Sahlqvist fixed point formulas

Ian Hodkinson

joint work with Johan van Benthem Nick Bezhanishvili

Introduction

Sahlqvist theory is a core area of modal logic.

Sahlqvist modal formulas originate with Sahlqvist (1973).

They are a syntactically-defined class of modal formulas.

- 1. widely occurring
- 2. have computable first-order frame correspondents
- 3. canonical

Any Sahlqvist-axiomatisable logic is sound and complete for the class of Kripke frames defined by the frame correspondents of the axioms.

Aim of talk: sketchy description of how to extend Sahlqvist formulas to mu-calculus (modal fixed point logic), keeping (1) and (2) in some sense. (I will discuss canonicity a little at the end.)

Modal logic (notation)

Primitive connectives are $\land, \lor, \neg, \Box, \diamondsuit$. $\varphi \rightarrow \psi$ abbreviates $\neg \varphi \lor \psi$.

A modal formula is *positive* if it does not involve \neg , and *negative* if it is of the form $\neg \pi$ for positive π . $\Box^{d} \varphi = \underbrace{\Box \Box \dots \Box}_{d \text{ times}} \varphi$, for $d \ge 0$.

Kripke frames: $\mathcal{F} = (W, R)$. Assignments: $h : \{\text{atoms}\} \rightarrow \wp(W)$.

$$\begin{split} \text{Semantics: } \mathcal{F}, h, w \models \varphi \text{ defined as usual.} \\ \llbracket \varphi \rrbracket_h = \{ w \in W : \mathcal{F}, h, w \models \varphi \}. \end{split}$$

Classical (modal) Sahlqvist formulas

Can define Sahlqvist formulas φ by BNF:

 $\varphi ::= \neg \Box^d p \mid \pi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box \varphi$

where p is an atom, $d \ge 0$, and π is a positive formula.

Equivalently: formulas of the form $\neg \sigma(\beta_1, \ldots, \beta_m, \gamma_1, \ldots, \gamma_n)$ where

- the skeleton $\sigma(b_1, \ldots, b_m, q_1, \ldots, q_n)$ involves only $\lor, \land, \diamondsuit$
- β_1, \ldots, β_m are *boxed atoms* of the form $\Box^d p$ (for some $d \ge 0$)
- $\gamma_1, \ldots, \gamma_n$ are *negative* formulas.

Examples

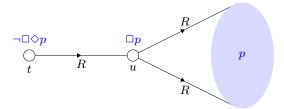
 $\Box p \to p \ (= \neg \Box p \lor p, \text{ equivalent to } \neg (\Box p \land \neg p) - \text{skeleton is } b \land q)$ $\Diamond \Box p \to \Box \Diamond p \ (\text{Church-Rosser}, \ \equiv \neg (\Diamond \Box p \land \neg \Box \Diamond p). \text{ Skeleton is } \Diamond b \land q.)$

Non-examples (not equivalent to Sahlqvist formulas) Löb's axiom, $\Box(\Box p \rightarrow p) \rightarrow \Box p$ McKinsey's formula, $\Box \Diamond p \rightarrow \Diamond \Box p$ 1

Example of Sahlqvist correspondence: Church–Rosser

Assume $\chi = \Diamond \Box p \rightarrow \Box \Diamond p$ is *not* valid in some Kripke frame $\mathcal{F} = (W, R)$ at some $t \in W$ (in symbols, $\mathcal{F}, t \not\models \chi$).

This says that there are an assignment $h : \{\text{atoms}\} \to \wp(W)$, and $u \in W$, with: R(t, u), $\mathcal{F}, h, u \models \Box p$, and $\mathcal{F}, h, t \models \neg \Box \Diamond p$:



We can replace h by the *minimal assignment* h° satisfying $\mathcal{F}, h, u \models \Box p$. Plainly, $h^{\circ}(p) = \{x \in W : R(u, x)\}$ — first-order-definable.

Obtaining first-order correspondent

So $\mathcal{F}, t \not\models \chi$ is equivalent to $\exists u(Rtu \land \mathcal{F}, h^{\circ}, t \models \neg \Box \Diamond p)$.

Using 'standard translation', we can express this in first-order logic in the signature of frames:

$$\mathcal{F} \models \exists u(Rtu \land \neg \forall v(Rtv \to \exists w(Rvw \land \underbrace{Ruw}_{w \in h^{\circ}(p)}))).$$

Conclude

- $\mathcal{F}, t \models \chi \text{ iff } \mathcal{F} \models \forall u(Rtu \rightarrow \forall v(Rtv \rightarrow \exists w(Rvw \land Ruw))),$
- χ is valid in \mathcal{F} iff $\mathcal{F} \models \forall tu(Rtu \rightarrow \forall v(Rtv \rightarrow \exists w(Rvw \land Ruw)))$ — first-order correspondent.

