[image: image186.wmf]111

General quantum computation and factorisation


31 Introduction

2 Quantum computation
5
2.1 Quantum superposition
5
2.2 The qubit and quantum registers
8
2.3 Measurement
10
2.4 Quantum entanglement
11
2.5 Quantum transformations and gates
11
2.5.1 Universal gates
13
2.5.2 Controlled-NOT gate
13
2.5.3 Multi-bit controlled-NOT gates
14
2.5.4 Rotation gates
15
2.6 Quantum circuits
17
2.6.1 Gate applications
21
3 Quantum factorisation
23
3.1 Complexity theory and factorisation
23
3.2 Shor’s factoring algorithm
25
3.2.1 Overview
25
3.2.2 Detailed discussion
25
3.2.3 The Quantum Discrete Fourier Transform
29
4. The Qubit simulator
31
4.1 Initial design considerations
31
4.1.1 Target platform
32
4.1.2 Implementation language
33
4.2 Core simulator implementation
34
4.2.1 Memory management considerations
34
4.2.2 Basic mathematical classes
35
4.2.3 Complex number representation
35
4.2.4 Quantum gate representation
35
4.2.5 Hilbert space representation
36
4.2.6 Basis state representation
37
4.2.7 Quantum circuit representation
37
4.2.8 Subspace operations
38
4.2.9 Core simulator testing
44
4.3 Advanced simulator implementation
48
4.3.1 The Quantum Discrete Fourier Transform
49
4.3.2 Shor’s factoring algorithm
51
4.3.3 The quantum circuit parser
53
4.3.4 Advanced simulator testing
54
4.4 User interface
55
4.4.1 The Microsoft Foundation Classes (MFC)
55
4.4.2 User interface design and implementation
56
4.4.3 User interface testing
57
5. Conclusions and future work
59
5.1 Review of work
59
5.2 Future work
60
5.2.1 User interface features
60
5.2.2 Error models
60
5.2.3 Sparse vectors
60
5.2.4 Additional algorithms
61
5.2.5 Quantum modular exponentiation
61
Bibliography
62
Appendix A – The Qubit simulator user guide
65



1 Introduction  

Quantum computing is an exciting and dynamic research field bringing together knowledge from various disciplines including quantum physics, computer science and classical complexity theory. 

Since Richard Feynman’s 1982 observation that classical systems can not efficiently simulate quantum systems the field of quantum computing has expanded rapidly [Feynman, 1982]. Feynman noted that a classical simulation of a quantum system requires a large amount of time and memory, being exponential in the input size of the quantum system. This observation led Feynman to speculate that a quantum computer would be able to perform calculations beyond the reach of any conceivable classical computer. 

During the 1980’s the work of David Deutsch helped define the theory of quantum computation. Deutsch was the first to address the potential efficiency increases suggested by Feynman, and went on to develop the universal quantum computer and quantum Turing machine [Deutsch, 1985], quantum computational networks [Deutsch, 1989] and the first quantum algorithm [Deutsch, 1985]. 

Peter Shor gave the first real evidence of an exponential speed up over classical computers. Shor’s announcement that a quantum algorithm exists for prime factorisation shocked the community [Shor, 1994]. The presumed intractability of factorisation and the universal applicability of classical complexity theory were questioned. Furthermore the security of many popular encryption methods which rely on the presumed intractability of factorisation was cast into doubt.

This project is concerned with the development of a general quantum computation simulator that may be used to investigate the behaviour of quantum computation and algorithms. Quantum circuits may be defined at the gate level and loaded into the simulator in a simple text format. Shor’s factoring algorithm has been implemented and tested. A user-friendly MFC interface has been developed allowing greater interaction with the simulator.

The historical information contained within this introduction was obtained from the paper ‘A Brief History of Quantum Computation’ by J. Wallace [Wallace, 1999].

2 Quantum computation

2.1 Quantum superposition

To understand the fundamental differences between classical and quantum computation it is first necessary to examine the basic unit of information, the bit. From a physical viewpoint, a bit is a physical system that can be prepared in one of two different states representing two logical values – 0 or 1, false or true etc. For example, in digital computers the voltage between the plates of a capacitor is used to encode the bit of information. Another physical system which may be used to encode information is the atom, where two different electronic states are used to represent the bit. Using the atom as a physical system, quantum mechanics states that apart from the two distinct electronic states, the atom can also be prepared in a coherent superposition of the two states. In other words the atom is in both state 0 and state 1. A greater understanding of the superposition idea may be given by the following experiment taken from the paper ‘A short introduction to quantum computation’ by Barenco et al. [Barenco et al., 1996]. 

Consider the reflection of a single photon off a half-silvered mirror (that is one which reflects exactly half the light that strikes it – see Figure 2.1).

[image: image187.wmf]001


Figure 2.1 – Reflection of a photon beam off a half-silvered mirror

Where is the single photon after interacting with the mirror, in the transmitted beam or the reflected beam? Since 50% of the photons are transmitted and 50% reflected it seems sensible to say that the photon is in either the transmitted beam or the reflected beam with equal probability. Indeed, for a stream of photons we find that 50% of the photons register at detector A and 50% register at detector B. However, this does not mean that after interaction with the mirror the single photon travels in either the transmitted beam or the reflected beam. The photon actually takes two paths at once. This can be demonstrated by recombining the two beams using two fully silvered mirrors, a second half-silvered mirror, and two photo detectors in direct line with the beam paths (see Figure 2.2).

[image: image188.wmf]000


Figure 2.2 – Recombination of two photon beams

If, as suggested above, there was a 50% chance that the photon followed one path and a 50% chance that it followed the other, then we would expect a 50% probability that one of the detectors registers the photon and a 50% probability that the other one does. However, if the two possible path lengths are exactly equal it turns out that there is a 100% probability that the photon reaches detector A and a 0% probability that it reaches detector B. It would appear that the photon must, in some sense, have actually travelled both routes at once for if an absorbing screen is placed in the way of either of the two routes, then it becomes equally probable that detector A or B is reached (see Figure 2.3).

[image: image189.wmf]001


Figure 2.3 – Blocking off one of the photon beam paths

Blocking off one of the paths actually allows detector B to be reached; with both paths open, the photon somehow knows that it is not permitted to reach detector B, so the photon must have taken both paths. More precisely, we say that the photon is in a coherent superposition of being in the transmitted beam and in the reflected beam. In general a quantum two-state system, called a quantum bit or qubit, can be prepared in a superposition of two logical states 0 and 1.

This is all very well, but how can this superposition behaviour be used to our advantage in our computations? The answer lies in the combination of qubits into quantum registers that are capable of holding an exponential amount of information and the parallel processing of this data. 

2.2 The qubit and quantum registers

In quantum mechanics, the state of a system is represented by a complex valued wave function that describes the probability of a particular state being observed. For example a single qubit may be defined by the complex wave function


[image: image1.wmf]1

0

b

a

y

+

=

,

with the normalisation condition 
[image: image2.wmf]1

2

2

=

+

b

a

, where ( and ( are complex coefficients, and 
[image: image3.wmf]0

 and 
[image: image4.wmf]1

 are mutually orthogonal basis states. 

A single qubit is a unit vector in a two-dimensional Hilbert space. Although the qubit can be prepared in an infinite number of different quantum states (by varying the complex coefficients ( and ( above) it cannot be used to transmit more than one bit of information [Barenco, 1996]. This is because there are no detection methods that are able to reliably differentiate between nonorthogonal states [Holevo, 1979]. In a classical computer it is, in principle, possible at any time to obtain all information about the state of the computer, without disturbing it. In a quantum computer however, the act of measurement will alter the computer’s state. Performing a measurement on the qubit described above will return 
[image: image5.wmf]0

 with probability 
[image: image6.wmf]2

a

 and 
[image: image7.wmf]1

 with probability 
[image: image8.wmf]2

b

. The state of the qubit after the measurement will then be 
[image: image9.wmf]0

 or 
[image: image10.wmf]1

, not 
[image: image11.wmf]1

0

b

a

+

, as the qubit is projected onto the 
[image: image12.wmf]0

 or 
[image: image13.wmf]1

 basis state [Barenco, 1996].

A collection of n-qubits forms an n-qubit quantum register. The register is represented by a Hilbert space of dimension 2n, which is the tensor product of n two-dimensional Hilbert spaces. The state of the register is then a unit vector within this Hilbert space. For example, a two-qubit quantum register has a state of form


[image: image14.wmf]11

10

01

00

3

2

1

0

a

a

a

a

y

+

+

+

=

,

where the 
[image: image15.wmf]i

a

 are complex coefficients such that 
[image: image16.wmf]1

2

3

0

=

å

=

i

i

a

, and 
[image: image17.wmf]{

}

11

,

10

,

01

,

00

 is the set of mutually orthogonal basis states which span the Hilbert space. 

For an n-qubit quantum register, the most general state can be written as


[image: image18.wmf]å

-

=

=

1

2

0

n

x

x

x

a

y

.

This state represents the case where several different values of the register are present simultaneously. Like the single qubit there is no classical counterpart to this situation and a single measurement can not reveal the complete state of the register [Barenco, 1996].

