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1 Introduction

The π-calculus [22,21] plays a fundamental role in modelling concurrent sys-
tems. In particular, the name passing paradigm, on which the π-calculus is
based, has proved to be a powerful and simple framework for describing dif-
ferent scenarios appearing in concurrency.

In recent years many approaches [9,10,13] have been proposed in order to rep-
resent locations, code mobility, abstract domains and security, which seem to
be the main features of computation over the World Wide Web. Mobile Ambi-
ents (MA) [8] has been advocated [7] as a foundational calculus for representing
distributed computation, mobility in terms of software and hardware moving
around, authorisation control etc., i.e. phenomena present over the Internet.
The main advantage of MA is the simple underpinning unifying concept of am-
bient. Ambients are meant to represent bounded places for computation such
as: concrete locations, concrete domains, abstract domains and laptop com-
puters. Ambients move into and out of other ambients, bringing along moving
code, static processes and possibly other ambients. Due to its simplicity and
power, MA (together with its variants) has been widely studied.

When it comes to the comparison between these two fundamental process
calculi, a basic issue is the extent to which the π-calculus (or any of its di-
alects) can be encoded into MA (or any of its dialects). The asynchronous
π-calculus [16,3] (a fragment without the choice operator and with no con-
tinuation for the output), has been encoded into MA with the use of the
communication primitives. There has been an encoding of the asynchronous
π-calculus in the Push and Pull Ambient Calculus (PAC) [26], which preserves
the contextual barbed congruence equivalence relation [31]. The synchronous
π-calculus without choice has been encoded by Zimmer [32] into Safe Ambi-
ents (SA) [17] without communication; the encoding satisfies an operational
correspondence. These encodings show that the behaviour of the asynchronous
π-calculus can be simulated in the ambient world. This seems to imply that
MA and some of its dialects are at least as expressive as the π-calculus (with-
out choice).

This poses the question whether the ambient calculus (or any of its dialects)
is more (or equally) expressive with respect to any of the dialects of the π-
calculus. This paper directly addresses this open question. We approach the
problem via the leader election problem in symmetric networks. This requires
that the processes in a network, all programmed in the same way (i.e. symmet-
ric), elect one of their member as their leader. The difficulty consists in break-
ing the initial symmetry to achieve a situation which is inherently asymmetric
(one is the leader and the others are not) without the help of a centralised
server.
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A seminal result on expressiveness for the π-calculus is due to Palamidessi [24],
who established that the π-calculus with mixed choice (i.e. where the sum-
mands in a choice can be a mixture of inputs and outputs) is strictly more
expressive than the π-calculus with separate choice (i.e. where the summands
must be all inputs or all outputs). This is proved by showing that the π-
calculus with mixed choice can solve the symmetric leader election problem,
while the π-calculus with separate choice cannot. This implies that there does
not exist an encoding from the π-calculus with mixed choice to the π-calculus
with separate choice that respects certain conditions.

These conditions are chosen in order to preserve important features of leader
election. Typically leader election algorithms are run after a reconfiguration
or crash of a distributed system (such as a sensor network, LAN etc.), to
establish which process can start the initialisation, and at a later stage will
act as server. It is crucial that the leader is elected without any help from
processes not present in the initial network. Roughly speaking, Palamidessi’s
results establish that no encoding that does not introduce a centralised server
exists from the π-calculus with mixed choice to the π-calculus with separate
choice.

In this paper, we use the power to solve (or not solve) the leader election prob-
lem in symmetric networks as a measure for distinguishing different calculi.
Taking inspiration from Palamidessi’s work, we separate the π-calculus with
separate choice from MA, and separate different fragments of ambient calculi.
Our main contributions are as follows:

• We show that the fragment of MA without restriction, communication prim-
itives and the open capability can solve the leader election problem for net-
works of any finite size (Theorem 4.6). This fragment (and so MA as a
whole) is therefore not encodable in the π-calculus with separate choice
(Corollary 6.4). In similar fashion we show that fragments of SA and PAC
without restriction, communication primitives and the open capability can
perform leader election (Theorems 4.8 and 4.7), and are therefore not encod-
able in the π-calculus with separate choice (Corollary 6.6). We can deduce
that the converse to Zimmer’s encoding result mentioned above does not
hold.

• We show that a fragment of SA without restriction, communication primi-
tives and the out capability can perform leader election (Theorem 4.10), and
is therefore not encodable in the π-calculus with separate choice (Corol-
lary 6.6 again).

• We show that if the in capability is removed from MA or SA, or if the pull

capability is removed from PAC, then the leader election problem cannot
be solved (Theorems 5.8 and 5.9).

• We show that (a dialect of) MA with objective moves, which contains a
special form of the in capability, does not admit a solution to the leader

3



election problem (Theorem 7.1).
• We show that SA without grave interferences [17]—which does not allow

certain forms of interference among redexes—does not admit a solution to
the leader election problem (Theorem 7.5).

One important point here is that, by Palamidessi’s work, in the π-calculus
mixed choice seems crucial for writing a program that solves the problem
of electing a leader in a symmetric network. Choice however is not present
as a primitive construct in the ambient world. Our results shed light on the
preemptive power of the in capability used in different ways in the ambient
calculus. All our results give a fine-grained hierarchy in ambient calculi graph-
ically shown in Figure 2 in the Concluding Remarks.

Our results are expressed in a reduction semantics framework instead of via
labelled transition systems as in Palamidessi’s work. There are a number of
reasons for this choice:

(1) In MA, reduction semantics is simpler and more perspicuous than any
labelled transition system.

(2) The original and intended semantics for MA was reduction semantics.
Since then, a few different labelled transition systems have been devised;
however they are all faithful, as far as silent actions are concerned, to
reduction semantics.

(3) By globally restricting all names which are not used to report the winner,
one can easily convert an electoral system in reduction semantics to one
in the labelled semantics, and vice-versa.

(4) By working in reduction semantics we are able to give solutions to the
leader election problem which do not use restriction. We therefore do not
need to assume that encodings preserve restriction, when asserting that
there is no encoding from a language which has electoral systems to one
which does not.

As explained also earlier, our results crucially depend on the definition of en-
coding. In this paper we employ encodings which are “distribution preserving”,
“permutation preserving” and “observation respecting”, very much following
the same criteria as in [24]. These criteria are not proposed as a universal
measure to evaluate the robustness or faithfulness of encodings in general.
They are chosen to preserve solutions to the leader election problem, with-
out introducing a central server. “Distribution preserving” means preserving
parallel composition in the encoding, to avoid the translation making use of
third parties—i.e. introducing the equivalent of a centralised server. “Permu-
tation preserving” means that the encodings are well-behaved with respect to
bijective renaming. “Observation respecting” means that processes are distin-
guished if they differ on the observable properties of their maximal compu-
tations. This last condition reflects the fact that failure or success of election
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of a leader is tested for maximal computations only. These criteria will be
formalised in our semantics in Section 6.

This paper is a substantial extension of our previous paper [27]. In this new
version we have extended our results on MA to PAC and SA, and have in-
troduced a new solution for the leader election problems in MA for a network
of size k and extended the solution to PAC and SA. The material on grave
interference in SA is new. We also consider a side issue of failure to elect a
leader in the case in which the winner cannot be reported, due to some de-
ficiency in the language (we might compare this situation to a machine that
cannot output anything). This is of lesser importance than the breaking of
the initial symmetry, which is at the core of leader election. We show that the
symmetric leader election problem cannot be solved in MA without the out

capability (Proposition 8.1). We also give corresponding results for SA and
PAC (Propositions 8.2 and 8.3).

The rest of the paper is organised as follows: in Section 2 we present the
preliminaries for the π-calculus, MA, SA and PAC; in Section 3 we define a
general framework for electoral systems in reduction semantics; in Section 4
we present calculi that admit a symmetric electoral system and in Section 5 we
present calculi that fail to elect a leader in symmetric networks. In Section 6 we
use the results of Sections 4 and 5 to obtain separation theorems. In Section 7.1
we consider MA with objective moves and SA without grave interferences. In
Section 8 we show that the out capability of MA is necessary in order to
declare the result of a leader election. Concluding remarks follow.

2 Calculi

In this section we review the π-calculus and the ambient calculi considered in
this paper.

2.1 The π-calculus

The π-calculus was originally introduced [22] with the aim of representing
systems whose topology changes during computation. Communication involves
two processes, and a common link of communication: a channel on which
messages can be passed. The novelty of the π-calculus is that channel names
can be transferred from process to process as messages, and then used as
channels in later computation. In this setting, both channels and messages
are drawn from a set of atomic entities, called names.
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The π-calculus marked an advance on previous process calculi, such as CSP [15],
CCS [20] and ACP [2], in pioneering the notions of both mobility and scope
extrusion. Mobility is represented by the changing pattern of links between
processes. Scope extrusion means that the scope of private names can be ex-
tended by communication.

We consider two forms of the π-calculus, namely with mixed choice and sep-
arate choice. For further details we refer to [29].

2.1.1 The π-calculus with mixed choice

We let πm denote the π-calculus with mixed choice. We shall assume the
existence of a set of names N . The metavariables m,n, x, y, z, . . . range over
this set.

Definition 2.1 The set of process terms of πm is given by the following syn-
tax:

P,Q ::= 0 |
∑

i∈Iαi.Pi | P | Q | (νm)P | !P

where I is a finite set. The prefixes of processes, ranged over by α, are defined
by the following syntax:

α ::= m(n) | m〈n〉

Here m(n) represents input on channel m, with n bound, and m〈n〉 is output
of n on channel m. Summation

∑

i∈Iαi.Pi represents a finite choice among
the different processes αi.Pi. This operator is also called mixed choice, since
both input and output prefixes can be present at the same time. The symbol
0, called nil, is the inactive process. Commonly in the π-calculus, 0 is an
abbreviation for the empty choice. Although redundant, we introduce it here
as a primitive for uniformity with the syntax of other calculi. Replication !P
can spin off an unbounded number of copies of P . The parallel composition
of two processes P | Q represents P and Q computing in parallel with each
other. Restriction (νn)P creates a new name n in P , which is bound.

In the rest of this paper, we shall feel free to omit trailing 0s. Thus we write
α instead of α.0. We shall write (νn1 . . . nk)P instead of (νn1) . . . (νnk)P , and
sometimes we write n∼ for n1 . . . nk, when k is irrelevant or clear from the
context.

The notion of free names, fn(P ), of a term P is standard, taking into account
that the only binding operators are input prefix and restriction. We write
P{n/m} to mean the process where each free occurrence of m is substituted
by n in P.
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The notion of α-convertibility, which aims to capture the equivalence between
terms that differ in their bound names only, will be used throughout this work.
In contrast to other treatments of the π-calculus such as [21,25], α-conversion
will be performed silently. In general, we conventionally assume that free and
bound names are different.

Reduction semantics is usually defined in two steps: firstly structural congru-
ence, and secondly the reduction relation that captures computation on terms.
Structural congruence, written as ≡ , identifies processes that we do not want
to differentiate for any semantic reason; it allows syntactical rearrangement of
contiguous terms not in the syntactical form for being reduced.

Definition 2.2 Structural congruence ≡ is the smallest congruence on πm

processes that satisfies the following equations:

P | 0 ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

(νm)0 ≡ 0

(νm)(νn)P ≡ (νn)(νm)P

(νm)(P | Q) ≡ P | (νm)Q if m /∈ fn(P )

!P ≡ P | !P
∑

i∈Iαi.Pi ≡
∑

i∈Iαη(i).Pη(i)

where η is a bijection on I.

The computational step is captured by a rewriting rule from terms to terms,
as defined below. We let S, T range over summations.

Definition 2.3 The reduction relation −→ on πm is the smallest relation
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satisfying the following rules:

(m(x).P + S) | (m〈y〉.Q + T ) −→ P{y/x} | Q red comm

P −→ P ′

red par

P | Q −→ P ′ | Q

P −→ P ′

red restr

(νm)P −→ (νm)P ′

P ≡ Q Q −→ Q′ Q′ ≡ P ′

red cong

P −→ P ′

We shall write P 6→ to mean that for no P ′ does P −→ P ′.

The following barbs represent the most basic observations we can make of
processes.

Definition 2.4 A process P exhibits an output barb n, written P ↓ n, if and
only if, for some P ′, P ′′, S, P ≡ (νm1 . . . mk)((n〈q〉.P

′ + S) | P ′′) with n /∈
{m1, . . . ,mk}.

2.1.2 The π-calculus with separate choice

The choice operator as described in Section 2.1 is called mixed choice because
both input and output are allowed within the same ‘choice’.

The π-calculus with separate choice πs is the sub-calculus of πm where sum-
mations cannot mix input and output guards. The set of processes is given by
the following grammar:

P,Q ::= 0 |
∑

i∈Iα
I
i .Pi |

∑

i∈Iα
O
i .Pi | !P | P | Q | (νn)P

αI ::= m(n) αO ::= m〈n〉

The semantics of this calculus is the same as that of πm taking into account
the syntactic restrictions. One could regard πs as having the same expres-
sive strength as the asynchronous π-calculus [16,3], in view of the results on
encoding of separate choice [23].
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2.2 Ambient calculi

Cardelli and Gordon introduced Mobile Ambients (MA) [8] in order to model
new computational phenomena over wide-area networks or the Internet. Am-
bients represent bounded places for computation, such as concrete locations,
concrete domains, abstract domains, or laptop computers. Ambients move into
and out of other ambients bringing along moving code, static processes and
possibly other ambients.

In this section we describe MA together with two variant calculi, Safe Ambi-
ents and the Push and Pull Ambient Calculus.

2.2.1 Mobile Ambients

The language of MA inherits a number of operators from the π-calculus. The
new primitives are the ambient and a special form of guard that goes under
the name of capability. We use the same set of names N as for πm and πs.

Definition 2.5 The set of process terms of MA is given by the following syn-
tax:

P,Q ::= 0 | P | Q | (νn)P | n[ P ] | M.P | !P | (n).P | 〈n〉

where M stands for the capabilities defined by the following grammar:

M ::= in n | out n | open n

An ambient n[ P ] is composed of two parts: n is the name of the ambient
and P is the active process inside. The square brackets around P indicate the
perimeter of the ambient. If the ambient moves, everything inside moves with
it. Parallel composition, restriction, nil and replication have the same meaning
as in the π-calculus.

Unlike the π-calculus, communication happens without channels (anonymously).
Anonymous input, written (n).P , represents a process waiting for a name to
be sent. This operator binds n in P . Anonymous output, written 〈n〉, repre-
sents an asynchronous sending primitive. The output is not a prefix, unlike
the input. We have chosen that only names can be sent. This formulation is
simpler than in [8], where also capabilities can be communicated, and it is
adequate for the purpose of this work.

In the process M.P , P is enabled only if the capability M has been consumed.
Capabilities can be thought of as terms that enable the ambients to perform
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some actions. An ambient gains the ability to go inside another ambient whose
name is n with the in n capability. An ambient gains the ability to leave a
parent ambient whose name is n with the out n capability. An ambient named
n can be dissolved by the means of the open n capability.

