
Stable and timed formats for process algebra

Iain Phillips
Department of Computing, Imperial College

180 Queen's Gate, London SW7 2BZ

iccp@doc.ic.ac.uk

 and

Irek Ulidowski
School of Computing, University of North London

Eden Grove, London N7 8DB

ex13ulidowi@clstr.unl.ac.uk

Abstract

We propose a format of transition rules (stable format) for processes which extends De

Simone's in that it admits process operators which recognise stability, that is, the inability to

perform autonomous actions. The format uses negative premises, but differently from

previously proposed formats. We show that refusal testing is the trace congruence generated

by the format. We identify a subformat (timed format) which serves as a format for discrete-

timed process algebra in the style of Hennessy and Regan's TPL.

1. Introduction

It is well-known how to use syntax-directed rules to associate labelled transition systems with

terms in process algebra. This is often called structured operational semantics (SOS) [Plo81],

and was pioneered by Milner for CCS [Mil80, Mil89]. The meaning of each operator on

processes is given by transition rules. We can classify operators according to the form these

may take. We say that an operator is in a certain format if its rules belong to that format.

Formats were first studied by De Simone [DeS85]. Further work, including negative

transitions, was carried out in [BIM88], [GrV92], [Gro90], [BoG91], [ABV92], [vaG93].

Formats with silent actions have been studied by Bloom [Blo90], Vaandrager [Vaa91] and the

second author [Uli92], [Uli93], [Uli94].

11/7/97 1

It is customary to measure the power of a format by identifying the congruence associated

with it. Formats have variously yielded ready bisimulation [BIM88], strong bisimulation

[GrV92], testing equivalence [Vaa91], copy + refusal testing equivalence [Uli92]. Our first

aim in this paper is to propose a format (stable format) which has the strength of refusal testing

[Phi87]. Information about actions being refused has been incorporated via negative

hypotheses into a number of formats, but they have yielded congruences which are finer than

refusal equivalence. It was wrongly claimed in [Uli93] that the RSOS format was suitable—

we are grateful to Rob van Glabbeek for showing us a counterexample. It therefore seems

clear that we must be more restrictive in our use of negative transitions.

Silent actions, generally denoted by τ as in CCS, are often treated as a generalization of

work which has previously been carried out for the case where all actions are visible. In the

present work τ plays an essential role. The only negative information we allow is stability, in

other words the inability to perform autonomous actions. An autonomous action is one which

can be completed without the participation of the environment. We shall adopt the usual view,

as typified by CCS, that τ is the only autonomous action. The upshot is that we allow negative

transitions, but only if they are labelled by τ.

Having considered stable format, we specialize it to obtain a format for discrete-timed

processes in the style of Hennessy and Regan [HeR91]. The special action σ marks the tick of

a global clock. All active processes must participate in σ for it to happen. We do not know of

any previously proposed format for timed processes.

The plan of the paper is as follows: After some preliminaries in Section 2, Section 3

considers stable format, and Section 4 considers timed format.

2. Preliminaries

2.1. Transition systems and refusal testing

Let A be some set of actions containing a distinguished element τ. A (labelled) transition

system over A is a triple (P,→,p), where P is a set of states, the transition relation → is a

relation on P×A×P, and p∈P is a distinguished start state. We refer loosely to (P,→,p) as p.

11/7/97 2

Suppose that w∈A* and q∈P. We define p
w→q in the obvious way. Let TSA be the class of

all transition systems over A. A transition system p is strongly convergent if it is impossible to

perform an infinite sequence of τ-transitions from any state. It is finite-branching if for all

states there are only finitely many successor states. It is sort-finite if there is a finite set from

which all its transition labels are drawn, i.e. there is a finite subset C of A such that if p
w→q

then w∈C*.

We have parametrized the class of transition systems by the set of actions, since there will

be times when we wish to move from one set of actions A to another larger set B. There is an

obvious embedding, which transforms a member of TSA into a member of TSB. Let us call

this ηAB. It is natural to think of the usual equivalences as being on arbitrary transition

systems, rather than depending on the set of actions. So let us call an equivalence ~ on

transition systems generic if it is actually a family of equivalences ~A on TSA (each set A)

satisfying the following conservation condition:

if A⊆B and p, q∈TSA then

p ~A q iff ηAB(p) ~B ηAB(q)

The equivalences we shall consider will always be generic.

