived from P

λ→U P ′ and R
λ→V R′. So

P eschews V and R eschews U . Then Q
λ→U ′ Q′ with U ′ ⊆ U and P ′ off∼ Q′. Since

off(Q) = off(P), Q eschews V . Also R eschews U ′. Hence Q | R τ→U ′∪V Q′ | R′.
The cases for summation, restriction, and identifier are straightforward and

omitted. 2

For unguarded processes, strong offer equivalence coincides with strong equiva-
lence in the usual sense of [19] (using the full set of actions Act, including priority
actions).

16

Phillips

Definition 6.4 (cf. [19]) A symmetric relation S ⊆ P×P is a strong bisimulation
if S(P,Q) implies that for all α ∈ Act, if P

α→ P ′ then for some Q′, we have Q
α→ Q′

and S(P ′, Q′). Processes P and Q are strongly equivalent, written P ∼ Q, iff there
is some strong bisimulation S such that S(P,Q).

Proposition 6.5 Let P,Q ∈ PUg. Then P
off∼ Q iff P ∼ Q.

Proof. (⇒) Trivial.
(⇐) We show that ∼ is a strong offer bisimulation on PUg. It is enough to show

that for P,Q ∈ PUg, if P ∼ Q then off(P) = off(Q). For any R ∈ PUg recall that
if R

α→U then U = ∅. It is straightforward to see that off(R) = {u ∈ Pri : R
u→}.

Take P,Q ∈ PUg. If P ∼ Q then {u ∈ Pri : P
u→} = {u ∈ Pri : Q

u→}. Hence
off(P) = off(Q). 2

Plainly ∼ is exactly standard strong equivalence when restricted to standard pro-
cesses. So off∼ is conservative over ∼ and we can reuse all the known equivalences
between CCS processes when working with CPG processes.

Much as in CCS, every process is equivalent to a summation:

Proposition 6.6 (cf. [19, Proposition 5.21]) For all P ∈ P,

P
off∼

∑
{U :α.Q : P

α→U Q} .

Proof. Similar to the proof of [19, Proposition 5.21]. 2

A key design feature of CPG is that priority can be localised with the use of restric-
tion. This is demonstrated by the next result, which states that a process where all
priority names are restricted is equivalent to a standard CCS process.

Proposition 6.7 Let P be a CPG process such that fn(P) ⊆ N . Then there is
Q ∈ PStd such that P

off∼ Q.

Proof. Suppose fn(P) ⊆ N . If fn(Q) ⊆ N and Q
α→U Q′ then fn(Q′) ⊆ N by

Lemma 5.6, and α ∈ Std and U = ∅ by Proposition 5.2(i). For every Q such that
fn(Q) ⊆ N , let AQ be a new constant with defining equation

AQ
def=

∑
{α.AQ′ : Q

α→ Q′} .

By Proposition 6.6 we have Q
off∼ AQ. Also AQ ∈ PStd. In particular, P

off∼ AP and
AP ∈ PStd, as required. 2

In similar vein, a further consequence of Propositions 6.6 and 5.2(i) is that if all
priority names belonging to priority guards of a finite process P are bound, then
P

off∼ Q for some finite Q ∈ PUg. Thus a finite process where all priority guards are
bound is equivalent to a process with no priority guards.

Proposition 6.8 The following laws hold:

17

Phillips

M + S :α.P
off∼M + (S ∩ Pri) :α.P (1)

M + U :α.P
off∼M if α ∈ U ⊆ Pri (2)

M + U :α.P + (U ∪ V) :α.P
off∼M + U :α.P (3)

(
∑
i∈I

Ui :αi.Pi) | (
∑
j∈J

Vj :βj .Qj)

off∼
∑
i∈I

{Ui :αi.(Pi | (
∑
j∈J

Vj :βj .Qj)) : ∀j ∈ J.βj 6∈ U i} (4)

+
∑
j∈J

{Vj :βj .((
∑
i∈I

Ui :αi.Pi) | Qj)) : ∀i ∈ I.αi 6∈ V j}

+
∑

i∈I,j∈J

{(Ui ∪ Vj) :τ.(Pi | Qj) : αi = βj ∈ Vis

∧ ∀i′ ∈ I ∀j′ ∈ J(αi′ 6∈ V j ∧ βj′ 6∈ U i)}

new a (
∑
i∈I

Ui :αi.Pi)
off∼

∑
i∈I

((Ui − {a, a}) :αi.new a Pi : αi 6= a, a} (5)

Proof. Straightforward and omitted. 2

Laws (1) and (2) are trivial, and correspond to basic features of the transition
system. Law (3) is the most interesting, and expresses the essential nature of offer
bisimulation: the extra behaviour (U∪V) :α.P of the left-hand side can be simulated
by the stronger behaviour U :α.P of the right-hand side. Laws (4) and (5) are the
CPG version of the Expansion Law of CCS [19, Proposition 5.23].

Definition 6.9 Let AS be the following set of axioms: the axioms of structural
congruence ≡ (Definition 4.2) together with the five laws of Proposition 6.8.

Clearly AS is sound for strong offer equivalence by Propositions 6.2 and 6.8. We
shall show that it is complete for finite processes (a CPG process is finite if it
contains no identifiers). First we define a notion of depth which will be useful in
the proof.

Definition 6.10 The depth of a finite process P ∈ P is defined by induction as
follows:

depth(0) def= 0

depth(
∑

i∈I Si :αi.Pi)
def= 1 + max{depth(Pi) : i ∈ I} (I 6= ∅)

depth(P | Q) def= depth(P) + depth(Q)

depth(new a P) def= depth(P)

Definition 6.11 P is in standard form if P
id=

∑
i∈I Ui :αi.Pi where for each i ∈ I

we have αi 6∈ Ui, Ui ⊆ Pri and Pi is in standard form. Here id= means “identically
equal”.

18

Phillips

Lemma 6.12 For any finite process P there is P ′ in standard form such that
depth(P ′) ≤ depth(P) and AS ` P = P ′.

Proof. First of all, it is straightforward to check that for finite processes P , Q,

• if P ≡ Q then depth(P) = depth(Q); and
• if P = Q is deduced by applying one of the five laws of Proposition 6.8 from left

to right, then depth(P) ≥ depth(Q).

In fact, laws (1), (3) and (5) preserve depth, while laws (2) and (4) may preserve or
reduce depth when applied from left to right. In this proof we shall always apply
the five laws from left to right.

Suppose for a contradiction that there is some finite P which has no equivalent
standard form. We can take P to be of minimal depth. Also, we can assume that
any subterm of P (even if of the same depth as P) can be put in standard form
without increasing depth. We show that P can in fact be put in standard form,
which will be a contradiction. There are three cases:

(i) P
id=

∑
i∈I Si :αi.Pi. Since the Pi are subterms of P , we can convert the Pi to

standard forms P ′
i using AS, and without increasing depth. We now convert∑

i∈I Si :αi.P
′
i to standard form using laws (1), (2) and (3) and reordering of

summation.

