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I aim to prove that some guarded fragments of first-order logic have
the finite model property.

This is not a survey of guarded fragments. I’ll concentrate on proofs.
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1. Introduction, history

Guarded fragments are modal fragments of first-order logic.
Modal fragments should have the nice properties of modal logic.

GF introduced in 1998 by Andréka, van Benthem, Németi, following
Németi et al in algebraic logic. They defined GF, proved decidability
without =, stated decidability with = (and FMP — ‘follow-up paper’).

In two 1999 papers, Grädel:

• gave a proof of decidability with =, established complexity of
guarded and loosely guarded fragments, and showed that the
guarded fragment has the finite model property.

• Added fixed points, defined clique-guarded fragment, established
decidability and complexity.

IH (2002): loosely guarded, packed, and, clique-guarded fragments
have finite model property. IH-Otto (2003): simpler proof.
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Andr éka, van Benthem, N émeti
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Flier for ESSLLI guarded fragment workshop, Nancy, Aug 2004

It’s been almost ten years since Andréka, van Benthem and Németi
proved decidability of the guarded fragment of first order logic. Given
how natural and expressive guarded quantification is, this result gave
logicians a powerful tool of proving decidability of many formalisms
arising in computer science applications, and generated much
research into extensions of the guarded fragment to fixed point logic,
transitive guards etc. A wealth of new proof techniques developed as
a result.

Workshop programme committee

Natasha Alechina, Johan van Benthem, Erich Grädel, Maarten Marx,
Hans de Nivelle, Martin Otto, Ulrike Sattler.
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2. Crash course in guarded fragments

Idea: relativise quantifiers to atomic formulas.

Fix a first-order relational signature L.

An L-formula γ is said to guard an L-formula ϕ if every free variable
of ϕ is free in γ.

Define the guarded L-formulas:

• Every atomic L-formula is guarded.

• Boolean combinations of guarded formulas are guarded.

• If ϕ is guarded, γ is atomic and guards ϕ, and x̄ is any tuple of
variables, then ∃x̄(γ ∧ ϕ) is guarded.

The guarded fragment of first-order logic (over L) consists of all
guarded L-formulas.
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Notes

1. We regard ∀x̄(γ → ϕ) as guarded, since it is equivalent to
¬∃x̄(γ ∧ ¬ϕ).

Some people include both ∃x̄(γ ∧ ϕ) and ∀x̄(γ → ϕ) in the
definition of the guarded fragment.

2. ABN did not allow γ to be an equality. (We do!)

3. Can add constants to L, but it is a bit messier — and anyway,
can eliminate them by adding relation symbols. Can’t add
function symbols and keep decidability.
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Examples

1. ∀xP (x) is equivalent to ∀x(x = x → P (x)), which is guarded.

2. The ‘standard translation’ of any modal formula is guarded.

3. Statements such as ‘R is reflexive/symmetric’ can be written
guardedly: ∀x(x = x → R(x, x)) and ∀xy(R(x, y) → R(y, x)).

4. ‘R is transitive’ is a classic unguarded statement:

∀xy(R(x, y) → ∀z( R(y, z)︸ ︷︷ ︸
bad guard

→ R(x, z)))

5. Temporal logic: e.g., the statement ‘at time t, p holds until q’:

∃u
(
t < u ∧ Q(u) ∧ ∀v

(
t < v ∧ v < u︸ ︷︷ ︸

not atomic

→ P (v)
))

.
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Loosely guarded (‘pairwise guarded’) fragment

Proposed by van Benthem (1997) in order to express Until.

• Every atomic L-formula is loosely guarded.

• Boolean combinations of loosely guarded formulas are l.g.

• ∃x̄(γ ∧ ϕ) is loosely guarded if

– ϕ is loosely guarded,

– γ is a conjunction of atomic L-formulas,

– γ guards ϕ,

– x̄ is a tuple of variables in γ,

– for each x in x̄ and each free variable y of γ with x 6= y, there
is a conjunct of γ in which x, y both occur.

∃u
(
t < u ∧ Q(u) ∧ ∀v

(
t < v ∧ v < u︸ ︷︷ ︸

loose guard

→ P (v)
))

.
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Packed fragment

Proposed by Marx (2000) as a variant of loosely guarded fragment
characterisable by bisimulations. More natural for higher arities.

The most interesting and expressive first-order guarded fragment.

• Every atomic L-formula is packed.

• Boolean combinations of packed formulas are packed.

• Suppose ϕ is packed. Assume that

– γ is a conjunction of atomic and existentially-quantified atomic
formulas (possibly equalities),

– γ guards ϕ,

– if x, y are distinct free variables of γ, there is a conjunct of γ in
which x, y both occur free.