There is a notion of free names (fn(P )), taking into account that the only
binding operators are restriction and anonymous input. We write P{n/m}
to mean that each free occurrence of m is substituted by n in P. Where no
confusion is possible, we will use the shorthand M instead of M.0, and n[ ]
instead of n[0 ].

Computation in MA consists of entering an ambient, exiting an ambient, dis-
solving an ambient, and communication. Formally, steps of computation are
represented by a reduction relation which is defined below.

Definition 2.6 The structural congruence relation ≡ is the smallest con-
gruence over MA processes that satisfies the following equations:

P | 0 ≡ P

P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

(νm)0 ≡ 0

(νm)(νn)P ≡ (νn)(νm)P

(νm)(P | Q) ≡ P | (νm)Q if m /∈ fn(P )

(νm)n[ P ] ≡ n[ (νm)P ] if n 6= m

!P ≡ P | !P

Definition 2.7 The reduction relation −→ on MA processes is the smallest
relation satisfying the following set of rules:

m[ in n.P | Q ] | n[ R ] −→ n[ m[ P | Q ] | R ] red in

n[ m[ out n.P | Q ] | R ] −→ m[ P | Q ] | n[ R ] red out

open n.Q | n[ R ] −→ Q | R red open

〈m〉 | (n).P −→ P{m/n} red a-comm

P −→ P ′

red par

P | Q −→ P ′ | Q

P −→ P ′

red restr

(νn)P −→ (νn)P ′
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P −→ P ′

red amb

n[ P ] −→ n[ P ′ ]

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q
red cong

P −→ Q

Note that MA inherits the rules red par, red restr and red cong from
the π-calculus. We use the same notation for structural congruence and reduc-
tion in all calculi we shall consider; even though they are different relations,
no confusion will arise.

For MA the canonical observable is the name of an ambient at the top level.
Thus, the predicate P ↓ n intuitively says that in P there is a top level process
which is an ambient, whose unrestricted name is n.

Definition 2.8 A process P exhibits a barb n, written as P ↓ n, if and only
if P ≡ (νm1 . . . mk)(n[ P ′ ] | P ′′), for some P ′, P ′′ and n /∈ {m1 . . . mk}.

We shall be interested in various fragments of MA. We refer to MA without
communication as pure MA, and MA without the restriction operator as public
MA. This applies also to the other ambient calculi we shall consider.

2.2.2 Safe Ambients

Levi and Sangiorgi proposed Safe Ambients (SA) [17] as a substantial modi-
fication of MA, which retains the same computational model while improving
the underpinning algebraic theory. They argued that the basic operational
semantics for MA led to the phenomenon of grave interference, where two or
more redexes of different kinds destroy each other. In order to overcome this
problem, Levi and Sangiorgi added co-capabilities to the ambient primitives
and a sophisticated type system. The type system is outside the scope of the
current topic, and therefore it will not be discussed in the rest of the paper.
Co-capabilities are capabilities inside an ambient, that control the influence
that other ambients have upon it. Since an ambient can be entered, exited
or opened, there are three co-capabilities that determine if an ambient can
be entered, exited or opened. This change induces a synchronisation as well,
namely in order for a reduction (other than communication) to occur, there
needs to be a match between a capability and the corresponding co-capability.

Definition 2.9 The set of process terms of SA is given by the following syn-
tax:

P,Q ::= 0 | P | Q | (νn)P | n[ P ] | M.P | !P | (n).P | 〈n〉
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M ranges over the capabilities defined by the following grammar:

M ::= in n | out n | open n | in n | out n | open n

All the processes have the same informal meaning as described in the previous
section. There are only three new co-capabilities: out n expresses that an am-
bient n is willing to release an internal ambient; in n expresses that an ambient
n is willing to accept another entering ambient and open n expresses that an
ambient n can be opened. The set of free names of P is written fn(P ) and is
defined as for MA, taking into account the syntactic differences.

Structural congruence ≡ for SA is defined exactly as for MA (Definition 2.6).

Definition 2.10 The reduction relation −→ on SA processes is defined as
for MA (Definition 2.7), except that rules red in, red out and red open

are replaced by:

m[ in n.P1 | P2 ] | n[ in n.Q1 | Q2 ] −→ n[ m[ P1 | P2 ] | Q1 | Q2 ] red s-in

n[ out n.P1 | P2 | m[ out n.Q1 | Q2 ] ] −→ n[ P1 | P2 ] | m[ Q1 | Q2 ] red s-out

open n.P | n[ open n.Q1 | Q2 ] −→ P | Q1 | Q2 red s-open

Definition 2.11 A process P exhibits a barb n, written as P ↓ n, if and
only if P ≡ (νm1 . . . mk)(n[ cap n.P ′ | P ′′ ] | P ′′′) for some P ′, P ′′, P ′′ and
n /∈ {m1 . . . mk}, where cap = in or cap = open .

SA can be viewed at least as expressive as MA since there exists an obvious
encoding of MA into SA. We report below the clause for the ambient. The
definition for the other operators is homomorphic.

[[n[ P ] ]]
def
= n[ ! in n | ! out n | open n | [[P ]] ]

2.2.3 The Push and Pull Ambient Calculus

The third ambient calculus we shall discuss is the Push and Pull Ambient
Calculus (PAC) [26]. In comparison with MA, two new capabilities are in-
troduced: push n and pull n instead of in n and out n; the rest of the syntax
remains unchanged. We believe that this calculus can be useful for modelling
client-server architecture as argued in [26].

Definition 2.12 The set of process terms of PAC is given by the following
syntax:

P,Q ::= 0 | P | Q | (νn)P | n[ P ] | M.P | !P | (n).P | 〈n〉
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M ranges over the capabilities defined by the following grammar:

M ::= pull n | push n | open n

We omit the explanation for the operators that are common to MA. The
meaning of the capabilities is intuitively the following: pull n causes an ambient
with name n to be pulled inside the current one, push n pushes an ambient
with name n out of the current ambient, and open n behaves as in MA. The
capability open is necessary for PAC, just as in MA, to allow the exchange of
messages between different ambients.

Similarly to MA, PAC is also equipped with an operational semantics defined
in terms of reduction semantics. We present below only the reduction rules,
since structural congruence is identical to the definition for MA.

Definition 2.13 The reduction relation −→ on PAC processes is defined as
for MA (Definition 2.7), except that rules red in and red out are replaced
by:

m[ pull n.P | Q ] | n[ R ] −→ m[ P | Q | n[ R ] ] red pull

n[ push m.P | m[ Q ] | R ] −→ n[ P | R ] | m[ Q ] red push

For PAC the canonical observable is the name of an ambient at top level,
exactly as for MA (Definition 2.8).

3 Leader election problems

In this section we discuss how to formalise leader election in process calculi,
and in particular how to do it using reduction semantics.

In the field of distributed algorithms [18,30], the leader election problem con-
sists of finding an algorithm such that, starting from a configuration of pro-
cesses in the same state, any possible computation reaches a configuration
where exactly one process is in a leader state and all the other processes are in
non-leader states (i.e. they have lost the election). We may write of problems
in the plural, since as we shall see there are parameters that can be varied.

The crucial criteria for leader election problems are the following:

Symmetry Each process in the configuration has to have the same duties.
Leader election problems are run in order to configure a distributed system.
Processes in the network are programmed identically. In symmetric config-
urations if one process can declare itself the winner, every other process in
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the configuration can do the same. Thus, in symmetric networks, for the
winner to be elected, the initial symmetry has to somehow be broken.

Distribution The computation has to be decentralised, in the sense that the
computation has to start from any subset of processes in the network or
configuration. In general, leader election algorithms are run after a recon-
figuration or crash of a system, in order to select a process to start the
initialisation. In this context, the configuration of processes has to be able
to elect a leader without any help from outside.

Uniqueness of the leader The processes in a network reach a terminal con-
figuration from any computation. In the terminal configuration there is one
process only that is elected the winner and the other processes in the con-
figuration have lost.

Leader election problems vary according to the following parameters:

topology of the network The network could be a fully connected graph
or a ring or tree or any other graph or hyper-graph [1,30,18].

size of the network The number of processes can be known or unknown
before starting the election [30].

declaration of the leader The leader could be announced by one pro-
cess only, either the leader itself or any other process. Alternatively every
process in the configuration has to be aware of the winner. The latter re-
quirement is considered standard, although the weaker one (the former one)
is also acceptable, since the winner could inform the other processes of the
outcome of the election.

We do not take complexity issues into account here. As Bougé [4] points out,
lower bound results can depend on whether the identifiers of the processes are
integers and so on. These kinds of issues are not relevant in our setting.

3.1 Leader election problems and process calculi

The first person to exploit leader election within a process calculus with a
formal semantics was Bougé [4], working in CSP [14,15]. He defined the notion
of a symmetric electoral system, which is a symmetric network where a unique
winner is elected by every computation. The most remarkable achievements
are the separation results between CSP with input and output guards and
CSP with input guards only, and between the latter and CSP without guards,
based on the notion of symmetric reasonable implementation.

A further formalisation of the notion of leader election problem was made
by Palamidessi [24] for the π-calculus. This work has been the major source
of inspiration for the present work. While Bougé defined an encoding to be
“reasonable” if it maps electoral systems to electoral systems, Palamidessi
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gives specific conditions which an encoding should satisfy in order to preserve
electoral systems. She proves that any symmetric network in π-calculus with
separate choice admits a computation that never breaks the initial symmetry.
This result is used to show that there is no encoding of the π-calculus with
mixed choice into the π-calculus with separate choice. In her paper Palamidessi
uses a graph framework, in the tradition of distributed algorithms [18,30,1,4],
and she proves that CCS [20] does not admit a symmetric electoral system in
a ring, as opposed to the π-calculus with mixed choice.

Using an approach similar to Palamidessi’s, Ene and Muntean [11] show that
the π-calculus with broadcasting primitives cannot be encoded in the standard
π-calculus.

3.2 A reduction semantics framework for leader election problems

Our predecessors [24,11] used labelled transition systems when defining the
computations performed by electoral systems. We prefer to use reduction se-
mantics, for the reasons stated in the Introduction. In this section we shall
define networks and electoral systems for calculi equipped with reduction se-
mantics. The definitions below apply equally well to ambient calculi and to
the π-calculus, and to any other calculus that uses the reduction semantics
framework. We shall compare MA, SA, and PAC against the π-calculus, but
also our framework could be used for comparing other calculi, such as the Seal
calculus [9] and Dπ [13].

We assume that the set of names N includes a set of observables:

Obs = {ωi : i ∈ IN}

such that for all i, j, ωi 6= ωj if i 6= j. The observables will be used by networks
to communicate with the outside world, and can never be restricted (i.e. they
never occur under the scope of restriction).

It is convenient to let Obsk = {ω0, ω1, . . . , ωk−1}. This will be the set of names
indicating possible winners in a network of size k.

We shall use natural numbers as indices of processes in a network, for instance
Pi where P is a process and i is a natural number.

Networks are just collections of processes running in parallel, possibly equipped
with some globally restricted names.

Definition 3.1 (Network) A network N of size k is a process in the form

(νm0, . . . ,ml−1)(P0 | P1 | P2 | · · · | Pk−1)
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We will use the notation [P0 | P1 | · · · | Pk−1] for representing the network
above when the globally bound names m0, . . . ,ml−1 are not relevant.

When dealing with indices for a network of size k we shall always use arithmetic
modulo k when writing expressions such as Pi+1.

Notice that the size of a network is really a matter of how it is presented
(i.e. divided up) rather than the process itself. 2 For instance the process n[ ]
is clearly a network of size one. But it is structurally congruent to n[ ] | 0,
which can be seen as a network of size two. We are interested in symmetric
networks, however, and size cannot then be varied arbitrarily as in the example
just given.

Definition 3.2 (Permutation on names) (1) A permutation on names is
a bijection σ : N → N which respects observables, i.e. m ∈ Obs if and
only if σ(m) ∈ Obs.

(2) A permutation σ induces a bijection on the natural numbers σ̂ : IN → IN

as follows: if σ(ωi) = ωj then σ̂(i) = j.

Note that for all i ∈ IN, σ(ωi) = ωσ̂(i).

Any permutation σ gives rise in a standard way to a mapping on processes,
where σ(P ) is the same as P , except that any free name n of P is changed to
σ(n) in σ(P ), with bound names being adjusted as necessary to avoid clashes.
In other words, the definition of σ(P ), where σ is a permutation, is by recursion
on the syntax of the language, avoiding that names are captured by binding
operators.

Definition 3.3 (Automorphism in a network) Let N be a network of size
k:

N
def
= (νm0, . . . ,ml−1)(P0 | P1 | · · · | Pk−1).

A network automorphism σ is a permutation such that: σ̂ restricted to the
finite subset of natural numbers {0, 1, . . . , k−1} is a bijection and σ preserves
the distinction between free and bound names, i.e. m ∈ {m0, . . . ,ml−1} iff
σ(m) ∈ {m0, . . . ,ml−1}.

Definition 3.4 (Orbit) Let N be a network of size k and σ an automorphism
on it. For any i ∈ {0, . . . , k − 1} the orbit Oσ̂(i) generated by σ is defined as
follows:

Oσ̂(i)
def
= {i, σ̂(i), σ̂2(i), . . . , σ̂h−1(i)}

where σ̂j represents the composition of σ̂ with itself j times. and h is least
number such that σh(i) = i.

2 We make the distinction between network presentations and their interpretation
as processes more formal in [28, Section 3.1].
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Intuitively a network N is symmetric with respect to an automorphism σ if
and only if, for each i, the renaming of the process associated to i is the same
up to alpha-conversion as the process associated to the permuted index σ̂(i).
This is a way of specifying in this setting that each process has the same
duties.

In the first part of the following definition we closely follow Palamidessi. In the
second part however, we restrict the notion of symmetry to networks where
the automorphism has one orbit only.

Definition 3.5 (Symmetric Network)

(1) Let N = [P0 | · · · | Pk−1] be a network and σ an automorphism on it. We
say that N is symmetric with respect to σ iff for each i ∈ {0, . . . , k − 1},
Pσ̂(i) = σ(Pi) holds.

(2) A network N = [P0 | · · · | Pk−1] is called symmetric if it is symmetric
with respect to some automorphism with a single orbit.

Our definitions of network automorphism and symmetric network differ from
those of Palamidessi, since she takes the network topology into account, and
associates a hypergraph with a network. Automorphisms are defined with
respect to this hypergraph, and a network is symmetric if it is symmetric with
respect to every automorphism.

Definition 3.6 Consider a network N = [P0 | P1 | · · ·Pk−1]. A computation
C is a (finite or infinite) sequence:

N = N0 −→ N1 −→ N2 −→ · · · −→ Nj −→ · · · .

• A computation C is maximal if it is infinite, or else it is of the form
N −→ N1 −→ N2 · · · −→ Nh where Nh 6→ .

• The composition C · C′ of computations C and C′ is defined in an obvious
manner if C is finite and the last state of the computation C coincides with
the initial state of C′.

• We say that C′ extends C, written C ≺ C′, if there exists a computation C′′

such that C′ = C · C′′.

