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Abstract

We consider the temporal language with the Priorean operators G and H express-
ing that a formula is true at all future times and all past times, plus an operator
2 expressing that a formula is true throughout some open interval containing the
evaluation time (i.e., it is true ‘around now’). We show that the logic of real num-
bers time in this language is finitely axiomatisable, answering an implicit question
of Shehtman (1993). We also show that the logic has PSPACE-complete complexity,
but is not Kripke complete and has no strongly complete axiomatisation.

Keywords Weak completeness, finite axiomatisation, filtration, lexicographic sum,
Kripke-incomplete.

1 Introduction

Modal formulas can be given semantics in models based on topological spaces. In a
topological model, the formula 2ϕ is true at a point if ϕ is true throughout some
open neighbourhood of that point. So the set of points satisfying 2ϕ is the interior of
the set of points satisfying ϕ. Topological semantics predates Kripke semantics and
was first considered by McKinsey and Tarski [16], who proved that the logic of any
separable dense-in-itself metric space, such as the rationals (Q) and reals (R) with
the usual topology, is S4. Interest in this theorem is undergoing a renaissance and
several simpler proofs have recently appeared [17, 18, 2, 1, 14, 7], either for R alone
or for the general case. The theorem was extended by Kremer [9, 10] to a strong
completeness result (for countable languages).

Additional connectives have also been considered. Shehtman added the universal
modality ∀: a formula ∀ϕ is true at an arbitrary point of a topological model if ϕ is
true at every point. He showed [25] that the logic of any connected separable dense-
in-itself metric space, such as R, is S4UC, with S4 axioms for 2, the usual axioms U
for ∀, and a connectedness axiom C, namely ∀(2p ∨2¬p)→ ∀p ∨ ∀¬p.

∗The author thanks Nick Bezhanishvili for several useful discussions.
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Kudinov added the difference operator [6=]: a formula [6=]ϕ is true at a point if
ϕ is true at every other point. The difference operator is more expressive than ∀.
In the language with 2, [6=], Kudinov axiomatised the logic of all topological spaces,
all dense-in-themselves topological spaces, and any zero-dimensional dense-in-itself
metric space [11]. He also axiomatised the logic of Rn for n ≥ 2 (unpublished), but
proved (also unpublished: see [12]) that the logic of R is not finitely axiomatisable,
and not even axiomatisable by formulas using finitely many variables in total.

In [24], Shehtman shifted attention to temporal logic by adding the Priorean
temporal connectives G and H to the original 2. This language is given semantics
in ordered topological models. An ordered topological model is a topological model
whose topology is the interval topology arising from an irreflexive linear order <
on the set of points. Examples include models based on Q and R with their usual
orderings and topologies. Such models can be viewed temporally. We can regard the
points as times and the order < as the earlier-later relation, so that x < y denotes
that x is in the past of y and y in the future of x. A formula Gϕ is true at a
point or time x in such a model iff ϕ is true at all future times — all y satisfying
x < y. A formula Hϕ is true at x if ϕ is true at all past times y < x. Together,
the connectives G,H are even more expressive than [ 6=]. In the temporal context,
2ϕ can still be read topologically, but it also has a reasonable temporal reading as
‘ϕ is true around now’, and this view was promulgated by Scott. In [24], Shehtman
gave a finite axiomatisation of the logic of Q in this language, observed that the logic
of R in the same language is decidable, and implicitly posed [24, p.256] the problem
of axiomatising it. Although the area of topological semantics of modal logic has
recently attracted a good deal of attention, this problem has remained open.

Although it has no topological 2-modality, the very expressive temporal language
with U and S (Until and Since) is worth mentioning here. A formula U(ϕ,ψ) is true
at a time point x if there is a point y > x at which ϕ is true and such that ψ is true
at every z with x < z < y — informally, ψ is true until ϕ becomes true. The meaning
of S is obtained by swapping < with >. The connectives U and S were introduced
by Kamp [8] and they can easily express all the connectives we have considered so
far. Indeed, over R, they can express every connective whose meaning is definable in
first-order logic [8]. Reynolds gave a finite axiomatisation of the logic of R with U, S
in [20], and showed the logic to be PSPACE-complete in [21].

In the current paper we consider Shehtman’s temporal language withG, H, and 2,
interpreted over R. We answer Shehtman’s implicit question [24] by showing that the
logic of R in this language is finitely axiomatisable. Given Kudinov’s result, this is
perhaps surprising, but given Reynolds’s, it is less so. It suggests that G, H, and 2

are in some sense closer to Until and Since over R than to [6=] and 2. We only obtain
‘weak completeness’, and we show that no strong completeness result can be proven.
We also show that the logic is not Kripke compete. Shehtman observed in [24] that
it is decidable, and we show that it is PSPACE-complete.

Our axiom system is similar to the one for Q given by Shehtman in [24] — the
only difference is that we include an additional connectedness axiom F (p ∧ Fq) ∧
F (¬p ∧ Fq)→ F (3p ∧3¬p ∧ Fq) — and our completeness proof starts in the same
way by a certain filtration of the canonical model. We then apply selective filtration
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and a closure technique designed to give a well behaved finite Kripke model, which
we employ as a template to construct a model over R, using lexicographic sums.

Layout of paper. Section 2 contains the basic definitions, and section 3 the
system of axioms and inference rules for the logic of R in the language with G, H,
and 2. In section 4 we prove that the logic has no strong axiomatisation and is not
Kripke complete, but is (decidable and) PSPACE-complete (decidability was known
to Shehtman). Section 5 contains the material we need on lexicographic sums, and
section 6 the completeness proof. We conclude in section 7 with some open problems.

Throughout, we use N,Z,Q,R to denote the ordered sets of natural numbers,
integers, rationals, and real numbers (respectively).

2 Generalities

Here, we lay down the syntax and semantics of our logic, and define some basic terms.

2.1 Syntax

Let PV be a fixed countably infinite set of propositional atoms. We write p, q, r, . . .
for atoms. We define the language L to consist of the following formulas:

1. > is a formula.

2. Every p ∈ PV is a formula.

3. If ϕ,ψ are formulas then so are ¬ϕ, ϕ ∧ ψ, Gϕ, Hϕ, and 2ϕ.

The mirror image of a formula ϕ is the formula obtained by replacing every G in ϕ
by H, and every H in ϕ by G. As abbreviations we let ⊥ = ¬>, ϕ∨ψ = ¬(¬ϕ∧¬ψ),
ϕ→ ψ = ¬(ϕ ∧ ¬ψ), ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ), Fϕ = ¬G¬ϕ, Pϕ = ¬H¬ϕ, and
3ϕ = ¬2¬ϕ.

2.2 Semantics over R
We define semantics for L-formulas over R as follows. Let h : PV → ℘(R) be an
assignment to atoms (where ℘ denotes power-set). Then for each x ∈ R and formula ϕ
we define (R, h), x |= ϕ by induction:

1. (R, h), x |= >,

2. (R, h), x |= p iff x ∈ h(p), for p ∈ PV ,

3. (R, h), x |= ¬ϕ iff (R, h), x 6|= ϕ,

4. (R, h), x |= ϕ ∧ ψ iff (R, h), x |= ϕ and (R, h), x |= ψ,

5. (R, h), x |= Gϕ iff (R, h), y |= ϕ for all y ∈ R with y > x,

6. (R, h), x |= Hϕ iff (R, h), y |= ϕ for all y ∈ R with y < x,

7. (R, h), x |= 2ϕ iff there exist y, z ∈ R with y < x < z and (R, h), t |= ϕ for all
t ∈ R with y < t < z.
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A formula ϕ is said to be satisfiable over R if there exist an assignment h : PV → ℘(R)
and x ∈ R with (R, h), x |= ϕ. We say that ϕ is valid over R if ¬ϕ is not satisfiable
over R. A set Σ of L-formulas is said to be satisfiable over R if there exist an
assignment h : PV → ℘(R) and x ∈ R with (R, h), x |= ϕ for every ϕ ∈ Σ.

The L-logic of R is the set of all L-formulas that are valid over R.

2.3 Kripke semantics

Formulas have an alternative Kripke semantics. A binary relation on a set W is a
subset of W ×W . A Kripke frame for L is a triple (W,<,R), where W is a non-
empty set and <,R are binary relations on W . (In the main proof, < will always
be transitive but not always irreflexive.) Given an assignment h : PV → ℘(W ),
the tuple M = (W,<,R, h) is called a Kripke model for L. For w ∈ W , we define
M, w |= ϕ by induction on formulas ϕ:

1. M, w |= >,

2. M, w |= p iff w ∈ h(p), for p ∈ PV ,

3. M, w |= ¬ϕ iff M, w 6|= ϕ,

4. M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,

5. M, w |= Gϕ iff M, u |= ϕ for all u ∈W with w < u,

6. M, w |= Hϕ iff M, u |= ϕ for all u ∈W with u < w,

7. M, w |= 2ϕ iff M, u |= ϕ for all u ∈W with Rwu.

Let F = (W,<,R) be a Kripke frame, and M = (W,<,R, h) a Kripke model.
A formula ϕ is said to be satisfiable in M if there is w ∈ W with M, w |= ϕ, and
satisfiable in F if there are h : PV → ℘(W ) and w ∈ W with (W,<,R, h), w |= ϕ.
A formula ϕ is said to be valid in F (resp.M) if ¬ϕ is not satisfiable in F (resp.M).

2.4 General definitions

For a map f : X → Y , and X ′ ⊆ X, we write f(X ′) for {f(x) : x ∈ X ′}. We write
dom f for X and rng f for f(X).

DEFINITION 2.1 Let W be a set, and R a binary relation on it.

1. For w, u ∈W , we write any of Rwu, wRu, R(w, u) to indicate that (w, u) ∈ R.

2. We let R• denote the binary relation on W defined by R•wu iff Rwu ∧ ¬Ruw.

3. For w ∈W we write R(w) = {u ∈W : Rwu}.
4. A subset X ⊆W is said to be R-generated if R(x) ⊆ X for every x ∈ X.

5. For X ⊆W , we write R � X for the binary relation R ∩ (X ×X) on X.

DEFINITION 2.2 Let M = (W,<,R, h) be a Kripke model.

1. We write u ≤ w to abbreviate u < w ∨ u = w.
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2. An element w ∈ W is said to be <-reflexive if w < w, and <-irreflexive,
otherwise.

3. A <-cluster of/in M is a maximal non-empty subset C ⊆ W such that w < u
for all w, u ∈ C.

This usage of ‘cluster’ is slightly different from that in (e.g.) [24]. We remark
that if < is transitive, any <-reflexive point w ∈ W lies in a unique <-cluster,
namely, {u ∈W : w < u < w}. We leave the proof as an exercise.

4. A submodel of M is a Kripke model N = (W ′, <′, R′, h′), where W ′ ⊆ W ,
<′ = < �W ′, R′ = R �W ′, and h′(p) = W ′ ∩ h(p) for every atom p ∈ PV . For
Kripke modelsM,N , we write N ⊆M to denote that N is a submodel ofM.

5. Such a submodel of M is said to be an R-generated submodel if W ′ is an R-
generated subset of W , and a <-generated submodel if W ′ is both a <-generated
and >-generated subset of W .