In general an n-qubit quantum register is represented by a 2n-dimensional vector where each element with non-zero amplitude in the vector corresponds to a possible state of the register. Due to superposition all of these values can occur simultaneously. Hence when representing a quantum system on a classical computer an exponential amount of storage is required [Obenland, 1996]. It was this observation which led Feynman to speculate that a quantum computer would be able to perform certain tasks that are beyond the reach of any conceivable classical computer [Feynman, 1982].

2.3 Measurement 

The process of measuring one or more qubits in a quantum system results in the vector space of the system being reduced to a subspace which is restricted to the measured value [Pritzker, 1999]. Consider the following example taken from ‘Simulation of Quantum Computation on Intel-Based Architectures’ by Yan Pritzker [Pritzker, 1999]. The following equation describes the state of a two-qubit register in a superposition of the numbers zero through three 


[image: image19.wmf].

11

10

01

00

3

2

1

0

a

a

a

a

y

+

+

+

=


Measurement of the least significant (the rightmost) qubit of this register reduces the register to one of the following superposition states


[image: image20.wmf]10

00

2

0

a

a

y

+

=

,


[image: image21.wmf]11

01

3

1

a

a

y

+

=

,

which have been left unnormalised for clarity.

The vector space is reduced because the least significant qubit has been restricted to the value 
[image: image22.wmf]0

 or 
[image: image23.wmf]1

. A further measurement, this time on the second qubit, will result in the wave function collapsing completely onto a basis state from the set 
[image: image24.wmf]{

}

11

,

10

,

01

,

00

.

2.4 Quantum entanglement

Interaction of qubits may lead to a quantum phenomenon called entanglement. This entanglement results in a dependency between the values of the interacting qubits. Consider the following states of a two-qubit register

State A: 
[image: image25.wmf]11

2

1

10

2

1

01

2

1

00

2

1

+

+

+

=

y

,

State B: 
[image: image26.wmf]11

2

1

00

2

1

+

=

y

.

For both states, when each qubit is taken individually, both qubits have equal probability of being 
[image: image27.wmf]0

 or 
[image: image28.wmf]1

. However, state B is said to be entangled because if one of the qubits is measured the other becomes determined immediately [Obenland, 1996]. For example, if the rightmost qubit is measured to be 
[image: image29.wmf]1

 in state B, then the value of the other qubit has to be 
[image: image30.wmf]1

. For the non-entangled state A, measurement of the rightmost qubit still leaves the value of the other qubit undetermined. This entanglement may exist between all the qubits of a quantum system. Hence the quantum state of an n-qubit system must be described by 2n complex numbers [Obenland, 1996].

2.5 Quantum transformations and gates

Measurement is not the only way in which the quantum state of a system may be transformed. In quantum computing, like classical computing, states may be modified by application of gates. However a number of restrictions exist for quantum computers since they must obey the laws of quantum mechanics.

Any transformations made on a quantum state must leave the quantum superposition intact [Barenco, 1996]. This is only possible if the transformations are reversible; i.e. the input state is attainable from the output state. Reversibility is crucial in quantum computers because heat dissipated from non-reversible transformations may destroy the quantum superposition. Note that in non-reversible classical computation heat may be dissipated to the environment without altering the internal state of the computer. Reversible transformations are unitary transformations which can be thought of as a rotation of the complex vector space [Pritzker, 1999].

With the exception of measurements all transformations made on quantum systems must therefore be reversible. Consider the behaviour of the classical AND gate whose truth table is shown in Table 2.1.

A
B
Output

0
0
0

0
1
0

1
0
0

1
1
1

Table 2.1 – Truth table for the classical and gate

Since the output is degenerate the input values are not in general attainable from the output. Clearly, a basic requirement for reversibility is having the same number of input and output bits. 

2.5.1 Universal gates

Universal gates are ones that may be combined to form any logic circuit [Marshall, 1997]. Familiar examples of universal gates are the NAND and NOR gate. However these gates are unsuitable for quantum computation since they are irreversible. For quantum computation the most important gates are:

· The NOT gate which performs an unconditional not operation

· Single and multiple-bit controlled NOT gates which perform a conditional not based upon the values of the control bits

· Rotation gates which are used to place a qubit into a superposition of 
[image: image31.wmf]0

 and 
[image: image32.wmf]1


2.5.2 Controlled-NOT gate

The controlled-NOT gate is a reversible version of the conventional XOR gate [Feynman, 1985]. The gate is made reversible by retaining one of the input values [Obenland, 1996]. The logic symbol for controlled-NOT gate is shown in Figure 2.4, and the truth table is shown in Table 2.2. By convention [Obenland, 1996]:

· bits which are operated on are connected by a vertical line

· a solid dot represents bits which act as input(s)/control(s) and are unchanged by the gate

· a large crossed circle is used to indicate target bits which are modified by the gate

The controlled-NOT gate leaves the value of the input/control bit A unchanged and flips the value of bit B only if bit A is set.

[image: image190.wmf]000


Figure 2.4 – The controlled-NOT gate logic symbol

Inputs
Outputs

A
B
A’
B’

0
0
0
0

0
1
0
1

1
0
1
1

1
1
1
0

Table 2.2 – Truth table for the controlled-not gate

The matrix used to represent this gate is discussed in the ‘Gate applications’ subsection of this chapter. 

2.5.3 Multi-bit controlled-NOT gates

Multi-bit controlled-NOT gates are constructed by the addition of more control bits. The result bit is only flipped if the logical AND of the control bits is true [Obenland, 1996]. Figure 2.5 shows the logic symbol for the three-bit controlled-NOT gate, also known as the Toffoli gate [Toffoli, 1981]. The action of this gate is to transform the states 
[image: image33.wmf]110

 to 
[image: image34.wmf]111

 and 
[image: image35.wmf]111

 to 
[image: image36.wmf]110

, all other states remain unchanged since the logical AND of the control bits is always false. Higher multi-bit controlled-NOT gates are constructed in a similar fashion.  

[image: image191.wmf]111


Figure 2.5 – Three bit controlled-NOT (Toffoli) gate logic symbol

2.5.4 Rotation gates

Rotation gates are used to place a qubit in the superposition of 
[image: image37.wmf]0

 and 
[image: image38.wmf]1

 [Obenland, 1996]. Such gates have no classical counterparts. There are two key rotation gates: the one-bit butterfly (or hadamand) gate, and the two-bit twiddle gate. These gates are used in the Quantum Discrete Fourier Transform (QDFT) which forms an important part of Shor’s factoring algorithm. The butterfly and twiddle gates derive their names from the analogous operations in the classical Fast Fourier Transform (FFT) [Obenland, 1996]. 

The butterfly gate performs the following state transformations


[image: image39.wmf](

)

1

0

2

1

0

+

Þ

,


[image: image40.wmf](

)

1

0

2

1

1

-

Þ

.

Note that this gate evolves “classical states” into superpositions and therefore cannot be regarded as classical [Barenco, 1996]. This gate is of great importance in quantum computing. Taking an n-qubit quantum register initially in the state 
[image: image41.wmf]0

 and applying the butterfly gate (B) to each qubit of the register we obtain the resultant state 


    

      
[image: image42.wmf](

)

1

...

11

...

1

...

00

0

...

00

2

1

2

/

+

+

=

n

y


      

[image: image43.wmf]å

-

=

=

1

2

0

2

/

2

1

n

x

n

x

.

With only n applications of the butterfly gate a register state that contains an exponential (2n) number of distinct terms has been generated [Barenco, 1996]. Contrast this to a classical register where n gate applications can only prepare a single register state representing a single value. Since all consequent operations carried out on the register must be unitary, this superposition is preserved throughout, and the computation is effectively performed simultaneously on all the values present in the superposition. It is this ability to create quantum superpositions which makes quantum parallel processing possible [Barenco, 1996].

The matrix representations of the butterfly and twiddle gate are given in the ‘Quantum factorisation’ section of this report.

2.6 Quantum circuits

Quantum circuits are constructed from quantum gates that act upon specific qubits within the quantum system. Following the method used by Obenland the one-bit full adder will be used to demonstrate the properties of basic quantum circuits [Obenland, 1996]. A quantum one-bit full adder constructed using controlled-NOT and three-bit controlled-NOT gates is shown in Figure 2.6. The truth table for this adder is shown in Table 2.3. Note that the values of qubits A and B do not appear in the output of the truth table since they are unmodified by the operation of the circuit. Cin is the carry in bit and Z is a scratch bit that is initially set to 
[image: image44.wmf]0

. The operation of the adder leaves the values of bits A and B unchanged while leaving the sum in the carry in bit and the carry out in the scratch bit. Note that A is the most significant bit in this circuit.

[image: image192.wmf]01


Figure 2.6 – Quantum one-bit full adder

In its present form, the operation of this circuit is identical to that of a classical one-bit full adder. A single valued input is transformed into a single valued output. The circuit may be used to calculate the sum for all values of A and B simultaneously by placing A and B into a superposition of 
[image: image45.wmf]0

 and 
[image: image46.wmf]1

. This is achieved by operating butterfly gates (B) on A and B before the rest of the gates in the circuit. Both the scratch bit Z and the carry in bit are set to 
[image: image47.wmf]0

. The parallel adder circuit is shown in Figure 2.7. Since the butterfly gates act upon different qubits the order in which they are applied is arbitrary. The application of gates on quantum registers is discussed in the ‘Gate applications” subsection of this chapter and the ‘Qubit simulator’ section of this report.