(ii) P
id= P1 | P2. Since P1 and P2 are subterms of P , we can convert them to

standard forms P ′
1 and P ′

2 without increasing depth. We now use law (4) to
convert P ′

1 | P ′
2 to the form

∑
i∈I .Ui :αi.Qi. Here for each i ∈ I, depth(Qi) <

depth(P ′
1 | P ′

2) ≤ depth(P), and so Qi can be converted to standard form
without increasing depth. We complete the conversion of P to standard form
as in case (i).

(iii) P
id= new aQ. Since Q is a subterm of P we can convert it to standard form Q′

without increasing depth. We now use law (5) to convert new a Q′ to the form∑
i∈I .Ui :αi.Qi. Again the Qi are all of lower depth than P . We now proceed

as in case (ii).
2

Note that in the proof of Lemma 6.12 we only employed structural congruence in
order to reorder summations.

Lemma 6.13 If P is in standard form, P
α→U P ′ and U ⊆ V then

AS ` P = P + V :α.P ′

Proof. Use law (3) and reordering of summation. 2

Theorem 6.14 The set of axioms AS is complete for off∼ on finite CPG processes.

Proof. Given two processes P
off∼ Q (which can both be taken to be in standard

form by Lemma 6.12), we prove them equal by adding to Q a new summand for
each summand of P (obtaining Q + N), and adding to P a new summand for each
summand of Q (obtaining P + M).

19

Phillips

Suppose P
id=

∑
i∈I Ui :αi.Pi. For each i ∈ I, we have P

αi→Ui Pi. So Q
αi→Vi Q′

i,

for some Vi ⊆ Ui, and some Q′
i such that Pi

off∼ Q′
i. By Lemma 6.13, AS ` Q =

Q + Ui :αi.Q
′
i. By induction on the total depth of P and Q, we have AS ` Pi = Q′

i.
Let N =

∑
i∈I Ui : αi.Q

′
i. Then AS ` Q = Q + N . We get M symmetrically, with

AS ` P = P +M . Now AS ` P +M = Q+N and hence AS ` P = Q as required.2

As mentioned in the Introduction, in some circumstances we can encode mixed
input and output guarded summation using priority guards and restricted paral-
lel composition. The intuition is that committing to a particular choice entails
preempting other choices, with this preemption being achieved through the use of
priority.

Proposition 6.15 Let P
def=

∑
i∈I Si : αi.Pi be a “non-self-dual” summation, i.e.

there do not exist i, j ∈ I and λ ∈ Vis such that αi = λ and αj = λ. Suppose also
that off(P) = ∅. Then

P
off∼ new u (

∏
i∈I

(Si ∪ {u} :αi.(Pi | u)))

where u ∈ U is some fresh name not occurring in P and
∏

denotes parallel compo-
sition.

Proof. Let Q
def= new u (

∏
i∈I(Si ∪ {u} : αi.(Pi | u))). We must show that P

off∼
Q. First of all we observe that off(P) = off(Q) = ∅. For each i ∈ I let Qi

def=∏
j∈I,j 6=i(Sj ∪ {u} : αj .(Pj | u)). The derivatives of P are P

αi→Si∩Pri Pi for each

i ∈ I. Clearly the derivatives of Q are Q
αi→Si∩Pri≡ new u (Qi | Pi | u) for each

i ∈ I (here we use the non-self-dual property, and we use ≡ to reorder the parallel
composition for notational convenience). It is therefore enough (with the use of
Proposition 6.2) to show that Pi

off∼ new u (Qi | Pi | u) for each i ∈ I. This is done
by showing that Si = {(P, new u (Qi | P | u)) : P ∈ P, u /∈ fn(P)} is a strong offer
bisimulation for each i ∈ I (here we need off(Qi) = ∅, which comes from off(P) = ∅).
We omit the checks that Si is as stated. 2

The non-self-dual condition in Proposition 6.15 is needed, since otherwise the right-
hand side would have extra unwanted reactions. The condition is not unduly restric-
tive, since if we have a system where the same channel a is used to pass messages
both to and from a process, we can simply separate a out into two separate chan-
nels, one for each direction. As an application of Proposition 6.15, notice that if
P ∈ PStd is a non-self-dual summation then we can use the result to eliminate the
(outermost) summation in favour of a parallel composition.

Remark 6.16 Milner [16] provides a complete axiomatisation for finite-state pro-
cesses (with recursion) with respect to strong equivalence, by adding axioms to han-
dle recursion. We conjecture that finite-state CPG processes can be axiomatised in
exactly the same way.

20

Phillips

7 Weak Offer Bisimulation

We now investigate weak bisimulation, where reactions are hidden. We shall give a
set of axioms which are complete for weak bisimulation on finite processes (Theo-
rem 7.10).

We start by defining weak transitions:

Definition 7.1 P ⇒U P ′ iff P
id= P ′ or ∃U1, . . . , Un.P

τ→U1 · · · τ→Un P ′ with
U = U1 ∪ · · · ∪ Un (n ≥ 1). We abbreviate P ⇒∅ P ′ by P ⇒ P ′.

For λ ∈ Vis, P
λ⇒U P ′ iff ∃P ′′, P ′′′, U ′, U ′′.P ⇒U ′ P ′′ λ→U ′′ P ′′′ ⇒ P ′ with

U = U ′ ∪ U ′′ and off(P ′′) ⊆ off(P).

Recall that P
id= P ′ means that P and P ′ are identically equal. So P ⇒U P ′

allows zero or more internal transitions with guards included in U . The condition
off(P ′′) ⊆ off(P) is needed to obtain a weak equivalence which is a congruence—we
discuss this further below (after Theorem 7.4). The reason why we allow priority
guards before performing a visible action, but not after, is as follows: for Q to
simulate P

a→U P ′, Q must expect an environment offering U up to and including
performing a. After this, the environment has changed, and might be offering
anything. So Q can perform further reactions to reach Q′ simulating P ′, but these
reactions must not be subject to any priority guards.

Definition 7.2 A symmetric relation S ⊆ P × P is a weak offer bisimulation if
whenever S(P,Q) we have:

• off(P) = off(Q); and
• if P

τ→U P ′ then for some Q′ and U ′ ⊆ U , we have Q ⇒U ′ Q′ and S(P ′, Q′); and

• for all λ ∈ Vis, if P
λ→U P ′ then for some Q′ and U ′ ⊆ U , we have Q

λ⇒U ′ Q′

and S(P ′, Q′).

Processes P and Q are weakly offer equivalent, written P
off
≈ Q, iff there is some

weak offer bisimulation S such that S(P,Q).

On the sublanguage PStd of standard processes (which corresponds to CCS),
weak offer equivalence is the same as CCS weak equivalence (from [19, Proposi-
tion 6.3]).

As with strong offer equivalence,
off
≈ is an equivalence relation, and is itself a

weak offer bisimulation. Moreover, weak offer equivalence is entailed by strong offer
equivalence:

Proposition 7.3 For any P,Q, if P
off∼ Q then P

off
≈ Q.