6. We say that N is a generated submodel of M if it is both an R-generated and
a <-generated submodel of M.

It is well known, and easily proved by induction on ϕ, that if N is a generated
submodel of M, and w ∈W ′, then N , w |= ϕ iff M, w |= ϕ for every L-formula ϕ.

3 Axioms

We now present a Hilbert system that, as we will show, axiomatises the L-logic of R.
It is based on a system of Shehtman [24, §2] that was shown to axiomatise the L-logic
of Q. The only difference is that we have added a ‘connectedness’ axiom, axiom 5.

3.1 The system

The axioms are as follows. We assume familiarity with Sahlqvist formulas in temporal
logic: see, e.g., [3]. The axioms 2–4 are Sahlqvist formulas and their first-order
correspondents are reproduced below. (The correspondent of each normality axiom
is equivalent to >, and omitted.) Each correspondent is true in a Kripke frame iff
the axiom is valid in the frame. Moreover, the correspondents are true in the frame
of the canonical model of the logic axiomatised by the system.

1. all propositional tautologies

2. axioms for dense linear time without endpoints:

G(p→ q)→ (Gp→ Gq) normality

Gp→ GGp transitivity: ∀xyz(x < y ∧ y < z → x < z)

p→ GPp ∀xy(x < y → y > x)

GGp→ Gp density: ∀xy(x < y → ∃z(x < z ∧ z < y))

FPp→ p ∨ Fp ∨ Pp ∀xyz(x < y ∧ y > z → x = z ∨ x < z ∨ x > z)
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3. S4 axioms for 2:

2(p→ q)→ (2p→ 2q) normality

2p→ p reflexivity: ∀xR(x, x)

2p→ 22p transitivity: ∀xyz(R(x, y) ∧R(y, z)→ R(x, z))

4. Shehtman’s ‘special axioms’:

(a) Hp ∧ p ∧Gp→ 2p ∀xy(Rxy → x > y ∨ x = y ∨ x < y)

(b) Gp→ G2p ∀xyz(x < y ∧Ryz → x < z)

(c) Gp ∧2p→ 2Gp ∀xyz(Rxy ∧ y < z → x < z ∨Rxz)
(d) 2p→ Fp ∀x∃y(x < y ∧Rxy)

5. F (p ∧ Fq) ∧ F (¬p ∧ Fq)→ F (3p ∧3¬p ∧ Fq) (connectedness)

6. all mirror images of the above axioms (swap G with H, and F with P ; also
swap < with > in the correspondents).

The rules of inference are the standard ones:

1. modus ponens:
ϕ, ϕ→ ψ

ψ

2. generalisation:
ϕ

Gϕ
,

ϕ

Hϕ
,

ϕ

2ϕ

3. substitution:
ϕ(p)

ϕ(ψ/p)

Some mirror images, such as Hp → HHp, are redundant and can be omitted. We
have not investigated the exact extent to which this can be done.

As usual, the logic axiomatised by this system is the smallest set S of L-formulas
that contains every axiom listed above and is closed under the rules of inference. We
say that an L-formula ϕ is provable in the system if ϕ ∈ S. A set Γ of L-formulas
is consistent if ¬(γ0 ∧ . . . ∧ γn−1) /∈ S for every n < ω and γ0, . . . , γn−1 ∈ Γ, and
maximal consistent if it is consistent but has no proper consistent extension.

We aim to show that S is the L-logic of R. The inclusion ‘⊆’ (soundness) is
straightforward:

THEOREM 3.1 The system is sound over R.

Proof (sketch). All axioms other than axiom 5 are shown to be valid over any dense
flow of time without endpoints in [24, lemma 2.2(2)]. Axiom 5 is valid over R because
every interval of R is connected. Indeed, assume for contradiction that for some model
(R, h) and t ∈ R we have

(R, h), t |= F (p ∧ Fq) ∧ F (¬p ∧ Fq) ∧G(Fq → 2p ∨2¬p).

Let v1, v2 > t satisfy (R, h), v1 |= p ∧ Fq and (R, h), v2 |= ¬p ∧ Fq. We can find
u > max(v1, v2) with u ∈ h(q). Assume wlog. that v1 < v2. Let

s = sup{x ∈ R : ∀y(v1 ≤ y < x→ y ∈ h(p))}.

6



Then s ≤ v2 < u, so (R, h), s |= Fq. As s > t, we have (R, h), s |= 2p or (R, h), s |=
2¬p. Hence, there is an open interval O 3 s with O ⊆ h(p) or O ⊆ R \ h(p). It is
easily seen that each case contradicts the definition of s.

The inference rules obviously preserve validity. 2

3.2 Simple theorems of the system

LEMMA 3.2 F> and P> are provable in the system.

Proof. As > is a tautology, it is provable, and we get 2> by 2-generalisation. By
axiom 4d, we prove F>. We prove P> similarly. 2

LEMMA 3.3 G¬p ∧HFp→ 3p is provable in the system.

Proof. We can prove G¬p ∧ 2¬p → 2G¬p by axiom 4c. By the mirror image
of axiom 4d we have 2G¬p → PG¬p. Using propositional tautologies we deduce
G¬p ∧2¬p→ ¬HFp, and then the result. 2

The connectedness axiom (5) has an important consequence: the well known Prior
axiom

Fq ∧ FG¬q → F (G¬q ∧HFq). (1)

We will prove this using the following lemma.

LEMMA 3.4 3Gq → Gq and 3Hq → Hq are provable in the system.

Proof. The following are provable:

1. 3Gq → GP3Gq by axiom p→ GPp
2. P3Gq → PGq Gq-instance of dual of axiom 4b (Hp→ H2p)
3. GP3Gq → GPGq from previous by G-gen and normality
4. PGq → q dual of temporal axiom p→ HFp
5. GPGq → Gq from previous by G-gen and normality

The result now follows from lines 1, 3, and 5 by propositional tautologies. The second
theorem is a mirror image. 2

COROLLARY 3.5 The Prior axiom Fq∧FG¬q → F (G¬q∧HFq) and its mirror
image are provable in the system.

Proof. We give a more informal proof along the lines of the preceding lemma.
Assume Fq ∧ FG¬q. Using the density axiom, this yields FFq ∧ FG¬q. Tak-
ing p = G¬q and q = > in axiom 5 gives F (G¬q ∧ F>) ∧ F (¬G¬q ∧ F>) →
F (3G¬q ∧3¬G¬q ∧ F>). By lemma 3.2, F> is equivalent to >, so this reduces to

FG¬q ∧ FFq → F (3G¬q ∧3Fq).

So we obtain F (3G¬q∧3Fq). Now by standard temporal logic, we can prove Fq →
HF (Fq) and HF (Fq)→ HFq. This gives us F (3G¬q∧3HFq). By lemma 3.4, we
obtain F (G¬q ∧HFq) as required. The mirror image can be derived similarly. 2
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4 Some facts about the L-logic of R
Here we prove some fairly straightforward results about the L-logic of R.

A Hilbert system (of axioms and rules) is said to be sound if all satisfiable formulas
are consistent, and strongly complete if any consistent set of formulas using in all only
countably many atoms is satisfiable.

THEOREM 4.1 There is no sound and strongly complete Hilbert system for the
L-logic of R.

Proof. Let Σ be the following set of formulas written with atoms p, q, r:

2p
F (r ∧G¬r)
G(r ∨ Fr → 2p ∨2q)
F (¬p ∧ F (¬q ∧ F (¬p ∧ F ( · · · ∧ Fr )) · · · )︸ ︷︷ ︸

n brackets

for each integer n ≥ 1

It is easy to see that any finite subset of Σ is satisfiable over R. However, Σ itself
is not satisfiable over R. For suppose that Σ is satisfied at 0 and r ∧G¬r is true at
1, say. By the first and third formulas, each x ∈ [0, 1] belongs to some open interval
Ix ⊆ R with Ix ⊆ h(p) or Ix ⊆ h(q). By the Heine–Borel theorem, [0, 1] is compact,
so there are n < ω and x0 < · · · < xn−1 in [0, 1] such that [0, 1] ⊆

⋃
i<n Ixi . By

the final set of formulas, there are 0 < y0 < y1 < · · · < yn ≤ 1 with yj /∈ h(p) if
j is even and yj /∈ h(q) if j is odd (each j ≤ n). Now by the pigeonhole principle
and convexity of the Ix, there are i, j < n with yj , yj+1 ∈ Ixi . But Ixi ⊆ h(p) or
Ixi ⊆ h(q), a contradiction.

If the L-logic of R had a sound and strongly complete Hilbert system, then since
Σ is finitely satisfiable, it would be consistent and so satisfiable, contradicting the
above. 2

We now consider Kripke completeness. I would like to thank Nick Bezhanishvili
for helpful discussions on this material. We will consider the following formula ϕ,
where a, b are atoms:

ϕ = H¬a ∧H¬b ∧ ¬a ∧ ¬b ∧3a ∧3b ∧G¬(3a ∧3b) ∧ FG¬a. (2)

LEMMA 4.2 ϕ is satisfiable over R, but is not satisfiable in any Kripke model
whose frame validates the L-logic of R.

Proof. Define h : PV → ℘(R) by h(a) = {1/2n : n ∈ N} and h(b) = {1/3n : n ∈
N, n > 0}. Evidently, (R, h), 0 |= ϕ. So ϕ is satisfiable over R.

Let M = (W,<,R, h) be a Kripke model such that every L-formula that is
valid over R is also valid in the frame F = (W,<,R). Let w ∈ W and assume for
contradiction that M, w |= ϕ.

Plainly,M, w |= 3a∧3b, so there are u, v ∈ R(w) withM, u |= a andM, v |= b.
By theorem 3.1, the axioms in §3.1 are all valid in F . By axiom 4a, we have u >
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w ∨ u = w ∨ u < w. As M, w |= H¬a ∧ ¬a, we cannot have u ≤ w. So u > w.
Similarly, v > w. By axiom 4b, u < v < u < u.

As M, w |= FG¬a, we can choose x ∈ W with w < x and M, x |= G¬a. Let
g : PV → W be an assignment with g(p) = {u}, and let N = (W,<,R, g). Since
g(p) ⊆ h(a), we have N , x |= G¬p, so N , w |= Fp ∧ FG¬p. But by corollary 3.5 (or
because it is valid in R), the Prior axiom (1) is valid in F , so N , w |= F (G¬p∧HFp).
Hence there is y ∈W with w < y and

N , y |= G¬p ∧HFp. (3)

By lemma 3.3, N , y |= 3p. So Ryu. But also, u < v, so by axiom 4c we obtain
Ryv ∨ y < v.

If Ryv, then both u, v ∈ R(y), so M, y |= 3a ∧ 3b. Since w < y, we obtain
M, w |= F (3a ∧ 3b), contradicting that M, w |= ϕ. If instead y < v, then since
v < u we have N , y |= Fp, contradicting (3). Either way, our assumption that
M, w |= ϕ has led to a contradiction. 2

Recall that a modal logic L is said to be Kripke complete (respectively, to have
the finite model property) if there exists a class K of (resp. finite) Kripke frames such
that L is the set of all modal formulas that are valid in every frame in K.

THEOREM 4.3 The L-logic of R is not Kripke complete and does not have the
finite model property.

