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Abstract

Palamidessi has shown that the π-calculus with mixed choice is powerful enough
to solve the leader election problem on a symmetric ring of processes. We show
that this is also possible in the calculus of Mobile Ambients (MA), without using
communication or restriction. Following Palamidessi’s methods, we deduce that
there is no encoding satisfying certain conditions from MA into CCS. We also show
that the calculus of Boxed Ambients is more expressive than its communication-free
fragment.
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1 Introduction

The π-calculus [12] is a simple, yet extremely powerful, formalism that models
concurrency and the passing around of resources that can later be used by
other processes. It is based on a very simple and uniform concept of names.
Names are both channels, on which communication takes place, and values,
i.e. the resources passed around. Names sent as values can be used later as
channels for communication. This particular feature seems unique to the π-
calculus, and allows processes to establish connection during computation.
This seems to add extra power that was not previously available in CCS [11]
or other similar calculi such as CSP [8] or ACP [2].

In fact, while CCS (with value-passing) may be regarded as a subcalcu-
lus of the π-calculus, Palamidessi [13] has exploited the possibility of creating
new connections in the π-calculus by showing that (under certain conditions)
there exists no encoding from the π-calculus to CCS. Palamidessi establishes
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her result within the framework of the leader election problem. Leader elec-
tion problems arise in the field of distributed systems, where they are widely
studied for practical reasons, and are also used to differentiate models of com-
putation. The problem is stated as follows: given a symmetric network, a
composition of processes that differ in their free variables only, one process
has to be elected a leader without the help of a centralised server.

CCS and the π-calculus with mixed choice (where input and output can
occur in the choice operator together) can both elect a leader in a fully con-
nected symmetric network. This differentiates these two calculi from the π-
calculus with separate choice (meaning that inputs and outputs cannot be
mixed in the same choice), where such election is not possible. Moreover, the
π-calculus can also solve the problem of electing a leader in a symmetric ring
of processes, in other words, in a network where each process is connected
only to its two neighbours in the ring. Palamidessi’s algorithm works in two
phases. In phase one the processes pass names around the ring so that every
process becomes directly connected to every other process. Here there is an
essential use of the π-calculus, though without any use of choice. CCS would
not do, since it cannot increase connectivity. In the second phase the pro-
cesses elect a leader. Here there is an essential use of mixed choice, but CCS
would suffice, rather than the π-calculus. Building on the work of Angluin [1]
and Bougé [4], Palamidessi proves that CCS cannot perform leader election
on symmetric rings, by showing that there is a maximal computation where
symmetry is never broken, so that no single leader emerges. She deduces that
there is no encoding (of a certain kind) from the π-calculus with mixed choice
into CCS.

In the present work we explore how Palamidessi’s techniques apply to rings
in ambient calculi, studying how new connections between processes can be
established. In previous work [15], we have shown that in Mobile Ambients
(MA) [6] without the communication primitives, the open capability and re-
striction, the leader election problem can be solved in a fully-connected sym-
metric network. We might call this fragment of MA the minimal fragment.
This fragment, which is also a sub-calculus of Boxed Ambients (BA) [5], is
choice-free; the solution to electing a leader in symmetric network is achieved
through the pre-emptive power of migration inside ambients [15,17]. The
communication primitives of MA have the same operational semantics as the
π-calculus, except that they are anonymous, in the sense that there are no
channels on which communication happens (in the π-calculus one would write
a(x).P for an input on the channel a, while in MA one would write (x).P
for an anonymous input). Thus, since the communication primitives in am-
bients are very similar to those of the π-calculus, it would be not surprising
if Palamidessi’s algorithm for rings could be formulated in MA. However, in
this paper we solve the leader election problem for symmetric rings in pure
public MA, i.e. MA without communication primitives and restriction. The
link-passing in this case has to be simulated, since there is no explicit way of

2



Phillips and Vigliotti

passing names in the absence of communication. This yields immediately the
result that pure public MA cannot be encoded into CCS.