Our notion of computation is defined using the reduction relation only. This
is a substantial difference from previous authors [24,11], where computation
is defined as a sequence of transitions derived from the labelled transition
system.

In our definition of network computation, we assume that a network reduces
to a network. This might be seen as restrictive; however since any process
can be seen as a network, the above definition is general enough. We do not
require that a network preserves its own size. In fact in general this might not
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even be true, as will become clear when presenting electoral systems in the
ambient calculus.

Definition 3.7 Let C be a computation N −→ · · · −→ Nh −→ · · · . We de-
fine the observables of C as

Obs(C) = {ω ∈ Obs : ∃h Nh ↓ ω}.

Computations have some rather nice properties on the observables: observation
on computation is compositional and monotonic.

Lemma 3.8 (1) Let C
def
= C′ · C′′ be a computation. Then Obs(C) = Obs(C′) ∪

Obs(C′′).
(2) Let C and C′ be two computations such that C ≺ C′. Then Obs(C) ⊆

Obs(C′).

PROOF. Trivial. 2

Intuitively an electoral system is a network which reports a unique winner, no
matter how the computation proceeds.

Definition 3.9 (Electoral system) A network N = [P0 | · · · | Pk−1] is an
electoral system if for every maximal computation C of N there exists an i < k
such that Obs(C) = {ωi}. An electoral system is said to be symmetric if the
network is symmetric.

Thus each maximal computation gives exactly one winner. It does not matter
which process in the original network displays the observable barb; indeed,
in ambient calculi this is not even necessarily meaningful, as processes can
intermingle using movement capabilities.

For Palamidessi the requirement for an electoral system is that every process
in the electoral system can execute a special action out〈i〉. In other words
everyone is aware of the leader. As she states, her results would hold under the
alternative requirement that exactly one process announces the winner. Our
notion is weaker, in that we merely require that at least one process announces
the winner, and it is left open how many processes make the announcement.
It has been proved in [31] that this notion of electoral system gives the same
separation results for the π-calculus as those obtained by Palamidessi.
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4 Calculi with symmetric electoral systems

In this section we present solutions to the leader election problem in symmetric
networks of any finite size in fragments of the π-calculus, MA, PAC and SA
defined as follows.

Definition 4.1 (1) Let π−ν
m be πm but without restriction.

(2) Let MAio be pure public MA without the open capability.
(3) Let PAC pp be pure public PAC without the open capability.
(4) Let SAio be pure public SA without the open capability.
(5) Let SAiop be pure public SA without the out capability.

4.1 The π-calculus with mixed choice

The π-calculus with mixed choice can elect a leader in a symmetric network
according to Palamidessi’s criteria [24]. It is not difficult to see that πm ad-
mits a symmetric electoral system also according to our new and weaker cri-
teria. In the reduction semantics frameworks, we are able to improve slightly
Palamidessi’s result; in fact we can show that there exists an electoral system
in πm but without restriction. In the following proposition we show that there
exists a symmetric electoral system of size 2 in π−ν

m , which is sufficient for
restating Palamidessi’s separation result between πm and πs.

Proposition 4.2 In π−ν
m there exists a symmetric electoral system of size 2.

PROOF. We define a network N as follows:

P0
def
= x0(y) + x1〈z〉.ω0〈z〉 P1

def
= x1(y) + x0〈z〉.ω1〈z〉

N
def
= P0 | P1

The network is symmetric with respect to a single-orbit automorphism σ de-
fined as follows:

σ(x0) = x1 σ(x1) = x0 σ(ω0) = ω1 σ(ω1) = ω0

with σ the identity on all other names. There are only two possible computa-
tions. We present one in detail; the other one is identical up to the renaming
of σ.

C : N −→ w1〈z〉

Clearly Obs(C) = {ω1}. 2
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In the previous proposition there are two important features to notice. The
first one is that the link-passing capability of the π-calculus plays no rôle; it
is the mixed choice which is important. In other words, the previous electoral
system could have been written in CCS without link passing.

The second feature is that the process above would not be an electoral sys-
tem in Palamidessi’s framework. In fact, not every computation leads to the
election of a leader, if computation is defined in terms of a labelled transition
system. Thus restriction is necessary for Palamidessi.

Remark 4.3 Proposition 4.2 can be generalised to networks of any finite size.
The construction can be derived from Palamidessi’s algorithm for a fully-
connected network of size four in the proof of her Proposition 5.1.

Remark 4.4 We have used output barbs in our definition of electoral system.
If we instead used input barbs to report the winner, then it is straightforward
to modify the electoral system of Proposition 4.2 to fit the revised definition.

4.2 Ambient calculi

We now turn to showing that the existence of symmetric electoral systems
in MAio. First we show that there exists an electoral system of size 2. Then
we present a more general solution, for a network of any size. The solution
presented here is different from the one in [27]. This new solution is slightly
more complex, but has the advantage of being easily adapted to PAC pp.

Proposition 4.5 In MAio there exists a symmetric electoral system of size 2.

PROOF. Let

P0
def
= n0[ in n1.ω0[ out n0.out n1 ] ]

P1
def
= n1[ in n0.ω1[ out n1.out n0 ] ]

N
def
= P0 | P1 .

The network is symmetric with respect to a single-orbit automorphism σ de-
fined as follows:

σ(n0) = n1 σ(n1) = n0 σ(ω0) = ω1 σ(ω1) = ω0
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There are only two possible computations. We shall present the first one in
detail:

C : n0[ in n1.ω0[ out n0.out n1 ] ] | n1[ in n0.ω1[ out n1.out n0 ] ] −→

n1[ n0[ ω0[ out n0.out n1 ] ] | in n0.ω1[ out n1.out n0 ] ] −→

n1[ ω0[ out n1 ] | n0[ ] | in n0.ω1[ out n1.out n0 ] ] −→

ω0[ ] | n1[ n0[ ] | in n0.ω1[ out n1.out n0 ] ]

Thus we conclude Obs(C) = {ω0}. The other computation is identical up to
renaming via σ. 2

Theorem 4.6 In MAio, for any k ≥ 1 there exists a symmetric electoral
system of size k.

PROOF. (Sketch) Let k ≥ 1. The electoral system is defined by N
def
=

∏

i<k Pi

where

Pi
def
= ni[

∏

j 6=i in nj.losei[ Outn ] ] | ci[ Ci,i+1 ]

Outn
def
=

∏

j<k ! out nj

Ci,i
def
= ωi[ out ci ]

Ci,j
def
= in losej.C

′
i,j (j 6= i)

C ′
i,j

def
= out losej.Ci,j+1 (j 6= i)

(We use arithmetic modulo k for the indices.) The idea is that process j loses
to process i if ambient nj enters ambient ni. When this happens, the ambient
losej is unleashed, and makes its way up to the top level. When only one ni

ambient is left at the top level then process i has won. It detects that it has
won using the ambient ci, which announces the winner after checking for the
presence of losej ambients at the top level (for all j 6= i). Note that there
may well be multiple losej ambients unleashed as ambient nj may continue to
enter other nj′ ambients even after it has lost.
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The full and detailed proof can be found in Appendix A; we present here for
readability the case of the network of size 3.

N
def
= P0 | P1 | P2

P0
def
= n0[in n1.lose0[ !out n0 |!out n1 |!out n2 ] |

in n2.lose0[ !out n0 |!out n1 |!out n2 ] ] |

c0[ in lose1.out lose1.in lose2.out lose2.ω0[ out n0 ] ]

P1
def
= n1[in n2.lose1[ !out n1 |!out n2 |!out n0 ] |

in n0.lose1[ !out n1 |!out n2 |!out n0 ] ] |

c1[ in lose2.out lose2.in lose0.out lose0.ω1[ out n1 ] ]

P2
def
= n2[in n0.lose2[ !out n2 |!out n0 |!out n1 ] |

in n1.lose2[ !out n2 |!out n0 |!out n1 ] ] |

c2[ in lose0.out lose0.in lose1.out lose1.ω2[ out n2 ] ]

Note that we used a different construction in the proof of Theorem 4.6 in
an earlier version of this paper [27]. The construction we use here has the
advantage that it can be easily adapted to show the corresponding result for
PAC pp:

Theorem 4.7 In PAC pp, for any k ≥ 1 there exists a symmetric electoral
system of size k.

PROOF. (Sketch) We dualise the construction given in the proof of Theo-
rem 4.6, essentially replacing in by pull and out by push. The electoral system
is defined for k ≥ 2 by

N
def
=

∏

i<k

Pi

where

Pi
def
= ni[

∏

j 6=i(pull nj.losej[ ] | push losej) ] | ci[ Ci,i+1 ]

Ci,j
def
= pull losej.push losej (j 6= i)

Ci,i
def
= ωi[ ] | push ωi

We omit the proof that this is indeed an electoral system, which is similar to
the proof of Theorem 4.6. 2
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We now consider electoral systems in fragments of SA. We can take the sym-
metric electoral system in the proof of Theorem 4.6 and adapt it for SAio using
the standard encoding (Section 2.2.2), with the one change that we omit the
open n from the encoding of n[ P ]. Hence:

Theorem 4.8 In SAio, for any k ≥ 1 there exists a symmetric electoral
system of size k. 2

In constructing electoral systems in MAio, we use the in capability to break
symmetry and the out to report the winner at the top level. An interesting
feature of SA is that we can also construct electoral systems using just the in

and the open capabilities, with the open enabling the reporting of the winner.

Proposition 4.9 In SAiop there exists a symmetric electoral system of size 2.

PROOF. The electoral system is the following:

P0
def
= open n0 | n0[ in n1 | in n0.open n0.ω0[ open ω0 ] ]

P1
def
= open n1 | n1[ in n0 | in n1.open n1.ω1[ open ω1 ] ]

N
def
= P0 | P1

The first process to perform an in reduction loses. 2

We can generalise to systems of arbitrary size:

Theorem 4.10 In SAiop, for any k ≥ 1 there exists a symmetric electoral
system of size k.

PROOF. See Appendix B. 2

Remark 4.11 Recall that a barb in SA is a top-level unrestricted ambient
containing either an open or an in capability. Both Proposition 4.9 and The-
orem 4.10 still hold if we vary the definition of barb by just using open (in
which case the proofs are unchanged), or by just using in (in which case we
simply replace ωi[ open ωi ] by ωi[ in ωi ] in our electoral systems).

5 Calculi without symmetric electoral systems

In this section we are going to show that there are calculi that do not admit
a symmetric electoral system. First of all, we shall reestablish Palamidessi’s
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result on the π-calculus with separate choice, which states that πs does not
admit a symmetric electoral system [24]. We then prove that MA and SA
without in and PAC without pull do not admit a symmetric electoral system
either.

5.1 The π-calculus with separate choice

The following theorem claims that there does not exist a symmetric electoral
system of any finite size in πs. The statement is identical to Palamidessi’s,
although the proof is different in style. The proof is based on the idea of
showing that there exists a maximal computation which fails to elect the
leader. This means that, either more than one leader is elected or else the
computation has no leader.

Theorem 5.1 [24] Let N = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric
network in πs. Then N cannot be an electoral system.

The full proof is very similar to the proof for MA without the in capability that
follows. The details of this proof can be found in [31]. It must be remarked
that our proof is very constructive in the logical sense. The computation that
fails to elect a leader is constructed step by step in the proof, so that it is
quite clear how the initial symmetry is preserved during computation.

5.2 Mobile Ambients without the in capability

We have shown earlier that MAio can solve the leader election problem in a
symmetric network. This kind of problem can be solved in πm, but not in πs. It
is clear that the mixed choice operator is the key for the expressiveness result.
It is an interesting problem as to which operator makes a difference in expres-
siveness for ambient calculi. This question is also interesting for the following
reason. It might be argued that leader election problems are not interesting in
the ambient setting, because of the inherent tree structure of processes. The
next theorem (Theorem 5.8) will show that this is not completely true. The
tree structure of ambients is not indeed the key to expressiveness. In fact, we
could keep the tree structure and remove one capability, in n, in which case
the leader election problem cannot be solved. This means, in simple words,
that for breaking symmetry the in capability is crucial.

Definition 5.2 Let MA−in denote MA without the in capability.

Before proving Theorem 5.8 we need to show some lemmas.
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Lemma 5.3 Let P be a process in MA−in and σ a permutation. Then P ↓ n
if and only if σ(P ) ↓ σ(n).

PROOF. By definition of barbs, P ↓ n if and only if P ≡ (νm1 . . . ml)(n[ P ′ ] |
P ′′) with n /∈ {m1 . . . ml} if and only if σ(P ) ≡ (νσ(m1) . . . σ(ml))(σ(n)[ σ(P ′) ] |
σ(P ′′)) by definition of permutation, if and only if σ(P ) ↓ σ(n) by definition
of barbs. 2

Lemma 5.4 Let P be a process in MA−in and σ a substitution. If P −→ P ′,
then σ(P ) −→ σ(P ′).

PROOF. By induction on −→ . 2

The following lemma says that initially a symmetric network cannot elect a
leader. If one process declares a winner, everyone else is declared a winner as
well.

Lemma 5.5 Let N = [P0 | · · · | Pk−1] be a symmetric network in MA−in.
If for some i such that 0 ≤ i ≤ k − 1 we have N ↓ ωi, then for all l with
0 ≤ l ≤ k − 1 we have N ↓ ωl.

PROOF. Assume that N is symmetric with respect to σ with one orbit only.
First of all it is important to observe that for such a σ for all i ∈ {0, 1, . . . , k−1}

Oσ̂(i) = {i, σ̂1(i) . . . σ̂k−1(i)} = {0, 1, . . . , k − 1}.

If N ↓ ωi then there exists an r (0 ≤ r ≤ k−1) such that Pr ↓ ωi. By symmetry,
for all h < k, Pσ̂h(r)=σh(Pr) holds. Hence we have Pσ̂h(r) ↓ ωσ̂h(i) by Lemma
5.3. By assumption, σ has one orbit. Hence for all j ∈ {0, 1, . . . , k−1} it holds
that

[Pr | Pσ̂(r) | · · · | Pσ̂k−1(r)] ↓ ωj.

2

The next lemma is crucial; it shows that for a symmetric network there exists a
computation that never breaks the initial symmetry (note that in the presence
of the in capability it is certainly possible to break symmetry, as witnessed by
the network used in the proof of Proposition 4.5).

Lemma 5.6 Let N = [P0 | · · · | Pk−1] be a symmetric network in MA−in. As-
sume that N −→ N1. Then there exists a computation C : N1 −→ · · · −→ Nk

such that:
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(1) Nk is symmetric;
(2) if for some i we have N1 ↓ ωi and N 6↓ ωi, then for all h such that

0 ≤ h ≤ k − 1 we have Nk ↓ ωh;
(3) if for all j such that 0 ≤ j ≤ k − 1 we have N1 6↓ ωj, then for all t, i such

that 1 ≤ t ≤ k and 0 ≤ i ≤ k − 1 we have Nt 6↓ ωi.

PROOF. Assume that N is symmetric with respect to an automorphism σ
with one orbit only and that N −→ N1. There are two cases to consider:

Reduction derived from one process only. N −→ N1 is the result of the
computation of one process in the network. Assume Pr in N has reduced as
follows: Pr −→ P †

r . Before proceeding with the proof, we remind the reader
that by symmetry the following statements hold.