Proof. It is easy to check that any strong offer bisimulation is a weak offer bisim-
ulation. 2

Theorem 7.4 (cf. [19, Proposition 6.17])
off
≈ is a congruence. 2

Proof. Parallel composition is the most interesting. Suppose P
off
≈ Q. We must

show P | R
off
≈ Q | R.

21

Phillips

Clearly if off(P) = off(Q) then off(P | R) = off(Q | R).

Suppose P | R
λ→U P ′ | R is derived from P

λ→U P ′. Then R eschews U and

Q ⇒U ′ Q′′ λ→U ′′ Q′′′ ⇒ Q′, with U ′, U ′′ ⊆ U , off(Q′′) ⊆ off(Q) and P ′ off
≈ Q′. So

clearly R eschews U ′, R eschews U ′′ and Q | R ⇒U ′ Q′′ | R
λ→U ′′ Q′′′ | R ⇒ Q′ | R

with off(Q′′ | R) ⊆ off(P | R). Thus Q | R λ⇒U ′∪U ′′ Q′ | R.
Suppose P | R

τ→U P ′ | R is derived from P
τ→U P ′. Then R eschews U and

Q ⇒U ′ Q′ with U ′ ⊆ U . So clearly Q | R ⇒U ′ Q′ | R.
Now suppose P | R α→U P | R′ is derived from R

α→U R′. Then P eschews U . So
since off(Q) = off(P) we have Q eschews U and Q | R α→U Q | R′.

Finally suppose P | R τ→U∪V P ′ | R′ is derived from P
λ→U P ′ and R

λ→V R′. So
P eschews V and R eschews U . Then Q ⇒U ′ Q′′ λ→U ′′ Q′′′ ⇒ Q′, with U ′, U ′′ ⊆ U ,

off(Q′′) ⊆ off(Q) and P ′ off
≈ Q′. Then R eschews U ′ and so Q | R ⇒U ′ Q′′ | R.

Since off(Q′′) ⊆ off(Q) = off(P) we see that Q′′ eschews V . Also R eschews U ′′. So
Q′′ | R τ→U ′′∪V Q′′′ | R′ ⇒ Q′ | R′. Hence Q | R ⇒U ′∪U ′′∪V Q′ | R.

Summation, restriction, identifier are straightforward and omitted. 2

So we have a congruence which conservatively extends CCS. Note that we are
following the formulation of CCS in [19] rather than that of [17]. Processes such
as P + (Q | R) are not allowed, only guarded choices

∑
i∈I αi.Pi. In [17], weak

equivalence was not a congruence, whereas in [19] it is.
It would have been more obvious to have the following for the clause for λ ∈ Vis

in Definition 7.1: P
λ⇒U P ′ iff there exist P ′′, P ′′′, U ′, U ′′ such that P ⇒U ′ P ′′ λ→U ′′

P ′′′ ⇒ P ′, U = U ′ ∪ U ′′ (i.e. omitting the condition off(P ′′) ⊆ off(P)).
We would then have defined weak offer bisimulation and weak offer equivalence

based on this more generous definition of P
λ⇒U P ′. Let

off
≈gen denote this more

generous weak offer equivalence. This would give us a strictly larger equivalence,
which would fail to be a congruence. As an example, let

P
def= a + τ.(a + u) Q

def= τ.(a + u) R
def= u :a.b

Then P
off
≈gen Q but not P

off
≈ Q. Moreover P | R τ→u 0 | b but Q | R cannot perform

a sequence of τs and then b, demonstrating that
off
≈gen is not a congruence.

Clearly if P
off
≈ Q then P

off
≈gen Q. In fact, the congruence induced by the more

generous version is implied by weak offer equivalence:

Proposition 7.5 For any P,Q, P
off
≈ Q implies C[P]

off
≈gen C[Q], for all contexts

C[·].

Proof. Suppose P
off
≈ Q. Let C[·] be a context. By Theorem 7.4, C[P]

off
≈ C[Q]. But

then C[P]
off
≈gen C[Q]. 2

We have not determined whether the converse to Proposition 7.5 holds.
We now turn to the equational theory of weak offer equivalence. In CCS we have

the law P ≈ τ.P [19, Theorem 6.15]. However in CPG, u 6
off
≈ τ.u. This is because

22

Phillips

off(u) = {u} whereas off(τ.u) = ∅. Nonetheless, the usual CCS equivalence laws
will still hold for the standard processes PStd (recall that for P ∈ PStd, off(P) = ∅).

Proposition 7.6 (cf. [19, Theorem 6.15]) The following laws hold:

τ.P
off
≈ P if off(P) = ∅ (6)

M + N + τ.N
off
≈ M + τ.N if off(N) ⊆ off(M) (7)

M + α.P + α.(τ.P + N)
off
≈ M + α.(τ.P + N) (8)

Proof. Straightforward and omitted. 2

We stated (6), (7) and (8) because in many situations it is convenient to use con-
ventional CCS reasoning. If we remove the side-conditions concerning offers, these
are precisely the three τ -laws of CCS, which, as Milner states, capture the various
ways in which weak equivalence allows one to vary the forms of τ transitions.

The next result gives the “intrinsic” τ -laws of CPG:

Proposition 7.7 The following four laws hold:

M + U :τ.M
off
≈M (9)

M + U :τ.(N + V :τ.P)
off
≈M + U :τ.(N + V :τ.P) + (U ∪ V) :τ.P (10)

If off(N + V :λ.P) ⊆ off(M):

M + U :τ.(N + V :λ.P)
off
≈ M + U :τ.(N + V :λ.P) + (U ∪ V) :λ.P (11)

M + U :α.P + U :α.(τ.P + N)
off
≈ M + U :α.(τ.P + N) (12)

Proof. Straightforward and omitted. 2

We can derive (7) from (10) and (11). Clearly (8) is a special case of (12), where
U = ∅. Also we can derive:

τ.M
off
≈ M if off(M) = ∅ (13)

from (9), (10), (11). Recall that every process is strongly equivalent to a summation
(Proposition 6.6), and so (13) is effectively as strong as (6).

Definition 7.8 Let AW be the axioms AS (Definition 6.9) together with (9), (10),
(11) and (12).

Note that law (3) can be omitted, as it is derivable from (9), (10) and (11).
Before showing the completeness of AW for finite processes, we prove a “satu-

ration” lemma:

Lemma 7.9 (cf. [17, Section 7.4, Lemma 16]) Let P be in standard form and let
U ⊆ V .

23

Phillips

(i) If P ⇒U P ′ then AW ` P = P + V :τ.P ′.

(ii) If P
λ⇒U P ′ then AW ` P = P + V :λ.P ′.

Proof.

(i) We use induction on the length of the computation P ⇒U P ′. If P
id= P ′

then we use (9) to show that AW ` P = P + V : τ.P ′. Otherwise we have
P

τ→U ′ P ′′ ⇒U ′′ P ′, with U ′ ∪ U ′′ = U . Now P ′′ is in standard form, and so
by induction hypothesis, AW ` P ′′ = P ′′ + V :τ.P ′. We now use (10) to derive
AW ` P = P + V :τ.P ′.