The second major result that we present here, is that, even if we add
communication and restriction to the minimal fragment of MA, the leader
election problem in a ring cannot be solved. This clearly shows that in MA, the
open capability (but not communication) is crucial in order to pass resources
around. In connection with our results, we recall that Zimmer [18] proved that
the synchronous choice-free π-calculus can be encoded into pure Safe Ambients
(SA) [9], showing that link-passing can be simulated in pure SA. The encoding
uses the open capability. Thus the open capability seems quite powerful. This
is in contrast with other expressiveness results based on Turing completeness
[10,3], where it was shown that the open capability is not crucial, since the
minimal fragment is still Turing-complete.

The situation is different for BA, where the open capability is missing as
a design choice. Communications between parent and child ambients are al-
lowed, and the synchronous choice-free π-calculus can be encoded, and with
that, clearly, the power of creating new links. Thus, in BA the leader election
problem in a ring can be solved by converting the ring into a fully-connected
network and then using the algorithm of [15]. However, pure BA is less expres-
sive than the full calculus, since only with the presence of the open capability
can MA elect a leader in rings.

In distributed systems, leader election problems are categorised according
to the connectivity of the network, the knowledge of the size of the network
and the methods of election. In this paper we present a solution in MA for
a ring of four processes (the smallest interesting case). We conjecture that
the generalisation of the algorithm to any size of ring should be possible,
providing that the processes are given information about the size of the ring.
Palamidessi’s algorithm also uses this information. However, for the Push
and Pull Ambient Calculus [14], we present a solution for rings where the
processes do not know the size of the ring. Thus a single uniform solution will
work for any size of ring. As far as we know, this is the first time that such
an algorithm has been devised in the setting of process calculi. It remains
for future work to find suitable conditions that differentiate those calculi that
admit a solution to the leader election problem without having to know the
size of the ring from those that do need to know the size.

The rest of the paper is structured as follows. In Section 2 we describe the
calculi we are considering, and in Section 3 we discuss electoral systems. In
Section 4 we consider calculi which admit symmetric electoral systems of rings
of processes, while in Section 5 we show that MA without the open capability
does not admit symmetric electoral systems for certain rings. In Section 6 we
examine the consequences of our results for expressiveness of ambient calculi.
Finally we draw some conclusions in Section 7.
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2 Calculi

In this section we recall Cardelli and Gordon’s Mobile Ambients (MA) and
related calculi.

2.1 Mobile Ambients

We follow [6], except for communication, as noted below. Let P,Q, . . . range
over processes and M, . . . over capabilities. We assume a set of names N ,
ranged over by m,n, . . .. Processes are defined as follows:

P,Q ::= 0 | P | Q | νn P | !P | n[P ] | M.P | (n).P | 〈n〉

Here 0 is the nil process which is inactive; P | Q is the parallel composition
of processes P and Q; νn P is P with name n restricted; !P (replication) is
a process which can spin off as many copies of P as are required; n[P ] is an
ambient named n containing process P ; M.P performs capability M before
continuing as P ; and (n).P receives input on an anonymous channel, with the
input name replacing free occurrences of name n in P ; and finally 〈n〉 is a
process which outputs name n. Notice that output is asynchronous, that is,
it has no continuation. Restriction and input are name-binding. We let fn(P )
denote the set of free names of P . We omit trailing 0s and write n[ ] instead
of n[0 ].

Capabilities are defined as follows:

M ::= in n | out n | open n

Capabilities allow movement of ambients (in n and out n) and dissolution of
ambients (open n).

We confine ourselves in this paper to communication of names, rather than
full communication including capabilities (as in [6]). This serves to streamline
the presentation; the results would also hold for full communication.

Structural congruence ≡ allows rearrangement of processes; it is the least
congruence generated by the following laws:

P | Q ≡ Q | P νn νm P ≡ νm νn P

(P | P ′) | P ′′ ≡ P | (P ′ | P ′′) νn (P | Q) ≡ P | νn Q if n /∈ fn(P )

P | 0 ≡ P νn m[P ] ≡ m[ νn P ] if n 6= m

!P ≡ P | !P νn 0 ≡ 0

!0 ≡ 0

The reduction relation → is generated by the following rules:

(Open) open n.P | n[Q ] → P | Q

(In) n[ in m.P | P ′ ] | m[Q ] → m[n[P | P ′ ] | Q ]

(Out) m[n[ out m.P | P ′ ] | Q ] → n[P | P ′ ] | m[Q ]

(Comm) 〈m′〉 | (m).P → P{m′/m}
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(Amb)
P → P ′

n[P ]→ n[P ′ ]
(Par)

P → P ′

P | Q→ P ′ | Q

(Res)
P → P ′

νn P → νn P ′
(Str)

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

Here P{m′/m} denotes P with m′ substituted for every free occurrence of m.
Notice that movement in MA is subjective: ambients move themselves using
the in and out capabilities. We write→→ for the reflexive and transitive closure
of →.