Proof. If the L-logic of R were the logic of a class K of Kripke frames of the form
(W,<,R), then as the formula ϕ of (2) is satisfiable over R, it would be satisfiable over
a frame in K, which therefore (by the lemma) could not validate the logic of R. 2

As N. Bezhanishvili has observed, the L-logic of R is a ‘naturally occurring’ example
of a non-Kripke complete logic. As the finite model property is often used to show
decidability, it may be surprising that the L-logic of R is decidable [24, p. 256]. We
end the section by establishing its complexity.

THEOREM 4.4 The problem of deciding whether an L-formula is valid over R is
PSPACE-complete.

Proof (sketch). We assume knowledge of temporal logic with Until and Since (U, S)
as in [21], where it is proved that the problem of determining satisfiability over R of
a formula written with U, S is PSPACE-complete. Given an L-formula ϕ, introduce
a new propositional atom qψ for each subformula ψ of ϕ, and define the formula ψ̂
as follows, where ∀ψ abbreviates ψ ∧ ¬U(¬ψ,>) ∧ ¬S(¬ψ,>):

• >̂ = ∀q>
• p̂ = ∀(p↔ qp) for p ∈ PV

• ¬̂ψ = ∀(q¬ψ ↔ ¬qψ)

• ψ̂ ∧ χ = ∀(qψ∧χ ↔ qψ ∧ qχ)
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• F̂ψ = ∀(qFψ ↔ U(qψ,>))

• P̂ψ = ∀(qPψ ↔ S(qψ,>))

• 2̂ψ = ∀(q2ψ ↔ qψ ∧ U(>, qψ) ∧ S(>, qψ)).

Let ϕ∗ be the conjunction of all ψ̂ for subformulas ψ of ϕ, together with qϕ. It can
be checked that ϕ is satisfiable over R iff ϕ∗ is, and ϕ∗ can be constructed from ϕ
in polynomial time. Given ϕ, we may construct ϕ∗ and then decide its satisfiability
over R in PSPACE [21]. The combined procedure can be done in polynomial space,
so the satisfiability, and hence the validity, of ϕ can be decided in PSPACE. The
logic of R with 2 alone is S4 [16], which is already PSPACE-hard [13]. 2

5 Linear orders and maps

Here we recall from [4] a simple way to build maps defined on intervals of R. It
will be needed only at the end of the next section, but we present it now to avoid
breaking the flow later.

A linear order is a structure (I,<), where I is a non-empty set and < is an
irreflexive transitive binary relation on I that is also linear: that is, (I,<) |= ∀xy(x <
y∨x = y∨x > y). We often write (I,<) simply as I. As usual we let x ≤ y abbreviate
x < y ∨ x = y. See, e.g., [23] for information about linear orders.

An interval of I is a non-empty convex subset of I. We use standard notation
for intervals: if x, y ∈ I and x ≤ y then (x, y) = {z ∈ I : x < z < y}, [x, y) =
{z ∈ I : x ≤ z < y}, [x, y] = {z ∈ I : x ≤ z ≤ y}, (−∞, x) = {z ∈ I : z < x},
[x,∞) = {z ∈ I : z ≥ x}, etc. An open interval is one with no least or greatest
element. In this section, we write ordered pairs in the form 〈i, j〉 where they might
be confused with intervals.

5.1 Lexicographic sums of linear orders

Let (J,<) be a linear order, and for each j ∈ J let Ij be an interval of R. (More
generally, Ij can be any linear order, but we are only concerned with the case of
intervals of R.) We write

I =
∑
j∈J

Ij = {〈i, j〉 : j ∈ J, i ∈ Ij},

and define an order < on I lexicographically by 〈i, j〉 < 〈i′, j′〉 iff j < j′ or (j = j′

and i < i′). Clearly, (I,<) is a linear order. If (J,<) = ({0, 1, . . . , n}, <) for some
n ∈ N (n ≥ 0), we can write I explicitly as I0 + · · · + In. It is plain that if I0 has
a greatest element and I1 has no least element, or if I0 has no greatest element and
I1 has a least element, then I0 + I1 is order-isomorphic to an interval of R. More
generally:

PROPOSITION 5.1 Suppose that one of the following holds.
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1. J is finite, say (J,<) = ({0, 1, . . . , n}, <) for some n < ω. I0 has no least or
greatest element. Each Ij for j > 0 has a least element but no greatest element.

2. (J,<) = (Z, <) and each Ij has a least element and no greatest element.

3. (J,<) = (R, <), each Ij has a least and a greatest element, and Ij is a singleton
for every irrational j.

Then (
∑

j∈J Ij , <) ∼= (R, <).

Proof. A linear order is isomorphic to (R, <) iff it is dense, has no endpoints, has
a countable dense subset, and is Dedekind complete. It is well known and easy to
check that each of the three sum-orders above has these properties. Cf. [4, 23]. 2

When J and the Ij meet one of the conditions in proposition 5.1, the linear order
(I,<) is isomorphic to (R, <), and we will generally identify the two.

5.2 Functions on linear orders

We continue to let (J,<) be a linear order and Ij (j ∈ J) an interval of R. Let S be
an arbitrary non-empty set and for each j ∈ J let fj : Ij → S be a map. We define
a map

f =
∑
j∈J

fj : I → S

by f(〈i, j〉) = fj(i). In the case where (J,<) = ({0, 1, . . . , n}, <), we may write the
sum explicitly as f0 + · · · + fn. If Ij is a singleton {x} and fj(x) = s, say, we may
write the map fj simply as s.

EXAMPLE 5.2 If s0, . . . , sn ∈ S then, modulo a renaming of the elements of its
domain, s0 + · · ·+ sn is the map f : {0, . . . , n} → S given by f(i) = si for each i ≤ n.

For j ∈ J we define domf (fj) = Ij×{j} ⊆ I. We may sometimes regard fj as a map
fj : domf (fj)→ S, via 〈i, j〉 7→ fj(i) for each 〈i, j〉 ∈ domf (fj). In effect, we identify
fj with f � domf (fj).

5.3 Shuffles

There is an important special case known as the shuffle. Reynolds [21] described a
shuffle as a ‘thorough mixture’ of its ingredients. Let K be a countable (possibly
empty) set of intervals of R each of which has a least and a greatest element, and
suppose that K0 is a singleton interval of R. For each K ∈ K∪{K0}, let gK : K → S
be a map. Choose any θ : R→ K ∪ {K0} such that θ(j) = K0 for every irrational j
and θ−1(K) is a dense subset of Q for each K ∈ K. This is not difficult to do. Then
θ−1(K) is dense in R for every K ∈ K ∪ {K0}. Now define Ij = θ(j) and fj = gθ(j)
for each j ∈ R, so that fj : Ij → S, and let

σ =
∑
j∈R

fj .

For each K ∈ K ∪ {K0}, define domσ(gK) = {〈i, j〉 : j ∈ R, θ(j) = K, i ∈ Ij}.
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DEFINITION 5.3 Let (I,<) be a linear order. A set Y ⊆ I is unbounded (in I)
if for all x ∈ I there are y, z ∈ Y with y < x < z.

LEMMA 5.4 Let σ be as above. Then σ−1(s) is unbounded in domσ for each
s ∈ rng(σ).

Proof. Let s ∈ rng σ. Pick K ∈ K ∪ {K0} and k ∈ K with gK(k) = s. Let
〈i, j〉 ∈ domσ be arbitrary. As θ−1(K) is dense in R, there exist j′, j′′ ∈ θ−1(K) with
j′ < j < j′′. Then 〈k, j′〉 < 〈i, j〉 < 〈k, j′′〉 and σ(〈k, j′〉) = σ(〈k, j′′〉) = s. 2

A point x ∈ dom(σ) =
∑

j∈R Ij is said to be a σ-endpoint if it is of the form
〈i, j〉, where j ∈ R and i is the least or greatest element of Ij , and a σ-irrational if
x ∈ domσ(gK0). (Every σ-irrational is a σ-endpoint as well.)

LEMMA 5.5 Let σ be as above, and let x, y, z ∈ domσ with y < x < z.

1. If x is a σ-endpoint then σ((y, z)) = rng(σ).

2. If x is a σ-irrational, then σ((y, x)) = σ((x, z)) = rng(σ).

Proof. Suppose x = 〈i, j〉, say, where i is the least element of Ij . If y = 〈i′, j′〉, then
we must have j′ < j. Let s ∈ rng σ be given. Pick K ∈ K ∪ {K0} and k ∈ K with
gK(k) = s. As θ−1(K) is dense in R, we may pick j∗ ∈ θ−1(K) with j′ < j∗ < j.
Then y < 〈k, j∗〉 < x and σ(〈k, j∗〉) = s. It follows that σ((y, x)) = rng σ. A similar
argument shows that if i is maximal in Ij then σ((x, z)) = rng σ. The lemma is easily
derived from this. 2

By proposition 5.1(3), the linear order (
∑

j∈R Ij , <) is isomorphic to (R, <), so
by choosing a suitable isomorphism we can regard σ as a map σ : R→ S. This map
depends on the choices of the isomorphism and θ, but any choices will do for us and
in fact all choices lead to the same result modulo an automorphism (order-preserving
permutation) of (R, <). So we let

Shuffle
(
{gK : K ∈ K} ; gK0

)
denote a map σ : R → S as above, for arbitrary tacit choices of these items. The
maps gK (for K ∈ K ∪ {K0}) are called the ingredients of the shuffle.

EXAMPLE 5.6 If a, b, c ∈ S then Shuffle({a, b}; c) can be taken to be a map
σ : R → {a, b, c} such that σ−1(c) = R \ Q and σ−1(a), σ−1(b) are dense sets of
rationals.

5.4 S4 frames

We now use lexicographic sums to establish a relative of the McKinsey–Tarski theo-
rem that the logic of R in the language with 2 is S4 [16]. It will be needed in §6.7.
A similar method is used in [7] to prove the McKinsey–Tarski theorem itself, and
others.

An S4-frame is a pair (W,R), where R is a reflexive and transitive binary relation
on the non-empty set W . Recall from definition 2.1 that R(w) = {u ∈W : Rwu} for
w ∈W .
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DEFINITION 5.7 Let (W,R) be an S4-frame, (I,<) a linear order, and g : I →W
a map. We say that an element x ∈ I is

• g-fair if there are y, z ∈ I with y < x < z and such that g((y′, z′)) = R(g(x))
for every y′, z′ ∈ I with y ≤ y′ < x < z′ ≤ z,

• g-good if there are y, z ∈ I with y < x < z and such that g((y′, x)) = g((x, z′)) =
R(g(x)) for every y′, z′ ∈ I with y ≤ y′ < x < z′ ≤ z.

REMARK 5.8 Fairness and goodness are clearly ‘local’ properties depending only
on arbitrarily small neighbourhoods of the point in question. So if g =

∑
j∈J fj ,

j ∈ J , and x ∈ domg(fj) is not an endpoint of domg(fj), then x is g-fair iff it is fj-
fair, and g-good iff it is fj-good. (Recall here that we identify fj with g � domg(fj).)

DEFINITION 5.9 An S4-frame (W,R) is said to be connected if there do not exist
non-empty disjoint R-generated subsets X,Y ⊆W with W = X ∪ Y .

THEOREM 5.10 Let F = (W,R) be a finite connected S4-frame. Then there is a
map g : R→W satisfying:

1. every x ∈ R is g-fair,

2. for each w ∈ W , the set {x ∈ R : g(x) = w, x is g-good} is unbounded in R.
(Consequently, g−1(w) is unbounded in R.)