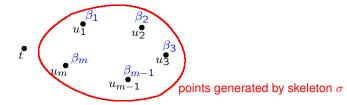
5

What does this argument really use?

For an arbitrary Sahlqvist formula $\neg \sigma(\beta_1, \ldots, \beta_m, \gamma_1, \ldots, \gamma_n)$, the above argument uses that:

1.
$$\sigma(b_1, \ldots, b_m, q_1, \ldots, q_n) \equiv \exists u_1, \ldots, u_m(\sigma(\{u_1\}, \ldots, \{u_m\}, q_1, \ldots, q_n) \land \bigwedge_{1 \le i \le m} u_i \models b_i).$$

Then we can extract worlds u_1, \ldots, u_m where the boxed atoms hold:



(1) says that σ is completely additive in b_1, \ldots, b_m . A formula $\varphi(p)$ is completely additive in p if $[\![\varphi(\bigcup_i S_i)]\!] = \bigcup_i [\![\varphi(S_i)]\!]$ for any sets $S_i \subseteq W$ $(i \in I)$.

What else does it use?

2. When a boxed atom $\beta(p) = \Box^d p$ is true at a world, there is a *minimal* assignment making it true.

Complete multiplicativity of $\beta(p)$ is sufficient for this: that is, $[[\beta(\bigcap_i S_i)]] = \bigcap_i [[\beta(S_i)]]$ for any sets $S_i \subseteq W$. Then, the minimal assignment making β true is just the intersection of *all* assignments making it true.

- 3. The minimal assignment h° is first-order *definable*.
- 4. Each negative formula is *antitonic* in all its atoms, and σ is *monotonic* in q_1, \ldots, q_n (so replacing *h* by h° preserves the negative formulas).

These are the principles we use. So can we generalise the argument?

4

PIA formulas [van Benthem, JSL 2005]

These generalise the boxed atoms $\Box^d p$.

Modal PIA formulas can be defined by

$$\beta ::= p \mid \beta_1 \land \beta_2 \mid \pi \to \beta \mid \Box \beta$$

where *p* is an atom, and π is positive. (JvB originally restricted to $\beta(p)$ only; restriction no longer needed.)

Examples: boxed atoms $\Box^n p$, antecedent of Löb's axiom: $\Box(\Box p \rightarrow p)$.

Any PIA formula is completely multiplicative. So when true at a world, it has a minimal assignment making it true.

This *minimal assignment is definable* — not necessarily in first-order logic, but *in FO+LFP*.

8

Generalised modal Sahlqvist formulas (van Benthem 2005)

So: generalise Sahlqvist formulas φ by *replacing* ' $\Box^n p$ ' by '*PIA*':

 $\varphi ::= \neg \beta \mid \pi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \Box \varphi$

where β is PIA and π is positive. Frame correspondents will now be in FO+LFP (first-order logic with least fixed points).

Examples Löb's axiom, $\Box(\Box p \rightarrow p) \rightarrow \Box p$, is equivalent to

$$\neg \underbrace{\Box(\Box p \to p)}_{\text{PIA}} \lor \underbrace{\Box p}_{\text{positive}}$$

Can show $\mathcal{F}, t \models \Box(\Box p \rightarrow p) \rightarrow \Box p$ iff: (1) R is transitive from t, and (2) R is conversely well-founded at t. This is definable in FO+LFP.

McKinsey's formula has no FO+LFP frame correspondent (vB-Goranko).

9

Towards the modal mu-calculus

Recall the *mu-calculus syntax:*

 $\varphi ::= p \mid x \mid \neg \varphi \mid \varphi \lor \varphi' \mid \varphi \land \varphi' \mid \Diamond \varphi \mid \Box \varphi \mid \mu x \varphi \mid \nu x \varphi$

where x is a fixed point variable and occurs only positively in φ .

Semantics: $\mathcal{F}, h, t \models \mu x \varphi$ iff t is in the least fixed point of the map $(X \mapsto \llbracket \varphi \rrbracket_{h[x \mapsto X]})$. ($\nu x \varphi$ similar, using greatest fixed point.)