The most basic observation we can make of an MA process is the presence
of an unrestricted top-level ambient. A process P exhibits barb n, written as
P ↓ n, iff P ≡ ν ~m (n[P ′ ] | P ′′) with n /∈ ~m. Here ~m represents a tuple of
names. A process P eventually exhibits barb n, written P ⇓ n, iff P →→ Q and
Q ↓ n for some Q.

We shall be interested in various subcalculi: pure MA is MA without
communication; public MA is MA without restriction; and boxed MA is MA
without the open capability.

2.2 The Push and Pull Ambient Calculus

The Push and Pull Ambient Calculus (PAC) [14,17] is a variant of MA where
the subjective moves enabled by the in and out capabilities are replaced by
objective moves whereby ambients can be pulled in or pushed out by other
ambients. The syntax of processes is the same as for MA. Capabilities are
defined as follows:

M ::= pull n | push n | open n

The reduction rules are the same as for MA, except that (In) and (Out) are
replaced by the following:

(Pull) n[ pull m.P | P ′ ] | m[Q ] → n[P | P ′ | m[Q ] ]

(Push) n[m[P ] | push m.Q | Q′ ] → n[Q | Q′ ] | m[P ]

2.3 Boxed Ambients

The calculus of Boxed Ambients [5] is derived from MA by removing the
open capability and allowing parent-child communication as well as same-level
communication. Processes are defined as follows:

P,Q ::= 0 | P | Q | νn P | !P | n[P ] | M.P | (~n)η.P | 〈~n〉η.P

Here ~n denotes a tuple of names, and η ranges over locations, defined as follows:

η ::= n | ↑ | ?

The “local” location ? is elided. Notice that output 〈~n〉η.P is synchronous,
unlike in MA. Capabilities M are defined as for MA but without open. The
reduction rules are the same as for boxed MA, except for communication,
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where the rule (Comm) is replaced by the following five rules:

(Local) (~m).P | 〈 ~m′〉.Q → P{ ~m′/~m} | Q

(Input n) (~m)n.P | n[ 〈 ~m′〉.Q | Q′ ] → P{ ~m′/~m} | n[Q | Q′ ]

(Input ↑) n[ (~m)↑.P | P ′ ] | 〈 ~m′〉.Q → n[P{ ~m′/~m} | P ′ ] | Q

(Output n) n[ (~m).P | P ′ ] | 〈 ~m′〉n.Q → n[P{ ~m′/~m} | P ′ ] | Q

(Output ↑) (~m).P | n[ 〈 ~m′〉↑.Q | Q′ ] → P{ ~m′/~m} | n[Q | Q′ ]

Clearly, rule (Local) extends rule (Comm), so that communication in BA is
at least as powerful as communication in MA.

3 Electoral Systems and Rings

All the notions of this section apply equally to MA, PAC and BA.

3.1 Networks and Electoral Systems

We briefly recall electoral systems as formulated in [15], building on [13]. We
assume that N includes a set of observables Obs = {ωi : i ∈ N} such that for
all i, j we have ωi 6= ωj if i 6= j. The observables will be used by networks
to communicate with the outside world. The notation P 6→ means that there
does not exist a process to which P can reduce.

Definition 3.1 Let P be a process. A computation C of P is a (finite or
infinite) sequence P = P0 → P1 → · · ·. It is maximal if it cannot be extended,
i.e. either C is infinite, or else it is of the form P0 → · · · → Ph where Ph 6→.

Definition 3.2 Let C be a computation P0 → · · · → Ph → · · ·. We define
the observables of C as Obs(C) = {ω ∈ Obs : ∃h Ph ↓ ω}.