Proof. Recall that R•wu means that Rwu∧¬Ruw. As F is finite, we can define for
each w ∈W a map νw : R→W by complete induction on |R•(w)|:

νw = Shuffle({w + νu + w : u ∈ R•(w)} ∪ {u : Rwu ∧Ruw} ; w).

This is well defined because |R•(u)| < |R•(w)| for each u ∈ R•(w), the domain of
each map w + νu + w and of each map u can be taken to be an interval of R with
a least and a greatest point (for u it is a singleton interval), and the map w can be
taken to be defined on a singleton interval of R.

Claim.

1. rng(νw) = R(w).

2. Every x ∈ R is νw-fair.

3. Every νw-irrational is νw-good.

Proof of claim. The proof is by induction on |R•(w)|. Inductively assume the
claim for νu, for all u ∈ R•(w). For (1), let u ∈ R(w) be given. If Ruw, the map
u is an ingredient of the shuffle defining νw, and νw(x) = u for any x ∈ domνw(u).
So u ∈ rng(νw). If instead u ∈ R•(w), then inductively, u ∈ R(u) = rng(νu).
Since w + νu + w is another ingredient of νw, we have rng(νu) ⊆ rng(νw). So again,
u ∈ rng(νw). Part 1 is proved.

Now take x ∈ R and suppose that νw(x) = u, say. For part 2, we show that x is
νw-fair. If x is a νw-endpoint, then the definition of νw tells us that either u = w, or
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Rwu and Ruw. In both cases, R(u) = R(w). By lemma 5.5 and part 1, whenever
y < x < z we have

νw((y, z)) = rng(νw) = R(w) = R(u).

It follows that x is νw-fair. If x is not a νw-endpoint, then x is in the interior of the
domain of νu for some u ∈ R•(w). Inductively, x is νu-fair, and hence (see remark 5.8)
it is νw-fair as well.

For part 3, suppose that x is a νw-irrational. Then x is a νw-endpoint, so by
the above, R(u) = rng(νw). By lemma 5.5, νw((y, x)) = νw((x, z)) = R(u) whenever
y < x < z, so plainly x is νw-good. This proves the claim.

Now F is connected and R is reflexive and transitive. It follows that F is path-
connected in the sense that for each u, v ∈ W there are w0, . . . , wn ∈ W (for some
finite n) with w0 = u, wn = v, R(wi, wi+1) for each even i < n, and R(wi+1, wi) for
each odd i < n. Using this and the finiteness of F , it is straightforward to find an
infinite zigzag path through F that visits each point infinitely often. Formally, there
are ui, di ∈W (i ∈ Z) satisfying:

• Ruidi−1 and Ruidi for each i ∈ Z,

• for each w ∈W , the set {i ∈ Z : ui = w} is unbounded in Z.

We now define our desired map g : R→W by

g =
∑
i∈Z

(ui + νui + ui + νdi).

Since the domain of each ui+νui +ui+νdi has a least element and no greatest one, it
follows from proposition 5.1 that dom(g) is order-isomorphic to (R, <), and as usual
we identify the two.

Let x ∈ R be arbitrary. We show that it is g-fair. Fix the unique i ∈ Z such that

x ∈ domg(ui + νui + ui + νdi). (4)

As in §5.2, we identify ui+νui+ui+νdi with g � domg(ui+νui+ui+νdi). If x ∈ dom νui
then it is νui-fair by the claim, and hence (remark 5.8) g-fair. The case where x ∈ νdi
is similar. Suppose x is in the domain of the second ui in (4). Take y ∈ dom νui and
z ∈ dom νdi , so that y < x < z. By lemma 5.4 and part 1 of the claim, whenever
y ≤ y′ < x we have g((y′, x)) = rng(νui) = R(ui), and whenever x < z′ ≤ z we have
g((x, z′)) = rng(νdi) = R(di). Consequently, g((y′, z′)) = R(ui) ∪ {ui} ∪R(di). Since
Ruidi, this is R(ui) — i.e., R(g(x)). It follows that x is g-fair as required. A similar
argument covers the case where x is in the domain of the first ui in (4). We simply
note that the left and right neighbours of x are then νdi−1

and νui , respectively, and
that Ruidi−1. So in all cases, x is g-fair.

Finally, let w ∈ W and r ∈ R. The set {i ∈ Z : ui = w} is unbounded in Z, so
we can take i ∈ Z such that ui = w and r < x for all x ∈ domg(ui + νui + ui + νdi).
Take an νui-irrational x. By the last part of the claim, x is νui-good and hence
(remark 5.8) g-good. Also, g(x) = w and x > r. So {x ∈ R : g(x) = w, x is g-good}
has no upper bound, and a symmetrical argument shows that it has no lower bound
either. 2
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6 Completeness proof

In this section we will prove the main result of the paper:

THEOREM 6.1 The system of §3.1 axiomatises the L-logic of R.

Soundness was shown in theorem 3.1. The proof of completeness will occupy
most of the rest of the paper. We will take a consistent formula ϕ0 and successively
construct modelsM0, . . . ,M5 satisfying it, the final one being a model over R. The
models M0–M2 are exactly as in Shehtman’s axiomatisation of the logic of F, P,2
over Q in [24]. For i < 5, Mi will be a Kripke model (Wi, <i, Ri, hi), but sometimes
we drop the index i. Also, we sometimes identify (notationally)Mi with its domain
Wi.

1. M0 is the canonical model.

2. M1 is a <-generated submodel of M0 satisfying ϕ0. So it is linear and R0-
generated.

3. M2 is got by filtrating all <-clusters ofM1, which consequently become finite.

4. M3 is a finite R-generated submodel of M2 got by selective filtration for <.
We use linearity and the Prior axiom.

5. M4 satisfies M3 ⊆ M4 ⊆ M2 (any such model satisfies ϕ0), and is obtained
using the Prior axiom and induction. It has the property that every two con-
secutive <-clusters C, D in M4 either have an intervening irreflexive point or
share a common configuration (a submodel with certain properties).

6. FinallyM5 is a model of the form (R, h5). Using theorem 5.10, we will construct
a surjective map g : R→M4 such that if we define h5(p) = g−1(h4(p)) for each
atom p, then g : (R, h5)→M4 preserves ϕ0 both ways. So we have our model
of ϕ0 over R.

Now to the details. Let ϕ0 be an L-formula consistent with the system defined
in §3. Fix a finite set Ψ of formulas containing > and Pϕ0 and closed under taking
subformulas.

6.1 Model M0

This is just the canonical model of the system given in §3.1, over the set PV of atoms.
So W0 is the set of all maximal consistent sets of L-formulas. We write Γ,∆,Ξ,Θ, . . .
for arbitrary members of W0. The relations and assignment are defined by:

• Γ <0 ∆ iff ϕ ∈ ∆ for every formula Gϕ ∈ Γ (this is equivalent to each of the
three statements ϕ ∈ ∆⇒ Fϕ ∈ Γ, Hϕ ∈ ∆⇒ ϕ ∈ Γ, and ϕ ∈ Γ⇒ Pϕ ∈ ∆),

• ΓR0 ∆ iff ϕ ∈ ∆ for every formula 2ϕ ∈ Γ (equivalently, ϕ ∈ ∆⇒ 3ϕ ∈ Γ),

• h0(p) = {Γ ∈W0 : p ∈ Γ} for each atom p ∈ PV .

We assume familiarity with basic facts about canonical models — see, e.g., [5, 3] for
details. The most important one is that M0,Γ |= ϕ iff ϕ ∈ Γ, for each Γ ∈ M0 and
each L-formula ϕ.
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LEMMA 6.2 Every <0-cluster in M0 is an R0-generated subset of W0.

Proof. Let C be such a cluster. Let Γ ∈ C, so that C = {Θ ∈ W0 : Γ <0 Θ <0 Γ}.
Let ∆ ∈ W0 and assume that R0Γ∆. We have Γ <0 Γ R0 ∆, so by axiom 4b we
obtain Γ <0 ∆. Similarly, Γ >0 Γ R0 ∆, so by the mirror image of axiom 4b we get
Γ >0 ∆. Hence, ∆ ∈ C. 2

6.2 Model M1

As ϕ0 is consistent, we can take Γ0 ∈ M0 containing ϕ0. Let M1 be the submodel
of M0 with domain W1 = {∆ ∈ M0 : ∆ = Γ0 ∨ ∆ <0 Γ0 ∨ ∆ >0 Γ0}. It follows
from the transitivity and linearity axioms for G,H that M1 is a <0-generated and
>0-generated submodel of M0. By axiom 4a, it is also R0-generated. Hence, M1 is
a generated submodel of M0, so M1,Γ0 |= ϕ0 and ϕ0 is satisfied in M1. Note that
M1 is linear in that M1 |= ∀xy(x = y ∨ x < y ∨ y < x); more than one disjunct can
hold.

LEMMA 6.3 Every <1-cluster in M1 is an R1-generated subset of W1.

Proof. Let C be such a cluster. Now M1 is a generated submodel of M0, so C is
also a <0-cluster inM0. By lemma 6.2, C is an R0-generated subset of W0, so since
M1 ⊆M0, it is an R1-generated subset of W1. 2

6.3 Model M2

This is a certain filtration of M1 through Ψ, invented by Shehtman [24, §3].

6.3.1 Definition of M2

Let ∼ be the following binary relation on M1:

Γ ∼ ∆ ⇐⇒ Γ = ∆ ∨
(
(Γ <1 ∆) ∧ (∆ <1 Γ) ∧ (Γ ∩Ψ = ∆ ∩Ψ)

)
. (5)

As <1 is transitive, ∼ is an equivalence relation. For Γ ∈ W1 we write Γ/∼ for the
equivalence class {∆ ∈ W1 : Γ ∼ ∆}, and for X ⊆ W1 we write X/∼ for the set
{Γ/∼ : Γ ∈ X} of equivalence classes having a non-empty intersection with X. The
domain W2 of M2 is now defined to be the set W1/∼ of ∼-equivalence classes in
M1. The relations on M2 are: <2 is induced existentially from <1, and R2 is the
transitive closure of the relation induced existentially from R1. Formally:

<2 = {(Γ/∼,∆/∼) : Γ,∆ ∈W1, Γ <1 ∆},
R0

2 = {(Γ/∼,∆/∼) : Γ,∆ ∈W1, ΓR1 ∆},
R2 is the transitive closure of R0

2.

We set h2(p) = {Γ/∼ : Γ ∈ W1, p ∈ Γ} for each atom p ∈ PV . This defines the
model M2.

LEMMA 6.4 (filtration) For all Γ ∈ M1 and ψ ∈ Ψ we have M2,Γ/∼ |= ψ iff
M1,Γ |= ψ (iff ψ ∈ Γ). Hence, ϕ0 is satisfied in M2.

Proof. This is proved in [24, lemmas 3.2–3.3]. 2
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6.3.2 <2-clusters in M2

LEMMA 6.5 A subset C ⊆ W2 is a <2-cluster in M2 iff
⋃
C is a <1-cluster in

M1. Every <2-cluster in M2 is a finite R2-generated subset of W2.