(ii) Suppose P ⇒U ′ P ′′ λ→U ′′ P ′′′ ⇒ P ′ with U = U ′ ∪ U ′′ and off(P ′′) ⊆ off(P).
By part (i), AW ` P ′′′ = P ′′′ + τ.P ′. We use law (12) to derive AW ` P ′′ =
P ′′ + U ′′ : λ.P ′. Again by part (i), AW ` P = P + U ′ : τ.P ′′. So AW ` P =
P + U ′ : τ.(P ′′ + U ′′ : λ.P ′). Since off(P ′′) ⊆ off(P) and λ ∈ off(P ′′), we can
use (11) to obtain AW ` P = P + U : λ.P ′. Finally AW ` P = P + V : λ.P ′

follows by (3).
2

Theorem 7.10 The axioms AW are complete for
off
≈ on finite processes.

Proof. Suppose that P
off
≈ Q. By Lemma 6.12 we can assume P and Q are in

standard form. We prove P and Q equal much as in Theorem 6.14: for each
summand U :α.P ′ of P we add a new summand to Q, to form N + Q, and for each
summand V :α.Q′ of Q we add a new summand to P , to form P + M .

Suppose P
id=

∑
Ui :αi.Pi. For each i, there are two cases:

If αi = τ we have P
τ→Ui Pi. So Q ⇒Vi Q′

i, for some Vi ⊆ Ui, with Pi
off
≈ Q′

i. By
Lemma 7.9, AW ` Q = Q + Ui : τ.Q′

i. By induction on the total depth of P and
Q, we have AW ` Pi = Q′

i (note that Pi has lower depth than P , even though Q′
i

might have the same depth as Q).

If αi = λ ∈ Vis we have P
λ→Ui Pi. Then there is Q′

i such that Pi
off
≈ Q′

i and

Q
λ⇒Vi Q′

i, for some Vi ⊆ Ui. Again by Lemma 7.9, AW ` Q = Q + Ui : λ.Q′
i. By

induction on the total depth of P and Q, we have AW ` Pi = Q′
i.

Let N =
∑

Ui :αi.Q
′
i. Then AW ` Q = N + Q. We get M symmetrically, with

AW ` P = P + M . Now AW ` P + M = N + Q and hence AW ` P = Q as
required. 2

When reasoning about recursively specified processes, a common style of rea-
soning is to show that two processes satisfy the same set of equations, and deduce
that the processes are equivalent. We shall use this method in the next section. For
it to be sound, we need the following result:

Proposition 7.11 (cf. [19, Theorem 6.19]) Unique solution of equations. Let X

be a (possibly infinite) sequence of process variables Xi. Up to
off
≈, there is a unique

sequence P of processes which satisfy the formal equations:

Xi
off
≈

∑
j∈Ji

Uij :αij .Xk(ij)

24

Phillips

(where each αij 6= τ).

Proof. Much as in [19, Theorem 6.19]. 2

The preceding result would also hold for strong offer equivalence off∼.

Remark 7.12 Milner [18] provides a complete axiomatisation for finite-state pro-
cesses with respect to weak equivalence, in the case where recursion is guarded (by
visible actions). We conjecture that this can also be carried through for finite-state
processes with priority guards, in much the same way. Milner also provides a com-
plete axiomatisation for the case where recursion is unguarded. Here we do not see
how to adapt his method to the setting with priority guards. He gives axioms which
allow the elimination of recursion variables guarded by τ -actions. These axioms are
sound in the priority guard setting, but cannot be adapted in an obvious manner to
deal with the case of τ -actions with priority guards.

8 Verifying example systems

In this section we revisit two examples given earlier. Now that we have developed
notions of bisimulation and axiom systems, we can verify that the examples do
indeed behave as intended.

We start with the interrupt example from Section 1. Recall that we had:

P
def= new mid, intA, intB (A | B | I) A

def= intA :a.mid.A + intA

I
def= int.(intA.intB + intB.intA) B

def= intB :b.mid.B + intB

We want to show P
off
≈ Q, where

Q
def= a.Q1 + b.Q2 + int Q1

def= b.Q + int Q2
def= a.Q + int

Clearly intA, intB ∈ Pri. We take a, b, mid, int ∈ Std. This means that Q ∈ PStd. We
can use laws (4) and (5) to get:

P
off∼ a.P1 + b.P2 + int.P3

P1
off∼ b.P4 + int.τ P2

off∼ a.P4 + int.τ P3
off∼ τ.τ + τ.τ P4

off∼ τ.P + int.τ.P3

where P1, P2, P3, P4 are various states of P . We can use law (6) to get:

P1
off
≈ b.P4 + int P2

off
≈ a.P4 + int P3

off
≈ 0 P4

off
≈ τ.P + int

By law (7) we get P+τ.P
off
≈ τ.P . Notice that this needs off(P) = ∅, i.e. a, b, int 6∈ Pri.

From this we can deduce τ.P + int
off
≈ τ.P using law (3) and law (7) again, so that

P4
off
≈ τ.P . Finally:

P
off
≈ a.P1 + b.P2 + int P1

off
≈ b.P + int P2

off
≈ a.P + int

25

Phillips

By Proposition 7.11 we get P
off
≈ Q as we wanted.

Our reasoning was presented equationally, but could equally well have been
done using bisimulation. We first unfolded the behaviour of P . Since all prioritised
actions were restricted, the system P had no priorities as far as the environment was
concerned. We could therefore remove silent actions and simplify using standard
techniques of CCS.

We also revisit the memory bench example from Section 2.2. The system Sys
was defined as follows:

Appl
def= fetch1.fetch2.Appl

Benchi
def= fetchi.Benchi + fetchi :dma.Benchi (i = 1, 2)

Sys
def= new fetch1, fetch2 (Appl | Bench1 | Bench2)

Using laws (4) and (5) we get

Sys
off∼ τ.Sys′ + dma.Sys Sys′

off∼ τ.Sys + dma.Sys′ .

It is then straightforward to check (directly from the definition of
off
≈) that Sys

off
≈ P ,

where P
def= dma.P ; the bisimulation relation is {(Sys, P), (Sys′, P)}.

Remark 8.1 In Sections 1 and 2 we used plain equality when talking about equiv-
alence between CPG processes, for example, Sys = P . This is to be interpreted as
off
≈.

9 Expressiveness

In this section we show that priorities add expressive power to both CCS and the
π-calculus [20,19]. As far as we are aware, this has not been previously shown for
any notion of priority in process algebra.

Bougé [4] showed in the context of CSP [12] that the problem of leader elec-
tion in symmetric networks of processes can be useful in measuring expressiveness.
Palamidessi [23] used electoral systems to show that the π-calculus with mixed
choice is more powerful than CCS. We have been inspired by this work, and also
the work of Ene and Muntean [9], where it is shown that a broadcast version of the
π-calculus cannot be encoded under certain conditions into the π-calculus.

The leader election problem is a well-known problem in distributed computing.
In order to restart a network of processes after a reconfiguration or a crash, in the
absence of a central server, the processes must elect a leader process from among
themselves. This process may be thought of as the “winner” in the election, with
the other processes being “losers”. An algorithm to do this is called an electoral
system. An electoral system is symmetric if it works for a network where all the
processes are programmed in the same way. Such a system clearly has to find a way
to break symmetry in order to choose a leader.