Networks are just collections of processes running in parallel:

Definition 3.3 A network Net of size k is a process in the form ν~n (P0 | . . . |
Pk−1).

A permutation is a bijection σ : N → N such that σ preserves the distinc-
tion between observable and non-observable names, i.e. n ∈ Obs iff σ(n) ∈ Obs.
Any permutation σ gives rise in a standard way to a mapping on processes,
where σ(P ) is the same as P , except that any free name n of P is changed to
σ(n) in σ(P ), with bound names being adjusted as necessary to avoid clashes.

A permutation σ induces a bijection σ̂ : N → N defined as follows: σ̂(i) = j
where σ(ωi) = ωj. Thus for all i ∈ N, σ(ωi) = ωσ̂(i). We use σ̂ to permute the
indices of processes in a network.

Definition 3.4 Let Net = ν~n(P0 | . . . | Pk−1) be a network of size k. An auto-
morphism on Net is a permutation σ such that (1) σ̂ restricted to {0, . . . , k−1}
is a bijection, and (2) σ preserves the distinction between free and bound
names, i.e. n ∈ ~n iff σ(n) ∈ ~n.
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Definition 3.5 Let σ be an automorphism on a network of size k. For any
i ∈ {0, . . . , k − 1} the orbit Oσ̂(i) generated by σ̂ is defined as follows:

Oσ̂(i) = {i, σ̂(i), σ̂
2(i), . . . , σ̂h−1(i)}

where σ̂j represents the composition of σ̂ with itself j times, and h is least
such that σ̂h(i) = i. If every orbit has the same size then σ is well-balanced.

Definition 3.6 Let Net = ν~n (P0 | . . . | Pk−1) be a network of size k and let
σ be an automorphism on it. We say that Net is symmetric with respect to σ
iff for each i = 0, . . . , k − 1 we have Pσ̂(i) = σ(Pi).

Intuitively an electoral system is a network which reports a unique winner,
no matter how the computation proceeds.

Definition 3.7 A network Net of size k is an electoral system if for every
maximal computation C of Net there exists an i < k such that Obs(C) = {ωi}.

3.2 Rings and Independence

In this paper we are interested in the connectivity between processes, and in
rings of processes in particular. Given a network Net = ν~n (P0 | · · · | Pk−1),
we can associate a graph with Net by letting the set of nodes be {0, . . . , k−1}
and letting i, j < k be adjacent iff fn(Pi)∩ fn(Pj) 6= ∅. A network forms a ring
if the processes can be arranged in a cycle, and each node i is adjacent to at
most its two neighbours in the cycle.

Definition 3.8 A ring is a network Net = ν~n (P0 | · · · | Pk−1) which has a
single-orbit automorphism σ such that for all i, j < k, if fn(Pi) ∩ fn(Pj) 6= ∅
then one of i = j, σ̂(i) = j or σ̂(j) = i must hold. A ring is symmetric if it is
symmetric with respect to such an automorphism σ.

Recall that an independent set in a graph is a set of nodes such that no
two nodes of the set are adjacent.

Definition 3.9 Two processes P and Q are independent if they do not share
any free names: fn(P ) ∩ fn(Q) = ∅.

Definition 3.10 Let σ be an automorphism on a network Net = ν~n (P0 |
· · · | Pk−1). Then Net is independent with respect to σ if every orbit forms an
independent set, in the sense that if i, j < k are in the same orbit of σ̂ with
i 6= j, then Pi and Pj are independent.

4 Calculi with Electoral Systems for Rings

In this section we show that we can solve leader election on symmetric rings
in ambient calculi. We present solutions for MA, BA and PAC. We start with
PAC, since it is the simplest.
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4.1 Pure Public PAC

We show that using push and pull we can build a symmetric ring of processes
which can elect a leader. What is more, the construction is such that individual
processes do not know the size of the ring.

Theorem 4.1 For any k ≥ 1, there is a symmetric ring of size k which is an
electoral system in pure public PAC.