For w∈A*, let ŵ denote w with all τs removed (as in [Mil89]). We shall refer to members

of A* as strings, and to members of (A-{τ})* as traces.

DEFINITION 2.1 (trace preorder). Let p, q ∈ TSA. p ≤T q iff for all w∈A*,

p
ŵ→ implies q

ŵ→

Also p is trace equivalent to q (written p ~T q) iff p ≤T q and q ≤T p.

Refusal testing was introduced in [Phi87]. For simplicity we shall present "may" refusal

testing, which may be seen as a generalization of traces to what have been called failure traces

[vaG90].

DEFINITIONS 2.2. Let p ∈ TSA. p is stable iff p
τ
/→. Let C⊆A-{τ}. p refuses C (written

p ref C) iff p is stable and p
a
/→for all a∈C. For technical convenience we shall abuse notation

and also write p
C→.

11/7/97 3

A may refusal test is a string consisting of actions a∈A-{τ} and sets of actions (refusals)

C⊆A-{τ}, where we ban adjacent sets. For instance a{b,c}de is allowed, but not a{b}{c}de.

With may testing we can combine successive refusals to form sets (with must testing (see

[Phi87]) it matters which is the first to be tested). Of course sensible tests would not allow a

set C to be followed by a∈C. We allow infinite sets. In what follows we refer to may refusal

tests simply as tests. We let t,... range over tests.

A refusal string is a string of actions drawn from A (this time including τ) and subsets of

A-{τ}, where we again ban adjacent sets. In an obvious way we can talk of p
w→ where w is a

refusal string. Clearly if w is a refusal string then ŵ is a test.

DEFINITION 2.3 (may refusal testing preorder). For any p∈TSA and test t,

p may t iff ∃ a refusal string w. p
w→ & ŵ = t

For any p, q∈TSA

pvq iff for all t. p may t implies q may t

It is natural to ask whether we get as much power by restricting to refusal tests where the

refusal sets are finite. Say that a refusal test t is finite if all its refusal sets are finite.

DEFINITION 2.4. For any processes p, q∈TSA

pvfin q iff for all finite t. p may t implies q may t

Clearly pv q implies pvfin q. When can we assert the converse? The following

proposition is clearly related to the fact that refusal testing is generic.

PROPOSITION 2.5. Suppose that p, q∈TSA are sort-finite. Then

pvfin q iff pv q ¼

Clearly if A is finite then every member of TSA is sort-finite.

PROPOSITION 2.6. Suppose that p, q are finite-branching and strongly convergent. Then

pvfin q iff pv q ¼

11/7/97 4

EXAMPLE 2.7. Let q = τa0 + τ(τa1 + τ(τa2 + ...)) and p = q + τ (using CCS notation). Let

A = {a0, a1, ...}. Then not q may A, but if C⊆fin A, q may C. However p may A. So

pvfin q but not pv q.

2.2. Formats and congruences

In this section we shall take a fairly abstract view of formats. For our results the important

thing is that a format F has an operational meaning in terms of transition systems.

A language definition (usually called a transition system specification [GrV92]) is a set Σ of

function symbols of various arities (a signature) together with a set rules(f) for each f∈Σ and a

set A(Σ) of actions. We shall loosely refer to this as Σ. A format F is a way of classifying

language definitions and giving them operational meaning. Extensionally a format F is a set of

language definitions such that if Σ belongs to F then for each f∈Σ there is a map OF,Σ(f):

TSA(Σ)
n →TSA(Σ), where n ≥0 is the arity of f. What we have called a language definition has

been called a transition system specification [GrV92]. The change in terminology is partly

because our definition is slightly different, but mainly because we are here concentrating on the

operators which are definable in the language, rather than on the global transitions system

associated with it (where the states are the closed terms of the language).