The general idea for our expressiveness results is that if a language has electoral
systems then it has expressive strength. We look for conditions on encodings be-
tween languages which ensure that electoral systems are preserved. If we find one

26

Phillips

language which does have electoral systems and another which does not, then the
first language cannot be encoded into the second (under our conditions).

We first discuss electoral systems for CPG (Section 9.1). We next recall the
π-calculus (Section 9.2). We then prove the nonexistence of an encoding from
CPG to the π-calculus under certain conditions (Section 9.3), and finally prove the
nonexistence of an encoding from the π-calculus to CPG under certain conditions
(Section 9.4).

9.1 Electoral Systems for CPG

In this section we show (Theorem 9.10) that CPG without choice has a symmetric
electoral system of every finite size k, which is defined in a uniform fashion, i.e.
essentially the same process will do for every value of k.

We start by defining electoral systems. The definitions we give below are much
as in [25,26], to which we refer the reader for further discussion.

We need a notion of barb (observation):

Definition 9.1 A CPG process P exhibits barb λ, written as P ↓ λ, iff P ≡
new a ((S :λ.Q + M) | R) for some a, S, Q, M and R, with name(λ) /∈ a.

We use unconditional reactions (Section 4) rather than labelled transitions in our
definition of computation, as this facilitates comparison between different process
calculi, in our case CPG and the π-calculus.

Definition 9.2 Let P be a CPG process. A computation C of P is a (finite or
infinite) sequence P = P0 → P1 → · · · . It is maximal if it cannot be extended.

We assume that N includes a set of observables Obs = {ωi : i ∈ N} such that for
all i, j we have ωi 6= ωj if i 6= j.

Definition 9.3 Let C be a computation P0 → · · · → Pi → · · · . The observables of
C are Obs(C) = {ω ∈ Obs : ∃i Pi ↓ ω}.

Networks are collections of processes running in parallel:

Definition 9.4 (cf. [23]) A network Net of size k is a pair (a, 〈P0, . . . , Pk−1〉),
where a is a finite sequence of names and P0, . . . , Pk−1 are processes. The process
interpretation of Net is the process new a (P0 | . . . | Pk−1).

Networks inherit a notion of computation from their process interpretation in an ob-
vious fashion. In what follows we shall write networks in their process interpretation
as restricted parallel compositions.

Definition 9.5 A permutation is a bijection σ : N ∪ U → N ∪ U such that σ

preserves the distinction between observable and non-observable names, i.e. a ∈ Obs
iff σ(a) ∈ Obs. Any permutation σ gives rise to a mapping on processes, where
σ(P) is the same as P , except that any name a of P is changed to σ(a) in σ(P).

A permutation σ induces a bijection σ̂ : N → N defined as follows: σ̂(i) = j

where σ(ωi) = ωj . Thus for all i ∈ N, σ(ωi) = ωσ̂(i). We use σ̂ to permute the
indices of processes in a network.

Definition 9.6 Let Net = new a (P0 | . . . | Pk−1) be a network of size k. An

27

Phillips

automorphism on Net is a permutation σ such that (1) σ̂ restricted to {0, . . . , k−1}
is a bijection, and (2) σ preserves the distinction between free and bound names,
i.e. a ∈ a iff σ(a) ∈ a. If σ̂ restricted to {0, . . . , k − 1} is not the identity we say σ

is non-trivial.

Definition 9.7 Let σ be an automorphism on a network of size k. For any i ∈
{0, . . . , k − 1} the orbit Oσ̂(i) generated by σ̂ is defined as follows:

Oσ̂(i) = {i, σ̂(i), σ̂2(i), . . . , σ̂h−1(i)}

where σ̂j represents the composition of σ̂ with itself j times, and h is least such that
σ̂h(i) = i. If every orbit has the same size then σ is well-balanced.

Definition 9.8 Let Net = new a (P0 | . . . | Pk−1) be a network of size k and let σ

be an automorphism on it. We say that Net is symmetric with respect to σ iff for
each i = 0, . . . , k − 1 we have Pσ̂(i) = σ(Pi). We say that Net is symmetric if it is
symmetric with respect to some automorphism with a single orbit (which must have
size k).

An electoral system is a network where every possible maximal computation elects
a unique leader:

Definition 9.9 A network Net of size k is an electoral system if for every maximal
computation C of Net there exists an i < k such that Obs(C) = {ωi}.

The intuition behind the following theorem is that priorities give us something of
the power of one-many (broadcast) communication, in that a single process can
simultaneously interrupt several other processes. By contrast, CCS and π-calculus
communication are always one-one.

Theorem 9.10 For every k ≥ 1 there is a symmetric network of size k in CPG
without choice which is an electoral system.

Proof. Let Ri
def= u :a.(ωi | u) | a. Let Net

def= new u (R0 | · · ·Rk−1). Clearly Net is
symmetric. We show that Net is an electoral system. Suppose that Net → P . This
reaction must involve the u :a of Ri and the a of Rj , for some i, j ≤ k − 1. Plainly
P ↓ ωi. Also no further reactions are possible, now that the u of Ri is exposed. So
every computation has a unique winner. 2

Note that the solution is uniform, in that the Ri do not depend on the size k of
the network; the Ri do not “know” k. We need the restriction on u in order that
reactions are unconditional.

The uniform electoral system in the proof of Theorem 9.10 can be translated
into CW’s approach with Ri becoming (u.u +〉 a.(ωi | u)) | a. Of course even though
this does not contain choice, it does use priority choice. The “broadcast” flavour
is rather less in the CW version, since the u produced by the winning process is
consumed and regenerated by the losing processes, rather than simply inhibiting
them from further action as in the CPG version. We can also create a CLN version
of the CW uniform electoral system, but here we do seem to need choice.

We have adopted a definition of electoral system where the losing processes do
not need to announce the winner—they simply lose and do nothing. If we wanted

28

Phillips

losing processes also to report the winner (as in the formulation of electoral systems
in [23]) we could still get a uniform solution if we added value-passing to CPG.
Then the processes could share a channel c on which the winner could repeatedly
(actually k times, but the winner would not need to have this in its program) send
its index i for all the processes to receive and then output on a common output
channel o.

We shall build on Theorem 9.10 in showing the nonexistence of encodings from
CPG to the π-calculus (Section 9.3).

9.2 The π-calculus

We follow the version of the π-calculus given in [19]. We let a, b range over names,
and λ range over names a or co-names a. Processes are given by the following
syntax:

P,Q ::=
∑
i∈I

πi.Pi | P | Q | new a P | !P

where I is finite, the prefixes are given by

π ::= a(b) | a〈b〉 | τ

and !P is replication. We refer the reader to [19] for the definition of reaction
P → Q. Computations and networks are as for CPG. It is helpful to define barbs
in the π-calculus by structural induction, rather than in the style of Definition 9.1:

Definition 9.11 Barbs are defined by structural induction on π-calculus processes
as follows:

(
∑

i∈I πi.Pi) ↓ a iff ∃i ∈ I ∃b.πi = a(b)

(
∑

i∈I πi.Pi) ↓ a iff ∃i ∈ I ∃b.πi = a〈b〉

(P | Q) ↓ λ iff P ↓ λ or Q ↓ λ

(new a P) ↓ λ iff P ↓ λ and name(λ) 6= a

!P ↓ λ iff P ↓ λ

When proving that CPG cannot be encoded in the π-calculus (Theorem 9.16),
we shall require some properties of the π-calculus, which we state in the following
two lemmas:

Lemma 9.12 Let P,Q be π-calculus processes. If new a P → Q then there exists
Q′ such that P → Q′.