[P0 | P1 | · · · | Pk−1] ≡ [Pr | Pσ̂(r) · · · | Pσ̂k−1(r)]

Pσ̂(r) = σ(Pr)

Pσ̂2(r) = σ2(Pr) =σ(Pσ̂(r))

Pσ̂3(r) = σ3(Pr) =σ(Pσ̂2(r))
...

Pσ̂k(r) = σk(Pr) =σ(Pσ̂k−1(r))

If Pr −→ P †
r and by symmetry σ(Pr) = Pσ̂(r) then by Lemma 5.4 Pσ̂(r) −→ P †

σ̂(r)

where we let P †
σ̂(r) = σ(P †

r ). By repeating the previous reasoning for each
process in the network, we conclude there are the following k−1 reductions.

Pσ̂(r) −→ P †
σ̂(r)=σ(P †

r )

Pσ̂2(r) −→ P †
σ̂2(r)=σ2(P †

r )
...

Pσ̂k−1(r) −→ P †
σ̂k−1(r)=σk−1(P †

r )

Therefore starting from the network N1 = [P †
r | Pσ̂(r) | · · · | Pσ̂k−1(r)] there

exists the following computation.

N1 : [P †
r | Pσ̂(r) | Pσ̂2(r) | · · · | Pσ̂k−1(r)] −→

N2 : [P †
r | P †

σ̂(r) | Pσ̂2(r) | · · · | Pσ̂k−1(r)] −→

N3 : [P †
r | P †

σ̂(r) | P †
σ̂2(r) | · · · | Pσ̂k−1(r)] −→

...

Nk : [P †
r | P †

σ̂(r) | P †
σ̂2(r) | · · · | P †

σ̂k−1(r)]
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This defines C : N1 −→ · · · −→ Nk.
(1) By symmetry we have:

[P †
r | P †

σ̂(r) | P †
σ̂2(r) | · · · | P †

σ̂k−1(r)] ≡ [P †
0 | P †

1 | · · · | P †
k−1]

from which we conclude that Nk is symmetric with respect to σ. Since
σ has not changed, it has one orbit only.

(2) If for some h such that 0 ≤ h ≤ k − 1 we have N 6↓ ωh and N1 ↓ ωh, it is
the case that ωh has appeared during the first step of computation as
follows.

Pr −→ P †
r ↓ ωh

By Lemma 5.3 the remaining processes will exhibit the other barbs as
follows:

Pσ̂(r) −→ σ(P †
r ) ↓ ωσ̂(h)

Pσ̂2(r) −→ σ2(P †
r ) ↓ ωσ̂2(h)

...

Pσ̂k−1(r) −→ σk−1(P †
r ) ↓ ωσ̂k−1(h).

Hence, since σ has one orbit only, for all j such that 0 ≤ j ≤ k − 1 we
have Nk ↓ ωj.

(3) If for all j such that 0 ≤ j ≤ k−1 we have N1 6↓ ωj then P †
r 6↓ ωj for all j.

Now assume for a contradiction that for some h and i (0 ≤ i, h ≤ k−1)
Ni+1 ↓ ωσ̂i(h) and Ni 6↓ ωσ̂i(h). Then P †

σ̂i(r) ↓ ωσ̂i(h) and by Lemma 5.3

P †
r ↓ ωh, which contradicts our previous assumption.

Reduction derived from the interaction of two processes. We assume,
without loss of generality and to the mere end of simplifying the notation,
that P0 and Pd are the two processes involved in the reduction. Moreover,
in order to simplify the notation, we assume that σ̂(i) = i+1 for each i < k.

By the operational semantics of this limited calculus, there are two possi-
ble ways in which the reduction can occur, namely by the rules red open

and red a-comm (note that the rule red out just involves a single pro-
cess, and has therefore already been covered in the previous case).
(1) P0 and Pd reduce by the use of the rule red open. We assume, without

loss of generality that

P0 = (νp0
1 . . . p0

s)(open n.S0 | P ′
0)

Pd = (νpd
1 . . . pd

s)(n[ Qd ] | P ′
d)

with n /∈ {p0
1 . . . p0

s}∪{pd
1 . . . pd

s} (otherwise the two processes would not
be able to reduce).

Moreover we will silently use structural congruence to move processes
to adjacent positions in order to perform a reduction, and to move them
back again to their original positions.
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By symmetry, we conclude the following statements starting from P0.

Pσ̂(0) = (νp1
1 . . . p1

s)(open σ(n).σ(S0) | σ(P ′
0))

Pσ̂2(0) = (νp2
1 . . . p2

s)(open σ2(n).σ2(S0) | σ2(P ′
0))

...

Pσ̂k−1(0) = (νpk−1
1 . . . pk−1

s )(open σk−1(n).σk−1(S0) | σk−1(P ′
0))

Similar conclusions can be drawn starting from Pd.

Pσ̂(d) = (νpd+1
1 . . . pd+1

s )(σ(n)[ σ(Qd) ] | σ(P ′
d))

Pσ̂2(d) = (νpd+2
1 . . . pd+2

s )(σ2(n)[ σ2(Qd) ] | σ2(P ′
d))

...

Pσ̂k−1(d) = (νpd−1
d . . . pd−1

s )(σk−1(n)[ σk−1(Qd) ] | σk−1(P ′
d))

We see that

P0 = (νp0
1 . . . p0

s)(open n.S0 | σ−d(n)[ Q0 ] | R0)

Pd = (νpd
1 . . . pd

s)(open σd(n).Sd | n[ Qd ] | Rd)

and in general, for all h such that 0 ≤ h ≤ k − 1 we have

Ph = (νph
1 . . . ph

s )(open σh(n).Sh | σh−d(n)[ Qh ] | Rh)

where for all i < k we have σ(Si) = Si+1, σ(Qi) = Qi+1 and σ(Ri) =
Ri+1.

Thus each Ph contains both an ambient, which we may regard as
a “positive” charge, and an open capability, which we may regard as
a “negative” charge, giving an overall neutral process. Now if P0 | Pd

performs an open reduction, we may denote the residue by P+
0 | P−

d ,
where the “charged” residual processes have the syntactical form:

P+
0 = (νp0

1 . . . p0
s)(S0 | σ−d(n)[ Q0 ] | R0)

P−
d = (νpd

1 . . . pd
s)(open σd(n).Sd | Qd | Rd)

In general the residues of the processes are the following:

P+
h = (νph

1 . . . ph
s )(Sh | σh−d(n)[ Qh ] | Rh)

P+
h = (νph

1 . . . ph
s )(open σh(n).Sh | Qh | Rh)

P+−
h = P−+

d = (νph
1 . . . ph

s )(Sh | Qh | Rh).
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Now in order to show concretely how the computation goes around
let k − d = r. Now we need to consider the relationship between r and
d. There are two cases to consider: r ≤ d or d < r. We consider d < r
and we assume that k = 2d + m (the other cases are similar). Hence
the computation proceeds as shown below:

P1 | Pd+1 −→ P+
1 | P−

d+1

P2 | Pd+2 −→ P+
2 | P−

d+2

...

Pd−1 | P2d−1 −→ P+
d−1 | P−

2d−1

P−
d | P2d −→ P−+

d | P−
2d

P−
d+1 | P+

2d+1 −→ P−+
d+1 | P−

2d+1

...

P−
d+(m−1) | Pk−1 −→ P−+

d+(m−1) | P−
k−1

P−+
2d | P+

0 −→ P−+
d+m | P+−

0

...

P−
k−1 | P+

d−1 −→ P−+
k−1 | P+−

d−1

Then the network is partitioned in this way:

Nh = [P0 | · · · | Pd | · · · | P2d | · · · | Pk−1].

The computation of the network after the initial step is the following:

N1 : [P+
0 | P1 | · · · | P−

d | Pd+1 · · · | Pk−1] −→

N2 : [P+
0 | P+

1 | · · · | P−
d | P−

d+1 | · · · | Pk−1] −→
...

Nd : [P+
0 | P+

1 | · · · | P−+
d | · · · | P−

2d | · · · | Pk−1] −→
...

Nk : [P+−
0 | P+−

1 | · · · | P−+
d | · · · | P−+

2d | · · · | P−+
k−1]

Hence we have C : N1 −→ · · · −→ Nk.
(a) Now we have to show that the network Nk is symmetric. Now, Nk

is symmetric with respect to σ, since for all s (0 ≤ s ≤ k − 1) the
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following holds:

P+−
σ̂h(0) = (νph

1 . . . ph
s )(Sh | Qh | R0))

= (νph
1 . . . ph

s )(σ
h(S0) | σh(Q0) | σh(R0))

= σh((νp0
1 . . . p0

s)(S0 | Q0 | R0))

= σh(P+−
0 )

The automorphism σ has one orbit only since it has not changed.
(b) If for some h such that 0 ≤ h ≤ k− 1 we have N 6↓ ωh and N1 ↓ ωh,

then either P+
0 ↓ ωh or P−

d ↓ ωh. Let us consider P+
0 ↓ ωh (the

other case is similar). We have P+−
0 ↓ ωh from which we conclude

by Lemma 5.3 that for all s we have P+−
σ̂s(0) ↓ ωσ̂s(h). Hence, since σ

has one orbit only, for all h such that 0 ≤ h ≤ k we have Nk ↓ ωh.
(c) If for all j such that 0 ≤ j ≤ k − 1 we have N1 6↓ ωj, then P0 |

Pd −→ P+
0 | P−

d 6↓ ωj if and only if we have P+
0 6↓ ωj and P−

d 6↓ ωj.
Now assume for a contradiction that for some h and t such that
0 ≤ t, h ≤ k − 1 we have Nt ↓ ωσ̂t−1(h) and Nt−1 6↓ ωσ̂t−1(h). Then
there are different cases to consider: t < d or d ≤ t ≤ 2d or
2d + 1 ≤ t ≤ k − 1.
(i) If t < d then we have Pσ̂t−1(0) | Pσ̂t−1(d) −→ P+

σ̂t−1(0) | P−
σt−1(d) ↓

ωσ̂t−1(h), which means by definition of barbs that either P+
σ̂t−1(0) ↓

ωσ̂t−1(h) or P−
σ̂t−1(d) ↓ ωσ̂t−1(h). We consider P+

σ̂t−1(0) ↓ ωσ̂t−1(h)

(the other case is similar). By Lemma 5.3 it holds that P+
0 ↓

ωh which implies that N1 ↓ ωh. This is a clear contradiction
of the assumption.

(ii) If d ≤ t ≤ 2d then we have P−
σ̂t−1(0) | Pσ̂t−1(d) −→ P−+

σ̂t−1(0) |

P−
σ̂t−1(d) ↓ ωσ̂t−1(h), which implies that either P−+

σ̂t−1(0) ↓ ωσ̂t−1(h)

or P−
σ̂t−1(d) ↓ ωσ̂t−1(h). Now we consider P−+

σ̂t−1(0) ↓ ωσ̂t−1(h)

(the other case is similar to the previous one). Since we have
P−+

σ̂t−1(0) = (νpt−1
1 . . . pt−1

s )(Pσ̂t−1(0) | Qσ̂t−1(0) | Rσ̂t−1(0)) we con-
clude that either Pσ̂t−1(0) ↓ ωσ̂t−1(h) or Qσ̂st−1(0) ↓ ωσ̂t−1(h).
Assume that Pσ̂t−1(0) ↓ ωσ̂t−1(h). Then by Lemma 5.3 we have
P+

0 ↓ ωh, which implies N1 ↓ ωh. This contradicts our previous
assumption. On the other hand, if we have Qσ̂t−1(0) ↓ ωσ̂t−1(h)

then for some s we have σs(d) = σt−1(0); hence Qσ̂s(d) ↓
ωσ̂t−1(h). Therefore by Lemma 5.3 Qd ↓ ωσ̂(t−1)−s(h) and by def-

inition of barbs P−
d ↓ ωσ̂(t−1)−s(h) and N1 ↓ ωσ̂(t−1)−s(h), which

contradicts our assumption.
(iii) The case 2d + 1 ≤ t ≤ k − 1 is similar to the previous one.

(2) The reduction is triggered by the rule red a-comm. This means the
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redex is formed with communication primitives. Then we have:

P0 = (νp0
1 . . . p0

s)(〈n〉 | S0)

Pd = (νpd
1 . . . pd

s)((y).Qd | P ′
d).

Thus, with reasoning similar to the previous case, we can conclude that
for each j such that 0 ≤ j ≤ k − 1:

Pj = (νpj
1 . . . pj

s)(〈σ
j(n)〉 | (σj−d(y)).Qj | Rj)

where for each i < k we have σ(Qi) = Qi+1 and σ(Ri) = Ri+1. Thus,
each process can reduce independently as in the case of ‘Computation
derived from one process only’. The proof then is identical to that case.

2

So far we have shown that starting from a symmetric state, a network of
size k reaches in k steps of computation another symmetric state, where either
everyone is a winner or nobody has won the election. In both cases the election
for the leader has failed. It remains to show that for any maximal computation,
the property described above is preserved. The next lemma expresses exactly
this. Recall that Obsk = {ω0, ω1, . . . , ωk−1}.

Lemma 5.7 Let N = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric network in
MA−in. Then there exists a maximal computation C such that either Obs(C) ⊇
Obsk or Obs(C) ∩ Obsk = ∅.

PROOF. First of all, we define a symmetry-preserving computation of index
n, written Cn, as:

C0 = N0k = N

Cn =



















































































Cn−1 if Cn−1 6−→

Cn−1 · C otherwise,

where N(n−1)k is the final state of Cn−1

and C′ : N(n−1)k −→ N(n−1)k+1

and there exists a computation C′′ as in Lemma 5.6

such that C = C′ · C′′
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For a network of size k, if the computation Cn of index n has not terminated,
then the length of the computation is nk. For each n, the final state Nnk of
Cn is symmetric by Lemma 5.6. The definition of observable in a computa-
tion naturally extends to the symmetry-preserving computation. By induc-
tion on n, the index of the symmetry-preserving computation Cn, we show
that Obs(Cn) ⊇ Obsk or Obs(Cn) ∩ Obsk = ∅.

n = 0) The network N0k = N either does not display any winner i.e. for all j
such that 0 ≤ j ≤ k − 1 we have N 6↓ ωj, or if for some i we have N ↓ ωi,
then by Lemma 5.6 for all h such that 0 ≤ h ≤ k−1 we have N ↓ ωh. Thus,
we conclude that either Obs(C0) ⊇ Obsk or Obs(C0) ∩ Obsk = ∅.

n > 0) Assume by induction hypothesis that there exists a symmetry-preserving
computation with index n−1, written Cn−1, which either displays more than
one winner, Obs(Cn−1) ⊇ Obsk, or displays no winner, Obs(Cn−1) ∩ Obsk = ∅.