Let Σ be a language definition. Σ-terms are formed from variables and function symbols

from Σ. We let X,... range over variables and u,... range over Σ-terms. We may display the

variables by writing u(X1,...,Xn), and unless stated otherwise this will imply that u uses

some, but not necessarily all, of the variables X1,...,Xn. Let p1,...,pn be members of TSA(Σ).

By u(p1,...,pn) we mean the interpretation of u(X1,...,Xn) in TSA(Σ) where each function

symbol f occurring in u is interpreted by OF,Σ(f) and Xi is interpreted by pi, i = 1,...,n. When

we come to internalize refusal testing we shall also need to extend the definition of u(p1,...,pn)

by allowing p1,...,pn to be members of TSA, where A ⊆A(Σ). It then means

u(ηA,A(Σ)(p1),...,ηA,A(Σ)(pn)).

DEFINITION 2.8. Let F be a format and let ~ be a generic congruence on transition systems.

Then ~ is an F-congruence if the following holds for all Σ∈F, A ⊆A(Σ), p,q∈TSA,

11/7/97 5

u(X1,...,Xn) a Σ-term (any n), and r2,...,rn∈TSA(Σ):

if p ~A q then u(p,r2,...,rn) ~A(Σ) u(q,r2,...,rn)

The ~-congruence generated by F (notation ~F) is defined to be the largest F-congruence

contained in ~. In a standard way we may characterize ~F as follows: For p, q in TSA,

p ~F q iff for all language definitions Σ (with action set A(Σ)⊇A) in F-format, and all Σ-terms

u(X1,...,Xn) and all r2,...,rn in TSA(Σ),

u(p,r2,...,rn) ~ u(q,r2,...,rn)

We refer to ~T
F as the trace congruence generated by F.

In the above we can replace the equivalence ~ by a preorder ≤, and change congruence to

precongruence.

3. Stable format

In this section we define a format which we call stable format (SF). We start by reviewing De

Simone's format [DeS85, Definition 1.9], which we refer to as DeS. The allowable language

definitions are as follows: Let Σ be a signature, and let α,... range over A(Σ) while a,... range

over A(Σ)-{τ}. Each f∈Σ is defined by a (possibly empty) set of rules of the form

{Xi
αi→Xi'} i∈I

f(X)
α→u(X')

Here X is an abbreviation for X1,...,Xn and I⊆{1,...,n}. Note that each Xi occurs at most

once in the premises. Xi' is defined to be Xi for i∉I. u is a Σ-term built from the variables

Xi'. We impose the condition on u that each Xi' must occur at most once. De Simone calls

this “linearity”.

The map ODeS,Σ(f): TSA(Σ)
n →TSA(Σ) is defined in a straightforward way. Let p1,...,pn

be members of TSA(Σ). Introduce new constants into Σ for the states of p1,...,pn to get Σ ' and

introduce axioms for the transitions (cf [Pin93]). The states of the new TS are the terms over

Σ ', and the transitions are those deducible from the rules of Σ together with the new axioms.

The initial state is of course f(p1,...,pn).

11/7/97 6

We are interested in treating τ as a silent and autonomous action. To reflect the fact that it is

silent, we shall not allow it in the premises, so that we get

{Xi
ai→Xi'} i∈I

f(X)
α→u(X')

We shall refer to rules of this form as DeS rules. Note that τ is still allowed in the conclusion.

To reflect the fact that it is autonomous we must allow the subprocesses to perform τ freely and

without being detected by outer levels. We nominate a set active(f)⊆{1,...n} of active

arguments and stipulate that rules(f) must contain the rule τi for each i∈active(f), where τi is

Xi
τ→Xi'

f(X)
τ→f(X')

We insist that active(f) must contain every i such that there is a DeS rule with Xi in the

premises.

We refer to the revised format as DeSτ. The ideas of the τ rules and active arguments have

been used by Bloom [Blo90] and Vaandrager [Vaa91].

PROPOSITION 3.1 (as in [Vaa91, Theorem 4.7]). Trace equivalence ~T is a congruence for

DeSτ. So it is the trace congruence generated by DeSτ.