Input bits
Output bits

A
B
Carry in
Z
Sum
Carry out

0
0
0
0
0
0

0
0
1
0
1
0

0
1
0
0
1
0

0
1
1
0
0
1

1
0
0
0
1
0

1
0
1
0
0
1

1
1
0
0
0
1

1
1
1
0
1
1

Table 2.6 – Truth table for the quantum one-bit full adder

[image: image193.wmf]1


Figure 2.7 – Parallel quantum one-bit full adder

Figure 2.8 shows the evolution of the qubit values during the application of the parallel quantum one-bit adder. This circuit operates on 4 qubits and therefore requires 24 complex numbers for the state representation. For clarity only non-zero states are shown (all other states have zero probability of occurrence).

A
B
Cin
Z
Probability

0
0
0
0
1

0
1
0
0
0

1
0
0
0
0

1
1
0
0
0

a) initial state

A
B
Cin
Z
Probability

0
0
0
0
¼

0
1
0
0
¼

1
0
0
0
¼

1
1
0
0
¼

b) after application of the butterfly gates

A
B
Sum
Cout
Probability

0
0
0
0
¼

0
1
1
0
¼

1
0
1
0
¼

1
1
0
1
¼

c) after application of the remaining gates

Figure 2.8 – Quantum parallel adder state evolution

Initially all the input qubits are set to zero (a). Application of the butterfly gates leads to a superposition of four states, one for each combination of the possible values of A and B (b). The final state shows the result of applying the remaining gates to this superposition input (c). There are still four states representing the four possible combinations of A and B. The carry and sum bits have been transformed by the adding circuit to reflect the carry and sum for each of the possible combinations of A and B. For example the middle two rows represent the situation where either A = 1 or B = 1 for which the sum = 1 and the carry out = 0. 

However not all of this information is available to the viewer of the quantum system. A measurement of the output must be made that forces the state into one of the four possibilities shown with equal probability. 

The action of this circuit also demonstrates the phenomenon of quantum entanglement. After the application of the butterfly gates there is no entanglement between the input values A and B and the output values Cin and Z. Application of the adder circuit however creates a mapping from the input values to the output values by entangling qubits A and B to the carry out and sum qubits.

In general an n-qubit quantum register can represent 2n simultaneous values; a transform carried out on this register will then calculate all possible outcomes for the 2n input values, achieving exponential parallelism. However in order to get the results of the transformation the output state of the register must be measured. This measurement forces all qubits to a particular value destroying the parallel state. Hence quantum algorithms must work by calculating functions where a property can be extracted from the measured states [Obenland and Despain, 1996].

Note that in the circuit mode of the simulator the user may specify a single valued input, a full superposition input or selective superposition input. 

2.6.1 Gate applications

The state of an n-qubit quantum computer may be represented as a complex column vector of the form


[image: image48.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

-

1

0

m

a

a

y

M


where 
[image: image49.wmf]n

m

2

=

 and 
[image: image50.wmf]i

a

 represents the complex amplitude of the i’th basis state. For example in a two-qubit system, 
[image: image51.wmf]0

a

, 
[image: image52.wmf]1

a

, 
[image: image53.wmf]2

a

 and 
[image: image54.wmf]3

a

 represent the complex amplitudes of the basis states 
[image: image55.wmf]00

, 
[image: image56.wmf]01

, 
[image: image57.wmf]10

 and 
[image: image58.wmf]11

 respectively.

A gate may be represented by a complex matrix of the form 


[image: image59.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

-

-

1

,

1

1

,

0

0

,

1

0

,

0

n

n

n

n

a

a

a

a

L

M

O

M

L


which describes how the input bits of a gate map to the output bits, where n is the number of qubits upon which the gate acts.

Consider the application of a controlled-NOT gate to a two-bit quantum register as shown in Figure 2.4. A complex column vector of size 4 is used to describe the state of this register. The controlled-NOT gate is described by the 4x4 complex matrix

[image: image194.wmf]1

[image: image195.wmf]0



[image: image60.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

1


where columns correspond to input basis vectors and rows correspond to output basis vectors. For a register initially in the state 
[image: image61.wmf]11

 the gate application is simply the matrix multiplication


[image: image62.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

1


i.e. the least significant qubit of the quantum register has been flipped from 
[image: image63.wmf]1

 to 
[image: image64.wmf]0

.

The application of quantum gates onto a subspace of the entire space is a more involved process. This is discussed in the ‘Qubit simulator’ section of this report.

3 Quantum factorisation

3.1 Complexity theory and factorisation

Modern classical computers are phenomenal devices. Given enough time and memory they are able to perform any conceivable computation. Such devices are referred to as “universal computers” [Preskill, 1998].

Classical complexity theory is concerned with the categorisation of problems with respect to the amount of time and/or memory required. This categorisation is made independently of machine architecture. Clearly machines can be developed which solve a particular problem more quickly. Graphics accelerator cards on the PC for example make rendering much faster. Truly meaningful distinctions between the difficulty of problems however should be independent of the particular machine in use [Preskill, 1998].

Much of complexity theory is concerned with the distinction between “polynomial time” and “exponential time” algorithms. Polynomial time algorithms are considered “easy” to solve whereas exponential time algorithms are considered “hard” to solve [Preskill, 1998]. 

For any algorithm A, which can act upon an input of variable length N bits, an associated complexity function TA(N) may be defined. TA(N) is the longest run time (in elementary steps) it takes for the algorithm to complete. An algorithm A is said to be polynomial time if

TA(N) ( Poly(N),

where Poly(N) denotes a polynomial of N. This means that the time required to solve the algorithm does not grow faster than a power of N. If an algorithm is not polynomial time, it is said to be exponential time. An exponential time algorithm is one in which the longest run time (in elementary steps) grows faster than a power of N. 

Consider the problem of finding the prime factors of a large integer. This problem is considered intractable because, once found, the solution can be easily verified but the solution is hard to find.  In terms of complexity the most efficient classical factoring algorithm is the Number Field Sieve [Lenstra and Lenstra, 1993]. This algorithm has an asymptotic run time of order


[image: image65.wmf](

)

[

]

3

2

3

1

)

log

(log

log

exp

N

N

.

A 200-digit number would require a few billion years to factor using this algorithm [Ekert and Josza, 1996]. From the perspective of classical complexity theory, the problem of factorisation is presumed to be intractable and forms the basis for many popular encryption methods.

Shor’s announcement that a quantum algorithm exists which can factor large integers in polynomial time shocked the computing community [Shor, 1994]. This was the first evidence that a quantum computer offered an exponential speed up over classical computers. The factorisation problem no longer looked intractable and the security of many popular encryption methods was called into doubt. 

Furthermore the universal applicability of classical complexity theory was called into question. The theory relies on the Turing model of computation in which one universal classical computer may simulate another with at most polynomial overhead. Shor’s algorithm suggests that no polynomial time simulation of a quantum computer is possible indicating that classical complexity theory is not universal. Since information and computation in the physical world are quantum mechanical classical complexity theory may fail as physical truth because the classical Turing machine is not an appropriate model of the computations that can be performed in the physical world [Preskill, 1998]. This implies that a new quantum complexity theory is required which from the classical one.

Details of Shor’s factoring algorithm are given in the following section.

3.2 Shor’s factoring algorithm

3.2.1 Overview

Shor’s factoring algorithm uses quantum computation to solve an equivalent problem. Given an odd number N to factorise, a number x is randomly chosen such that x is coprime to N (that is the greatest common divisor of N and x is equal to one). A quantum register is prepared in a superposition of all possible values (a) and quantum parallelism is used to calculate all the values of the function 
[image: image66.wmf]N

x

a

f

a

mod

)

(

=

 simultaneously. The period r of this function may then be extracted by performing a Quantum Discrete Fourier Transform (QDFT) on the system. Classical post-processing is then used to obtain possible factors of N.

3.2.2 Detailed discussion

The general method used for factorisation is the modified version of Shor’s algorithm as used by Andrew Childs [Childs, 1998] and originally presented by Ekert and Josza [Ekert and Jozsa, 1996]. In Shor’s original algorithm no measurements are made on the quantum system until all quantum computations have been made. In the modified version part of the system is measured during the computation, projecting the system down to a subspace of the entire system. Consequent quantum calculations are then faster to simulate. The main steps in the Ekert and Josza algorithm are outlined below. A full mathematical description of the algorithm may be found in the references above. Additional information pertaining to this algortihm is included in the ‘Qubit simulator’ section of this report.

Classical pre-processing steps

1. Randomly chose x, such that x is coprime to N.

Quantum computation steps

2. Create two quantum registers; the first of size L=2log2N, the second of size log2N, where N is the number to be factorised. The choice of register size is discussed in the ‘Qubit simulator’ section of this report.

3. Prepare the first register to contain a superposition of all possible values. This may be achieved by operating butterfly gates on all the qubits of the first register or performing a QDFT on the register. This results in the state


[image: image67.wmf]å

-

=

=

1

0

1

1

q

a

reg

a

q

y

,

where q = 2L. Details of the QDFT are given later in this chapter.

4. Compute 
[image: image68.wmf]N

x

a

f

a

mod

)

(

=

, storing the result in the second register. After this calculation the second register contains values of 
[image: image69.wmf])

(

a

f

which are entangled to values of a separated by the period r. The overall system state is now


[image: image70.wmf]a

N

x

q

q

a

a

system

å

-

=

=

1

0

mod

1

y

.