Proof. Let Γ,∆ ∈W1. If Γ <1 ∆ then Γ/∼ <2 ∆/∼ by definition of <2. Conversely,
if Γ/∼ <2 ∆/∼ then by definition of <2 there are Γ′,∆′ ∈W1 with Γ ∼ Γ′, ∆ ∼ ∆′,
and Γ′ <1 ∆′. The definition of ∼ gives Γ ≤1 Γ′ and ∆′ ≤1 ∆, so Γ <1 ∆ by
transitivity of <1. We conclude that Γ/∼ <2 ∆/∼ iff Γ <1 ∆.

Let C ⊆ W2. If C is a <2-cluster in M2, let Γ/∼ ∈ C be arbitrary. Then
C = {w ∈W2 : Γ/∼ <2 w <2 Γ/∼}. By the above,⋃

C =
⋃
{w ∈W2 : Γ/∼ <2 w <2 Γ/∼}

= {∆ ∈W1 : Γ <1 ∆ <1 Γ},

a <1-cluster in M1. Conversely, if
⋃
C is a <1-cluster in M1, let Γ ∈

⋃
C. Then⋃

C = {∆ ∈W1 : Γ <1 ∆ <1 Γ}. So

C = {∆/∼ : ∆ ∈
⋃
C}

= {∆/∼ : ∆ ∈W1, Γ <1 ∆ <1 Γ}
= {w ∈W2 : Γ/∼ <2 w <2 Γ/∼},

a <2-cluster in M2. The first part of the lemma follows.
Let C be a <2-cluster. Then C has the form D/∼ for a <1-cluster D =

⋃
C,

and by definition of ∼ we have Γ ∼ ∆ iff Γ ∩Ψ = ∆ ∩Ψ for each Γ,∆ ∈ D. Hence,
the map f : C → ℘(Ψ) given by f(Γ/∼) = Γ ∩ Ψ is well defined and one-one, so
|C| ≤ |℘(Ψ)| and C is finite (this is [24, lemma 3.4]).

Let w ∈ C and u ∈ W2, with R0
2wu. Pick Γ ∈ w and ∆ ∈ u with R1Γ∆. By the

above and lemma 6.3,
⋃
C is R1-generated, so ∆ ∈

⋃
C, and therefore u ∈ C. It

follows easily that C is an R2-generated subset of W2 (see also [24, lemma 3.6]). 2

By [24, lemma 3.3], the frame of M2 validates all axioms of the system of §3.1
except perhaps axiom 5. The following can now be obtained from [24, lemmas 3.5–
3.6].

LEMMA 6.6 (λ, ρ-lemma) Let w ∈M2.

1. If w is <2-reflexive then R2(w) is a subset of a <2-cluster.

2. If w is <2-irreflexive, then there are unique <2-clusters λ(w), ρ(w) such that
R2(w) = λ(w) ∪ {w} ∪ ρ(w). For every t ∈ M2, u ∈ λ(w), and v ∈ ρ(w), we
have t <2 w iff t <2 u, and t >2 w iff t >2 v.

Taking t = u and t = v, we obtain u <2 w <2 v for every u ∈ λ(w) and v ∈ ρ(w).
We now write down formulas to define individual elements within a <2-cluster.

DEFINITION 6.7 For w ∈ M2 let χw =
∧

(Ψ ∩ Γ) ∧ ¬
∨

(Ψ \ Γ) for arbitrary
Γ ∈ w. (By convention,

∧
∅ = > and

∨
∅ = ⊥.)
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By definition of ∼ in (5), this definition is independent of the choice of Γ, and
obviously χw ∈ Γ. The set {χw : w ∈M2} is finite, because Ψ is finite.

REMARK 6.8 If w, u ∈ M2, say w = Γ/∼ and u = ∆/∼, and χw, χu ∈ Θ for
some Θ ∈M0, then Ψ ∩ Γ = Ψ ∩∆, and so χw is equivalent to χu.

These formulas are quite useful — firstly in the following lemma.

LEMMA 6.9 Let C be a <2-cluster inM2. Then (C,R2 � C) is a connected frame.

Proof. Suppose on the contrary that C is a <2-cluster in M2 that is the union
of disjoint non-empty R2-generated sets X,Y . Let α =

∨
w∈X χw. Then for any

Γ ∈
⋃
C we have

α ∈ Γ ⇐⇒ Γ/∼ ∈ X. (6)

Choose any Γ ∈
⋃
C and let

∆0 = {3α,3¬α} ∪ {Fγ, Pγ : γ ∈ Γ}.

We show that this is consistent. Since Γ is closed under conjunction, it suffices to
take arbitrary γ ∈ Γ and show that δ = 3α ∧3¬α ∧ Fγ ∧ Pγ is consistent. Choose
any ΓX ∈

⋃
X and ΓY ∈

⋃
Y . By lemma 6.5,

⋃
C is a <1-cluster in M1. So

Γ < ΓX < Γ and similarly for ΓY . Now α ∧ Fγ ∈ ΓX and ¬α ∧ Fγ ∈ ΓY . So
F (α ∧ Fγ), F (¬α ∧ Fγ) ∈ Γ. By axiom 5, F (3α ∧ 3¬α ∧ Fγ) ∈ Γ. By temporal
axioms, GPγ ∈ Γ as well, so Fδ ∈ Γ. If δ is inconsistent then ¬δ and hence G¬δ are
provable, so G¬δ ∈ Γ, contradicting its consistency. So δ is consistent.

So we may take ∆ ∈M0 with ∆ ⊇ ∆0. By definition of ∆0 we have Γ <0 ∆ <0 Γ,
so ∆ ∈ M1 and ∆ ∈

⋃
C. As 3α,3¬α ∈ ∆, we may find ∆X ,∆Y ∈ R0(∆) with

α ∈ ∆X and ¬α ∈ ∆Y . Then ∆X ,∆Y ∈ R1(∆) as M1 is a generated submodel of
M0. By lemma 6.3,

⋃
C is an R1-generated subset ofM1, so ∆X ,∆Y ∈

⋃
C as well.

Let w = ∆/∼, wX = ∆X/∼, and wY = ∆Y /∼. By (6), wX ∈ X and wY ∈ Y .
By definition of R2, we have wX , wY ∈ R2(w). Since w ∈ X ∪ Y , this contradicts
that X and Y are disjoint and R2-generated. 2

6.3.3 Hinterland

DEFINITION 6.10 We define the hinterland H(Γ) of a set Γ ∈M1 to be the set
R1(Γ)/∼. It is the set of elements of M2 that Γ ‘directly sees’.

Plainly, H(Γ) ⊆ R2(Γ/∼), and by lemma 6.6 the latter is contained in either a single
<2-cluster or the union of two such clusters with a singleton. So by lemma 6.5, H(Γ)
is finite.

The following is trivial but will be absolutely vital later. In a way, our entire
proof hinges on it.

COROLLARY 6.11 Let Γ ∈ M1, w = Γ/∼, and 3ψ ∈ Ψ, and suppose that
M2, w |= 3ψ. Then M2, u |= ψ for some u ∈ H(Γ).

Proof. AsM2, w |= 3ψ, by lemma 6.4 we haveM1,Γ |= 3ψ. So there is ∆ ∈ R1(Γ)
with M1,∆ |= ψ. Let u = ∆/∼ ∈ H(Γ). By the lemma again, M2, u |= ψ. 2

This completes our study of M2.
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6.4 Model M3

We now do a selective filtration of M2 to deliver our first verifiably finite model:
an R2-generated submodel M3 ⊆ M2 satisfying ϕ0. We select the points of M2 to
include in M3 in four steps.

1. Let Λ0 = {Pϕ : ϕ is satisfied in M1}. Then Λ0 is consistent. For suppose that
ϕ0, . . . , ϕn−1 are satisfied in M1 at ∆0, . . . ,∆n−1, say. Choose i < n such that
|{j < n : ∆j ≤1 ∆i}| is maximal. It follows by linearity and transitivity of <1

that for every j < n we have ∆j ≤1 ∆i. By lemma 3.2, F> ∈ ∆i, so there
is Γ ∈ M1 with ∆i <1 Γ. Then ∆0, . . . ,∆n−1 <1 Γ, so Pϕ0, . . . , Pϕn−1 ∈ Γ,
proving consistency of Λ0.

Let Λ ⊇ Λ0 be maximal consistent. Then Λ ∈M0. For every Γ ∈M1 we have
ϕ ∈ Γ ⇒ Pϕ ∈ Λ0 ⊆ Λ, so Γ <0 Λ. This means that Λ ∈ M1 and that Λ is a
<1-greatest point in M1. Hence also, Λ <1 Λ, so Λ lies in a <1-cluster C∞ of
M1. It is an R1-generated subset of W1. We select the whole of C∞/∼, a finite
<2-cluster and an R2-generated subset of W2, and add it to M3.

2. Do mirror image of step 1, calling the cluster C−∞. Possibly, C−∞ = C+∞.

3. Now consider in turn each ψ ∈ Ψ (if any) such that ψ and FG¬ψ are both
satisfied inM1. Then some (unique irreflexive) ∆ ∈M1 contains G¬ψ∧HFψ.
Such a ∆ is plainly irreflexive, and by linearity it is unique. For existence, using
linearity and (by lemma 3.2) lack of a least element of <1 we may find Γ ∈M1

containing Fψ∧FG¬ψ. By the Prior axiom, which is provable by corollary 3.5,
F (G¬ψ ∧HFψ) ∈ Γ, so there is ∆ >1 Γ as required.

Select the whole finite set R2(∆/∼) and add it to M3.

4. Also do mirror image of step 3.

Plainly, M3 is a non-empty finite R2-generated submodel of M2.

DEFINITION 6.12 For models M ⊆ N , we write M �Ψ N if M, w |= ψ iff
N , w |= ψ for every w ∈M and ψ ∈ Ψ.

The following is fairly standard.

LEMMA 6.13 Let M = (W,<,R, h) be any R2-generated submodel of M2 extend-
ing M3. Then M�Ψ M2, and ϕ0 is satisfied in M. Moreover, if w ∈M, Fψ ∈ Ψ,
and M, w |= Fψ, then

1. there is u ∈ C∞/∼ with M, u |= ψ, or

2. there is irreflexive u ∈ M with u > w, and v ∈ M with w < v ≤ u R v and
M, v |= ψ.

A mirror image holds for formulas Pψ ∈ Ψ.

Proof. We prove that M �Ψ M2 by induction on ψ. The main cases are Fψ, Pψ,
and 3ψ. For the forward direction, if M, w |= Fψ then there is u > w in M with
M, u |= ψ. Inductively, M2, u |= ψ, and plainly, u >2 w because M ⊆M2. Hence,
M2, w |= Fψ. The cases Pψ and 3ψ are similarly proved.
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We consider the converse direction now. If M2, w |= 3ψ then M2, u |= ψ for
some u ∈ R2(w). As M is an R2-generated submodel of M2, u ∈ M as well, and
Rwu. Inductively, M, u |= ψ, so M, w |= 3ψ.

Assume now that M2, w |= Fψ. Take any Γ ∈ w, so that w = Γ/∼. By
lemma 6.4, Fψ ∈ Γ.