Then for any tuple x̄ of variables, ∃x̄(γ ∧ ϕ) is packed.
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Examples

• Any loosely guarded sentence can be equivalently rewritten as a
packed sentence. E.g.,

∃t, u
(
t < u ∧ Q(u) ∧ ∀v

(
t < v ∧ v < u ∧ t < u︸ ︷︷ ︸

new

→ P (v)
))

.

• ∀xyz(∃wR(x, y, w) ∧ ∃wR(x, z, w) ∧ ∃wR(z, y, w) → R(x, y, z))

(Marx) — not equivalent to a loosely guarded sentence.
So for sentences, LGF ⊂ PF .

Clique-guarded fragment (Gr ädel, 1999)

Variant of packed fragment. All existential quantifiers in guards are
moved to the front of the formula. E.g.,

∀xyztuv(R(x, y, t) ∧ R(x, z, u) ∧ R(z, y, v) → R(x, y, z)).
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Semantic version of packed/clique-guarded fragment

Grädel (and Marx) also gave a semantic definition of clique-guarded
fragment:

relativise quantifiers to cliques in the Gaifman graph.
Hence the name ‘clique-guarded fragment’.

Gaifman graph of a relational structure

Let L be a relational signature and let M be an L-structure.

Definition 1 A tuple ā = (a1, . . . , an) of elements of M is said to be
guarded if M |= α(a1, . . . , an) for some atomic L-formula
α(x1, . . . , xn) (possibly an equality).

Definition 2 Define the Gaifman graph G(M) = (dom(M), E) of M

by putting an edge between distinct a, b ∈ M just when there is some
guarded tuple (a1, . . . , an) with a, b ∈ {a1, . . . , an}.
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Packed fragment and Gaifman cliques

A clique in a graph G = (V, E) is a set C ⊆ V such that the subgraph
of G on C is complete: ∀x, y ∈ C(x 6= y → E(x, y)).

Packed fragment guards express cliques in Gaifman graph

If γ(x1, . . . , xn) is a guard in the sense of the packed fragment, then
M |= γ(a1, . . . , an) implies {a1, . . . , an} is a clique in G(M).

Conversely, if L is finite, ‘{x1, . . . , xn} is a clique in Gaifman graph’ is
expressible by a disjunction

∨
c γc of packed fragment guards γc.

Each γc is a conjunction over all i 6= j of formulas of form xi = xj or

∃z1, . . . , znR(z1, . . . , zk−1, xi, zk+1, . . . , zl−1, xj , zl+1, . . . , zn)

for n-ary R ∈ L. We include a γc for each choice c of conjuncts.

Then ∃x̄
(
(
∨

c γc) ∧ ϕ
)
≡

∨
c ∃x̄(γc ∧ ϕ) — in packed fragment.
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Nice properties of guarded fragments (cf. modal logic)

• Decidable. Complexity: 2EXPTIME-complete. Bounded-arity
and finite-variable fragments EXPTIME-complete; some
2-variable fragments even in PSPACE [Grädel, 1999].

• Interpolation. . .

• Unravelling. Tree-like models.

• Bisimulation characterisation: any first-order formula is
preserved under guarded (clique) bisimulations iff it’s equivalent
to a guarded (packed) formula.

• Grädel (1999): can add fixed points: µGF . Behaves like modal
µ-calculus. Still decidable.

Any ‘guarded SO’ sentence is equivalent to a µGF one iff it’s
preserved under guarded bisimulation [Grädel, Hirsch, Otto].
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3. Partial isomorphisms and automorphisms of structures

For an L-structure A, a partial map p : A → A is said to be a partial
isomorphism if it preserves all atomic L-formulas both ways:

A |= α(ā) ↔ α(p(ā))

for all atomic L-formulas α(x̄), and all ā ∈ dom(p) (with |ā| = |x̄|).

Here, if ā = (a1, . . . , an) then p(ā) = (p(a1), . . . , p(an)).

Note: such a p is 1–1 (take α to be x = y).

An automorphism is a bijective partial isomorphism.

The set of automorphisms of A forms a group under composition of
maps, denoted by Aut(A).
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EPPA

Definition 3 Let K be a class of structures (in a common signature).
K is said to have the EPPA (extension property for partial
automorphisms) if for all A ∈ K there is B ∈ K with B ⊇ A and such
that every partial isomorphism of A extends to (is induced by) an
automorphism of B.

Example: The class of graphs has EPPA (by classical model theory).

What about classes of finite structures?

Example: The class of all finite sets (structures in the empty
signature) has EPPA.

Others. . . ?
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Faithful EPPAs

EPPA says that given A ∈ K we can find B ⊇ A in K such that all
partial isomorphisms of A extend to automorphisms of B.