According to the definition above of symmetry-preserving computation,
there are two cases to consider:
(1) If Cn−1 6−→ , then Cn = Cn−1 and Cn is maximal. Thus the lemma is

proved.
(2) Otherwise, we have Cn = Cn−1 · C where C′ : N(n−1)k −→ N(n−1)k+1,

C′′ : N(n−1)k+1 −→ . . . −→ Nnk is as in Lemma 5.6, and C = C′ · C′′.
If Obs(Cn−1) ⊇ Obsk then by Lemma 3.8 Obs(Cn) ⊇ Obsk and the proof

is concluded. Otherwise Obs(Cn−1)∩Obsk = ∅. Then there are two cases
to consider:
(a) If for some i < k we have N(n−1)k+1 ↓ ωi, then, since N(n−1)k is

symmetric, by Lemma 5.6 for all j such that 0 ≤ j ≤ k we
have N(n−1)k+k ↓ ωj. Thus, we have that Obs(C′′) ⊇ Obsk. Now
by Lemma 3.8 it is the case that Obs(C) = Obs(C′) ∪ Obs(C′′) ⊇
Obsk. Also, Cn = Cn−1 · C. Hence, we conclude that the symmetry-
preserving computation with index n, admits all the observables
i.e. Obs(Cn) = Obs(Cn−1) ∪ Obs(C) ⊇ Obsk. Thus the proof is con-
cluded.

(b) If for all i < k we have N(n−1)k+1 6↓ ωi, then, since N(n−1)k is sym-
metric, by Lemma 5.6, C′′ : N(n−1)k+1 −→ . . . −→ Nnk is such that
N(n−1)k+t 6↓ ωi for all t, i such that 1 ≤ t ≤ k and 0 ≤ i ≤ k − 1.
Thus, Obs(C′) ∩ Obsk = ∅ and Obs(C′′) ∩ Obsk = ∅. Now it is the
case that Obs(C) = Obs(C′) ∪ Obs(C′′). Hence Obs(C) ∩ Obsk = ∅.
Also Cn = Cn−1 · C. and Obs(Cn) = Obs(Cn−1) ∪ Obs(C). Hence, we
conclude that the symmetry-preserving computation with index n
for any n, admits no observable i.e. Obs(Cn) ∩ Obsk = ∅.

The required maximal computation C, either finite or infinite, is obtained by
joining (for all indexes n) the symmetry-preserving computations Cn. Clearly,
it is the case that either Obs(C) ⊇ Obsk or Obs(C)∩Obsk = ∅, which concludes
the proof of the lemma. 2
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Theorem 5.8 Let N = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric network
in MA−in. Then N cannot be an electoral system.

PROOF. Assume for a contradiction that N is an electoral system. Then for
every maximal computation C a winner has to be elected and Obs(C)= {ωi}
with 0 ≤ i ≤ k − 1. By Lemma 5.7 there exists a maximal computation C′

such that either Obs(C′) ⊇ Obsk or Obs(C′) ∩ Obsk = ∅. In either case we have
a contradiction, and so N cannot be an electoral system. 2

We conclude this section by pointing out that negative results hold also for
PAC and SA. Let us define SA−in to be SA without the in capability, and
PAC−pull to be PAC without the pull capability. Then PAC−pull and SA−in do
not admit symmetric electoral systems either. This can be proved quite easily
by minor modification of the proof of Lemma 5.6.

Theorem 5.9 (1) Let N = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric
network in SA−in. Then N cannot be an electoral system.

(2) Let N = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric network in PAC−pull.
Then N cannot be an electoral system.

6 Separation results

In this section, we present the separation results that can be derived from the
work done so far.

6.1 When do encodings not exist?

Expressiveness results depend on the existence or not of encodings among cal-
culi. As much as it is necessary to argue that encodings obey certain semantic
conditions, one has to argue that encodings that are not respectful of specific
semantic conditions do not exist. We argue that in dealing with leader election
problems, an encoding must: preserve the fundamental criteria of the problem
and not introduce a solution. We present below the conditions for an encoding
to preserve symmetric electoral systems, and we show the general result in
Lemma 6.2. Afterwards we shall discuss this notion of encoding.

Definition 6.1 Let L,L′ be process languages. An encoding [[ − ]] : L → L′ is

(1) distribution-preserving if for all processes P , Q of L, [[P | Q]] = [[P ]] |
[[Q]];

33



(2) permutation-preserving if for any permutation of names σ in L there
exists a permutation θ in L′ such that [[σ(P )]] = θ([[P ]]) and the per-
mutations are compatible on observables, in that for all i ∈ IN we have
σ(ωi) = θ(ωi), so that σ̂(i) = θ̂(i);

(3) observation-respecting if for any P in L,
(a) for every maximal computation C of P there exists a maximal com-

putation C′ of [[P ]] such that Obs(C) = Obs(C′);
(b) for every maximal computation C of [[P ]] there exists a maximal com-

putation C′ of P such that Obs(C) = Obs(C′).

An encoding which preserves distribution and permutation is uniform.

The first two items in Definition 6.1 (i.e. uniformity) are as in Palamidessi [24].
The condition of preserving distribution is important in ruling out encodings
which make use of a central server. The second condition prevents a trivial
solution from being introduced by collapsing all the set of natural numbers
{0, 1, . . . , k − 1} to a j ∈ IN. Notice that the first two items aim to map
symmetric networks to symmetric networks of the same size and with the same
orbit. The third item aims to preserve the uniqueness of the winner. Because
the winner in this framework is represented with a barb, the condition is on
barbs.

The condition of respecting observations is our interpretation of Palamidessi’s
requirement of “preserving a reasonable semantics”. She states that a reason-
able semantics should distinguish processes which differ on the observables of
their maximal computations. In fact, we only require part (3b) to ensure that
electoral systems are mapped to electoral systems; part (3a) is added to make
the condition more natural. In their version of Palamidessi’s work, Sangiorgi
and Walker [29] use a condition that if the observables of every maximal com-
putation of a process P are singletons, then the same is true for the encoding
of P . This obviously relates very directly to the need to preserve electoral sys-
tems. Finally, Ene and Muntean [11] use yet another formulation. As it only
refers to finite computations, it would not be enough for our purposes.

There are other criteria on encodings which have been discussed in the litera-
ture, such as full abstraction and operational correspondence. Our particular
choice is simply motivated by the need to find conditions which are strong
enough to preserve electoral systems, and which are no stronger than neces-
sary, so that our separation results are as strong as possible.

Symmetric electoral systems are mapped to symmetric electoral systems by
encodings satisfying Definition 6.1:

Lemma 6.2 Suppose [[ − ]] : L → L′ is a uniform observation-respecting en-
coding. Suppose that N is a symmetric electoral system of size k with no globally
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bound names. Let N′ def
= [[N]]. Then N′ is also a symmetric electoral system of

size k.

PROOF. Assume that the network N = P0 | P1 | · · · | Pk−1 of size k is an elec-
toral system in L and that [[ − ]] : L → L′ is a uniform observation-respecting
encoding. We are going to show that [[P0 | P1 | · · · | Pk−1]] is a symmetric elec-
toral system, i.e. every maximal computation yields one winner only. Since
[[ − ]] is distribution-preserving (Definition 6.1(1)) then it preserves the size of
the network:

[[P0 | P1 | · · · | Pk−1]] = [[P0]] | [[P1]] || · · · | [[Pk−1]].

By symmetry, for all i such that 0 ≤ i ≤ k−1 we have σ(Pi) = Pσ̂(i) and since
[[ − ]] is permutation-preserving (Definition 6.1(2)), then there exists a θ such
that for all i ∈ IN we have θ̂(i) = σ̂(i).

θ([[Pi]]) = [[σ(Pi)]] by Definition 6.1(2)

= [[Pσ̂(i)]] by symmetry

= [[Pθ̂(i)]] since θ̂(i) = σ̂(i).

Hence [[N]] is symmetric with respect to θ (with one orbit only). It remains to
show that [[N]] is an electoral system. Consider a maximal computation C′ of
[[N]]. By condition (3b) of Definition 6.1 there must exist a computation C of N

such that Obs(C) = Obs(C′). Now since N is an electoral system, every maximal
computation exhibits one winner only. Hence Obs(C) = {ωj} for some j such
that 0 ≤ j ≤ k − 1, which implies that Obs(C′) = {ωj}. Since this is true for
every maximal computation C′ of [[N]], the lemma is proved. 2

6.2 Negative results for the π-calculus

First of all, we show that the π-calculus with mixed choice and without re-
striction cannot be encoded into the π-calculus with separate choice. This is
a stronger version of Palamidessi’s result [24].

Corollary 6.3 There does not exist a uniform observation-respecting encod-
ing from π−ν

m into πs.

PROOF. By Proposition 4.2, Theorem 5.1 and Lemma 6.2. 2
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6.3 Comparing the π-calculus with ambients

In this section the negative results aim to compare the relative strength of the
the ambient calculi and the π-calculus dialects.

First we show that pure (i.e. without communication) MA without open can-
not be encoded into the π-calculus with separate choice.

Corollary 6.4 There does not exist a uniform observation-respecting encod-
ing from MAio into πs.

PROOF. By Proposition 4.5, Theorem 5.1 and Lemma 6.2. 2

On the other hand, the π-calculus with mixed choice admits a symmetric
electoral system, which implies that there is no encoding from the π-calculus
with mixed choice to MA without the in capability.

Corollary 6.5 There does not exist a uniform observation-respecting encod-
ing from π−ν

m into MA−in.

PROOF. By Proposition 4.2, Theorem 5.7 and Lemma 6.2. 2

Zimmer [32] encoded the synchronous π-calculus without choice into pure SA.
He created unique ambients for each channel name, to give inputs and outputs
a place to synchronise. The key issue was simulating substitution, which he
handled by special “forwarder” ambients. He showed that his encoding satisfies
an operational correspondence. Below we show that an encoding in the reverse
direction is not possible under our conditions.

Corollary 6.6 (1) There does not exist a uniform observation-respecting en-
coding from SAiop into πs.

(2) There does not exist a uniform observation-respecting encoding from SAio

into πs.

PROOF.

(1) By Proposition 4.9 (or Theorem 4.10), Theorem 5.1 and Lemma 6.2.
(2) By Theorem 4.8, Theorem 5.1 and Lemma 6.2.

2
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π−ν
m

[24]
Remark 4.3

MAio

Theorem 4.6
SAio

Theorem 4.8
SAiop

Theorem 4.10
PAC pp

Theorem 4.7

πs

[24]
Theorem 5.1

MA−in

Theorem 5.8
SA−in

Theorem 5.9
PAC−pull

Theorem 5.9

Fig. 1. Summary of results so far

6.4 Comparing ambient calculi

This section aims to show that, similarly to the π-calculus world, also within
the ambient world there is a hierarchy that is induced by the solution of the
leader election problem in some dialects of the ambient calculus.

Corollary 6.7 There does not exist a uniform observation-respecting encod-
ing from SAiop or SAio into MA−in.

PROOF. By Proposition 4.9 and Theorem 4.8 together with Theorem 5.7
and Lemma 6.2. 2

Corollary 6.8 There does not exist a uniform observation-respecting encod-
ing from MAio into MA−in.

PROOF. By Proposition 4.5, Theorem 5.7 and Lemma 6.2. 2

Corollary 6.9 There does not exist a uniform observation-respecting encod-
ing from PAC pp into MA−in.

PROOF. By Theorem 4.7, Theorem 5.7 and Lemma 6.2. 2

In Figure 1 we provide a graphical view of the separation results between the
calculi and their dialects dealt with in this section. All calculi above the line
have symmetric electoral systems of every size. Those calculi below the line do
not have symmetric electoral systems of size greater than one. By Lemma 6.2
there is no arrow going from any calculus above the line to any calculus below
the line, which yields the separation results in this section, together with a
number of others.
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7 Other calculi

One possible way of interpreting the result that MA with the in and out

capabilities only (MAio) has symmetric electoral systems (Theorem 4.6), is
that in the presence of trees (as computation on MA can be interpreted),
the solution to symmetrical electoral systems is trivial. It has been shown in
Theorem 5.8 that this is not strictly true, since in presence of trees but without
the ability to enter them, then it does not exist a symmetrical electoral system.
One could regard the calculus without the in capability as an ‘uninteresting’
fragment of MA and still believe that symmetric electoral systems, in calculi
with an inherent tree structure, are not interesting.

We conjecture that the existence of electoral systems is related to the syntactic
form of redexes in calculi; we will show in this section that variants of ambient
calculus, namely MA with objective moves and SA without grave interferences,
which retain a form of the in capability and tree structure, can preserve sym-
metry throughout computation, making a solution to leader election problems
impossible.

To see the relationship between the form of redexes in a calculus and solu-
tion to leader election problems it suffices to observe that to break the initial
symmetry some possible computations have to be pre-empted. In reduction
semantics, a term computes if it contains an unguarded redex as subterm.
Thus, certain redexes have a syntactic form that destroys redexes of contigu-
ous processes and inhibits certain paths of computation. Consider a concrete
example in MA and πm:

P = n[ in m ] | m[ in n ] (1)

S = n(x) + m〈x〉 | m(x) + n〈x〉 (2)

The processes P and S contain two redexes, and happen to be a symmetric
networks of size 2, with an automorphism σ = {n 7→ m,m 7→ n}. There are
two common features to observe: neither subprocess of the networks contains
composition, and if one of the two redexes reduces, then the other is destroyed.

Consider now the equivalent of the network above in πs:

R = R1 | R2

R1 = n(x) | m〈x〉

R2 = m(x) | n〈x〉 (3)

The process R contains two redexes and it is a symmetric network of size 2,
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with an automorphism σ = {n 7→ m,m 7→ n}. Each subprocess R1 and R2

contains composition, and each redex does not pre-empt the other, therefore
symmetry is reinstated after two reductions. We leave for future research to
find a suitable format on redexes to explain in a general way this phenomenon.
For now, we note that the syntactic form of redexes influences preservation of
symmetry.

In the remainder of this section, we present two variants of ambient calculi:
MA with objective moves and SA without grave interferences. Both calculi
present redexes that contain composition (as in the example of πs above) and
since they preserve symmetry throughout computation, a solution to leader
election problems is impossible.

7.1 Objective moves

We consider in this subsection a variant of the ambient calculus with objective
moves, which we call MAob. This variant of the calculus was discussed by
Cardelli and Gordon [8]. The objective calculus has two different capabilities
with respect to standard MA. Instead of in n and out n there are mvin n and
mvout n. We replace red in and red out by the following reduction rules:

mvin n.P | n[ Q ] −→ n[ P | Q ] red obj-in

n[ mvout n.P | Q ] −→ P | n[ Q ] red obj-out

Cardelli and Gordon call this type of movement “objective” to distinguish
it from the “subjective” movement of standard MA, where ambients move
by using their own internal capabilities. Movement in PAC is also objective,
since ambients are moved from outside themselves, though PAC movement is
defined quite differently from that of MAob.

In this variant of the ambient calculus the in capability preserve symmetry, to
give a concrete intuition consider equivalent of network (1) above:

Q1 = mvin n.0 | m[ ]

Q2 = mvin m.0 | n[ ]

Q = Q1 | Q2

The network Q contains two redexes as well, and similarly to P is symmetric
with respect to the automorphism σ above; moreover there are two possible
computations only. In comparison to the MA network P in equation (1), P and
Q enjoy the same properties so far. However, in Q each subprocess Q1 and Q2
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contains parallel composition and each redex can reduce without destroying
the other (similarly to the π-calculus with separate choice).