Eg. $\mu x (p \lor \Diamond x)$ defines $\Diamond^* p$ (reflexive transitive closure of \Diamond). Mu-calculus formulas have standard translations into FO+LFP.

If we are happy with frame correspondents in FO+LFP, why not generalise Sahlqvist formulas to the *modal mu-calculus*?

Would give a wider class of formulas with FO+LFP-frame correspondents.

We can, if we can find a nice class of *completely additive mu-calculus formulas*.

Q-skeletons — main technical device

Definition 1 Let Q be a set of atoms. The Q-skeletons are defined by:

 $\sigma ::= p \mid x \mid \sigma \lor \sigma' \mid \diamond \sigma \mid \mu x \sigma \mid \sigma \land \tau$

where τ is a sentence with no atoms from Q.

Lemma 2 (complete additivity) Let σ be a Q-skeleton, and H a nonempty set of assignments (into some frame) that agree on all atoms not in Q.

Let g be the assignment given by $g(\xi) = \bigcup \{h(\xi) : h \in \mathcal{H}\}$ for each ξ . Then

$$\llbracket \sigma \rrbracket_g = \bigcup_{h \in \mathcal{H}} \llbracket \sigma \rrbracket_h.$$

Proof. Induction on σ — exercise.

There are earlier related results by G. Fontaine. This lemma covers the skeletons of Sahlqvist formulas, and (dually) PIA formulas as well.

The outcome: Sahlqvist fixed point formulas

PIA mu-formulas:

 $\beta ::= p \mid x \mid \beta_1 \land \beta_2 \mid \pi \to \beta \mid \Box \beta \mid \nu x \beta$

where p is an atom, x a fixed point variable, and π a positive sentence.

Sahlqvist mu-formulas:

 $\sigma ::= \neg \beta \mid \pi \mid x \mid \sigma_1 \land \sigma_2 \mid \sigma_1 \oplus \sigma_2 \mid \Box \sigma \mid \nu x \sigma$

where β is a PIA sentence, π a positive sentence, x a f.p. variable, and

 $\sigma_1 \oplus \sigma_2 = \begin{cases} \sigma_1 \lor \sigma_2, & \text{ if } \sigma_1, \sigma_2 \text{ are both sentences,} \\ & \text{ or one of them is a positive sentence,} \\ & \text{ undefined, } & \text{ otherwise.} \end{cases}$

Theorem 3 (JvB, NB, IH, 2011) Any Sahlqvist mu-sentence has an (easily computable) frame correspondent in FO+LFP.

12

Next steps?

- 1. Find interesting subfragments (or extensions) of Sahlqvist mu-formulas (eg Sahlqvist PDL-formulas).
- 2. Are known generalisations of *modal* Sahlqvist formulas covered? (Eg Conradie–Goranko–Vakarelov)
- 3. Does the SQEMA algorithm of said workers extend to Sahlqvist muformulas? Does it go further?
- 4. What can be said about canonicity of Sahlqvist mu-formulas?
- 5. Correspondence/canonicity of strong Sahlqvist mu-formulas in 'admissible semantics?
- 6. Generally: find more extensions of classical modal results to the mucalculus!!

Canonicity (joint work with N. Bezhanishvili)

Using a weaker definition, Sahlqvist mu-formulas have been shown to be canonical, giving a completeness theorem.

One needs to define *modal mu-algebras* that are closed under μ , ν . We used *admissible semantics* (μ , ν relativised to subset of the algebra).

The same (weaker) Sahlqvist mu-formulas are preserved by Monk completions of conjugated algebras (extends result of Givant–Venema for modal Sahlqvist formulas).

13

References (some are at www.doc.ic.ac.uk/~imh/)

- Johan van Benthem, Minimal predicates, fixed-points, and definability, J. Symbolic Logic, 70 (2005), 696–712.
- Johan van Benthem, Nick Bezhanishvili, Ian Hodkinson, *Sahlqvist correspondence for modal mu-calculus,* Studia Logica (special Leo Esakia issue), to appear.
- Gaelle Fontaine, *Modal fixpoint logic: some model theoretic questions,* Ph.D. thesis, ILLC, Amsterdam, 2010.
- Nick Bezhanishvili and Ian Hodkinson, *Sahlqvist theorem for modal fixed point logic,* Theoretical Computer Science, to appear.
- Nick Bezhanishvili and Ian Hodkinson *Preservation of Sahlqvist fixed point equations in completions of relativized fixed point BAOs,* Algebra Universalis, to appear.

Thank you for your patience.