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introduction

In this talk, elementary logic means the modal logic of an elementary
class of Kripke frames (defined by a first-order theory).

• how to axiomatise?

• partial results — Sahlqvist’s theorem. KM∞

• hybrid logic

• modal approximants of hybrid formulas

• axioms for any elementary modal logic
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elementary modal logics

Many common logics are elementary. Eg, all Sahlqvist-axiomatisable
ones (Kracht found matching first-order fragment).

But some elementary logics aren’t Sahlqvist.
E.g., logic KM∞ from Lemmon notes (1966), extending McKinsey:

KM∞ : 3

∧

i≤k

(2pi ∨ 2¬pi) (all k ≥ 1).

• class of all frames for KM∞ is non-elementary
• any axiomatisation has infinitely many non-canonical formulas

Still, KM∞ is elementary: it is logic of class of frames satisfying

∀x∃y(xRy ∧ ∀zt(yRz ∧ yRt → z = t))

— equivalently, those validating hybrid formula 3∃i2i.
Proof: compactness shows canonical frame for KM∞ satisfies this.
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hybrid logic

Φ := i | ⊤ | ⊥ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | 3Φ | 2Φ | ∀iΦ | ∃iΦ

We only consider pure formulas — with no propositional atoms.
Sentence — no free nominals.

semantics

Fix Kripke frame F = (W, R).

Assignments/valuations into F are maps h : {nominals} → W .

• F , h, w |= i iff w = h(i)

• Boolean and modal operators as usual

• F , h, w |= ∀iϕ iff F , g, w |= ϕ for all assignments g with
g(j) = h(j) for all j 6= i.
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modal approximants of hybrid formulas

Idea: approximate nominals by modally-definable (clopen) sets.

Given any finite set S of modal formulas, can assign i to
∧

{α : α ∈ X} ∧
∧

{¬β : β ∈ S \ X}

for any X ⊆ S.

Simulate ∀iϕ by conjunction over all X ⊆ S.

Simulate ∃iϕ by disjunction over all X ⊆ S.

We get a modal approximant of a hybrid formula with respect to S.

In canonical model, nominals denote maximal consistent sets.
As S → ∞, clopens → nominals.
Hope: as S → ∞, approximants converge to the hybrid formula.
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example: approximants of 3∃i2i axiomatise KM∞

Recall 3

∧

i≤k

(2pi ∨ 2¬pi) (k ≥ 1)

axiomatises logic KM∞ of class of frames validating

ϕ = 3∃i2i.

Approximate ϕ w.r.t. finite set S = {p1, . . . , pk} of atoms:

ϕS =

3

︷︸︸︷

3

∃i
︷︸︸︷
∨

X⊆S

2

︷︸︸︷

2

i
︷ ︸︸ ︷
( ∧

p∈X

p ∧
∧

p∈S\X

¬p
)

.

ϕS is equivalent to the kth axiom of KM∞.
Conclude {ϕS : S finite} axiomatises KM∞!
In canonical model, all ϕS are valid — forces ϕ valid on can. frame.
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soundness and completeness wish list

1. if hybrid sentence ϕ valid in F then all approximants valid in F .

Clopens are coarser than nominals, so should be OK if ϕ is
positive (monotonic).

Problem: ∀.
∧

X⊆S may include inconsistent X.

Solution: relativise ∀ to exclude inconsistent X.

∀i i — bad. ∀i(3i → i) — OK.
General form: 3(j ∧ 3j′) ∧ ∀i(2(j → 2(j′ → 3i)) → ϕ)

Call ∀-relativised-but-otherwise-positive formulas quasipositive.
Equivalently expressive: positive sentences of H(@, ↓).

2. In canonical model (or a descriptive frame), if approximants of
hybrid ϕ are valid, then ϕ is valid in the underlying Kripke frame.

Can prove by extending Sahlqvist’s completeness theorem to
quasipositive sentences (and even hybrid Sahlqvist formulas!)
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theorems

1. If a quasipositive sentence ϕ is valid in a frame F , then all
approximants of ϕ are valid in F .

2. In canonical model (or a descriptive frame), if all approximants of
a quasipositive sentence ϕ are valid, then ϕ is valid in the
underlying frame.

So the approximants of ϕ axiomatise the logic of the class of frames
satisfying ϕ. This logic is canonical.
ϕ and its approximants are ‘canonical pseudo-correspondents’.

3. The modal logic of a class of frames defined by a first-order
theory T is the logic of the class of frames defined by the
quasipositive consequences of T .

So the elementary modal logics are precisely those axiomatised by
the approximants of sets of quasipositive sentences.
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remarks

1. applies to multiple polyadic modalities

2. New proof of Fine–van Benthem theorem that elementary modal
logics are canonical. ‘Explains’ canonicity of KM∞ and other
non-Sahlqvist logics by Sahlqvist-like means.

3. Syntactic characterisation of elementary modal logics, by
approximants. New way to study them.

4. connection between modal and hybrid logic

5. axioms can be ‘natural’ — eg KM∞, Hughes’s logic

6. some logics need infinitely many quasipositive sentences

7. open problem to find finite axiomatisation where one exists

Reference: I. Hodkinson, Hybrid formulas and elementarily
generated modal logics, Notre Dame J. Formal Logic, to appear.
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