Proof. (Sketch) Let k ≥ 1. For i = 0, . . . , k − 1, let Pi be defined as follows:

Pi
df
= ni[ni[ωi[ ] ] | push ωi | pull ni+1 | open ni+1 ]

Let Net
df
= P0 | · · · | Pk−1. Note that Net belongs to pure public PAC—there

is no use of communication or restriction. Moreover, the construction of Pi

does not depend on k. It can be checked that Net forms a symmetric ring.

We claim that Net forms an electoral system. The idea is that a process
can pull in its neighbour and open it. The neighbour thereby loses and drops
out of the ring, which now has one fewer process. Eventually only one process
P ′i is left, which has the capability to open ni[ωi[ ] ] and push ωi[ ] to the top
level, announcing i as the winner. More details can be found in [16]. 2

We do not see how to express this algorithm using the different movement
capabilities available in MA, or in Safe Ambients [9], or in ROAM [7].

4.2 Pure Public MA

We now solve the leader election problem for rings in pure public MA. We re-
strict ourselves to a ring of size four, which is the smallest interesting case and
will be enough for establishing separation results between calculi (Section 6).

Theorem 4.2 There is a symmetric ring of size four which is an electoral
system in pure public MA.

Proof. (Sketch) Unlike in the case of PAC, where during the computation the
ring contracts as each losing process gets eliminated, we follow Palamidessi’s
solution for the π-calculus with mixed choice by first converting the ring into
a complete graph and then running an election on this graph. We write nr[P ]
as a shorthand for n[n[ . . . n[P ] . . . ] ] (r embedded ambients named n, with
P as the contents of the innermost ambient). We define:

Pi
df
= ri[ni[ω

4
i [ out ni ] | Qi,i+1 | open ei.si[ out ni.out ri ] ] ]

| open si.open ri | bi+1[ in di+1.ci+1[Qi ] ] | di[ open bi.in ei+1 ]

| ei+1[ open di.in ri+1.open ci.in ni+1.(Q
′
i | Qi+1,i) ]
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where

Qij
df
= in nj | open nj.dmj[ ] | open dmj.(dmj[ ] | open ωi)

Qi
df
= in ni | open ni.dmi[ ] | open dmi.(dmi[ ] | ai+1[ ])

Q′i
df
= open ai.open ωi+1

Then P0 | P1 | P2 | P3 forms a ring, since fn(Pi)∩fn(Pi+2) = ∅. It can be shown
that P0 | P1 | P2 | P3 is guaranteed to reduce to the network R0 | R1 | R2 | R3,
where:

Ri
df
= ni[ω

4
i [ out ni ] | Qi,i+1 | Qi−2 | Q

′
i−1 | Qi,i−1 ]

This network forms a complete symmetric graph, and is an electoral system.
The idea is that a process j loses by entering another process i. At this point
ambient nj is opened, unleashing the “dummy” ambient dmj within ambient
ni. The winner will be the single process i that has absorbed all the other
processes, and has been able to open dmj (all j 6= i) and thereby strip off the
three outer ωi ambients to allow ωi[ ] to emerge at the top level. More details
can be found in [16]. 2

We conjecture that the construction in the proof of Theorem 4.2 can be
generalised to build symmetric rings forming electoral systems of any size k.

4.3 Boxed Ambients

We now consider Boxed Ambients. The solutions for MA and PAC depend on
open, which is not available in BA. However it turns out that the parent-child
communication of BA enables the construction of symmetric rings forming
electoral systems.

Theorem 4.3 For any k ≥ 1, there is a symmetric ring of size k which is an
electoral system in BA.

Proof. (Sketch) As in the proof of Theorem 4.2, we follow Palamidessi’s
method of first distributing names round the ring to create a complete graph
and then running the election on it. Palamidessi shows how to distribute the
names in choice-free synchronous π-calculus. Suppose that process Pi has a
channel yi initially known only to itself, and is joined to Pi+1 by channel xi.
Then the names yi are passed around the ring so that all processes share them
and can use them in the election phase. Since BA can encode choice-free syn-
chronous π-calculus [5], we can carry out the distribution phase in BA. We
use the following translation of the π-calculus input and synchronous output:

x(y).P
df
= (y, z)x.(z[ ] | P )

x̄〈y〉.P
df
= x[ 〈y, z〉 ] | ()z.P

where z is fresh. Note that we do not need restriction.