Proof. (Sketch) If we take a derivation of new a P → Q and delete all the relevant
occurrences of new a , then we have a derivation of P → Q′ for some Q′. We omit
the details. 2

Lemma 9.13 (i) For any π-calculus processes P1, P2, whenever Pi has a maxi-
mal computation with observables Oi (i = 1, 2) then P1 | P2 has a maximal
computation with observables O such that O1 ∪O2 ⊆ O.

29

Phillips

(ii) For any π-calculus process P , any O ⊆ Obs and any a /∈ O, if P has a maximal
computation with observables O then new a P has a maximal computation with
observables O.

Proof.

(i) Suppose that we have maximal computations C1 = P1 → P 1
1 → P 2

1 → · · · and
C2 = P2 → P 1

2 → · · · with observables O1, O2 respectively. We can interleave
C1 and C2 to get a new computation C = P1 | P2 → P 1

1 | P2 → P 1
1 | P 1

2 → P 2
1 |

P 1
2 → · · · . This will have observables O1 ∪ O2. If C is maximal then we are

done. Otherwise we extend C to a maximal computation C′, with observables
O such that O1 ∪O2 ⊆ O.

(ii) Suppose we have a maximal computation C = P → P1 → · · · such that
Obs(C) = O. Suppose that a /∈ O. Then we have a computation C′ = newaP →
new a P1 → · · · . If C is infinite, then so is C′, which is therefore maximal. If C
is finite, then C′ is also maximal, using Lemma 9.12.

Now we must show that Obs(C′) = O. But Obs(C′) = {ωj : ∃i.(new a Pi) ↓
ωj}. Also for any i, j, (new a Pi) ↓ ωj iff Pi ↓ ωj , since a /∈ O. Hence
Obs(C′) = {ωj : ∃i.Pi ↓ ωj} = O as required.

2

9.3 Nonexistence of encodings from CPG to the π-calculus

In this section we prove (Theorem 9.16) that there is no encoding from CPG into
the π-calculus satisfying certain conditions. This will show that priorities do indeed
add expressiveness.

Our conditions are defined for process languages, by which we mean languages
which, following the π-calculus paradigm, are equipped with a notion of name (and
free name), a parallel composition operator, a name-binding restriction operator, a
reduction relation and a notion of barb.

We recall the following from [25] (building on [23]):

Definition 9.14 Let L, L′ be process languages. An encoding [[−]] : L → L′ is

(i) distribution-preserving if for all processes P , Q of L, [[P | Q]] = [[P]] | [[Q]];

(ii) permutation-preserving if for any permutation of names σ in L there exists
a permutation θ in L′ such that [[σ(P)]] = θ([[P]]) and the permutations are
compatible on observables, in that for all i ∈ N we have σ(ωi) = θ(ωi);

(iii) observation-respecting if for any P in L,
(a) for every maximal computation C of P there exists a maximal computation

C′ of [[P]] such that Obs(C) = Obs(C′);
(b) for every maximal computation C of [[P]] there exists a maximal computa-

tion C′ of P such that Obs(C) = Obs(C′).

An encoding which preserves distribution and permutation is uniform.

We need the following further condition, which is satisfied by many encodings in
the literature:

Definition 9.15 (cf. [9]) Let L, L′ be process languages. An encoding [[−]] : L → L′

30

Phillips

is restriction-preserving if for all processes P of L and names a, there are names b

such that [[new a P]] = new b [[P]], and furthermore, if a /∈ Obs then b /∈ Obs.

Note that in Definition 9.15 the names b can vary depending on the process P , and
not just on the name a.

The following theorem is inspired by Ene and Muntean’s result [9] that the
broadcast π-calculus cannot be encoded in the π-calculus.

Theorem 9.16 There is no distribution-preserving, restriction-preserving and observation-
respecting encoding of CPG into the π-calculus.

Proof. Suppose that [[−]] is a distribution-preserving, restriction-preserving and
observation-respecting encoding of CPG into the π-calculus. For i = 0, 1 let Ri

def=
u : a.(ωi | u) | a, as in the proof of Theorem 9.10. Then new u R0 is an electoral
system of size one. It is easy to see that [[newuR0]] is also an electoral system, using
the observation-respecting condition. But [[new u R0]] = new a [[R0]] for some names
a. Note that a /∈ Obs, since u /∈ Obs. Clearly [[R0]] is also an electoral system: for
every maximal computation C with observables O we have a corresponding maximal
computation of new a [[R0]] with observables O by Lemma 9.13(ii), so that we must
have O = {ω0}.

Similarly we can show that every maximal computation of [[R1]] has observables
{ω1}.

From the proof of Theorem 9.10, Net
def= newu (R0 | R1) is an electoral system of

size two. Then [[Net]] is also an electoral system of size two. Now [[Net]] = [[newu(R0 |
R1)]] = new b ([[R0]] | [[R1]]). By Lemma 9.13(i), there is a maximal computation of
[[R0]] | [[R1]] with observables O such that {ω0, ω1} ⊆ O. But then there is a maximal
computation of new b ([[R0]] | [[R1]]) with observables O (by Lemma 9.13(ii)), which
contradicts [[Net]] being an electoral system. 2

Since CCS can be encoded in the π-calculus, it follows that CPG has greater ex-
pressive power than CCS. It also follows that we can add expressive power to the
π-calculus by adding priority guards.

Note that Lemma 9.13 is equally true for any process calculus which treats
parallel composition and restriction in the same way as the π-calculus, and has a
notion of barb. An example is Mobile Ambients [6]. Theorem 9.16 would therefore
remain true if we replaced the π-calculus by Mobile Ambients.

9.4 Nonexistence of encodings from the π-calculus to CPG

In this section we show the converse to Theorem 9.16: there is no encoding from
the π-calculus into CPG satisfying certain conditions (Theorem 9.27). This was
shown by Palamidessi [23] in the case of CCS rather than CPG. The idea is that
π-calculus networks can acquire new links, while CCS networks cannot. The sep-
aration result comes from showing that, for certain non-fully-connected networks,
symmetric electoral systems exist in the π-calculus, but not in CCS. Essentially the
same is true for CPG, but the added power of priorities mean that Palamidessi’s
negative result for CCS does not hold as it stands for CPG.

First we recall some definitions from [26] which relate to connectivity in networks.

31

Phillips

They apply equally to CPG, CCS and the π-calculus.

Definition 9.17 Two processes P and Q are independent if they do not share any
free names: fn(P) ∩ fn(Q) = ∅.