We now show that MAob does not have symmetric electoral systems, essentially
because symmetry cannot be broken.

Theorem 7.1 Let N = [P0 | · · · | Pk−1] be a symmetric network in MAob with
k ≥ 2. Then N cannot be an electoral system.

PROOF. See Appendix C. 2

Corollary 7.2 There does not exist a uniform observation-respecting encod-
ing from MAio into MAob, or from πm into MAob.

PROOF. By Theorems 4.6 and 7.1, and Lemma 6.2. 2

Remark 7.3 Cardelli and Gordon [8] also discuss a variant form of objective
moves with a reduction rule of the form

mv m in n.P | m[ Q ] | n[ R ] −→ P | n[ m[ Q ] | R ]

This form of objective move can break symmetry (like standard in).

7.2 Safe Ambients without grave interferences

We consider in this subsection a variant of SA without grave interferences,
written SA−gi, which was presented by Levi and Sangiorgi [17]. They de-
fine syntactically what are grave interferences, and they characterise with a
type system a fragment of SA which is free from grave interferences. The
type system is beyond the scope of this paper; thus we shall characterise the
interference-free fragment syntactically.

In this section we shall prove that SA without grave interferences (SA−gi) does
not admit a solution to leader election problems in symmetric networks. We
assume a countable set of colours C and let χ range over it. We define coloured
Safe Ambients (CSA) with coloured capabilities. Definition 2.9 is updated as
follows:

M ::= in nχ | out nχ | open nχ | in nχ | out nχ | open nχ

Moreover we define coloured processes to be well-formed if:
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• capabilities are not allowed after replication;
• the function from colours to capabilities is injective.

We shall only consider well-formed CSA processes. Structural congruence rules
are easily extended to coloured processes, and the coloured reduction relation
−→ C , where C ⊂ C is a set of colours, is defined as follows:

m[ in nχ1 .P1 | P2 ] | n[ in nχ2 .Q1 | Q2 ]

−→ {χ1,χ2}n[ m[ P1 | P2 ] | Q1 | Q2 ] red s-in
∗

n[ out nχ1 .P1 | P2 | m[ out nχ2 .Q1 | Q2 ] ]

−→ {χ1,χ2}n[ P1 | P2 ] | m[ Q1 | Q2 ] red s-out
∗

open nχ1
.P | n[ open nχ2 .Q1 | Q2 ] −→ {χ1,χ2}P | Q1 | Q2 red s-open

∗

〈m〉 | (n).P −→ ∅P{m/n} red a-comm
∗

Reduction rules for contexts are identical to Definition 2.7. There is an obvious
encoding, which strips out all colours, from CSA processes to SA processes.
Such an encoding would also preserve closely steps of computation [17].

Grave interferences are defined as follows.

Definition 7.4 Let P ∈ CSA, and let C1 and C2 be two non-empty sets of
colours.

• Two reductions P −→ C1P1 and P −→ C2P2 interfere on C1 and C2 if there
is no P3 such that P1 −→ C2P3 and P2 −→ C1P3.

• P has an interference on C1 and C2 if there are two transitions, P −→ C1P1

and P −→ C2P2, that interfere with C1 and C2.
• P has a grave interference if there exist two disjoint sets of colours C1 and

C2 such that P has an interference on C1 and C2.

We define Safe Ambients without grave interferences, SA−gi, to be CSA with-
out grave interferences as in Definition 7.4, with the colours removed.

We can finally introduce our result on processes without grave interferences,
namely that if a symmetric network does not have grave interferences, i.e.
belongs to SA−gi, then the leader election problem does not admit a solution.
We observe that the network for SA of size 2 presented in Proposition 4.9
contains grave interferences. In fact consider the (partially) coloured version
of the process in Proposition 4.9.
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P0
def
= open n0 | n0[ in n1χ1

| in n0χ2
.open n0.ω0[ open ω0 ] ]

P1
def
= open n1 | n1[ in n0χ3

| in n1χ4
.open n1.ω1[ open ω1 ] ]

N
def
= P0 | P1

Clearly P0 | P1 −→ {χ1,χ4}Q and P0 | P1 −→ {χ3,χ3}R for some Q and R, and
{χ1, χ4}∩{χ3, χ2} = ∅ and there exists no process S such that Q and R reduce
to S.

To prove our main result we need to show some intermediate steps. First of
all we define a calculus SA−giin as the calculus where only the rule red s-in

is replaced by red s-in
∗ and has no grave interferences - as in Definition 7.4.

In other words, this is a calculus that has only colours on the in and in and
where grave interferences can be defined on in-redexes only. Observing that
in Theorem 5.9(1) we have shown that SA−in does not admit a symmetric
electoral system - even in the presence of grave interferences for open and
out - then considering the rather restricted form of grave interferences as in
SA−giin makes sense in order to see how constraining the in -redex could lead
to a weaker calculus.

Theorem 7.5 Let N = [P0 | · · · | Pk−1] be a symmetric network in SA−giinwith
k ≥ 2. Then N cannot be an electoral system.

PROOF. (Sketch) By Theorem 5.9(1) we only need to consider the case
of two communicating processes using the red s-in

∗ rule. Without loss of
generality we assume that P0 and Pd make a transition and for some P ′

0, P
′′
0 , P ′′′

0

and Q′
d, Q

′′
d, Q

′′′
d we have:

P0 = n0[ in nd.P
′
0 | P ′′

0 ] | P ′′′
0

Pd = nd[ in nd.Q
′
d | Q′′

d ] | Q′′′
d .

Observing that Pd = Pσ̂d(0) then for all i such that 0 ≤ i ≤ k − 1 we have:

Pi = ni[ in ni+d.P
′
i | P ′′

i ] | ni[ in ni.Q
′
i | Q′′

i ] | Q′′′
i (1)

with P ′′′
i ≡ ni[ in ni.Q

′
i | Q′′

i ] | Q′′′
i or

Pi = n[ in ni+d.P
′
i | in ni.Q

′
i | Si ] | Ri (2)

with P ′′
i ≡ in ni.Q

′
i | Si and P ′′′

i ≡ Ri 6≡ (νm1 . . . mh)(ni[ in ni.T1 | T2 ] | T3) for
some processes T1, T2, T3. If the Pi have the form in equation (1) then, with
a reasoning similar to Lemma C.3 of the Appendix, we see that symmetry is
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re-established in k reductions. Otherwise, we consider the network coloured in
the following way: in nj takes colour χj and in nj takes colour χj. Thus:

[P0 | P1 | · · · | Pd | · · · | Pk−1] −→ {χ0,χd}

[R0 | P1 . . . | (nd[ n0[ P
′
0 | P ′′

0 ] | P ′′
d ] | Rd) | · · · | Pk−1].

We consider also the pair P−d and P0. Then:

[P0 | P1 | · · · | P−d | · · · | Pk−1] −→ {χ−d,χ0}

[(n0[ n−d[ P
′
−d | P ′′

−d ] | P ′′
0 ] | R0) | P1 | · · · | R−d | · · · | Pk−1].

Thus N −→ {χ0,χd}N
′ and N −→ {χ−d,χ0}N

′′ and {χ0, χd}∩{χ−d, χ0} = ∅. There
does not exist a process M such that N′ −→ {χ−d,χ0}M and N′′ −→ {χ0,χd}M
since R0 would not be able to communicate with P−d in N′. Contradiction with
the assumption that N did not have grave interferences. Therefore for each i
such that 0 ≤ i ≤ k − 1 the processes Pi in the network have the syntactic
from in equation (1). 2

The result above implies that SA−gi does not admit a symmetric electoral
system.

Corollary 7.6 Let N = [P0 | · · · | Pk−1] be a symmetric network in SA−giwith
k ≥ 2. Then N cannot be an electoral system.

As consequence of Corollary 7.6 and [17, Corollary 5.14], Levi and Sangiorgi’s
single-threadness typed SA does not admit a symmetric electoral system, and
thus it is less expressive than full SA. The result presented in this section shed
light on the strength of a very restrictive form of in -redex. In [17, Definition
A.2] Levi and Sangiorgi present the complete list of grave interference patterns.
We claim that SA with grave interference in the form of their pattern 5 suffices
to have a calculus that can solve leader election problems in networks of size
at least three. To solve leader election problems in symmetric networks of size
two, the degenerate n[ in h.P | in n.Q ] | h[ in n.P ′ | in h.Q′ ] form of pattern 5
is needed. Moreover the exclusion of grave interference pattern 5 is sufficient
to make symmetric leader elections impossible.

8 Failure to declare winner

In this section we introduce a completely different kind of failure to elect the
leader in symmetric network. Just as MA−in does not have symmetric electoral
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systems, we can show that MA with only the out capability removed, which
we call MA−out, does not have symmetric electoral systems. The idea is that
even if symmetry is broken we need the out capability to declare the winner
at the top level. This is not obvious, since we saw in Theorem 4.10 that the in

and open capabilities of SA can be used together to form an electoral system.
The two capabilities are complementary, in that in can increase depth, while
open can reduce it. But in MA we do not have enough control to know when
to apply open reductions, so that a symmetric electoral system with in and
open (and even communication, but not out) is impossible.

Proposition 8.1 For every k ≥ 2, MA−out does not have a symmetric elec-
toral system of size k.

PROOF. See Appendix D. 2

Recall that we can construct symmetric electoral systems in SA using the
in and out capabilities (Theorem 4.8), or using in and open (Theorem 4.10).
The next result is the analogue of Proposition 8.1. Let SA−out,open denote SA
without the out and open capabilities.

Proposition 8.2 For every k ≥ 2, SA−out,open does not have a symmetric
electoral system of size k.

PROOF. See Appendix D. 2

In a similar fashion, let PAC−push denote PAC without the push capability.

Proposition 8.3 For every k ≥ 2, PAC−push does not have a symmetric elec-
toral system of size k.

PROOF. Similar to that of Proposition 8.1, and omitted. 2

9 Concluding remarks

We summarise our results in a diagram (Figure 2). All calculi above the double
line have symmetric electoral systems of every size. Those calculi below the
double line do not have symmetric electoral systems of size greater than one.
Of these latter calculi, those above the single line fail because they are not
guaranteed to break symmetry, while those below the single line fail because
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SAiop

Theorem 4.10
π−ν

m

[24]
Remark 4.3

MAio

Theorem 4.6
SAio

Theorem 4.8
PAC pp

Theorem 4.7

SA−gi

Corollary 7.6
πs

[24]
Theorem 5.1

MA−in

Theorem 5.8
SA−in

Theorem 5.9
PAC−pull

Theorem 5.9
MAob

Theorem 7.1

MA−out

Proposition 8.1
SA−out,open

Proposition 8.2
PAC−push

Proposition 8.3

Fig. 2. Summary of results

they cannot report the result of the election. By Lemma 6.2 there is no arrow
going from any calculus above the double line to any calculus below the double
line, which yields the separation results in this paper, together with a number
of other results.

In this paper we have dealt with expressiveness results via the leader election
problem, in order to compare the π-calculus and ambient calculi. We have
seen that a fragment of MA is not encodable in the π-calculus with separate
choice. We have shown that for MA, the crucial capability for the solution
of the leader election problem in symmetric networks is the in capability as
subjective move. In fact, without this capability, the election problem cannot
be solved in MA. We have extended our results to other ambient calculi. We
showed that a small fragment of PAC and a small fragment of SA can solve
leader election problems in symmetric networks. Also, in PAC without the
push capability and SA without the in capability the election problem cannot
be solved either. We have also considered MA with objective moves, which is
a dialect of MA with a prefixing form of the in capability. We have shown that
in this case the initial symmetry cannot be broken, and a leader cannot be
elected. These results give insight into why symmetry cannot be broken. In
fact we conjecture that the syntactic form of redexes can discriminate between
calculi that can break symmetry and ones that cannot. Our results give a fine-
grained hierarchy in ambient calculi.

We also considered a side issue of the failure to elect a leader in the case in
which the winner cannot be reported, for instance in cases in which the out

capability is missing. We have reported some results, bearing in mind that
this is a different problem from not being able to break the initial symmetry,
as happens in πs.
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Expressiveness of different fragments of the ambient calculi has been consid-
ered also under the aspect of Turing completeness [6,19]. This is an orthogonal
issue with respect to leader election problems. In fact by looking at the algo-
rithms implemented in each calculus, we can see that leader election problems
can be solved in finite fragments of calculi - i.e. not Turing-complete - while
solutions to leader election problems may not exist in Turing-complete calculi
like πs. It is, however worth observing that both MAio and PAC pp are in a
sense minimal calculi that solve leader election problems and are Turing com-
plete (by the results of this paper and of [19], respectively). By “minimal”, we
mean that if we remove either of the two capabilities in each fragment, then
we can no longer perform leader election, and Turing completeness fails.

We briefly discuss some issues related to implementation of MA. In [12] there
is given an encoding of MA into the Distributed Join Calculus, which has led
to the implementation of MA into JoCaml. For that encoding, the migration
of ambients, both entering and exiting, has been separated into three atomic
steps. Moreover, each migration of ambients happens via the centralised con-
trol of the parent. For example, if a[ in b ] wants to migrate to sibling ambient
b, then firstly a has to forward a request to the parent ambient c; secondly c
informs b of the request, and finally b becomes the parent of a. The ambient c
deals with all the requests regarding its child ambients; thus we cannot regard
this encoding as fully distributed in the sense specified by Definition 6.1, since
the encoding of the electoral system in Proposition 4.5 would make use of a
parent ambient to deal with the request of entering. This can be regarded as
introducing a centralised server, which makes electing a leader trivial.

We regard the work done in this paper as the starting point in exploring further
the relationship between the π-calculus and the new generation of process
calculi. The work has a wide applicability to similar process calculi, such as
Boxed Ambients, the Seal Calculus, etc. From Theorem 4.6 it follows trivially
that Boxed Ambients [5] can solve the leader election problem in symmetric
networks. We conjecture that the Seal calculus [9] should also admit a solution
to the leader election problem, since the move in seems to be a symmetry-
breaking operator. On the other hand we speculate that the pure version of
Dπ [13] cannot solve such a problem.
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A Proof of Theorem 4.6

We give here the detailed proof of Theorem 4.6. We have to introduce some
notation, which will be helpful in the proofs of Theorems 4.6 and 4.10.

Definition A.1 Let k ≥ 1. Let i, j ∈ {0, . . . , k − 1}. By (i .. j) mod k we
mean the set of all numbers between i and j, going round the numbers in
{0, . . . , k − 1} cyclically modulo k in ascending order, and excluding i and j.
More formally:

(i .. j) mod k
def
=











{h : i < h < j} if i < j

{h : i < h ≤ k − 1 or 0 ≤ h < j} if i ≥ j

In particular, (i .. i+1) mod k = ∅ and (i .. i) mod k = {0, . . . , k−1}−{i}.
We shall tend to suppress the “mod k” and write (i .. j).

Theorem 4.6 In MAio, for any k ≥ 1 there exists a symmetric electoral
system of size k.