5. Measure the second register, picking out a particular value of 
[image: image71.wmf]z

A

f

=

)

(

, where 
[image: image72.wmf]N

x

z

l

mod

=

 for some offset 
[image: image73.wmf]l

. If r is the order of 
[image: image74.wmf]N

x

mod

 then 
[image: image75.wmf]N

x

x

l

jr

l

mod

+

º

 for all 
[image: image76.wmf]j

. Thus the measurement will pick out values of a in the first register from the set 
[image: image77.wmf]{

}

Ar

l

r

l

r

l

l

+

+

+

,....,

2

,

,

 where A is the greatest integer less than 
[image: image78.wmf](

)

r

l

q

-

. Note that the offset 
[image: image79.wmf]l

 is chosen probabilistically by the choice of z in the measurement. The state of the first register is then


[image: image80.wmf]å

=

+

+

=

A

j

reg

l

jr

A

0

1

1

1

y

.

6. The system is then reduced to the subspace defined by the first register; the second register is essentially ignored.

7. To extract the period a QDFT is performed on the first register. The QDFT performs the following state transformation


[image: image81.wmf](

)

b

q

iac

q

a

q

c

å

-

=

Þ

1

0

2

exp

1

p

,

where 
[image: image82.wmf]b

 is equivalent to 
[image: image83.wmf]a

 when the qubits are read in reverse order. The gate applications necessary to perform the QDFT are described in the following section.

Consider the simplified case where r divides q exactly so that 
[image: image84.wmf]1

-

=

r

q

A

. The state of the first register before the application of the QDFT is then


[image: image85.wmf]å

-

=

+

=

1

0

1

r

q

j

reg

l

jr

q

r

y

,

i.e. the register contains values of a with period r, and an offset 
[image: image86.wmf]l

, where 
[image: image87.wmf]r

l

£

. After application of the QDFT this state is transformed to


[image: image88.wmf](

)

c

r

ilj

r

r

j

reg

å

-

=

=

1

0

1

2

exp

1

p

y

,

where 
[image: image89.wmf]r

jq

c

=

.

8. Measurement of this register picks out a value of 
[image: image90.wmf]r

q

c

l

=

 with 
[image: image91.wmf]1

,...,

0

-

=

r

l

 chosen equiprobably. Note that if zero is measured in this register the algorithm must be repeated, as all period information is lost.  

Classical post-processing

9. The order r is then given by cancelling 
[image: image92.wmf]q

c

 to the nearest fraction for which the denominator is less than N. In the general case where r does not divide q exactly the analysis is more involved. For a thorough analysis of this general case the reader is referred to [Ekert and Jozsa, 1996]. Note that the algorithm must also be repeated if an odd order is calculated. 

10.  Two possible factors of N are then given by the greatest common factors of 
[image: image93.wmf]1

2

±

r

x

 and N.

Implementation details, schematics of the circuits used and an example run of Shor’s factoring algorithm is given in the ‘Qubit simulator’ section of this report.

3.2.3 The Quantum Discrete Fourier Transform

As described above the Quantum Discrete Fourier Transform (QDFT) acting upon an L-qubit register performs the following state transformation


[image: image94.wmf](

)

b

q

iac

q

a

q

c

å

-

=

Þ

1

0

2

exp

1

p

,

where q = 2L and 
[image: image95.wmf]b

 is equivalent to 
[image: image96.wmf]a

 when the qubits are read in reverse order. Following the treatment of Ekert and Josza this may be implemented using two gates, the one-bit butterfly gate 
[image: image97.wmf](

)

j

B

 acting on the 
[image: image98.wmf]th

j

qubit and the two-bit twiddle gate 
[image: image99.wmf](

)

k

j

T

,

 acting on the 
[image: image100.wmf]th

j

 and 
[image: image101.wmf]th

k

 qubits. The matrix representations of these gates are


[image: image102.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

1

1

1

1

2

1

j

B



[image: image103.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

jk

i

k

j

e

T

q

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

,


where 
[image: image104.wmf])

2

(

j

k

jk

-

=

p

q

. For an L-qubit quantum register the QDFT is implemented through the following sequence of gate operations (left to right order)


[image: image105.wmf]0

1

,

0

2

,

0

2

,

0

1

,

0

1

3

2

,

3

1

,

3

2

1

,

2

1

B

T

T

T

T

B

B

T

T

B

T

B

L

L

L

L

L

L

L

L

L

L

L

K

K

-

-

-

-

-

-

-

-

-

-

-


Thus for an L-qubit register the QDFT comprises of L butterfly operations and 
[image: image106.wmf]2

)

1

(

-

L

L

 twiddle operations, giving a total of 
[image: image107.wmf]2

)

1

(

+

L

L

 operations.

An example circuit for the QDFT is given in the ‘Qubit simulator’ section of this report. 

4. The Qubit simulator

4.1 Initial design considerations

At the outset of the project the choice of research area within the field of quantum computing was at my discretion. Through study of the field it was clear that Shor’s factoring algorithm was of great importance both in quantum computing and in the wider context of computing in general. Implementing Shor’s algorithm would prove both challenging and rewarding. 

After deciding upon this area of study it was clear that the design and implementation of the application could be divided into three main parts

1. The core simulator code

2. Advanced simulator code including an implementation of Shor’s algorithm

3. The user interface

Initial research indicated that an Object-Oriented Programming (OOP) approach would lend itself well to the design and implementation of the core and advanced simulator code. Objects are essentially reusable software components that model items in the real world. Since the simulator would be modelling a physical scenario this approach seemed the most appropriate. Alternative options were functional type languages like Haskell and procedural type languages like C. However these language types appeared to be less suited to the task in hand.

After deciding on the programming approach the next choices were the target platform and the implementation language. 

4.1.1 Target platform

When choosing the target platform the primary considerations were familiarity and the prospect of learning new technologies (user interface). Clearly the task of writing a general quantum simulator was going to be quite difficult. A large amount of research would be necessary and time for the implementation would be short. Three main platform options were considered:

· UNIX – Widely used in the academic community and very stable. Major user interface tools include the Motif GUI toolkit, a powerful development tool supported by most UNIX platforms. 

· LINUX – Freely available and becoming a major operating system. Major user interface tools include the Qt GUI toolkit, a platform independent development kit that hides the underlying architecture allowing full portability. 

· Windows NT/95 – The most widely used operating systems. The Microsoft Foundation Classes (MFC) allow development of windows based GUIs compatible with all modern Microsoft operating systems. 

UNIX and LINUX were considered but due to lack of experience on these platforms Windows NT was decided upon as the target platform. This opened up the prospect of learning a new technology by developing a fully-fledged MFC interface. The application would also be available to a wide range of potential users.

4.1.2 Implementation language

Two major OOP languages were considered – Java and C++. The simulation of a quantum system is exponential in time and memory. A primary consideration therefore was the execution speed and memory management of the language. Since Java is an interpreted language execution times would be longer than the corresponding code produced under the C++ environment. Also more flexibility over memory management is afforded to the programmer under the C++ environment. 

Since the implementation time would be relatively short, familiarity with the development environment would be paramount. Since my experience of C++ was far more extensive than that of Java, C++ was again the obvious choice. 

The main advantage of development under the Java environment is that of platform independence. The Java language is completely portable and may be used on any platform that supports Java. This would allow the development of the core, advanced and user interface code under a single environment. However under the C++ environment code can be made portable by adhering to the ANSI/ISO draft standard. This standard ensures that compliant C++ code may be compiled on any system that supports ANSI/ISO compliant C++. Thus the advantages of C++ could be exploited whilst retaining a degree of platform independence. There also appear to be a number of compatibility problems between different versions of Java.  

For these reasons C++ under Microsoft’s Visual Studio environment was chosen for the development of the core and advanced simulator code.

At this stage it was decided that the core and advanced simulator code would be developed as a console application. This choice was based upon

· the relative ease by which an application of this type can be created

· my familiarity with the processes involved

· the platform independent nature of such applications

 A full MFC GUI was scheduled for development later on completion of the essential elements of the core and advanced simulator code.

My reasons for these particular choices are broadly similar to those cited by Jonathon Marshall [Marshall, 1997].

4.2 Core simulator implementation

4.2.1 Memory management considerations

Due to the exponential amount of memory required in simulating the quantum system it was clear that memory management would be of great importance. Some operating systems deploy the paging convention of memory organisation where a page is a fixed block of memory whose size is determined by the hardware. The entire available memory, both RAM and secondary memory, is divided into these pages. A page fault occurs when a program demands access to a page which resides in secondary memory. The operating system must then swap the required page into RAM. This swapping process is costly and must be avoided if at all possible. The risk of page faults can be minimised by careful memory management. This may be achieved by creating all large data structures, such as vectors and matrices, on the heap enabling full control over their deletion. Additionally objects should be passed and returned to functions using reference and pointers wherever possible thus minimising duplication. 
4.2.2 Basic mathematical classes

Initial research indicated that a number of elementary mathematical classes were required. The basic simulator would need:

· a complex number class to represent the complex coefficients of the quantum state vector and quantum gate matrices

· a vector class to represent the state vector of the quantum system 

· a matrix class to represent the complex matrix form of quantum gates

These basic classes were designed, implemented and tested.

4.2.3 Complex number representation

After further research it was clear that these basic mathematical classes needed to be expanded for use in general quantum simulation. 