The format is rich enough to define languages such as CSP [Hoa85]. It allows all the

operators of CCS except for summation, which does not have the necessary τ rules. Usually

trace equivalence is regarded as too abstract in that it neglects deadlock and liveness, so that

testing equivalence [DNH84] or failures equivalence [BHR84] are used instead. These are also

congruences for DeSτ [Vaa91].

We now augment the format with the following rules:

{Xi
ai→Xi'} i∈I f(X)

τ
⁄→

f(X)
a→u(X')

The conditions on I, u(X') are exactly as for DeS rules. We shall refer to these new rules as

s-rules. They are in addition to DeS and τ-rules. Notice that the conclusion must have a

visible action. We call the new format stable format (SF). The s-rules involve a negative

11/7/97 7

premise, but they are structured in such a way that this does not cause problems in deciding

their operational meaning.

DEFINITION 3.2. A language definition Σ is in finitely overlapping SF-format (FOSF) if it is in

SF-format and for every f∈Σ and α∈A(Σ), there are only finitely many rules with conclusion

f(X)
α→. . .

The finite overlapping format excludes renaming functions with infinite pre-images and hiding

of infinite sets of actions. This is perhaps not too much of a loss. More seriously, it also

excludes CCS parallel composition | (with infinite action set), in view of the following rule:

X
a→X' Y

ā→Y'

X|Y
τ→X'|Y'

However we could replace | by a family of finite-sorted operators |B, where B⊆finA. The rules

would be:

X
a→X' Y

ā→Y'

X|BY
τ→X'|BY'

 a∈B
X

a→X'

X|BY
a→X'|BY

 a∈A

together with a rule similar to the right-hand one for Y and τ-rules.

THEOREM 3.3. (i) Refusal testing preorder v is an SF-precongruence.

(ii) vfin is an FOSF-precongruence.

We omit the proof for lack of space, but make a few brief remarks. The essential reason why

refusal testing is a congruence is because positive information (a transition) is deduced in SF

from positive and negative information (the latter being stability and refusals), but negative

information comes entirely from negative information. To make this explicit we can transform

the format into one with rules of the following form:

X1 ref C1 . . . X n ref Cn
f(X) ref C

A single rule of SF will in general translate into many rules of the above kind. Given a term

u(X) and a refusal test t we can find refusal tests such that if p may pass these tests then

u(p) may t.

We now show how to internalize refusal testing in the format.

11/7/97 8

PROPOSITION 3.4. Let A be a set of actions. There are language definitions Σ in SF and Σ ' in

FOSF such that for any p, q in TSA,

(i) p v q iff for all Σ-terms u(X), u(p) ≤T u(q)

(ii) p vfin q iff for all Σ '-terms u(X), u(p) ≤T u(q)

Proof. We define Σ as follows: It has function symbols rC(X) (each C⊆A), and a parallel

composition T|X, which is to model tests being applied to processes. This will be reminiscent

of CCS |, though not identical. The action set A(Σ) will be A∪{σ,ω}. We also use action

prefixing α.T and a constant 0 , if these are not already included. The rules are:

T
a→T' X

a→X'

T|X
τ→T'|X'

 a∈A
T

σ→T' T|X
τ
⁄→

T|X
σ→T'|X

T
ω→T'

T|X
ω→0 rC(T)

a→0
 a∈C

rC(T)
σ→T

(plus τ-rules). Using a CCS-like notation, rC(T) is in effect Σa∈C a.0 + σ.T. Notice that if we

allow C to be infinite then rC(T) is not finite branching. Also if A is infinite then | is not finitely

overlapping.

Now that we have defined Σ, we translate our tests t into Σ-terms t† as in the following

inductive definition:

ε† = ω.0

(at)† = a.t†

(Ct)† = rC(t†)

Here ε is the empty test. We need something like ω to recognize that the test has been

completed. It is not hard to see that for any p in TSA, and any test t,

p may t iff t†|p
w→ for some string w containing ω.

Together with the previous theorem this is enough to establish (i).