Definition 9.18 Let σ be an automorphism on a network Net = new a (P0 | · · · |
Pk−1). Then Net is independent with respect to σ if every orbit forms an indepen-
dent set, in the sense that if i, j < k are in the same orbit of σ̂ with i 6= j, then Pi

and Pj are independent.

Definition 9.19 An encoding is independence-preserving if for any processes P ,
Q, if P and Q are independent then [[P]] and [[Q]] are also independent.

Definition 9.20 A ring is a network Net = new a (P0 | · · · | Pk−1) which has a
single-orbit automorphism σ such that for all i, j < k, if fn(Pi) ∩ fn(Pj) 6= ∅ then
one of i = j, σ̂(i) = j or σ̂(j) = i must hold. A ring is symmetric if it is symmetric
with respect to such an automorphism σ.

Rings are mapped to rings by encodings which preserve independence among other
conditions:

Lemma 9.21 [26] Suppose [[−]] : L → L′ is a uniform, observation-respecting and
independence-preserving encoding. Suppose that Net is a symmetric ring of size
k ≥ 1 with no globally-bound names which is an electoral system. Then [[Net]] is
also a symmetric ring of size k with no globally-bound names which is an electoral
system. 2

The next result is essentially Theorem 6.1 of [23]:

Theorem 9.22 If Net is a CCS network which is symmetric and independent with
respect to a non-trivial well-balanced automorphism σ, then Net is not an electoral
system. 2

Palamidessi points out the following application of Theorem 9.22: if we have a ring
Net = new a (P0 | · · · | P3) of size four, which is symmetric with respect to an
automorphism σ satisfying σ̂(i) = i + 2 (using addition modulo 4), then σ is non-
trivial, well-balanced and has independent orbits, and we deduce that Net is not an
electoral system.

Palamidessi uses this to show the nonexistence of an encoding from the π-
calculus to CCS. She defines a symmetric ring of size four in the π-calculus which
is an electoral system. This is mapped by any uniform, observation-respecting and
independence-preserving encoding to a symmetric ring of size four in CCS which is
an electoral system, by Lemma 9.21. But this contradicts Theorem 9.22.

Theorem 9.22 does not hold for CPG, since the effects of a communication
between two processes Pi and Pj extend beyond those two processes, because it may
uncover priority actions in Pi or Pj which inhibit other processes in the network.

Proposition 9.23 There is a symmetric ring of size four in CPG without choice
which is an electoral system.

Proof. For i = 0, . . . , 3, let

Pi
def= ui :ai+1.(ωi | ui) | {ui, ui+1} :ai.ui

32

Phillips

where addition is modulo 4. Let Net = newu,a (P0 | P1 | P2 | P3). Note that all the
names of Pi are indexed with i or i + 1. So therefore Pi and Pi+2 are independent
for i < 4, and Net is a symmetric ring of size four.

We check that it is an electoral system. Suppose without loss of generality that
the first reaction is between P0 and P1. We have

new u,a (P0 | P1 | P2 | P3) →

new u,a ((ω0 | u0) | {u0, u1} :a0.u0

| u1 :a2.(ω1 | u1) | u1

| u2 :a3.(ω2 | u2) | {u2, u3} :a2.u2

| u3 :a0.(ω3 | u3) | {u3, u0} :a3.u3)

Plainly 0 has won, since there is an ω0 barb. Also it can be checked that no further
reaction is possible. Hence Net is indeed an electoral system. 2

In view of Proposition 9.23 we must change the conditions in Theorem 9.22 to get
a version that holds for CPG.

We can associate a simple undirected graph with a network Net = new a (P0 |
· · · | Pk−1) by letting the nodes be 0, . . . , k − 1 and joining i to j iff Pi and Pj are
not independent. We define the distance d(i, j) between i and j to be the length
of the shortest path from i to j in the graph (if there is no path from i to j we
let d(i, j) = ∞). The independent orbit condition in Theorem 9.22 can be seen as
requiring that if i and j are in the same orbit then i = j or d(i, j) ≥ 2. To get
the analogue of Theorem 9.22 for CPG we increase the minimum distance between
members of the same orbit:

Theorem 9.24 Let Net be a CPG network which is symmetric with respect to a
non-trivial well-balanced automorphism σ such that whenever i and j are in the
same orbit of σ then i = j or d(i, j) ≥ 3. Then Net is not an electoral system.

Proof. (Sketch) The proof is based on the method Palamidessi used to show The-
orem 9.22. Let Net = new a (P0 | · · · | Pk−1). Let the size of each orbit be m (all
orbits have the same size, since σ is well-balanced). Note that m > 1, since σ is
non-trivial. We construct a maximal computation which preserves symmetry. If no
winner is declared in the computation then Net is not an electoral system. If on the
other hand a winner is declared, then by symmetry all other processes in the same
orbit can also be declared winners, which again means that Net is not an electoral
system.

Suppose that we have reached state Net′ = new a′ (P ′
0 | · · · | P ′

k−1) in the
computation we are constructing, where Net′ is symmetric with respect to σ′ and
Net′ has no new connections between processes compared with Net. Here σ′ is
the same as σ except that we have adjusted to maintain symmetry for any new
restricted names introduced during the computation. If no reaction is enabled then
the computation is maximal and we are done. So suppose that some reaction is
enabled. There are two cases.

(1) If the reaction involves a single process, P ′
i →U P ′′

i , then we perform it and

33

Phillips

restore symmetry by performing the m− 1 corresponding reactions round the orbit
of i. No new connections are created in the associated graph, by Lemma 4.9. Unlike
in the CCS case, the ability to perform the reaction round the orbit of i depends
on the processes in the orbit being independent. Otherwise the P ′

i →U P ′′
i reaction

might cause a priority action u to be offered by P ′′
i , which could inhibit a process in

i’s orbit which shared the name u. Having performed the m reactions, we modify σ′

to σ′′ as necessary to take into account any new restricted names which may have
been introduced.

(2) If the reaction is a communication between two different processes, P ′
i |

P ′
j →U P ′′

i | P ′′
j , then i and j must be in different orbits. We perform the reaction

and restore symmetry by performing the m− 1 corresponding reactions around the
orbits of both i and j. Again new no connections are created in the associated
graph, using Lemma 5.6. The crucial issue is whether any of the reactions can
inhibit each other by causing new priority actions to be offered. Consider a node
i′ < k with i′ 6= i, j. P ′

i′ can only be affected by the reaction between P ′
i and P ′

j if i′

is connected to either i or j. Suppose that i′ is connected to i. Then i′ cannot be in
the orbit of i or of j, since d(i′, i) = 1 and d(i′, j) ≤ 2. Similarly if i′ is connected to
j then i′ cannot be in the orbit of i or of j. It follows that the m reactions cannot
inhibit each other. Again we modify σ′ to σ′′ as necessary to take into account any
new restricted names introduced during the m reactions. 2

Corollary 9.25 For any composite (non-prime) k ≥ 6, if Net is a symmetric ring
of size k in CPG then Net is not an electoral system.