The complex number class was expanded with a number of key methods providing the following functionality

· complex magnitude operations 

· full operator overloading allowing all basic numerical operations

4.2.4 Quantum gate representation

The matrix class was expanded into a hierarchical structure since the operation of all gates is similar. The primary quantum gates were identified as the NOT, controlled-NOT, multi-bit controlled-NOT, butterfly and twiddle gate. An abstract base class was defined providing default implementation. The key methods of this base class provide the following functionality

· application of the gate to the entire quantum system

· application of the gate to a subspace (defined by a list of qubits) of the quantum system

This structure allows the addition of new quantum gates with ease.

The application of gates to a quantum system is discussed in the ‘Subspace operations’ section of this chapter.

4.2.5 Hilbert space representation

The vector class representing the quantum state of the system was also expanded. As described in the ‘Quantum computation’ section of this report the quantum state of an n-bit system is a unit vector within a Hilbert space of dimension 2n. Thus the class must store 2n complex numbers representing the amplitudes of the 2n basis states spanning the Hilbert space. The key methods of this class provide the following functionality

· overloaded file output operators for basis state complex coefficients, amplitudes and probabilities

· measurement of the quantum system, this projects the system onto one of the basis states spanning  the Hilbert space

· measurement of a subspace (defined by a list of qubits) of the quantum system, this projects the system onto a subspace which is restricted to the measured subspace value

· projection onto a subspace (defined by a list of qubits) of the quantum system

· normalisation, this ensures that the total measurement probability is unity

The class is easily expanded to provide any desired quantum operations. 

Details of the above measurement operations are discussed in the ‘Subspace operations’ section of this chapter. 

4.2.6 Basis state representation

At this stage it was clear that a class representing the basis states of the Hilbert space would be required. The class offers functionality particularly useful for subspace operations, such as gate application and measurement. Note that an n-qubit quantum system has 2n basis states, each of length n. The key methods of this class provide the following functionality   

· the index of a basis state

· the subspace representation of a basis state

· concatenation of basis states

The use of this functionality is discussed in the ‘Subspace operations’ section of this chapter.

4.2.7 Quantum circuit representation

A class representing quantum circuits was then developed. At this stage of development the circuit class was relatively basic offering the following features

· add individual gates to the circuit

· loading of gate information from an input stream (gate type and qubits operated upon)

· sequential application of gates to solve the circuit 

The circuit class was later developed with a full parser and comprehensive error checking. See the ‘Advanced simulator implementation’ section of this chapter for further details. 

4.2.8 Subspace operations

The most challenging aspects of the core simulator implementation were measurement and gate application operations on a subspace of the quantum system. 

The algorithm for the measurement of the entire quantum system is very straightforward. Since the total measurement probability is unity, a random number between zero and one is generated. The basis states are then stepped through and the probability of occurrence accumulated until the random number is exceeded. The space is then projected onto this basis state. 

The measurement of a subspace of the entire system is a little more involved. Consider the three-qubit quantum system shown in Figure 4.1.


[image: image108.wmf]7

6

5

4

3

2

1

0

111

110

101

100

011

010

001

000

a

a

a

a

a

a

a

a

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K


Figure 4.1 – A three-qubit quantum system; the left column shows the basis states, the right column the probability of measuring each basis state.

Suppose that a measurement of only the most and least significant qubits of the system is required. The basis states for these two-qubits form the set 
[image: image109.wmf]{

}

11

,

10

,

01

,

00

. Figure 4.2 shows the basis states for the three-qubit system and the corresponding basis states of the subspace defined by the most and least significant qubits.


[image: image110.wmf]11

111

10

110

11

101

10

100

01

011

00

010

01

001

00

000

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K


Figure 4.2 – The basis states for the three-qubit system (left column) and the corresponding basis states of the subspace defined by the most and least significant qubits (right column).

Once again the total measurement probability is unity, so a random number between zero and one is generated. Rather than stepping through the basis states of the entire space it is now necessary to step through the basis states of the subspace. In the example above the probability of observing the subspace basis state 
[image: image111.wmf]00

 is given by the accumulative probability of observing the entire space basis states 
[image: image112.wmf]000

 and 
[image: image113.wmf]010

. Hence the subspace basis states are stepped through and the probability of occurrence accumulated until the random number is exceeded. The system is then projected onto the subspace restricted by the measured basis state.  For example suppose the subspace basis state 
[image: image114.wmf]10

 is measured. This restricts the system to one of the states


[image: image115.wmf]100

4

a

y

=

,


[image: image116.wmf]110

6

a

y

=

,

where 
[image: image117.wmf]1

6

4

=

=

a

a

. Note that the state vector must be normalised after the measurement operation.

The functionality offered by the basis state class is invaluable in simplifying this subspace measurement process.

As discussed in the ‘Gate applications’ section of this report the application of a quantum gate to an entire quantum system is simply a matrix multiplication. The process of gate applications on a subspace of the entire quantum system is more complicated. 

Consider the application of a controlled-NOT gate to a three-bit quantum register as shown in Figure 4.3.

[image: image196.wmf]1


Figure 4.3 – Application of a controlled-NOT gate to a three-bit quantum register initialised to 
[image: image118.wmf]111

.

As before the controlled-not gate is described by the 4x4 complex matrix

[image: image197.wmf]1

[image: image198.wmf]1



[image: image119.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

1


which describes how the input bits of the gate map to the output bits.

Clearly the least significant bit in the circuit remains unchanged by the gate application while the second qubit is flipped from the state 
[image: image120.wmf]1

 to 
[image: image121.wmf]0

. The circuit effectively performs the following transformation on the register state


[image: image122.wmf]÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

=

Þ

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

=

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

y

y


The matrix M3 that represents this transformation is formed by a tensor product between M1, a 4x4 matrix representing the controlled-NOT gate and M2, a 2x2 identity matrix acting on the least significant bit. This tensor product is written as


[image: image123.wmf][

]

)

'

,

'

(

)

,

(

)

'

:

,

'

:

(

2

1

2

1

j

i

j

i

j

j

i

i

M

M

M

M

´

=

Ä


where i and j are the matrix input and output basis states respectively. For example the element of matrix M3 at 
[image: image124.wmf](

)

001

,

011

 is the product of the matrix elements of M1 at 
[image: image125.wmf](

)

00

,

01

 and M2 at 
[image: image126.wmf](

)

1

,

1

. The ‘:’ operator is a concatenation of the basis states in qubit order. For this circuit the matrix M3 representing this transformation is then

[image: image199.wmf]11



[image: image127.wmf]÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1


In general there are two subspaces defined by the application of a quantum gate on a subspace of a quantum system. The n-qubit gate subspace defined by the n-qubits upon which the quantum gate acts, and the m-qubit identity subspace defined by the remaining m-qubits of the quantum system. The matrix M1 defining the transformation of the gate subspace is the 
[image: image128.wmf]n

n

´

 complex matrix of the quantum gate. Since the qubits of the identity subspace are unaffected by the gate application the matrix M2 defining their transformation is an 
[image: image129.wmf]m

m

´

 identity matrix. The matrix M3 representing the transformation of the quantum system is then formed by the tensor product of M1 and M2 shown in the equation above.  

For a moderately sized quantum circuit of 16-qubits a transformation matrix of size 216x216 is required. This entails the storage of approximately four billion complex numbers! Thus in the simulator the transformation matrix M3 is not actually created. The transformation of the quantum system is implemented by looking up the appropriate elements in the gate and identity matrices during multiplication with the quantum state vector. Note that the identity matrix M2 is not created either since only the leading diagonal elements of this matrix are one, all others are zero. The leading diagonal is given where the input and output basis states of the identity space matrix are equal.

Once again the functionality offered by the basis state class is invaluable in simplifying this subspace gate operation.

The classes discussed above were integrated into the core simulator code and tested using a variety of quantum circuits. The testing circuits are described in the next section.

At this stage of the development the basic functions of the core simulator code were unoptimised. The priority was to implement the advanced and user interface components of the simulator, returning to optimise the core simulator code if time permitted. 

4.2.9 Core simulator testing

The EPR pair circuit

The EPR pair circuit is used to create entangled quantum states known as Bell states [Vazirani, 1997]. The circuit and state transformations are shown in Figures 4.4 and 4.5 respectively.  

[image: image200.wmf]10

[image: image201.wmf]01

[image: image202.wmf]00

[image: image203.wmf]10

[image: image204.wmf]01

[image: image205.wmf]00

[image: image206.wmf]10

[image: image207.wmf]01


[image: image208.wmf]00


[image: image209.wmf]11


Figure 4.4 – The EPR pair circuit.

Inputs
Output

A
B


0
0

[image: image130.wmf]+

Y

º

+

11

00



0
1

[image: image131.wmf]+

F

º

+

10

01



1
0

[image: image132.wmf]-

Y

º

-

11

00



1
1

[image: image133.wmf]-

F

º

-

10

01



Figure 4.5 – The state transformations of the EPR pair circuit. Note that the 
[image: image134.wmf]2

1

 normalisation is not shown for clarity.

The action of this circuit is to put the most significant qubit (A) into a superposition of 
[image: image135.wmf]0

 and 
[image: image136.wmf]1

, which then acts as a control bit for the controlled-NOT gate. The target bit (B) is then only flipped if the control is 
[image: image137.wmf]1

.  The output states are known as the Bell states [Vazirani, 1997] and represent perfectly entangled quantum states [DiVincenzo, 1997]. Repeated tests of this circuit for different input values were completely successful.