There are now two cases. Suppose first that GFψ ∈ Γ. Referring to the definition
of M3, we have Fψ ∈ Λ as Γ <1 Λ, so there is Λ′ >1 Λ in M1 containing ψ. Let
u = Λ′/∼. By lemma 6.4 again, M2, u |= ψ. But Λ′ <1 Λ as well, because Λ is
<1-maximal, so Λ′ ∈ C∞ and u ∈ C∞/∼ ⊆M3 ⊆M. Inductively, M, u |= ψ. Also,
Λ′ >1 Λ >1 Γ, so u >2 w and u > w in M. Hence, M, w |= Fψ.

Alternatively, FG¬ψ ∈ Γ. By definition of M3, there is ∆ ∈ M1 with G¬ψ ∧
HFψ ∈ ∆ and R2(∆/∼) ⊆ M3. If Γ ≥1 ∆ then G¬ψ ∈ Γ, contradicting its
consistency. So by linearity, Γ <1 ∆.

Let C = {Ξ ∈ R1(∆) : Ξ <1 ∆}. Then C 6= ∅ by the mirror image of axiom 4d.
Let Ξ ∈ C. Then Fψ ∈ Ξ, so there is Θ >1 Ξ containing ψ. Since G¬ψ ∈ ∆, by
linearity we must have Θ ≤1 ∆, so by axiom 4c, Θ ∈ C ∪{∆}. By axiom 4b, Γ <1 Θ.

Let v = Θ/∼ ∈M2. Then v ∈ R2(∆/∼) ⊆M3 ⊆M, and w < v. By lemma 6.4,
M2, v |= ψ, and inductively, M, v |= ψ. Hence, M, w |= Fψ.

So in either case we have M, w |= Fψ as required. This also establishes the
‘moreover’ part: in (1) we have u = Λ′/∼ and in (2) u = ∆/∼ and v = Θ/∼. The
case of Pψ is handled similarly. This completes the induction.

As ϕ0 is satisfied inM1, we must have Pϕ0 ∈ Λ, and by lemma 6.4,M2,Λ/∼ |=
Pϕ0. Recall that Pϕ0 ∈ Ψ. By the above, M,Λ/∼ |= Pϕ0, and it follows that ϕ0 is
satisfied in M. 2

6.5 Links

The model M3 can have consecutive <3-clusters that are actually adjacent, with no
intervening point. In our eventual model over R, <-clusters correspond to open sets,
and we have the problem of finding something suitable to put between them. So we
would like to arrange, possibly in a larger model thanM3, that any two such clusters
have something in common that we can use as intervening material. This common
something will be a certain small submodel, which we call a link.

Given Γ ∈ M1, consider two finite subsets of M2: R2(Γ/∼), and its subset
H(Γ) = R1(Γ)/∼. The first is dependent on R2 and the details of this are not
available to Γ. So let us focus on the second, H(Γ). We would like to find a formula
γ ∈ Γ that determines the isomorphism type of the frame HΓ = (H(Γ), R2 � H(Γ)),
in the sense that H∆

∼= HΓ for any ∆ containing γ. We would also like γ to determine
some of the formulas true at points in HΓ. Then we will be able to use the Prior
axiom to find faithful copies of HΓ in adjacent clusters.

It is not clear how to write such a γ in general, because there may be w, u ∈ H(Γ)
with R2(w, u) but no ‘witnesses’ ∆ ∈ w, Θ ∈ u with R1∆Θ. However, if for every
∆ ∈ R1(Γ) and u ∈ H(Γ) there exists Θ ∈ u with R1∆Θ — a property that can be
enforced by a formula — then R2 � H(Γ) is forced to be the biggest possible relation,
H(Γ)×H(Γ). The isomorphism type of HΓ is then determined.
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It may not be immediately obvious that there are any Γ like this, but in fact they
are quite common. Any Γ has this property if H(∆) = H(Γ) for every ∆ ∈ R1(Γ), a
condition that holds ifR•1(Γ) = ∅, and more generally ifH(Γ) is of minimal cardinality
in some suitable sense. We now formalise this and take it further.

DEFINITION 6.14 Let Γ ∈M1.

1. Γ is said to be a link if H(Γ) = H(∆) for every ∆ ∈ R1(Γ).

2. We write ηΓ =
(
2
∨
w∈H(Γ) χw

)
∧
(∧

w∈H(Γ) 23χw
)
. (See definition 6.7 for χw.)

3. If ∆ ∈ M1, then Γ,∆ are said to be similar if ηΓ and η∆ are equivalent (they
lie in the same members of M0).

Because there are only finitely many formulas χw, there are only finitely many simi-
larity types of elements of M1.

LEMMA 6.15 For Γ,∆ ∈ M1, suppose that ηΓ, η∆ ∈ Θ for some Θ ∈ M0. Then
ηΓ and η∆ are equivalent.

Proof. Let w ∈ H(Γ) be arbitrary. As ηΓ ∈ Θ, we have 23χw ∈ Θ, and reflexivity
of R0 yields 3χw ∈ Θ. So there is Ξ ∈ R0(Θ) containing χw. But η∆ ∈ Θ too,
so 2

∨
u∈H(∆) χu ∈ Θ and

∨
u∈H(∆) χu ∈ Ξ. Take u ∈ H(∆) with χu ∈ Ξ. By

remark 6.8, χu is equivalent to χw.
We conclude that for every w ∈ H(Γ) there is u ∈ H(∆) such that χw is equivalent

to χu, and (by symmetry) vice versa. It is now plain that ηΓ is equivalent to η∆. 2

LEMMA 6.16 1. Any R1-generated subset of M1 contains a link.

2. Any link is <1-reflexive.

3. If Γ ∈M1 is a link then ηΓ ∈ Γ.

4. If Γ ∈ M1 is arbitrary (not necessarily a link), ∆ ∈ M1 is <1-reflexive, and
ηΓ ∈ ∆, then ∆ is a link and ∆ is similar to Γ.

Proof. 1. Let X ⊆ M1 be R1-generated. Choose Γ ∈ X such that |H(Γ)| is
least possible. By transitivity of R1, if ∆ ∈ R1(Γ) then R1(∆) ⊆ R1(Γ), so
H(∆) ⊆ H(Γ). As X is R1-generated, ∆ ∈ X. So by minimality of |H(Γ)| we
have H(∆) = H(Γ). As ∆ was arbitrary, Γ is a link.

2. Let Γ be a link. Using axiom 4d, choose ∆ ∈ R1(Γ) with Γ <1 ∆. Then
Γ/∼ ∈ H(Γ) = H(∆), so there is Θ ∈ R1(∆) with Θ ∼ Γ. By axiom 4b,
Γ <1 Θ. If Θ = Γ, then plainly Γ <1 Γ as required. Otherwise, as Θ ∼ Γ, by
definition of ∼ we have Γ <1 Θ <1 Γ, and transitivity gives Γ <1 Γ again.

3. Recall that
ηΓ =

(
2

∨
w∈H(Γ)

χw

)
∧
( ∧
w∈H(Γ)

23χw

)
.

Assume that Γ is a link. Take any ∆ ∈ R1(Γ). To prove that ηΓ ∈ Γ, it is
enough to show that

∨
w∈H(Γ) χw ∈ ∆ and that 3χw ∈ ∆ for every w ∈ H(Γ).

Let u = ∆/∼ ∈ H(Γ). First, χu ∈ ∆, so
∨
w∈H(Γ) χw ∈ ∆. Second, take

arbitrary w ∈ H(Γ). As Γ is a link, H(Γ) = H(∆), so w ∈ H(∆) and there is
Θ ∈ R1(∆) ∩ w. We have χw ∈ Θ, so 3χw ∈ ∆ as required.
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4. Take any Θ ∈ R1(∆). Certainly, H(Θ) ⊆ H(∆). To show the converse, take any
u ∈ H(∆) and pick Ξ ∈ R1(∆)∩u. By assumption, ηΓ ∈ ∆, so

∨
w∈H(Γ) χw ∈ Ξ,

and hence χw ∈ Ξ for some w ∈ H(Γ). But 23χw ∈ ∆, so 3χw ∈ Θ and there
is Ξ′ ∈ R1(Θ) containing χw.

Now ∆ is <1-reflexive. It follows from axiom 4b that R1(∆) is contained in a
<1-cluster. Since Ξ,Ξ′ ∈ R1(∆), we have Ξ <1 Ξ′ <1 Ξ. Since χw ∈ Ξ ∩ Ξ′,
we also have Ξ ∩ Ψ = Ξ′ ∩ Ψ. We conclude that Ξ ∼ Ξ′. Hence, Ξ′ ∈ u, so
u ∈ H(Θ). This proves that ∆ is a link.

By the preceding part, η∆ ∈ ∆, and we were given that ηΓ ∈ ∆. By lemma 6.15,
ηΓ, η∆ are equivalent. So ∆ is similar to Γ.

2

LEMMA 6.17 Let Γ ∈M1 be a link. Then R2(w, u) for any w, u ∈ H(Γ).

Proof. Let w, u ∈ H(Γ) be given. Choose ∆ ∈ R1(Γ) ∩ w. As Γ is a link, u ∈
H(Γ) = H(∆), so there is Θ ∈ R1(∆)∩ u. Since R1∆Θ, we have R2wu by definition
of R2. 2

So the hinterland of a link has a fixed frame structure. Similar links also share some
model properties. It can be shown that there is a bijection from H(Γ) to H(∆) that
preserves the truth in M2 of all formulas in Ψ. However, the following more limited
statement is sufficient for our later work.

LEMMA 6.18 Let Γ,∆ ∈M1 be similar links, let w ∈ H(Γ), and u ∈ H(∆). Then
M2, w |= 3ψ iff M2, u |= 3ψ for every formula 3ψ ∈ Ψ.

Proof. By lemma 6.17, we can suppose without loss of generality that w = Γ/∼ and
u = ∆/∼. We have ηΓ, η∆ ∈ Γ ∩∆ by the hypotheses and lemma 6.16(2).

Suppose that M2, w |= 3ψ. By the filtration lemma (6.4), 3ψ ∈ Γ. Take
Γ′ ∈ R1(Γ) with ψ ∈ Γ′ and let v = Γ′/∼ ∈ H(Γ). Then 23χv ∈ ∆, so there is
∆′ ∈ R1(∆) containing χv. By definition of χv we have Ψ ∩ Γ′ = Ψ ∩∆′, so ψ ∈ ∆′

and hence 3ψ ∈ ∆. The filtration lemma yields M2, u |= 3ψ. The converse is
similar. 2

6.6 Model M4

Our next model arranges that any two consecutive clusters either have an irreflexive
point between them, or contain similar links.

DEFINITION 6.19 1. For a modelM = (W,<,R, h) and X,Y ⊆W , we write
X < Y if x < y for every x ∈ X and y ∈ Y . We abbreviate {x} < Y to x < Y ,
etc.

2. If X,Y ⊆ M2, we say that X and Y contain similar links if there is a link
Γ ∈ X and a link ∆ ∈ Y that is similar to Γ.
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3. For <2-clusters C,D ⊆M2 with C <2 D (possibly, C = D), let ](C,D) be the
(finite) number of similarity types of links in the set

{Θ ∈M1 : Γ <1 Θ <1 ∆},

where Γ ∈
⋃
C and ∆ ∈

⋃
D are arbitrary. The value does not depend on the

choice of Γ,∆ (since
⋃
C,
⋃
D are <1-clusters). Since

⋃
C is R1-generated by

lemma 6.3, by lemma 6.16(1) it contains a link, so ](C,D) > 0.