Proof. Let k be composite with k ≥ 6. Then k = mn, where m ≥ 3. Suppose that
Net is a symmetric ring of size k which is symmetric with respect to σ. Then Net is
also symmetric with respect to σm (σ composed with itself m − 1 times), which is
non-trivial, well-balanced and such that whenever i and j are in the same orbit of
σ then i = j or d(i, j) ≥ m ≥ 3. By Theorem 9.24, Net is not an electoral system.2

Matters are different in the π-calculus without restriction:

Proposition 9.26 For any k ≥ 1, there is a symmetric ring of size k in the π-
calculus without restriction which is an electoral system.

Proof. (Sketch) Palamidessi showed this for a ring of four with the use of restric-
tion [23, Proposition 5.1]. Her method can be easily adapted to rings of any finite
size. Also her method can be adapted to dispense with restriction. We omit the
details. Note that, since we are considering unlabelled transitions (reactions), we
do not need restriction in order to prevent unwanted labelled transitions. 2

We can now prove our main result:

Theorem 9.27 There is no uniform, observation-respecting and independence-preserving
encoding of the π-calculus into CPG.

Proof. By Proposition 9.26, Lemma 9.21 and Corollary 9.25. 2

34

Phillips

10 Conclusions

We have introduced priority guards into CCS to form the language CPG. We have
defined both strong and weak bisimulation equivalences and seen that they are
conservative over the CCS equivalences, and that they are congruences. We have
given complete equational laws for finite CPG in both the strong and weak cases.
Conservation over CCS has the consequence that in verifying CPG systems we can
often use standard CCS reasoning, as long as we take some care with actions in the
set of priority actions Pri.

CPG overcomes the asymmetry between inputs and outputs present both in
Camilleri and Winskel’s calculus and in the corresponding calculus of Cleaveland,
Lüttgen and Natarajan.

Finally, using leader election problems, we have seen that priority guards add
expressiveness to both CCS and the π-calculus.

An obvious direction for further work is to work out the implications of adding
priority guards to the π-calculus. This has been tackled in [3].

Acknowledgement

We wish to thank Philippa Gardner, Rajagopal Nagarajan, Catuscia Palamidessi,
Andrew Phillips, Irek Ulidowski, Maria Grazia Vigliotti, Nobuko Yoshida and the
anonymous Concur 2001 referees for helpful discussions and suggestions. We par-
ticularly thank this journal’s referees for many improvements. This research was
partially funded by EPSRC grant GR/K54663.

References

[1] J.C.M. Baeten, J. Bergstra, and J.W. Klop. Syntax and defining equations for an interrupt mechanism
in process algebra. Fundamenta Informaticae, 9:127–168, 1986.

[2] J. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and Control,
60(1-3):109–137, 1984.

[3] A. Bloch, M.V. Frederiksen, and B. Haagensen. A π-calculus with prioritized actions with applications.
DAT5 Project Report, Group B1-215B, supervisor H. Hüttel, Department of Computer Science, Aalborg
University, 2004.

[4] L. Bougé. On the existence of symmetric algorithms to find leaders in networks of communicating
sequential processes. Acta Informatica, 25:179–201, 1988.

[5] J. Camilleri and G. Winskel. CCS with priority choice. Information and Computation, 116(1):26–37,
1995.

[6] L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213, 2000.

[7] R. Cleaveland and M.C.B. Hennessy. Priorities in process algebra. Information and Computation,
87(1/2):58–77, 1990.

[8] R. Cleaveland, G. Lüttgen, and V. Natarajan. Priority in process algebra. In J.A. Bergstra, A. Ponse,
and S.A. Smolka, editors, Handbook of Process Algebra, chapter 12, pages 391–424. Elsevier, 2001.

[9] C. Ene and T. Muntean. Expressiveness of point-to-point versus broadcast communications. In FCT
’99, volume 1684 of Lecture Notes in Computer Science, pages 258–268. Springer-Verlag, 1999.

[10] C.J. Fidge. A formal definition of priority in CSP. ACM Transactions on Programming Languages
and Systems, 15(4):681–705, 1993.

[11] H. Hansson and F. Orava. A process calculus with incomparable priorities. In Proceedings of the North
American Process Algebra Workshop, Stony Brook, New York, Workshops in Computing, pages 43–64.
Springer-Verlag, 1992.

35

Phillips

[12] C.A.R. Hoare. Communicating sequential processes. Communications of the Association for
Computing Machinery, 21(8):666–677, 1978.

[13] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[14] A. Jeffrey. A typed, prioritized process algebra. Technical Report 13/93, Dept. of Computer Science,
University of Sussex, 1993.

[15] C.-T. Jensen. Prioritized and Independent Actions in Distributed Computer Systems. PhD thesis,
Aarhus University, 1994.

[16] R. Milner. A complete inference system for a class of regular behaviours. Journal of Computer and
System Sciences, 28:439–466, 1984.

[17] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[18] R. Milner. A complete axiomatisation for observational congruence of finite-state behaviours.
Information and Computation, 81:227–247, 1989.

[19] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press, 1999.

[20] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and Computation,
100:1–77, 1992.

[21] V. Natarajan, L. Christoff, I. Christoff, and R. Cleaveland. Priorities and abstraction in process algebra.
In P.S. Thiagarajan, editor, Foundations of Software Technology and Theoretical Computer Science,
14th Conference, volume 880 of Lecture Notes in Computer Science, pages 217–230. Springer-Verlag,
1994.

[22] U. Nestmann and B. Pierce. Decoding choice encodings. Information and Computation, 163(1):1–59,
2000.

[23] C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous π-calculi.
Mathematical Structures in Computer Science, 13(5):685–719, 2003.

[24] I.C.C. Phillips. CCS with priority guards. In Proceedings of 12th International Conference on
Concurrency Theory, CONCUR 2001, volume 2154 of Lecture Notes in Computer Science, pages 305–
320. Springer-Verlag, 2001.

[25] I.C.C. Phillips and M.G. Vigliotti. Electoral systems in ambient calculi. In Proceedings of 7th
International Conference on Foundations of Software Science and Computation Structures, FoSSaCS
2004, volume 2987 of Lecture Notes in Computer Science, pages 408–422. Springer-Verlag, 2004.

[26] I.C.C. Phillips and M.G. Vigliotti. Leader election in rings of ambient processes. Theoretical Computer
Science, 356(3):468–494, 2006.

[27] K.V.S. Prasad. A calculus of broadcasting systems. Science of Computer Programming, 25(2-3):285–
327, 1995.

36

	Introduction
	Comparison with Related Work
	Camilleri and Winskel (CW)
	Cleaveland, Lüttgen and Natarajan (CLN)
	The Principle of Limited Preemption

	The Language CPG
	Offers and Reaction
	Labelled Transitions
	Strong Offer Bisimulation
	Weak Offer Bisimulation
	Verifying example systems
	Expressiveness
	Electoral Systems for CPG
	The -calculus
	Nonexistence of encodings from CPG to the -calculus
	Nonexistence of encodings from the -calculus to CPG

	Conclusions
	Acknowledgement
	References