The parallel quantum one-bit full adder

The parallel quantum adder circuit shown in the Figure 2.6 was then created and tested. Once again these tests were completely successful, proving the stability of the core simulator code. The input file used to describe this circuit is given in the ‘Quantum circuit parser’ section of this report.

The Factor-15 circuit

The optimised circuit for calculating the function 
[image: image138.wmf]15

mod

7

)

(

a

a

f

=

 as presented by Obenland and Despain was then created and tested [Obenland and Despain, 1996]. The function 
[image: image139.wmf](

)

a

f

 has the values shown in Table 4.1.


[image: image140.wmf]a



[image: image141.wmf](

)

15

mod

7

a

a

f

=



0
1

1
7

2
4

3
13

4
1

5
7

6
4

7
13


[image: image142.wmf]M



[image: image143.wmf]M



Table 4.1 – Values of the function 
[image: image144.wmf]15

mod

7

)

(

a

a

f

=

.

The circuit which maps the values of 
[image: image145.wmf]a

 to 
[image: image146.wmf])

(

a

f

 requires eight-qubits. These are divided equally into two four-qubit registers which are used to represent 
[image: image147.wmf]a

 and 
[image: image148.wmf])

(

a

f

. The truth table which maps the qubits of 
[image: image149.wmf]a

 to 
[image: image150.wmf])

(

a

f

 is shown in Table 4.2. As pointed out by Obenland and Despain only the two least significant bits of 
[image: image151.wmf]a

 are used to determine 
[image: image152.wmf])

(

a

f

 because the function has a period of four. 


[image: image153.wmf]a



[image: image154.wmf](

)

15

mod

7

a

a

f

=



XX00
0001 (1)

XX01
0111 (7)

XX10
0100 (4)

XX11
1101 (13)

Table 4.2 – Truth table for 
[image: image155.wmf]15

mod

7

)

(

a

a

f

=

.

The circuit works by selecting values of 
[image: image156.wmf]a

 using NOT gates and setting the correct values of 
[image: image157.wmf])

(

a

f

 using three-bit controlled-NOT gates. The circuit to solve 
[image: image158.wmf])

(

a

f

 for all 
[image: image159.wmf]a

 in parallel is shown in Figure 4.6. The butterfly gates (B) are used to set the register representing 
[image: image160.wmf]a

 to a superposition of all possible values. Note that the upper most qubit is the least significant qubit in the circuit and that both registers are initialised to 
[image: image161.wmf]0000

. 

[image: image210.wmf]00


Figure 4.6 – The circuit used to solve 
[image: image162.wmf]15

mod

7

)

(

a

a

f

=

 for all 
[image: image163.wmf]a

 in parallel

Extensive testing showed that this circuit operated as expected. Simulating this circuit was useful in demonstrating the action of quantum gates on large quantum systems, division of the quantum system into individual registers and in the understanding of quantum logic. This circuit was also used in confirming the correct operation of the QDFT. 

Note that this circuit is only capable of one specific task, that of solving the equation 
[image: image164.wmf]N

x

a

f

a

mod

)

(

=

 for x = 7 and N = 15. A completely different circuit would be required if the values of x or N were different. A general method for solving this equation for any potential values of x and N is phenomenally complicated, involving the construction of individual operations such as multiplication and division at the qubit level. Furthermore any general method must be reversible, ensure the efficient use of scratch space and minimise the number quantum gates in the circuit.   

A comprehensive treatment of the use of quantum circuits to solve this function in the general case is given by Beckman et al. [Beckman et al., 1996].

4.3 Advanced simulator implementation

After confirming the correct operation of the core simulator implementation work could begin on the advanced simulator implementation. Note that the core simulator code was also complied under LINUX to ensure platform independence. 

4.3.1 The Quantum Discrete Fourier Transform

The first task was to develop a general algorithm for the QDFT. As discussed in the ‘Quantum Discrete Fourier Transform’ section of this report the QDFT of an L-qubit register is implemented through the following sequence of gate operations (left to right order)


[image: image165.wmf]0

1

,

0

2

,

0

2

,

0

1

,

0

1

3

2

,

3

1

,

3

2

1

,

2

1

B

T

T

T

T

B

B

T

T

B

T

B

L

L

L

L

L

L

L

L

L

L

L

K

K

-

-

-

-

-

-

-

-

-

-

-

,

where 
[image: image166.wmf]j

B

is the one-bit butterfly gate acting on the 
[image: image167.wmf]th

j

qubit and 
[image: image168.wmf]k

j

T

,

 is the two-bit twiddle gate acting on the 
[image: image169.wmf]th

j

 and 
[image: image170.wmf]th

k

 qubits. 

As an example the circuit used to implement the QDFT on a four-qubit quantum register is shown in Figure 4.7. Note that the upper most qubit in this circuit is the most significant qubit of the quantum register. 

The general algorithm to implement the QDFT is relatively straightforward. It involves generating the correct list of quantum gates operating on the appropriate qubits of the quantum register. The algorithm was extensively tested on various sized quantum registers and input values. As an example the application of the QDFT to a six-qubit quantum register is shown in Figure 4.8. The initial state of the register values has a period of 16 with an initial offset of 4. After the application of the QDFT the offset has been removed and the number of peaks correspond to the period of the input values.

[image: image211.wmf]11


Figure 4.7 – The circuit to implement the QDFT on a four-qubit quantum register.

[image: image212.wmf]10


a) Before the application of the DQFT; period = 16, initial offset = 4.

[image: image213.wmf]11


b) After the application of the DQFT; the number of peaks correspond to the period of the input values.

Figure 4.8 – Application of the QDFT to a six-qubit register.

Note that the QDFT is fully reversible. The original offset is encoded in the phases of the state amplitudes. 

4.3.2 Shor’s factoring algorithm

The modified version of Shor’s factoring algorithm presented by Ekert and Josza was then implemented [Ekert and Jozsa, 1996]. The algorithm is the one given in the ‘Shor’s factoring algorithm’ section of this report with the following changes.

In the factoring algorithms presented by Shor and by Ekert and Josza the register used to hold the values of 
[image: image171.wmf]a

 is of size 
[image: image172.wmf]N

L

2

log

2

=

, not 
[image: image173.wmf]N

L

2

log

=

 as might be expected. In the situation where the period r of the function 
[image: image174.wmf](

)

a

f

 does not divide 
[image: image175.wmf]L

2

 exactly the peaks of the QDFT are spread around the closest integers to the multiples 
[image: image176.wmf]r

L

2

 [Barenco, 1996]. These peaks have a spread that decreases exponentially with L. Hence the probability of measuring a value in this register from which the correct order may be calculated is greater with increasing L. However for simulation purposes the gains provided by the decrease in the spread of the QDFT are far outweighed by the exponential increase in time and space required for the simulation. Hence a smaller register size of 
[image: image177.wmf]N

L

2

log

=

 is used to hold the values of 
[image: image178.wmf]a

. This greatly increases the range of numbers that may be factorised within given time and memory constraints.

As mentioned in ‘Core simulator testing’ section of this report a general method for solving the function 
[image: image179.wmf]N

x

a

f

a

mod

)

(

=

 using quantum circuits is phenomenally complicated. Hence in the initial implementation of the factoring algorithm this function is solved classically. A full quantum implementation could be made later if time permitted.

To emphasise the separation between the quantum and classical computational stages of the factoring algorithm, separate namespaces
 are used for the functions which implement the quantum and classical algorithms.

Example run of Shor’s factoring algorithm

The following is an example run of the implemented factoring algorithm for 
[image: image180.wmf]15

=

N

.

Starting factorisation simulation…

Random coprime x = 7

Setting up two quantum registers…

Register sizes: register1 = 4-qubits, register2 = 4-qubits 

Performing modular exponentiation on register1, result in register2

Measuring register2… value = 13, basis state = 
[image: image181.wmf]1101


Getting space for register1, ignoring register2

Performing QDFT on register1

Measuring register1… value = 12, basis state = 
[image: image182.wmf]1100


Using rational approximation to find order r… r = 4

Possible factors given by 
[image: image183.wmf])

,

1

gcd(

2

N

x

r

±


Possible factors are: 3 and 5

********** 3 - confirmed factor **********

********** 5 - confirmed factor **********

Factorisation simulation successful!

4.3.3 The quantum circuit parser

A parser has been developed allowing easy input of quantum circuits. The parser uses special keywords, delimited by asterisks, to indicate global circuit settings and quantum operations. As an example the circuit input file for the quantum one-bit full adder is shown below.

// circuit input file

// name: full adder

// number of qbits in circuit

*numqbits* 4

// number of operations in circuit

*numops* 5

// format: operation key word / number of bits operated on / them bits

*3 bit cnot* 3 0,1,3

*2 bit cnot* 2 1,3

*3 bit cnot* 3 0,1,2

*2 bit cnot* 2 1,2

*measure* 4 0,1,2,3

!end // for termination

The parser performs the following key functions:

· Checks for valid keywords

· Ensures that a valid number of qubits is specified

· Checks that the correct number of quantum operations are supplied

· Ensures that the correct number of arguments are specified after each keyword

· Checks that the supplied qubit indices are valid within the context of the circuit 

· Posting of informative error and status messages to the user

Due to time restrictions only a limited number of quantum operations can be specified at present. However the parser can easily be expanded to include the full range of quantum operations available in the simulation and any future operations which may be defined.