The following important technical lemma is needed just below.

LEMMA 6.20 Let C be a <2-cluster in M2, and let w ∈ M2 with C <2 w /∈ C.
Then there is a <2-irreflexive u ∈M2 such that:

1. C <2 u ≤2 w,

2.
⋃
C and

⋃
λ(u) contain similar links,

3. if w is <2-irreflexive and u <2 w, then ](ρ(u), λ(w)) < ](C, λ(w)).

(See lemma 6.6 for λ, ρ.) The mirror image also holds.

Proof. By lemma 6.5,
⋃
C is a <1-cluster in M1, so by lemma 6.3 it is an R1-

generated subset of M1. Using lemma 6.16(1), pick a link Γ ∈
⋃
C. Also pick any

∆ ∈ w. Since C <2 w /∈ C, we have Γ <1 ∆ 6<1 Γ. So there is a formula δ with

δ ∈ Γ and G¬δ ∈ ∆. (7)

If w is <2-irreflexive, then ∆ is <1-irreflexive, and in that case we can suppose that
Hδ ∈ ∆ as well.

As Γ is a link, lemma 6.16 yields ηΓ ∈ Γ. So ηΓ ∧ δ ∈ Γ and G¬(ηΓ ∧ δ) ∈ ∆,
and as Γ <1 Γ, we obtain F (ηΓ ∧ δ) ∧ FG¬(ηΓ ∧ δ) ∈ Γ. By the Prior axiom,
F (G¬(ηΓ ∧ δ) ∧HF (ηΓ ∧ δ)) ∈ Γ, and this lets us take Θ >1 Γ in M1 with

G¬(ηΓ ∧ δ) ∧HF (ηΓ ∧ δ) ∈ Θ. (8)

So Θ is <1-irreflexive. Let u = Θ/∼. Then u is <2-irreflexive. Since Γ <1 Θ, we
have C <2 u. Since G¬δ ∈ ∆ and HFδ ∈ Θ, we see that ∆ 6<1 Θ. By linearity,
Θ ≤1 ∆, so u ≤2 w.

As in lemma 6.13, it follows from (8) that some Θ′ ∈ {Θ}∪
⋃
λ(u) contains ηΓ∧δ.

Bearing in mind that ηΓ implies 2ηΓ, we see that some Ξ ∈
⋃
λ(u) contains ηΓ. As⋃

λ(u) is a <1-cluster, Ξ <1 Ξ. So by lemma 6.16(4), Ξ is a link similar to Γ.
Suppose that w is irreflexive and u <2 w, so that ρ(u) <2 λ(w) by lemma 6.6

(possibly ρ(u) = λ(w)). We have Hδ ∈ ∆ in this case, and by (8), G¬(ηΓ∧δ) ∈ Θ. So
ηΓ /∈ Ξ′ for every Ξ′ ∈M1 with Θ <1 Ξ′ <1 ∆. Therefore, there is no link Ξ′ similar
to Γ with Θ <1 Ξ′ <1 ∆. Since there certainly is such a link with Γ <1 Ξ′ <1 ∆,
namely Ξ′ = Γ, we see that ](ρ(u), λ(w)) < ](C, λ(w)). 2

DEFINITION 6.21 Let M = (W,<,R, h) be a submodel of M2.

1. We say that <-clusters C,D in M are
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• consecutive if C 6= D and {u ∈M : C < u < u < D} = C ∪D,

• adjacent if C 6= D and {u ∈M : C < u < D} = C ∪D.

In each case, C < D. Consecutive clusters have no <-reflexive points between
them, but may have <-irreflexive ones. Adjacent clusters have nothing between
them.

2. We say that M is good if it is finite, R2-generated, and for every <2-cluster
C ⊆M2, if C ∩M 6= ∅ then C ⊆M.

3. We say that M is perfect if it is good and
⋃
C and

⋃
D contain similar links

whenever C,D are adjacent <-clusters in M.

LEMMA 6.22 Any good submodel of M2 extends to a perfect submodel of M2.

Proof. Let M = (W,<,R, h) be a good submodel of M2. A defect in M is a pair
(C,D) of adjacent <-clusters in M such that

⋃
C and

⋃
D do not contain similar

links. Let
d(M) =

∑{
](C,D) : (C,D) a defect of M

}
.

We prove the lemma by induction on d(M), which is finite because M is. If it
is zero then M has no defects and is therefore perfect, and there is nothing to
prove. So assume that d(M) > 0 and assume the lemma for all good M′ ⊆ M2

with d(M′) < d(M). Pick any defect (C,D) in M, and pick any w ∈ D. Then
C <2 w 6<2 C. Let u ∈ M2 be as provided by lemma 6.20, and let N be the
submodel of M2 consisting of M together with R2(u). We let < denote <2 � N . So

{v ∈ N : C < v < D} = C ∪ λ(u) ∪ {u} ∪ ρ(u) ∪D.
Plainly, N is good. If d(N ) < d(M), then inductively, N , and hence M, extends to
a perfect submodel of M2, which completes the proof.

So suppose that d(N ) ≥ d(M). Outside the range C–D, all defects and their
]-values are the same in M and N . So let us consider the remaining potential
defects in N . In N , we have C < u < D. As u is <2-irreflexive, u /∈ C ∪ D. So
(C,D) is no longer a defect in N . Nor is (C, λ(u)) a defect, because

⋃
C and

⋃
λ(u)

contain similar links (possibly even C = λ(u)). So (ρ(u), D) must be a defect in
N , and ](ρ(u), D) ≥ ](C,D). Since C <2 ρ(u), by definition of ] we must have
](ρ(u), D) ≤ ](C,D), so ](ρ(u), D) = ](C,D) and d(N ) = d(M).

Now u is irreflexive, so D 6<2 u <2 D. Applying the mirror image of lemma 6.20,
we obtain irreflexive v ∈ M2 with u ≤2 v <2 D, where

⋃
ρ(v) and

⋃
D contain

similar links. Since (ρ(u), D) is a defect in N , we have u 6= v, so u <2 v. By the
lemma, ](ρ(u), λ(v)) < ](ρ(u), D).

Let N ′ be obtained from N by adding R2(v), so that

{v ∈ N ′ : u ≤ v < D} = {u} ∪ ρ(u) ∪ λ(v) ∪ {v} ∪ ρ(v) ∪D,
where we write < for <2 � N ′. If (ρ(u), λ(v)) is a defect in N ′ then ](ρ(u), λ(v)) <
](ρ(u), D). Also, (ρ(v), D) is not a defect in N ′. It now follows that d(N ′) < d(N ) =
d(M). Inductively, there is perfect P with N ′ ⊆ P ⊆ M2. Since M ⊆ P, this
completes the proof. 2

AsM3 is plainly good, by the lemma we may choose a perfectM4 withM3 ⊆M4 ⊆
M2. By lemma 6.13, M4 �Ψ M2 and ϕ0 is satisfied in M4.
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6.7 Model M5 over R
Fix an enumeration without repetitions of the <4-clusters inM4 as C0, . . . , Ck, with
k ≥ 0 and

C0 <4 C1 <4 · · · <4 Ck.

We have C0 = C−∞/∼ and Ck = C+∞/∼. Possibly, k = 0 and C0 = Ck.

DEFINITION 6.23 Let i < k. As M4 is perfect, (Ci, Ci+1) is not a defect, so
there are only two possibilities.

1. There is u ∈ M4 with Ci <4 u <4 Ci+1 and u /∈ Ci ∪ Ci+1. Then u is not in
any <4-cluster, so is irreflexive. We must have Ci = λ(u) and Ci+1 = ρ(u).
It follows that u is unique. We define ui to be this u, and we say that Ci is
right-open and Ci+1 is left-open.

2.
⋃
Ci and

⋃
Ci+1 contain similar links. Let ∆i ∈

⋃
Ci and Σi+1 ∈

⋃
Ci+1 be

similar links, and define
di = ∆i/∼,

si+1 = Σi+1/∼.
(9)

In this case, we say that Ci is right-closed and Ci+1 is left-closed.

We also say that C0 is left-open and Ck right-open.

DEFINITION 6.24 Let i ≤ k.

1. Plainly, (Ci, R4 � Ci) is a finite S4-frame, and by lemma 6.9 it is connected.
Choose fi : R → Ci as per theorem 5.10. By the theorem, for each w ∈ Ci we
can pick xw ∈ R with fi(xw) = w. As Ci is finite, there are bounds l, r ∈ R
with l < xw < r for all w ∈ Ci. If Ci is left-closed, by the theorem we can
assume further that l is fi-good and fi(l) = si. Similarly, if Ci is right-closed
we can suppose that r is fi-good and fi(r) = di. To simplify notation, by some
scaling we can assume that l = 0 and r = 1. In summary:

(a) fi((0, 1)) = Ci,

(b) if Ci is left-closed then fi(0) = si and 0 is fi-good,

(c) if Ci is right-closed then fi(1) = di and 1 is fi-good.

2. If Ci is right-closed, then as ∆i is a link, lemma 6.17 tells us that R4 relates every
two points of H(∆i), so (H(∆i), R4 � H(∆i)) is trivially a finite connected S4-
frame. Let f ′i : R→ H(∆i) be a map satisfying the conditions of theorem 5.10.

3. Now define a map gi from an interval of R into M4 as follows. First suppose
i = 0. Recall that C0 is left-open.

(a) If C0 is right-open, define g0 = f0.

(b) If C0 is right-closed, define g0 = f0 � (−∞, 1] + f ′0.

Note that dom g0 is an open interval of R. We are not concerned about exactly
which interval it is. Now suppose 1 ≤ i ≤ k.

(a) If Ci is left-open and right-open, define gi = ui−1 + fi.
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(b) If Ci is left-open and right-closed, define gi = ui−1 + fi � (−∞, 1] + f ′i .

(c) If Ci is left-closed and right-open, define gi = fi � [0,∞).

(d) If Ci is left-closed and right-closed, define gi = fi � [0, 1] + f ′i .

Note that dom gi is an interval of R order-isomorphic to [0, 1).

4. Finally let g =
∑

i≤k gi. By proposition 5.1(1), the domain of g can be identified
with R, and we will regard g as a map g : R→M4.

EXAMPLE 6.25 An example of the construction is shown in figure 1. In the figure,
C0 and C4 are left- and right-open, C1 is left-open and right-closed, C2 is left- and
right-closed, and C3 is left-closed and right-open. The element d2 is the small dot
inside the square in C2. The square itself is H(∆2). The square inside C3 is H(Σ3)
— we use another square because Σ3 is similar to ∆2 — and s3 is the small dot inside
it. Similarly, the big circles inside C1 and C2 are H(∆1) and H(Σ2), respectively. We
can see that the circle H(∆1) is used in a sense as intervening material for g between
C1 and C2 via f ′1, as intimated earlier. The points numbered 1–5 will be used in the
lemma below. They exemplify all the different kinds of point as far as the definition
of g is concerned. Points of types 1–3 are g-fair, but points of type 4 are not, and
points of type 5 need not be.
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Figure 1: Example of parts of g : R→M4 when k = 4

Plainly, g is order preserving: if x < y in R then g(x) <4 g(y). As in §5.2, for each
i ≤ k we identify the map gi with g � domg(gi), so that gi becomes a restriction of g,
and dom(gi) ⊆ R. We will further suppose in the same way that fi, f

′
i are restrictions

of gi, so their domains are subsets of R as well.
We define an assignment h5 into R by h5(p) = g−1(h4(p)), for each atom p. We

let M5 = (R, h5), our final model. We now prove the main ‘truth lemma’.