PROOF. Let k ≥ 1. The electoral system is defined by N
def
=

∏

i<k Pi where

Pi
def
= ni[

∏

j 6=i in nj.losei[ Outn ] ] | ci[ Ci,i+1 ]

Outn
def
=

∏

j<k ! out nj

Ci,i
def
= ωi[ out ci ]

Ci,j
def
= in losej.C

′
i,j (j 6= i)

C ′
i,j

def
= out losej.Ci,j+1 (j 6= i)

(We use arithmetic modulo k for the indices.) The proof that we have indeed
defined an electoral system follows an outline similar to the proof of Lemma 4.4
in [28], although the details are quite different. First we formulate an invariant
which describes the state of the network at each stage of the computation up
to the state immediately before a winner is declared.

Invariant: the network is of the form

∏

i∈N

ni[ Ri ] |
∏

i∈A

ci[ Ci,s(i) ] |
∏

j<k

∏

l<dj

losej[ Outn |
∏

i∈Bjl

ci[ C
′
i,s(i) ] ]

where each Ri is of the form

∏

j∈Ei

in nj.losei[ Outn ] |
∏

j<k

(losej[ Outn ])dij |
∏

l∈Li

nl[ Rl ] .
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(Here P d means d copies of P in parallel.) We also require the following con-
ditions:

(1) N 6= ∅ (N is the set of processes which have not (yet) lost.)
(2) N∪

⋃

j<k Lj is a partition of {0, . . . , k−1}. (This states that every ambient
ni is either still at the top level, or has already lost, and is contained in
some other nj ambient.)

(3) For all i ∈ N we have Ei = {0, . . . , k − 1}− {i}. (This implies that every
top-level ni ambient can enter any other top-level nj ambient.)

(4) For all j < k, j /∈ N iff dj > 0 or for some i < k we have dij > 0. (This
states that process j has lost iff there is an unguarded losej ambient.)

(5) A∪
⋃

j<k

⋃

l<dj
Bjl is a partition of {0, . . . , k− 1}. (This states that every

ci ambient occurs exactly once, either at the top level, or inside some
top-level losej ambient.)

(6) For all i < k we have 0 ≤ s(i) < k. For all i, j < k, if j ∈ (i .. s(i)) then
dj > 0. Also if i ∈ Bjl (some j < k, l < dj) then s(i) = j 6= i and dj > 0.

The invariant is established initially with N = A = {0, . . . , k − 1}, Ei =
{0, . . . , k − 1} − {i}, Li = ∅, dj = dij = 0, s(i) = i + 1 (all i, j < k).

Immediately before i is announced as the winner we shall show that the net-
work will have the form

(∗) ni[ Ri ] |
∏

j∈A

cj[ Cj,s(j) ] |
∏

j<k

∏

l<dj

losej[ Outn |
∏

j′∈Bjl

cj′ [ C
′
j′,s(j′) ] ]

with i ∈ A, s(i) = i, di = 0 and dj ≥ 1 (all j 6= i). At this point ωi[ out ci ] can
emerge from ambient ci, yielding an ωi barb.

We need to show five properties:

(1) The invariant is maintained by any reduction, apart from an out ci reduc-
tion.

(2) Every computation is finite.
(3) A computation can always make progress if it has not yet reached form (∗).

Since all computations are finite (previous item), this shows that every
computation does reach (∗), from which the winner can be announced in
a single reduction. Hence every computation announces a winner.

(4) A computation can only announce a winner by first reaching form (∗). In
particular, if an out ci reduction occurs then the network is of form (∗)
immediately before the reduction.

(5) Once a winner is announced no further reductions can produce a second
winner. So every computation has a unique winner.

We first show property (1). There are four cases, depending on the type of
reduction:
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(in nj) An in nj reduction must come from an ambient ni entering ambient
nj. This can be either at the top level or at a lower level. In the first case
we have i, j ∈ N with i 6= j. The effect is that i is removed from N and
added to Lj. Also losei[ Outn ] is unleashed inside ni, which means that dii

increases from 0 to 1. In the second case we have i, j ∈ Ll for some l. Then
i is removed from Ll and added to Lj, and dii increases by 1.

(out nj) An out nj reduction arises when a losei ambient exits nj. It will arrive
either at the top level (if j ∈ N) or in an ambient nl (if j ∈ Ll). In the first
case dji decreases by 1 and di increases by 1. In the second case, dji also
decreases by 1 while dli increases by 1.

(in losej) An in losej reduction arises when a ci[ Ci,s(i) ] ambient enters a top-
level losej ambient. Then s(i) = j and dj > 0. The effect of the reduction is
that s(i) remains unchanged, while i is removed from A and added to Bjl

(some l < dj).
(out losej) An out losej reduction arises when a ci[ C

′
i,s(i) ] ambient exits a

top-level losej ambient. Then s(i) = j, dj > 0 and i ∈ Bjl for some l < dj.
The effect of the reduction is that s(i) increases by 1, while i is removed
from Bjl and added to A.

Note that in each of the four cases nothing is added to N and di is not reduced.
We omit the straightforward checks that the conditions of the invariant are
preserved by the four types of reduction.

We now show that every computation is finite (property (2)). The only issue is
the replicated out nj capabilities in the losei ambients. Consider a single losei

ambient. When first unleashed it is at an ambient nesting depth of between 1
and k. Every time it performs an out nj the depth decreases by 1. The only
way its depth can increase is if a containing nj ambient enters another nl

ambient. But this can only happen a finite number of times. Hence there is a
finite bound on the number of times losei can perform out nj reductions.

We now show that a reduction is always possible if the network has not reached
form (*) (property (3)). First suppose that |N | ≥ 2. Take i, j ∈ N with i 6= j.
By condition (3) it is possible for ambient ni to enter ambient nj. So by
condition (1) we can assume that N = {i} for some i < k.

Now suppose that dj = 0 for some j 6= i. Since j /∈ N , by condition (4) we have
dlj > 0 for some l. This means that there is a losei ambient inside ambient nl,
and it can exit nl. Hence we can assume that dj > 0 for all j 6= i.

Next suppose that i /∈ A. Then by condition (5) we see that ci is inside some
top-level losej ambient, and can exit by condition (6). Hence we can assume
i ∈ A.

Finally suppose s(i) 6= i. Then ds(i) > 0, and ci can enter some top-level loses(i)

ambient. This establishes property (3).
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We now show that in order for a winner to be announced form (∗) must first
be reached (property (4)). Suppose that barb ωi appears for the first time.
Then the invariant holds for all previous stages of the computation. The last
reduction must have been an out ci, and so at the immediately preceding stage
we must have ci[ Ci,i ] at the top level, so that s(i) = i. For all j 6= i we have
dj > 0 (using condition (6)) and j /∈ N (using condition (4)). Therefore we
have N = {i} and we are in form (∗) immediately before i is announced as
the winner.

Finally we show that once a winner is announced no further computation
can produce another winner (property (5)). By property (4) we know that if
process i wins then form (∗) has been reached, and N = {i}. Now N = {i} will
continue to hold for the rest of the computation, since |N | ≥ 1 (condition (1))
and no element can be added to N , as noted when verifying property (1). So
di = 0 by condition (4). Hence if j 6= i then i /∈ (j .. s(j)) (using condition (6))
and so s(j) 6= j, so that j cannot win.

If the replication operator in the process Outn is omitted we still have an
electoral system. This can be shown by a refinement of the proof given. We
used replication merely in order to simplify the statement of the invariant. 2

B Proof of Theorem 4.10

Theorem 4.10 In SAiop, for any k ≥ 1 there exists a symmetric electoral
system of size k.

PROOF. Let k ≥ 1. For i, j < k we define

Pi
def
= open ni | Ci,i+1 | ni[ in ni.open ni.losei[ open losei ] |

∏

j 6=i in nj ]

Ci,i
def
= ωi[ open ωi ]

Ci,j
def
= open losej.(losej[ open losej ] | Ci,j+1) (j 6= i)

Then
∏

i<k Pi is an electoral system. The idea is that process j loses to process
i when ambient ni enters ambient nj. Once a process j has lost, nj cannot be
entered further, but nj can be opened if it is at the top level, in which case an
ambient losej appears at the top level to signify that i has lost. Eventually all
but one processes have lost. Suppose that only ni is left. The checking process
Ci,i+1 checks for the presence of losej (all j 6= i), and then announces i as the
winner.

To prove that
∏

i<k Pi is indeed an electoral system, we formulate an invariant,
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which will hold for every possible state of the network.

Invariant. The network is of the form

∏

i∈O

open ni |
∏

i<k

Ci,s(i) |
∏

i∈T

ni[ Ri ] |
∏

j∈L

losej[ open losej ] |
∏

i<k

(in ni)
r(i)

with O, T, L ⊆ {0, . . . , k − 1}, and with Ri in one of the following two forms:

Ri = in ni.open ni.losei[ open losei ] |
∏

j∈Ei
in nj (NE)

Ri = open ni.losei[ open losei ] | nw(i)[ Rw(i) ] |
∏

j∈Ei
in nj (E)

Here the form (NE) is for ni ambients which have not (yet) been entered, and
(E) is for ni ambients which have been entered by ambient nw(i), and have
therefore lost to process w(i). We impose the following conditions:

(1) For each i < k, either there is exactly one ni ambient present in the
network, in which case i ∈ O, or else there is no ni ambient present in
the network, in which case i /∈ O.

(2) w(i) is a partial one-one function taking values in {0, . . . , k − 1}. w(i) is
defined iff ambient ni is present in the network (i.e. not yet opened) and
Ri is of form (E). (It follows from this, condition (1) and the structure of
the invariant itself that T and {w(i) : i < k and w(i) is defined} together
form a partition of O. This states that if ni has not yet been opened, then
it is present either at the top level, or at a lower level inside another nj.)

(3) |T | ≥ 1.
(4) For all i, j < k, if j 6= i, j /∈ L and w(j) is undefined then j ∈ Ei. This

states that ni has the capability to enter nj as long as nj has not been
opened and has not been entered.

(5) O and L together form a partition of {0, . . . , k−1}. This states that each
ni is either not yet opened or else has been opened, in which case losei

is present.
(6) For all i < k, (i .. s(i)) ⊆ L. This states that if j has been checked by i

as having lost then ambient losej is present at the top level.

The invariant is established initially with O = T = {0, . . . , k−1}, s(i) = i+1,
L = ∅, r(i) = 0, Ei = {0, . . . , k − 1} − {i}, w(i) undefined.

There are three types of reduction: in nj, open nj and open losej. We consider
each in turn.

(in nj) Suppose that ni enters nj. This can only happen at the top level, with
i, j ∈ T and i 6= j. Clearly Rj must have been of form (NE), and changes
as a result of the reduction to be of form (E). Also w(j) was undefined, and
is now set to i. At the same time i is removed from T . Also j is removed
from Ei.
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(open nj) Suppose that nj is opened. Again this can only happen at the top
level. Rj must be of type (E). We have j ∈ T and w(j) defined. As a result
of the reduction, ambient losej is unleashed. We remove j from T and add it
to L. Also the index w(j) is added to T and then w(j) becomes undefined.
The term

∏

i∈Ej
in ni is now garbage; for each i ∈ Ej we increase r(i) by one.

(open losej) Suppose that Ci,s(i) opens losej. Then j ∈ L and s(i) = j 6= i.
The effect of the reduction is to leave L unchanged and increase s(i) by one.

We omit the straightforward checks that in each of the three cases the invariant
is maintained.

Now we argue that progress can always be made unless s(i) = i for some i. This
will imply that there is at least one winner in every maximal computation.
Suppose that no in nj reduction is enabled. Then either |T | = 1 or else |T | ≥ 1
and for every j ∈ T , function w(j) is defined (using conditions (2), (3), (4)).
Suppose also that no open nj reduction is enabled. Then for every j ∈ T ,
function w(j) is undefined (using conditions (1), (2)). Combining, we must
have |T | = 1. Let T = {i}, with w(i) undefined. It is clear from the invariant
that no nj ambient can be present for j 6= i. Hence O = {i} by (1) and
L = {0, . . . , k − 1} − {i} by (5).

Suppose also that no open losej reduction is enabled. If s(i) 6= i then s(i) ∈ L,
and Ci,s(i) can perform open loses(i), which is a contradiction. Therefore s(i) =
i, and so ωi is unguarded at the top level of the system, announcing i as the
winner.

Finally we argue that there can be at most one winner. Suppose for a con-
tradiction that in some computation, i is announced as the winner, and that
at that stage or later some j 6= i is also announced as the winner. Then by
the invariant we have s(i) = i and s(j) = j. By condition (6) we must have
(i .. i) ⊆ L and (j .. j) ⊆ L, which implies L = {0, . . . , k − 1}. Hence O = ∅
by (5), and so T = ∅ by (1). But this contradicts (3). 2

C Proof of Theorem 7.1

First we need some lemmas.

Lemma C.1 Let P be a process in MAob and σ a permutation. Then P ↓ n
if and only if σ(P ) ↓ σ(n).

PROOF. The proof is identical to the one in Lemma 5.3. 2
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Lemma C.2 Let P be a process in MAob and σ a substitution. If P −→ P ′,
then σ(P ) −→ σ(P ′).

PROOF. By induction on −→ . 2

Lemma C.3 Let N = [P0 | · · · | Pk−1] be a symmetric network in MAob. As-
sume that N −→ N1. Then there exists a computation C : N1 −→ · · · −→ Nk

such that:

(1) Nk is symmetric;
(2) if for some i such that 0 ≤ i ≤ k− 1 we have N1 ↓ ωi and N 6↓ ωi then for

all h such that 0 ≤ h ≤ k − 1 we have Nk ↓ ωh;
(3) if for all j such that 0 ≤ j ≤ k − 1 we have N1 6↓ ωj then for all t, j such

that 1 ≤ t ≤ k and 0 ≤ j ≤ k − 1 we have Nt 6↓ ωj.

PROOF. Assume that N is symmetric with respect to an automorphism σ
with one orbit only and that N −→ N1. There are two cases to consider:

Reduction derived from one process only. In this case N −→ N1 is the
result of the computation of one process in the network. Assume Pr in N

has reduced as follows Pr −→ P †
r . The proof for this case is identical to

Lemma 5.6.
Reduction derived from the interaction of two processes. We assume,

without loss of generality and to the mere end of simplifying the notation,
that P0 and Pd are the two processes involved in the computation. We will
silently use structural congruence to move processes to adjacent positions
in order to perform a reduction, and to move them back to their origi-
nal positions. Moreover, in order to simplify the notation, we assume that
σ̂(i) = i + 1 for each i < k.

By the operational semantics of this calculus, there are three cases to
consider.
(1) The reduction has occurred by using the rule red obj-in. Then without

loss of generality we can assume that P0 performs the entry into another
ambient. Then the syntactic form of the two processes is:

P0 = (νp0
1 . . . p0

s)(mvin n.S0 | P ′
0)

Pd = (νpd
1 . . . pd

s)(n[ Qd ] | P ′
d)

with n /∈ {p0
1 . . . p0

s}∪{pd
1 . . . pd

s} (otherwise the two processes would not
be able to compute). By symmetry, we conclude the following state-

53



ments starting from P0.