Note that the input to the circuit is set from the user interface. This provides maximum flexibility by allowing the user to investigate the effects of superposition without specifying butterfly gate applications within the circuit file. See the ‘Appendix A’ of this report for more details.

4.3.4 Advanced simulator testing 

Due to time constraints testing of the advanced simulator components has been limited. A number of quantum circuits have been created and loaded into the simulator using the circuit parser. The parser appears to be quite robust and the most likely format errors dealt with effectively. The largest number successfully factorised is 713, requiring two iterations over a period of approximately 9 hours. As expected an exponential increase in time and memory usage with increasing quantum system size has been observed.

4.4 User interface

4.4.1 The Microsoft Foundation Classes (MFC)

The MFC is the C++ class library provided by Microsoft, which places an object-oriented wrapper around the Windows application-programming interface (API). The MFC consists of around 200 classes that provide functionality which helps simplify the development of a Windows based user interface applications. These range from very simple classes such as the CPoint class that represents the co-ordinate of a single point, to complicated classes such as CWnd that encapsulates the functionality of a window. 

The MFC helps to provide an application framework that defines the structure of an application and handles many routine chores on the application’s behalf. The cornerstone of the MFC’s application framework is the so-called document/view architecture. This provides document objects in which to store information and view objects from which to view this data. A document is simply an abstract representation of the program’s data and a view a means by which to represent this data graphically within the windows environment. Two types of document/view architectures are available under the MFC. The single document interface (SDI) architecture supports a single open document at a time. The multiple document interface (MDI) architecture permits two or more documents to be open simultaneously and supports multiple views of a given document. Microsoft discourages the use of MDI architecture because the SDI architecture provides a more document-centric user interface. If two documents are to be edit simultaneously, Microsoft advise that each document be displayed in separate instances of the application. 

Under the visual studio environment a number of wizards are available which help simplify the development process. A basic document/view application can be created quickly and methodically. The following section provides a brief overview of the main design and features of the Qubit simulation application.                    

4.4.2 User interface design and implementation 

The document/view architecture outlined in the previous section was used as the framework for the user interface application. A single document interface architecture was used for two primary reasons

· conformance with Microsoft’s document-centric user interface policy

· due to the exponential time and memory requirements of quantum simulation it is improbable that a user would want to run more than one simulation at a time, in this event however the user may simply launch separate instances of the application

Since the user interface is simply a wrapper around the core and advanced simulation code the majority of the development was restricted to the view aspects of the application, the document object is essentially empty. The MFC provides a number of derived view classes that are suited to different application types. The CFormView was used providing a simple dialogue view. This view enables controls, such as buttons and textboxes, to be added with ease.

The application has two separate execution threads. The user interface thread is responsible for monitoring messages resulting from mouse and keyboard entries. The worker thread is responsible for the execution of the core and advanced simulator code. The use of multi-threading prevents the user interface from ‘freezing up’ during execution the core and advanced simulator code. 

A user guide for the application is given in ‘Appendix A’ of this report. 

4.4.3 User interface testing

A number of problems were encountered during the development of the user interface. The main problems are outlined below.

Memory allocation

At present all memory allocation is asserted
 to ensure success. When an assert fails the operating system posts a system message in the form of a break point exception. This instantly stops execution of the simulator, resulting in an unrecoverable error. Ideally the simulator should estimate the memory usage before beginning simulation and warn the user of possible problems if resources are scarce. Also a memory allocation handler could be written which warns the user or terminates the application gracefully if problems occur.

Thread termination

Another problem encountered was that of thread termination. The MFC does not provide a reliable method for terminating a thread from another thread. Terminating the worker thread from the user interface is a complicated process involving the worker thread constantly monitoring a status flag which must be set from the user interface thread. At the time of writing this process has not been implemented effectively.

Embedded MFC code

It was envisaged that the core and advanced simulator code could be kept completely separate from the user interface code. However in order to keep the user posted on the progress of individual tasks of the simulator, the current activity and the overall progress of the simulator it was necessary to embed MFC code within the core and advanced simulator code. Therefore two versions of the core and simulator code are available. The MFC version and a non-specific MFC version which may be complied under any ANSI/ISO compliant C++ environment.     

Apart from the problems outlined above the integration of the core, advanced and user interface code was successful.

5. Conclusions and future work 

5.1 Review of work

A stable, user-friendly quantum computation simulator has been successfully designed and implemented. Quantum circuits may be defined at the gate level and loaded into the simulator in a simple text format. Shor’s factoring algorithm has been implemented and tested for integers up to and including 713. The simulator has a class structure and namespaces allowing new features such as quantum gates, operations and algorithms to be added with ease. 

The Qubit application may be used as a learning tool, allowing the user to investigate the general concepts of quantum computation including the effects of quantum superposition, entanglement, circuit behaviour and algorithm structure.

Implementing the core and advanced simulator code raised many complex and challenging issues. This was particularly true with regard to the quantum theory which underlies the simulation, most notably the concepts of subspace measurement and gate application operations. Problems with memory management and thread termination were also encountered in the user interface implementation.

5.2 Future work

5.2.1 User interface features

Due to time constraints not all of the desired features were incorporated into the user interface. The primary omission was a graphical representation of the quantum state vector. This would allow the user to visualise the state of the quantum computer during simulation, gaining a greater understanding of gate operations and the factoring algorithm. Also note that minimal optimisation of the core simulator algorithms was possible.  

5.2.2 Error models  

Error correction methods will be of great importance if a quantum computer is ever physically realised. There are two main sources of error, decoherence errors due to interaction with the environment and application errors due to gate operations [Obenland, 1996]. The robustness of quantum algorithms could be investigated by error simulation models and error correction schemes could be incorporated into the simulation. 

5.2.3 Sparse vectors

Analysis of the state vector of the quantum system indicates that it is sparse, i.e. most of the terms are zero. Implementation of a sparse vector scheme would dramatically decrease the memory usage, and in turn increase the speed, of the simulator. More information on sparse vectors can be found in the papers by Marshall [Marshall, 1997] and Obenland [Obenland, 1996].

5.2.4 Additional algorithms

A number of other key algorithms could be implemented such as Grover’s database search algorithm [Grover, 1997] and Shor’s discrete logarithm algorithm [Shor, 1994]. 

5.2.5 Quantum modular exponentiation

The primary feature of Shor’s factoring algorithm which makes it efficient is the use of quantum parallelism to calculate all the values of the function 
[image: image184.wmf](

)

N

x

a

f

a

mod

=

 simultaneously. Thus a simulation of Shor’s algorithm should, ideally, solve this function at the quantum gate level.

Bibliography

[Barenco, 1996]
Barenco, A. ‘Quantum Physics and Computers’, xxx.lanl.gov/abs/quant-ph/9612014, 1996

[Barenco et al., 1996]
Barenco, A., Ekert, A., Sanpera, A., Machiavello, C. ‘A short introduction to quantum computation’, Oxford University Centre for Quantum Computation, www.qubit.org/intros/comp/comp.html, 1996

[Beckman et al., 1996]
Beckman, D., Amalavoyal C., Devabhaktuni, S., Preskill, J. ‘Efficient networks for quantum factorisation’, xxx.lanl.gov/abs/quant-ph/9602016, 1996

[Childs, 1998]
Childs, A. ‘Simulating quantum computation’, CS 20c Final Project Report, www.cs.caltech.edu/~amchilds/final/final.html/qsim_ps.ps, 1998 

[Deutsch, 1985]
Deutsch, D. ‘Quantum theory, the Church-Turing principle and the universal computer’, Proceedings of the Royal Society of London, A 400, pp 97-117, 1985

[Deutsch, 1989]
Deutsch, D. ‘Quantum computational networks’, Proceedings of the Royal Society of London, A 425, pp73-90, 1989

[Deutsch and Josza, 1992]
Deutsch, D. and Josza, R. ‘Rapid solution of problems by quantum computation’, Proceedings of the Royal Society of London, A 439, pp553-558. 1992

[DiVincenzo, 1997]
DiVincenzo, D. ‘Quantum Gates and Circuits’, xxx.lanl.gov/abs/quant-ph/9705009, pp 6-7, 1997

[Ekert and Josza, 1996]
Ekert, A. and Josza, R. ‘Quantum computation and Shor’s factoring algorithm’, Reviews of Modern Physics, Vol. 68, No. 3, July 1996 

[Feynman, 1982]
Feynman, R. ‘Simulating Physics with Computers’, International Journal of Theoretical Physics, Vol. 21, pp 467-488, 1982

[Feynman, 1985]
Feynman, R.  ‘Quantum Mechanical Computers’, Foundations of Physics, 16, No. 6, March 1985

[Grover, 1997]
Grover, K. ‘Quantum computers can search arbitrarily large databases by a single query’, xxx.lanl.gov/abs/quant-ph/9706005, 1997


[Holevo, 1979]
Holevo, A., S. ‘Problemy Peredachi Informatsii’, 9, 3 (1979) (translated as ‘Problems of Information Transfer’); Davies, E., B. IEEE Trans. Inform. Theory, IT 24, 596 (1978); Fuchs, C. A., Caves, C. M., Physical Review Letters, 73, 3047 (1994).