The algorithm for the election phase is the same as the one presented in [15]
for pure public boxed MA.
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Here is what Pi looks like for k = 4:

Pi(xi, xi+3, yi)
df
= x̄i〈yi〉.xi+3(yi+3).x̄i〈yi+3〉.xi+3(yi+2).x̄i〈yi+2〉.xi+3(yi+1).

Qi〈yi, yi+1, yi+2, yi+3〉

Here Qi is ready to carry out the election:

Qi(yi, yi+1, yi+2, yi+3)
df
= ni[ in yi+1 | in yi+2 | in yi+3 |

ωi[ in yi+1.in yi+2.in yi+3.out yi+3.out yi+2.out yi+1.out ni ] |

ωi[ in yi+1.in yi+3.in yi+2.out yi+2.out yi+3.out yi+1.out ni ] |

ωi[ in yi+2.in yi+1.in yi+3.out yi+3.out yi+1.out yi+2.out ni ] |

ωi[ in yi+3.in yi+1.in yi+2.out yi+2.out yi+1.out yi+3.out ni ] |

ωi[ in yi+3.in yi+2.in yi+1.out yi+1.out yi+2.out yi+3.out ni ] |

ωi[ in yi+2.in yi+3.in yi+1.out yi+1.out yi+3.out yi+2.out ni ] ]

2

5 Calculi without Electoral Systems for Rings

In this section, we show that the open capability is crucial for electing a
leader in symmetric networks. If fact, if the open capability is dropped, then
election in symmetric rings is not possible. We present below the proof for
MA; however our technique can be easily adapted to PAC and SA. Thus, PAC
and SA do not admit a solution for electoral system for rings without the open

capability.

Recall that by boxed MA we mean MA without the open capability.

Theorem 5.1 For any composite k > 1, boxed MA does not have a symmetric
ring of size k with no globally-bound names which is an electoral system.

For the proof, of which full details can be found in [16], we consider a
network Net symmetric with respect to an automorphism σ with indepen-
dent orbits. Whatever reduction Net makes, we can retain symmetry and
independence with respect to σ by propagating that move round the orbit(s)
concerned. If a process ever declares itself a winner, then by symmetry all pro-
cesses in the same orbit can declare themselves winners on the same round.
With orbits of size greater than 2 this means that there is a computation of
Net which does not declare a unique winner, so that Net is not an electoral
system. The significance of Net being independent with respect to σ is that
if a reduction involves two processes interacting then they must come from
different orbits. This means that when the reduction is propagated round the
two orbits concerned we have restored symmetry with respect to σ. So far, the
method we have outlined essentially follows Palamidessi’s proof for CCS [13,
Theorem 6.1], which builds on the work of Angluin [1] and Bougé [4]. How-
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ever, that proof relies on the orbits of σ remaining independent throughout
the computation. This may not be the case for boxed MA, since processes can
acquire new free names through communication and through other ambients
entering. We are therefore obliged to weaken the notion of independence for
the proof. We label processes to keep track of which ambients truly belong to
a process, and which ambients have entered from another process. “Foreign”
ambients can move around, but they can never transfer their capabilities to the
host process, since the open capability is not available. Thus, independence
and symmetry with respect to σ is preserved during computation.

The condition in Theorem 5.1 requiring a ring of composite size is stronger
than the condition used by Palamidessi for CCS, which is that the network has
a well-balanced automorphism with independent orbits. We need the single
orbit of the ring automorphism in order to deal with anonymous communica-
tion.

6 Separation Results

We use the results of Sections 4 and 5 to show that certain languages cannot
be encoded in others.

We recall the following from [15] (building on [13]):

Definition 6.1 Let L, L′ be process languages. An encoding [[−]] : L→ L′ is

(i) distribution-preserving if for all processes P , Q of L, [[P | Q]] = [[P ]] | [[Q]];

(ii) permutation-preserving if for any permutation of names σ in L there exists
a permutation θ in L′ such that [[σ(P )]] = θ([[P ]]) and the permutations
are compatible on observables, in that for all i ∈ N we have σ(ωi) = θ(ωi);

(iii) observation-respecting if for any P in L,
(a) for every maximal computation C of P there exists a maximal com-

putation C ′ of [[P ]] such that Obs(C) = Obs(C ′)
(b) for every maximal computation C of [[P ]] there exists a maximal com-

putation C ′ of P such that Obs(C) = Obs(C ′)

An encoding which preserves distribution and permutation is uniform.