Pσ̂(0) = (νp1
1 . . . p1

s)(mvin σ(n).σ(S0) | σ(P ′
0))

Pσ̂2(0) = (νp2
1 . . . p2

s)(mvin σ2(n).σ2(S0) | σ2(P ′
0))

...

Pσ̂k−1(0) = (νpk−1
1 . . . pk−1

s )(mvin σk−1(n).σk−1(S0) | σk−1(P ′
0)).

Similar conclusions can be drawn starting from Pd.

Pσ̂(d) = (νpd+1
1 . . . pd+1

s )(σ(n)[ σ(Qd) ] | σ(P ′
d))

Pσ̂2(d) = (νpd+2
1 . . . pd+2

s )(σ2(n)[ σ2(Qd) ] | σ2(P ′
d))

...

Pσ̂k−1(d) = (νpd−1
d . . . pd−1

s )(σk−1(n)[ σk−1(Qd) ] | σk−1(P ′
d)).

We see that

P0 = (νp0
1 . . . p0

s)(mvin n.S0 | σ−d(n)[ Q0 ] | R0)

Pd = (νpd
1 . . . pd

s)(mvin σd(n).Sd | n[ Qd ] | Rd)

(we use arithmetic modulo k, so that σ−d(n) stands for σk−d(n)) and in
general, for all h such that 0 ≤ h ≤ k − 1 we have

Ph = (νph
1 . . . ph

s )(mvin σh(n).Sh | σh−d(n)[ Qh ] | Rh)

where for all i < k we have σ(Si) = Si+1, σ(Qi) = Qi+1 and σ(Ri) =
Ri+1.

Now if P0 | Pd −→ P+
0 | P−

d then the residual processes must have
the syntactical form:

P+
0 = (νp0

1 . . . p0
s)(σ

−d(n)[ Q0 ] | R0)

P−
d = (νpd

1 . . . pd
s)(mvin σd(n).Sd | n[ Qd | S0 ] | Rd)

In general the residues of the processes are the following:

P+
h = (νph

1 . . . ph
s )(σ

h−d(n)[ Qh ] | Rh)

P−
h = (νph

1 . . . ph
s )(mvin σd(n).Sh | σh−d(n)[ Sσ̂h−d(0) | Qh ] | Rh).

P+−
h = P−+

h = (νph
1 . . . ph

s )(σ
h−d(n)[ Sσ̂h−d(0) | Qh ] | Rh).

Now in order to show concretely how the computation goes around
let k − d = r. Now we need to consider the relationship between r and
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d. There are two cases to consider: r ≤ d or d < r. We analyse the
case r ≤ d (the other case has been analysed in the similar proof of
Lemma 5.6).

If r ≤ d then for some m we have d − r = m. Hence the steps
of reduction among the different processes in the network proceed as
follows:

P1 | Pd+1 −→ P+
1 | P−

d+1

P2 | Pd+2 −→ P+
2 | P−

d+2

...

Pr−1 | Pd+(r−1) −→ P+
r−1 | P−

d+(r−1)

Pr | P+
0 −→ P+

r | P+−
0

Pr+1 | P+
1 −→ P+

r+1 | P+−
1

...

Pr+(m−1) | P+
m−1 −→ P+

r+(m−1) | P+−
m−1

P−
d | P+

m −→ P−+
d | P+−

m

...

P−
d+(r−1) | P+

m+(r−1) −→ P−+
d+(r−1) | P+−

m+(r−1)

Then, we can think that the network is partitioned in this way:

N = [P0 | · · · | Pr | · · · | Pd | · · · | Pd+r]

The computation of the network is the following:

N1 : [P+
0 | · · · | Pr | · · · | P−

d | · · · | Pk−1] −→

N2 : [P+
0 | P+

1 | · · · | Pr | · · · | P−
d | P−

d+1 | · · · | Pk−1] −→
...

Nr : [P+−
0 | P+

1 | · · · | P+
r | · · · | P−

d | P−
d+1 | · · · | P−

k−1] −→
...

Nk : [P+−
0 | P+−

1 | · · · | P+−
r | · · · | P+−

d | P−+
d+1 | · · · | P−+

k−1].

Hence we have C : N1 −→ · · · −→ Nk.
(a) Now we have to show that the network Nk is symmetric. Now, Nk is

symmetric with respect to σ, since for all s such that 0 ≤ s ≤ k−1
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the following holds:

P+−
σh(0) = (νph

1 . . . ph
s )(σ

h−d(n)[ Sh−d | Qh ] | Rh)

= (νph
1 . . . ph

s )(σ
h−d(n)[ Sσ̂h−d(0) | Qσ̂h(0) ] | Rσ̂h(0))

= (νph
1 . . . ph

s )(σ
h−d(n)[ σh(Sσ̂−d(0)) | σh(Q0) ] | σh(R0))

= σh((νp0
1 . . . p0

s)(σ
−d(n)[ Sσ̂−d(0) | Q0 ] | R0))

= σh(P+−
0 )

The automorphism σ has one orbit only since it has not changed.
(b) The proof for this part of the lemma is similar to that of Lemma

5.6.
(c) Observe that for this particular reduction rule the following holds:

for all t, h such that 0 ≤ t, h ≤ k − 1, if Nt+1 ↓ ωh then N1 ↓ ωh.
By assumption, for all i such that 0 ≤ i ≤ k − 1 we have N1 6↓ ωi.
We conclude that for all t such that 1 ≤ t ≤ k the following holds
Nt 6↓ ωi.

(2) In the case in which the reduction is derived by means of the rule
red open, then the proof is identical to Lemma 5.6.

(3) If the reduction is triggered by the rule red a-comm, this means the
redex is formed with communication primitives, and then the case is
identical to the proof supplied in Lemma 5.6 for the rule red a-comm.

2

Recall that Obsk = {ω0, ω1, . . . , ωk−1}.

Lemma C.4 Let N = [P0 | · · · | Pk−1] with k ≥ 2 be a symmetric network in
MAob. Then there exists a computation C such that either Obs(C) ⊇ Obsk or
Obs(C) ∩ Obsk = ∅.

PROOF. The proof is identical to that of Lemma 5.7. 2

Theorem 7.1 Let N = [P0 | · · · | Pk−1] be a symmetric network in MAob with
k ≥ 2. Then N cannot be an electoral system.

PROOF. The proof is identical to that of Theorem 5.1 by using Lemma C.4. 2
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D Proofs of Propositions 8.1 and 8.2

In this section we prove Propositions 8.1 and 8.2.

Let −→tco denote the reduction relation on MA−out obtained from the usual
rules of MA, but without the rules for the in capability and reduction in-
side an ambient (red in and red amb). This ad hoc notion allows top-level
communication and open reductions, explaining the abbreviation “tco”.

Definition D.1 The reduction relation −→tco on MA−out is the least rela-
tion generated by the rules red open, red a-comm, red par, red restr

and red cong.

The key lemma we need to show Proposition 8.1 is the following:

Lemma D.2 Let P , Q be MA−out processes. Suppose that P 6−→tco and
P −→ Q. Then Q 6−→tco and for any name n, if Q ↓ n then P ↓ n.

To see informally why this holds, let P , Q be as in the statement of the lemma.
The reduction P −→ Q either (1) uses rule red in but not red amb (so that
it is top-level) or (2) uses the rule red amb. In case (1) an ambient is removed
from the top level, with no ambient added. Hence there are no new top-level
redexes (and some may have been removed). So Q −→tco implies P −→tco .
Also, no new barbs are created (a barb may have been removed). In case
(2) the reduction happens inside an ambient, and therefore the top level is
unaffected. So Q −→tco iff P −→tco .

In order to give a rigorous proof of Lemma D.2, first we must characterise
when a process P can perform a −→tco transition in terms of the structure
of P . We define a number of predicates which are similar to barbs. The first
two predicates are relevant to whether a top-level communication can be per-
formed. They express whether a process has a top-level unguarded input and
output. Here “unguarded” means not guarded by a capability or an input.
The third predicate expresses whether a process has a top-level unguarded
open capability, while the final predicate concerns whether a process has both
a top-level unguarded open and a matching top-level unguarded ambient (note
that the name concerned may or may not be restricted).

Definition D.3 Let P be an MA−out process.

• P ↓( ) iff P ≡ ν ~m ((n).P ′ | P ′′).
• P ↓〈 〉 iff P ≡ ν ~m (〈n〉 | P ′).
• P ↓open n iff P ≡ ν ~m (open n.P ′ | P ′′) with n /∈ ~m.
• P ↓op[ ] iff P ≡ ν ~m (open n.P ′ | n[ P ′′ ] | P ′′′).
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Using these predicates we can characterise −→tco -reduction:

Lemma D.4 Let P be an MA−out process. Then P −→tco iff (1) P ↓op[ ] or
(2) both P ↓( ) and P ↓〈 〉.

PROOF. (⇒) By induction on the derivation of P −→tco .

(⇐) Trivial. 2

Lemma D.5 Let P,Q be MA−out processes and let n be a name. Then the
following properties hold:

(1) (P | Q) ↓( ) iff P ↓( ) or Q ↓( ).
(2) (P | Q) ↓〈 〉 iff P ↓〈 〉 or Q ↓〈 〉.
(3) (P | Q) ↓open n iff P ↓open n or Q ↓open n.
(4) (P | Q) ↓ n iff P ↓ n or Q ↓ n.
(5) (P | Q) ↓op[ ] iff P ↓op[ ] or Q ↓op[ ] or there exists n such that either (1)

P ↓ n and Q ↓open n or (2) P ↓open n and Q ↓ n.

PROOF. These properties can be proved by showing the various predicates
to be equivalent to versions defined by structural induction on processes. We
omit the details. 2

Lemma D.6 Let P be an MA−out process and let m,n be names. Then the
following properties hold:

(1) (νm P ) ↓( ) iff P ↓( ).
(2) (νm P ) ↓〈 〉 iff P ↓〈 〉.
(3) (νm P ) ↓open n iff P ↓open n and m 6= n.
(4) (νm P ) ↓ n iff P ↓ n and m 6= n.
(5) (νm P ) ↓op[ ] iff P ↓op[ ].

PROOF. Similar to that of Lemma D.5. 2

Lemma D.7 Let P , Q be MA−out processes. Suppose that P 6−→tco and
P −→ Q. Then the following properties hold:

(1) If Q ↓( ) then P ↓( ).
(2) If Q ↓〈 〉 then P ↓〈 〉.
(3) For any n, if Q ↓open n then P ↓open n.
(4) For any n, if Q ↓ n then P ↓ n.
(5) Q ↓op[ ] is false (note that P ↓op[ ] is false by Lemma D.4).

58



PROOF. By induction on the derivation of P −→ Q. There are seven rules
which can be applied to derive P −→ Q in MA−out. Of these, red open and
red a-comm can be ruled out, as we have P 6−→tco .

red in Suppose P = n[ in m.P1 | P2 ] | m[ P3 ] −→ m[ n[ P1 | P2 ] | P3 ] = Q.
The five properties can be easily checked. Notice that Q only has an m barb,
whereas P has both m and n barbs.

red par Suppose P = P1 | P2 −→ P ′
1 | P2 = Q is deduced from P1 −→ P ′

1.
The first four properties are straightforward using Lemma D.5. For the
last property, suppose that Q ↓op[ ] holds. Looking at the possible cases
in the characterisation of (P ′

1 | P2) ↓op[ ] in Lemma D.5, we cannot have
P ′

1 ↓op[ ], by the induction hypothesis. If P2 ↓op[ ] then P ↓op[ ], which is false
by Lemma D.4. If P ′

1 ↓open n and P2 ↓ n then P1 ↓open n by the induction
hypothesis, and so again P ↓op[ ], which is false. If P ′

1 ↓ n and P2 ↓open n then
P1 ↓ n by the induction hypothesis, and so again P ↓op[ ], which is false.

red restr Straightforward using Lemma D.6.
red amb and red cong Straightforward.

2

Now Lemma D.2 follows immediately from Lemmas D.4 and D.7.

Before proving Proposition 8.1 we need another lemma.

Lemma D.8 Let k ≥ 1. Let P = ν ~m (P0 | · · · | Pk−1) be an MA−out process.
If P −→tco then (1) Pi −→tco for some i < k, or (2) Pi ↓open n and Pj ↓ n
for some n and i, j < k with i 6= j, or (3) Pi ↓( ) and Pj ↓〈 〉 for some i, j < k
with i 6= j.

PROOF. By Lemmas D.4, D.5 and D.6. 2

Proposition 8.1 For every k ≥ 2, MA−out does not have a symmetric electoral
system of size k.

PROOF. Let k ≥ 2. Suppose that N is a symmetric electoral system in
MA−out with size k. We shall construct a maximal computation C′ with no
observables (i.e. Obs(C′) ∩ Obsk = ∅), which will show that N cannot be an
electoral system. Let C be the computation so far, and suppose that Obs(C) ∩
Obsk = ∅. Let P = ν~n (P0 | · · · | Pk−1) be the current state of the network,
and suppose that P is symmetric with respect to a single-orbit automorphism
σ. Without loss of generality suppose that σ̂(i) = i + 1 mod k for all i < k.
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We first exhaust all −→tco reductions. Suppose that P −→tco . By Lemma D.8
we have (1) Pi −→tco for some i < k, or (2) Pi ↓open ni

and Pj ↓ ni for some ni

and i, j < k with i 6= j, or (3) Pi ↓( ) and Pj ↓〈 〉 for some i, j < k with i 6= j.
In each of the three cases P can perform k −→tco reductions to reach a new
symmetric state P ′. If any barb in Obsk appears, then by symmetry all mem-
bers of Obsk appear, which contradicts N being an electoral system. Hence if
C′′ is the computation up to P ′ then Obs(C′′)∩Obsk = ∅. The argument is very
much as in the proof of Theorem 5.8, except that we have −→tco reductions
instead of −→ reductions.

If we never run out of −→tco reductions then we have a maximal computation
with Obs(C′) ∩ Obsk = ∅, which is a contradiction. So suppose instead that by
a computation C such that Obs(C) ∩ Obsk = ∅ we reach a symmetric network
P where P 6−→tco . If P −→ then we can continue the computation. But
by Lemma D.2 no further −→tco reduction will be possible, and no new
observables will appear. Hence any maximal extension of C to C′ will have
Obs(C′) ∩ Obsk = ∅, which is a contradiction. 2

Proposition 8.2 For every k ≥ 2, SA−out,open does not have a symmetric
electoral system of size k.

PROOF. (Sketch) Suppose that we have a symmetric electoral system of size
k. We follow the proof of Proposition 8.1 and construct a maximal compu-
tation with no observables, which is a contradiction. We start by confining
ourselves to top-level communication reductions. We can do this while main-
taining symmetry, as in Case (3) of the proof of Proposition 8.1. Therefore
no observables can appear. If we reach a point where no top-level commu-
nication is possible, then any further reductions will not enable any further
top-level communication, and also no new top-level ambients can appear, by
the analogue of Lemma D.2. Hence any extension to a maximal computation
will have no observables. 2
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