[Lenstra and Lenstra, 1993]
Lenstra, A. and Lenstra, H. The ‘Development of the Number Field Sieve’, Lecture notes in Mathematics, Vol. 1554, Springer, 1993

[Marshall, 1997]
Marshall, J. ‘Simulating Quantum Circuits on a Parallel Machine’, Individual Project Final Report, 1997

[Obenland, 1996]
Obenland, K. ‘Feasability of a Quantum Computer Architecture’, Dissertation Proposal, 1996

[Obenland and Despain, 1996]
Obenland, K. and Despain, M. ‘Simulation of Factoring on a Quantum Computer Architecture’, Draft,  Submitted to PhysComp96, 1996 

[Preskill, 1998]
Preskill, J. Physics 229 Advanced Mathematical Methods of Physics, www.theory.caltech.edu/people/preskill/ph229/, 1998

[Pritzker, 1999]
Pritzker, Y. ‘Simulation of Quantum Computation on Intel-Based Architectures’, Revision A, The Open Qubit Organisation, www.openqubit.org, 1999

[Shor, 1994]
Shor, P. ‘Algorithms for Quantum Computation:Discrete Logarithms and Factoring’, Proceedings, 35th Annual Symposium on Foundations of Computer Science, IEEE Press, pp124-134, 1994

[Simon, 1994]
Simon, D. ‘On the power of quantum computation’, Proceedings, 35th Annual Symposium on Foundations of Computer Science, IEEE Press, pp116-123, 1994

[Toffoli, 1981]
Toffoli, T. ‘Bicontinuous Extensions of Invertible Combinatorial Functions’, Mathematical Systems Theory, 14, pp13-23, 1981

[Vazirani, 1997]
Vazirani, U. CS294-2 – ‘Quantum Computation’, www.cs.berkeley.edu/~vazirani/qc.htmlLecture 2, 1997 

[Wallace, 1999]
Wallace, J. ’A Brief History of Quantum Computation’, www.dcs.ex.ac.uk/~jwallace/history.htm, 1999  

Appendix A – The Qubit simulator user guide

An example instance of the Qubit application is shown in below.

[image: image214.wmf]a

[image: image185.png]tled - QBi
Edt View Help Eras

NEE DR

- Simulator mode

[_[CIx]

- Output

— . C ampitude @ bl [ Bargapn VRV
[T [Coous | 7 0w oo Browse
uputta e
Input

&1 Yalie g [~ Curent activiy
[ ae: 22 H

Using atonsl approsimation o find order
Possible factors are: 1 and 63

€ llsurer 1 - tivial fac
63 il actar
Copiine 53
Feforming modular exponentiaion on reg1, esut n eg2
Measuing reg2.

e 55
[ Getting space for reg1, ignoiing reg?

& Automatic € Perteraion

Ready





The application has two primary modes of operation, the circuit mode and the factorise mode. 

Circuit mode

The circuit mode is used to load quantum circuits from input files. Three input options are available:

· Value  – this allows the user to specify a single input value to the circuit.

· Selective superposition – this allows the user to specify a superposition input on individual qubits of the circuit. This effectively involves operating butterfly gates on the selected qubits prior to solving the rest of the circuit. 

· All superposition – this places the quantum state into a superposition of all possible values. This effectively involves operating butterfly gates on all qubits prior to solving the rest of the circuit.

The user may browse the system for the required circuit input file by hitting the ‘Browse’ button. 

Factorise mode

The factorise mode is used for finding the prime factors of large integers. There are two iteration step modes available:

· Automatic – the simulation will run until one or more factored are found

· Per iteration – the simulator will run for a single iteration, allowing the user to check the output of the previous iteration

The user may browse the system for the required output file by hitting the ‘Browse’ button.

Output choices

A number of output options are available:

· Amplitude – the amplitude associated with each basis state will shown in the output file

· Probability - the probability associated with each basis state will shown in the output file

· Bar graph (not yet implemented) – with this option selected a visual output of the quantum state vector is displayed

· Output to file – with this option selected the quantum state vector is output to file after each quantum operation. The contents of the output file may be viewed by hitting the ‘View’ button. Note that due to the exponential amount of information held within the quantum state vector the size of the output file may be considerable. 

Current activity window

The current activity of the simulator is shown in this window. The contents of the window may be reset by hitting the ‘Reset’ button.

Detector A





Detector B





Photon source





Photon source





Detector A





Detector B





Detector B





Photon source





Detector A





A





B





A’





B’ = A XOR B





C’ = AB XOR C





A’





C





A





B





B





A





Cin





B





A





Sum





B





Cout





Z





Cout





Z





B





Sum





A





B





Cin





A





B





B





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





.  .  .





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





.


.


.





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





B





B





B’





A





A’





B





B





B





B





� EMBED Equation.3  ���





� EMBED Equation.3  ���





qubit index 





3





2





1





0





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





0





0





63





15











31





47





47





31











15





63





0





0





Probability





Probability





Basis state index





Basis state index





� EMBED Equation.3  ���





� EMBED Equation.3  ���

















� A namespace is a C++ construct enabling the grouping of related functions and variables.


� An assert statement is used for debugging purposes in C/C++ program development. In this context the assert statement is used to ensure that memory allocation requests are successful.





PAGE  
65

[image: image215.wmf](

)

a

f

[image: image216.wmf]3

B

[image: image217.wmf]3

,

2

T

[image: image218.wmf]3

,

1

T

[image: image219.wmf]3

,

0

T

[image: image220.wmf]2

B

[image: image221.wmf]2

,

1

T

[image: image222.wmf]1

B

[image: image223.wmf]1

,

0

T

[image: image224.wmf]2

,

0

T

[image: image225.wmf]0

B

[image: image226.wmf]4

1

[image: image227.wmf]16

1

_998140506.unknown

_998149930.unknown

_998472406.unknown

_998710812.unknown

_998823975.unknown

_998824751.unknown

_998842002.unknown

_998920258.unknown

_998836626.unknown

_998836703.unknown

_998824405.unknown

_998824694.unknown

_998824072.unknown

_998714358.unknown

_998817900.unknown

_998817985.unknown

_998733916.unknown

_998742345.unknown

_998743105.unknown

_998742071.unknown

_998714413.unknown

_998711381.unknown

_998713021.unknown

_998713208.unknown

_998714095.unknown

_998710830.unknown

_998711369.unknown

_998563365.unknown

_998573196.unknown

_998578403.unknown

_998583638.unknown

_998584292.unknown

_998584318.unknown

_998584331.unknown

_998584347.unknown

_998584310.unknown

_998584240.unknown

_998584272.unknown

_998583695.unknown

_998583851.unknown

_998582226.unknown

_998582319.unknown

_998579298.unknown

_998579397.unknown

_998573318.unknown

_998574414.unknown

_998573319.unknown

_998574397.unknown

_998572866.unknown

_998573160.unknown

_998569614.unknown

_998570020.unknown

_998572430.unknown

_998569429.unknown

_998569454.unknown

_998569147.unknown

_998487997.unknown

_998563198.unknown

_998472414.unknown

_998382130.unknown

_998410535.unknown

_998411526.unknown

_998411725.unknown

_998411786.unknown

_998411224.unknown

_998408212.unknown

_998409998.unknown

_998410006.unknown

_998409936.unknown

_998383883.unknown

_998214467.unknown

_998218782.unknown

_998219219.unknown

_998381734.unknown

_998218865.unknown

_998218065.unknown

_998214140.unknown

_998214171.unknown

_998214225.unknown

_998214167.unknown

_998214118.unknown

_998146800.unknown

_998146806.unknown

_998147741.unknown

_998147748.unknown

_998147118.unknown

_998141490.unknown

_998143672.unknown

_998144740.unknown

_998144994.unknown

_998145104.unknown

_998143814.unknown

_998142951.unknown

_998143032.unknown

_998140842.unknown

_998140941.unknown

_998141076.unknown

_998140688.unknown

_998140590.unknown

_998140669.unknown

_998140548.unknown

_997775367.unknown

_997961306.unknown

_998139800.unknown

_998139889.unknown

_998140257.unknown

_998139840.unknown

_997975884.unknown

_998049657.unknown

_998139648.unknown

_998053911.unknown

_997976087.unknown

_997975759.unknown

_997975783.unknown

_997975771.unknown

_997975745.unknown

_997961624.unknown

_997961666.unknown

_997961570.unknown

_997956564.unknown

_997960718.unknown

_997961180.unknown

_997961211.unknown

_997960948.unknown

_997960970.unknown

_997959544.unknown

_997959576.unknown

_997959468.unknown

_997956661.unknown

_997801001.unknown

_997801047.unknown

_997953024.unknown

_997953490.unknown

_997952109.unknown

_997801041.unknown

_997775663.unknown

_997800669.unknown

_997800697.unknown

_997800702.unknown

_997800692.unknown

_997800218.unknown

_997775551.unknown

_997608142.unknown

_997719248.unknown

_997719309.unknown

_997719315.unknown

_997774860.unknown

_997719279.unknown

_997616118.unknown

_997616652.unknown

_997614111.unknown

_997552850.unknown

_997605768.unknown

_997607662.unknown

_997603156.unknown

_997552781.unknown

_997552820.unknown

_997552501.unknown

_997552671.unknown

_997544534.unknown