The definition of Σ ' is as for Σ except that we only allow finite refusal sets C when

forming rC(X), and we replace | by a family of operators |B for each B⊆finA (this is much as

11/7/97 9

earlier, when we replaced CCS | by |B's, and is to ensure that Σ ' is in finitely overlapping

format). The new rules are:

T
a→T' X

a→X'

T|BX
τ→T'|BX'

 a∈B
T

σ→T' T|BX
τ
⁄→

T|BX
σ→T'|BX

T
ω→T'

T|BX
ω→0

(plus τ-rules). Take any finite test t. Let B be large enough to include all actions mentioned in

t (only finitely many). Then for any TS p

p may t iff (t† |B p)
w→ for some string w containing ω.

Again this is enough to establish (ii). ¼

COROLLARY 3.5. (i) p v q iff p ≤TSF q.

(ii) p vfin q iff p ≤TFOSF q. ¼

4. A format for timed process algebra

We present a format for process algebra with discrete time. The action set has a special action

σ which represents the passage of time (the tick of the global clock). Following many authors

we require τ actions to be “urgent”, so that time cannot pass until the system is stable. This is

often called the maximal progress assumption. Our format is inspired by TPL [HeR91], which

was in turn influenced by [Phi89]. It is a subformat of SF, where we make a restriction on the

s-rules. Apart from TPL, other timed process algebras have been proposed in [ReR88],

[BaB91], [NRSV90], [MoT90], [Wan90] among others.

DEFINITION 4.1 (Timed format). Let a language definition Σ have action set A containing

special actions τ, σ. Then Σ is in timed format (TF) if it is in SF and satisfies the following

further conditions:

(1) σ may not appear in either the premises or conclusion of a DeS rule.

(2) Each operator f has no s-rules apart from the single σ-rule as follows, which is

compulsory:

{Xi
σ→Xi'} i∈active(f) f(X)

τ
⁄→

f(X)
σ→u

11/7/97 10

The σ-rules have the effect of saying that the passage of time will be marked by all processes

when the system is stable.

DEFINITION 4.2. An operator f in a language definition Σ in TF is said to be untimed if its

σ-rule is

{Xi
σ→Xi'} i∈active(f) f(X)

τ
⁄→

f(X)
σ→f(X')

EXAMPLES 4.3. The following operators are in TF. We omit the τ-rules for active arguments.

(1) A delay operator

d(X)
σ→X

(2) A “timeout” operator (cf [NiS91], [HeR91])

X
a→X'

X |>Y
a→X'

X
σ→X' X |>Y

τ
⁄→

X |>Y
σ→Y

This can be varied to give a “watchdog” operator (again cf [NiS91])

X
a→X'

X |>Y
a→X' |>Y

X
σ→X' X |>Y

τ
⁄→

X |>Y
σ→Y

In both cases X is active and Y is not. In the σ−rules the X' is thrown away.

(3) Languages like CCS (except for +) or CSP can be straightforwardly put into TF by adding

the necessary σ-rules to make their operators untimed. For instance, action prefixing has the

“idling” rule

a.X
σ→a.X

a ≠ τ

just as in TPL (the X is inactive).

TPL is not actually in TF because it uses CCS-style choice. However it can be put into TF

with a few adjustments.

We can place a restriction on transition systems to get those which model timed processes:

11/7/97 11

DEFINITION 4.4. Let σ,τ ∈A. Then (P,→,p)∈TSA is a timed TS if for all q∈P

(1) if q
σ→r, q

σ→r' then r = r'.

(2) either q
σ→ or q

τ→, but not both.

Denote the set of such timed TSs by TTSA. (1) has been called time determinism [NiS91].

The next result says that using operators in TF keeps us within timed TSs:

PROPOSITION 4.5. Let p = p1,..,pn∈TTSA and let Σ be in TF with A(Σ)⊇A. Then for any

Σ-term u(X), u(p)∈TTSA(Σ). ¼

DEFINITION 4.6. A σ-test is a refusal test where every refusal is immediately followed by a σ.

pvσ q iff for every σ-test t, p may t implies q may t.

REMARK 4.7. Hennessy and Regan [HeR91] characterise testing equivalence over TPL by

means of an ordering based on “barbs”. It is not hard to show that (at least for strongly

convergent processes) their definition coincides with vσ.