LEMMA 6.26 For every ψ ∈ Ψ and x ∈ R we have M5, x |= ψ iff M4, g(x) |= ψ.

Proof. By induction on ψ. The lemma for atomic ψ is immediate from the definition
of h5, and the boolean cases are easy. The main cases are Fψ, Pψ, and 3ψ. Since
Ψ is closed under subformulas, ψ ∈ Ψ as well. If M5, x |= Fψ then there is y ∈ R
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with y > x and M5, y |= ψ. Inductively, M4, g(y) |= ψ, and as g is order preserving
we have g(x) <4 g(y), so M4, g(x) |= Fψ.

Conversely, suppose thatM4, g(x) |= Fψ. By lemma 6.13, there are two possibil-
ities. The first is thatM4, u |= ψ for some u ∈ C∞/∼ = Ck. By theorem 5.10, there
are arbitrarily large y ∈ dom fk with fk(y) = u. As Ck is right-open, by definition of
gk there are arbitrarily large y ∈ dom gk with gk(y) = u. The final summand of g is
gk, so there are arbitrarily large y ∈ R with g(y) = u. Choose such a y with y > x.
Inductively, M5, y |= ψ, and hence M5, x |= Fψ.

The second possibility according to the lemma is that there is some <4-irreflexive
u ∈ M4 with u >4 g(x), and v ∈ M4 with g(x) <4 v ≤4 u R4 v and M4, v |= ψ.
The only irreflexive points in M4 are the ui, so u = ui for some unique i < k. By
definition of g, there is unique y ∈ R with g(y) = ui. Then x < y — for otherwise,
y ≤ x, so as g is order preserving, ui = g(y) ≤4 g(x) <4 ui, contradicting the
irreflexivity of ui. If v = u, we haveM5, y |= ψ by the inductive hypothesis, yielding
M5, x |= Fψ as required. If v <4 u, then since R4uv we have v ∈ λ(u) = Ci. Now by
theorem 5.10, there are arbitrarily large z ∈ dom fi with fi(z) = v. As Ci is plainly
right-open, there are arbitrarily large z ∈ dom gi with gi(z) = v. By considering the
part gi + gi+1 of the sum defining g, we see that there are points z < y arbitrarily
close to y and with g(z) = v. So we may choose such a z with z > x. As before,
M5, z |= ψ by inductive hypothesis, so M5, x |= Fψ.

The case of Pψ is similar. Finally we consider the case of 3ψ. Let x ∈ R.

Claim. If x is g-fair then M5, x |= 3ψ iff M4, g(x) |= 3ψ.
Proof of claim. If x is g-fair, then g((y, z)) = R4(g(x)) for all large enough y < x
and small enough z > x. If M5, x |= 3ψ then choose such y, z, and choose t ∈
(y, z) with M5, t |= ψ. Then g(t) ∈ R4(g(x)), and inductively, M4, g(t) |= ψ. So
M4, g(x) |= 3ψ.

Conversely, if M4, g(x) |= 3ψ then choose w ∈ R4(g(x)) with M4, w |= ψ. Let
y < x < z in R be given. By g-fairness of x we have R4(g(x)) ⊆ g((y, z)), so there is
t ∈ (y, z) with g(t) = w. Inductively, M5, t |= ψ. So M5, x |= 3ψ by semantics of 3
in M5. This proves the claim.

We now divide into five subcases, according to how g(x) is determined. The cases
are illustrated by the points labelled 1–5 in figure 1. We leave it to the reader to
confirm that all cases have been covered.

1. First suppose g(x) = ui for some i < k. So x is the least element of dom gi+1.
We show that x is g-fair. As ui is defined, Ci is right-open and Ci+1 is left-
open. So just before x, g is like the final part of fi, and just after x it is like
the initial part of fi+1. It follows from the definition of fi, fi+1 that f−1

i (w) is
unbounded in dom fi for each w ∈ Ci, and f−1

i+1(w) is unbounded in dom fi+1

for each w ∈ Ci+1. So for any y ∈ dom gi and z ∈ dom gi+1 \ {x} we have
g((y, z)) = Ci ∪ {ui} ∪ Ci+1 = R4(ui). So indeed, x is g-fair. By the claim,
M5, x |= 3ψ iff M4, g(x) |= 3ψ.

2. Next suppose that x is in the interior of the part of dom fi within dom g, for
some i ≤ k. By theorem 5.10, x is fi-fair, and by remark 5.8 it follows that x
is g-fair. The claim now gives M5, x |= 3ψ iff M4, g(x) |= 3ψ.
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3. Suppose x ∈ dom fi is an upper boundary point, so that Ci is right-closed and
g(x) = di. As 1 is fi-good, g((y, x)) = fi((y, x)) = R4(di) for all large enough
y < x. By definition of g, if z > x is small enough then z ∈ dom f ′i and so
g((x, z)) = f ′i((x, z)) ⊆ H(∆i) ⊆ R4(di). Consequently, for all large enough
y and small enough z with y < x < z, we have g(y, z) = R4(di) ∪ {di} ∪
H(∆i) = R4(di). Once again, x is g-fair, and the claim yields M5, x |= 3ψ iff
M4, g(x) |= 3ψ.

4. Suppose x ∈ dom fi is a lower boundary point, so that Ci is left-closed and
g(x) = si. This case is more intricate. Clearly, i > 0, Ci−1 is right-closed, and
∆i−1 and Σi are similar links.

Suppose first thatM4, g(x) |= 3ψ. So there is w ∈ R4(si) withM4, w |= ψ. As
0 is fi-good, for all small enough y > x we have g((x, y)) = fi((x, y)) = R4(si).
Hence, for all y > x there is z ∈ (x, y) with g(z) = w. For any such z we have
M5, z |= ψ by the inductive hypothesis. It follows that M5, x |= 3ψ.

Conversely suppose that M5, x |= 3ψ. As above, we may choose y > x with
g((x, y)) = R4(si). If there is z ∈ (x, y) with M5, z |= ψ, then inductively
M4, g(z) |= ψ, and as R4(g(x), g(z)) we have M4, g(x) |= 3ψ as required.

Assume otherwise. By definition of g we may choose y < x in dom f ′i−1, and
then z ∈ (y, x) withM5, z |= ψ. Inductively,M4, g(z) |= ψ, soM4, g(z) |= 3ψ.
Recall from lemma 6.13 that M4 �Ψ M2. So M2, g(z) |= 3ψ as well. Now
g(z) ∈ H(∆i−1). As ∆i−1 and Σi are similar links, by lemma 6.18 we have
M2, si |= 3ψ. As M4 �Ψ M2 we obtain M4, g(x) |= 3ψ as required.

5. Finally suppose that x ∈ O for some open O ⊆ dom f ′i . This case has some
intricacies too. We know that f ′i : dom f ′i → H(∆i) and x is f ′i-fair, so for all
large enough y < x and small enough z > x we have

g((y, z)) = f ′i((y, z)) = (R4 � H(∆i))(g(x)) = H(∆i). (10)

IfM5, x |= 3ψ, then there are points t ∈ R arbitrarily close to x withM5, t |=
ψ. By (10), there are such t with g(t) ∈ H(∆i) ⊆ R4(g(x)). Inductively,
M4, g(t) |= ψ, and so M4, g(x) |= 3ψ by semantics.

Conversely supposeM4, g(x) |= 3ψ. Recalling again (lemma 6.13) thatM4 �Ψ

M2, we obtainM2, g(x) |= 3ψ. By the critical corollary 6.11, we can find some
w ∈ H(∆i) with M2, w |= ψ, and hence M4, w |= ψ. By (10) again, there are
z ∈ R arbitrarily close to x and with g(z) = w, and so inductively, M5, z |= ψ.
We conclude that M5, x |= 3ψ as required.

This completes the proof. 2

As ϕ0 is satisfied in M4, ϕ0 ∈ Ψ, and plainly g : R→M4 is surjective, we conclude
that ϕ0 is satisfiable over R, in the modelM5. This finishes the proof of theorem 6.1.

7 Conclusion

We have shown that the logic of R in the temporal language L with modalities G,
H, and 2
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• is finitely axiomatisable, answering an implicit problem of Shehtman [24],

• has PSPACE-complete complexity,

• has no strongly complete axiomatisation,

• is not Kripke complete.

We list some remaining open problems. First, some complexity problems.

PROBLEM 7.1 For fixed k ≥ 0, what is the complexity of the set of L-formulas
that are satisfiable over R and involve at most k 2-operators?

The methods of [19] may be helpful. If the answer is ‘NP-complete’, it might suggest
that the language with F , P , and 2 could be more tractable in practice than the
more expressive language with Until and Since.

The operations of sum (+) and shuffle in §5, plus two more involving countable
iterations, can be used to specify models over R in a finite way. By results in [4], any
model over R can be specified up to any desired degree of first-order equivalence in
such a way, so any satisfiable L-formula has a model specified by these operations.
This leads to the following problem.

PROBLEM 7.2 Investigate the complexity of model checking for the language L
for models over R specified by a finite sequence of operations of the above kinds.

This problem was investigated in [6] for the language with Until and Since, and
roughly speaking, exponential time upper bounds were obtained. One may also wish
to develop alternative reasoning systems for L over R, such as tableaux, and synthesis
methods along the lines of [6, 22]. The end result of this research could justify the
promotion of L as a viable language for specification and reasoning over the real
line, possibly a more attractive one than the very expressive language with Until and
Since.

It may be of interest to study the logic of R in the sublanguage of L without H:
so the only non-boolean connectives are G and 2. This logic is PSPACE-complete,
by the same argument as in theorem 4.4. Theorem 4.1 survives: there is no strongly
complete axiomatisation. The proof of theorem 4.3 can be adapted to show that it
is not Kripke complete, using the formula

F (p ∧G¬p ∧ ¬a ∧ ¬b ∧3a ∧3b ∧G¬(3a ∧3b) ∧ FG¬a) ∧G(Fp→ ¬a ∧ ¬b).

The Prior axiom is no longer expressible, but a variant Fp∧FG¬p→ F (G¬p∧3p)
can be used instead.

PROBLEM 7.3 (N. Bezhanishvili) Is the logic finitely axiomatisable?

An alternative and more expressive interpretation of 2 is as ‘derivative’ [d], so
that (R, h), x |= [d]ϕ if there is an open neighbourhood O of x with (R, h), y |= ϕ for
every y ∈ O \ {x}. Finite axiomatisations of the logic of R with [d] alone (without
G, H) and with [d] and ∀ are given in [15] (see also Shehtman’s habilitation thesis).
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PROBLEM 7.4 Is the logic of R in the language with G, H, and [d] finitely ax-
iomatisable?

An even more expressive language consists of G,H and two modalities 2>,2<,
where (R, h), x |= 2>ϕ if there is y > x such that (R, h), z |= ϕ for every z ∈ (x, y),
and 2< is the mirror image.

PROBLEM 7.5 Find axiomatisations of the logic of R in this language and in
sublanguages such as {G,2>}.
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