Unlike in [15], we are considering encodings which map rings to rings. We
therefore need a further property:

Definition 6.2 An encoding is independence-preserving if for any processes
P , Q, if P and Q are independent then [[P ]] and [[Q]] are also independent.

Palamidessi says that such an encoding “does not increase the level of
connectivity of the network”. Not all encodings preserve independence. For
instance, Zimmer’s [18] encoding of the synchronous π-calculus without choice
into pure Safe Ambients [9] introduces a new global ambient whose name is
shared by all processes.
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Lemma 6.3 Suppose [[−]] : L → L′ is a uniform, observation-respecting and
independence-preserving encoding. Suppose that Net is a symmetric ring of
size k ≥ 1 with no globally-bound names which is an electoral system. Then
[[Net]] is also a symmetric ring of size k with no globally-bound names which
is an electoral system.

The proof can be found in [16].

Theorem 6.4 There is no uniform, observation-respecting and independence-
preserving encoding from pure public MA into CCS (with value passing).

Proof. This follows from Theorem 4.2, Lemma 6.3 and the fact that CCS does
not have a symmetric ring of four processes which is an electoral system [13].
Although CCS usually uses labelled transition systems, it can be regarded as
a subcalculus of the π-calculus and therefore can be fitted into the unlabelled
approach to electoral systems of Section 3, as was done for the π-calculus
in [15]. 2

Theorem 6.5 There is no uniform, observation-respecting and independence-
preserving encoding from pure public MA into boxed MA.

Proof. From Theorem 4.2, Theorem 5.1 and Lemma 6.3. 2

It follows from Theorem 6.5 that the open capability of MA does indeed
add expressive power not present in the other operators of MA.

Theorem 6.6 There is no uniform, observation-respecting and independence-
preserving encoding from BA into boxed MA (and therefore into pure BA).

Proof. From Theorem 4.3, Theorem 5.1 and Lemma 6.3. 2

It follows from Theorem 6.6 that the parent-child communication in BA
does indeed add expressive power (without it, BA would be essentially boxed
MA).

7 Conclusions

In this paper we have shown how to elect a leader in a symmetric ring of
processes in MA and its variants. We have seen that it can be done in pure
public MA for a ring of size 4, so that for that case communication is unnec-
essary. On the other hand, the open capability is essential, since the election
cannot be carried out in boxed MA (in fact the in and out capabilities are
also essential—cf. [15]). Thus, simulating link-passing requires the open ca-
pability, but does not require the (anonymous) communication of MA. This
shows that pure MA cannot be encoded either into CCS or into pure BA. In
the case of BA, however, (parent-child) communication is necessary in order
to elect a leader in rings, since the open capability is not present. While our
results shed light on the expressive power provided by the open capability,

12
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in the presence of the latter, leader election problems in both rings and fully
connected graphs do not give any separation results between MA with com-
munication primitives and pure MA. In this framework one could regard them
as equal, since, when it comes to passing names around, pure MA can do just
as well as the full calculus.

It is worth spending a few words on Theorem 5.1, which says that MA
without the open capability cannot solve the election problem on rings with a
composite number of processes. If the number of processes is prime, then any
well-balanced automorphism different from the identity has one orbit only,
and our proof methods would not apply. This would be true for Palamidessi’s
work as well. Nevertheless, we expect that election is impossible in rings of
any size greater than three. Furthermore, we claim that Theorem 5.1 also
holds for PAC (or SA) without the open capability. In connection with this,
and recalling that Zimmer has encoded the synchronous choice-free π-calculus
into pure SA, we conjecture that for SA without the open capability such an
encoding would not be possible, even in the presence of communication. For
if it were possible, then it would seem that SA without open could perform
election on rings, much as shown for BA (Theorem 4.3).

A challenge for the future is to find suitable conditions that differentiate
those calculi that admit a solution to the leader election problem without
having to know the size of the ring (such as PAC) from those that do need to
know the size.
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