PROPOSITION 4.8. (i) vσ is a TF-precongruence.

(ii) p vσ q iff p ≤TTF q.

Conclusions

We have defined a format for discrete-timed process algebra. We have seen how a restricted

form of refusal testing is a congruence for the format. The format is a special case of a more

general format which admits operators that detect stability. Throughout the work silent actions

have been considered in an essential way. Further work might include defining a timed format

for non-discrete time.

Acknowledgements

We thank Rob van Glabbeek for a helpful conversation and pointing out an error in our

previous work. We have also benefited from discussion with Sophie Pinchinat. The first

author was supported by SERC grant GR/F72475.

11/7/97 12

References

[ABV92] L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations.

LICS, 1992.

[BaB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of

Computing 3 (142-188), 1991.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A Theory of Communicating

Sequential Processes. JACM 31 (560-599), 1984.

[BIM88] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: Preliminary

report. POPL, 1988. Accepted by JACM.

[Blo90] B. Bloom. Strong process equivalence in the presence of hidden moves.

Preliminary report, 1990.

[BoG91] R.N. Bol and J.F. Groote. The meaning of negative premises in transition systems

specifications (extended abstract). ICALP. LNCS 510 (481-494). Springer,

1991.

[DeS85] R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoretical

Computer Science 37 (245-267), 1985.

[DNH84] De Nicola, R. and M.C.B. Hennessy. Testing Equivalences for Processes.

Theoretical Computer Science 34 (83-134), 1984.

[Gro90] J.F. Groote. Transition systems specifications with negative premises (extended

abstract). CONCUR 90. LNCS 458 (332-341). Springer, 1990.

[GrV92] J.F. Groote and F.W. Vaandrager. Structured operational semantics and

bisimulation as a congruence. Information and Computation 100 (202-260), 1992.

[HeR91] M. Hennessy and T. Regan. A process algebra for timed systems. Dept. of

Computer Science, University of Sussex, Tech. Report 5/91. 1991.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Mil80] R. Milner. A Calculus of Communicating Systems. LNCS 92 . Springer, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MoT90] F. Moller and C. Tofts. A temporal calculus of communicating systems.

CONCUR'90. LNCS 458 (401-415). Springer, 1990.

11/7/97 13

[NiS91] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.

CAV'91. LNCS 575 (376-398). Springer, 1991.

[NRS90] X. Nicollin, J.-L. Richier, J. Sifakis and J. Voiron. ATP: an algebra for timed

processes. Proc. IFIP TC 2 Working conference on programming concepts and

methods. 1990.

[Phi87] I.C.C. Phillips. Refusal testing. Theoretical Computer Science 50 (241-284),

1987.

[Phi89] I.C.C. Phillips. CCS with broadcast stability. Manuscript, 1989.

[Pin93] S. Pinchinat. Des bisimulations pour la sémantique des systèmes réactifs. Thesis,

Grenoble, 1993.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI

FN-19, Computer Science Department, Aarhus University, 1981.

[ReR88] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential

processes. Theoretical Computer Science 58 (249-261), 1988.

[Uli92] I. Ulidowski. Equivalences on observable processes. LICS, 1992.

[Uli93] I. Ulidowski. Congruences for τ-respecting formats of rules. Theory and Formal

Methods 1993, ed. G. Burn, S. Gay and M. Ryan. Workshops in Computing.

Springer, 1993.

[Uli94] I. Ulidowski. Local testing and implementable concurrent processes. PhD Thesis,

Imperial College, London. Forthcoming.

[Vaa91] F.W. Vaandrager. On the relationship between process algebra and input/output

automata (extended abstract). LICS, 1991.

[vaG90] R. van Glabbeek. The linear time – branching time spectrum. CONCUR '90.

LNCS 458 (278-297). Springer, 1990.

[vaG93] R. van Glabbeek. Full abstraction in Structural Operational Semantics (extended

abstract). 1993.

[Wan90] Wang Yi. Real-time behaviour of asynchronous agents. CONCUR '90. LNCS

458 (502-520). Springer, 1990.

11/7/97 14