We would like some ‘homogeneity’ of B as well:

Point-faithful EPPA Any b ∈ B can be mapped into A by an
automorphism of B.

We can usually achieve this by manipulating B — see later.

Guarded-faithful EPPA Any guarded tuple of elements of B can be
mapped into A by a (single) automorphism of B. Ditto.

Kn-faithful EPPA (graphs) Any clique of size n in B can be
mapped into A by an automorphism of B.

Clique-faithful EPPA Any clique in the Gaifman graph of B can be
mapped into A by an automorphism of B.
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EPPA for classes of finite structures

1. Truss, 1992: Given a finite graph A and a partial isomorphism p

of it, there is a finite graph B ⊇ A and an automorphism of B

extending p. Proof by explicit construction.

2. Hrushovski, 1992: the class of finite (undirected loop-free)
graphs has (guarded-faithful) EPPA.
Proof by permutation groups and combinatorics.

3. Herwig, 1995:

(a) for any finite relational signature L, the class of all finite
L-structures has guarded-faithful EPPA.

(b) the class of all finite graphs has K3-faithful EPPA.
Hence, the class of all finite triangle-free graphs has EPPA.

Proofs extended Hrushovski’s.
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EPPA for classes of finite structures (ctd.)

4. Herwig, 1998: the class of all finite Kn-free graphs (any n ≥ 3)
has EPPA. Also, for any class T of tournaments, the class of
finite directed graphs omitting all T ∈ T has EPPA.

Proof extended Herwig’s 1995 proof.

5. Herwig–Lascar 2000:

• new combinatorial proofs of (2) and (3a)

• link to theory of free groups (Marshall Hall, Almeida,
Delgado). E.g., HL proved EPPA for finite graphs from:

Theorem 4 (Ribes, Zaleski í, 1993) If G is the free group on
a finite set, and H1, . . . , Hn ≤ G are finitely generated, then
the set H1H2 . . . Hn is closed in the profinite topology on G.

HL also proved converse results.

• new powerful extension of EPPA results.
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EPPA for classes of finite structures (ctd.)

6. IH–Otto 2003, motivated by clique-guarded fragment/packed
fragment:

For any finite relational signature L, the class of all finite
L-structures has clique-faithful EPPA.

Combinatorial proof, using Herwig’s (3a) as a lemma.
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John Truss, Ehud Hrushovski, Bernhard Herwig
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Daniel Lascar, Martin Otto
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Remarks on motivation

1. EPPA originally proved in order to establish small index property
for various ω-categorical structures in model theory (e.g.,
‘random graph’). [Hodges, IH, Lascar, Shelah, 1993].

2. Part of proof used by Grohe, e.g., to establish arity hierarchies in
first-order logic with fixed points in finite model theory (1996):
expressive power increases strictly as the arity of permitted fixed
points increases. Answered question of Vardi (1982).

3. EPPA ‘equivalent to’ certain results in free groups.

4. EPPA ⊢ ‘finite base property’ for Crsn,Dn,Gn (finite n): Hirsch,
IH, Marx, Mikulás, Reynolds, 1998; Andréka, IH, Németi, 1999.

Grädel (1999): guarded fragment has finite model property.

IH (2002), IH–Otto (2003): packed fragment has fmp.
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4. Finite model property for guarded fragments via EPPA

Let σ be a guarded (or packed) sentence of relational signature L

(wlog. finite). Assume that σ has a model, say M . We will construct a
finite model of σ from M .

We take the guarded (and packed) cases together. (The packed case
will be covered in parentheses.)

Plan: first do special case where (all guards in σ are quantifier-free.)

(i) Expand M by new relation symbols for subformulas of σ.

(ii) Take ‘rich’ finite substructure K of this expansion.

(iii) Take finite guarded- (clique-)faithful EPPA extension H ⊇ K.

(iv) Show H |= σ.

(v) Tackle general case where guards can have quantifiers (easy).

23



 

(i) The expansion M+ of M

We want to regard subformulas of σ as atomic.

Let S(σ) denote the set of all subformulas of σ.

Let M+ be an expansion of M by a new relation symbol for each
ϕ(x̄) ∈ S(σ), interpreted in the same way as ϕ.

(ii) The ‘rich’ substructure K

Let n be the maximum number of free variables of guards in σ.

Choose a finite substructure K ⊆ M+ containing a representative of
each isomorphism type of substructure of M+ of size ≤ n.
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(iii) The EPPA extension H of K

Choose a finite structure H ⊇ K (in the expanded language) such
that

1. every partial isomorphism of K extends to an automorphism of
H,

2. every guarded tuple (clique in G(H)) is mapped by an
automorphism of H into K.

This is possible by Herwig’s 1995 (IH–Otto’s 2003) EPPA result.

Note: if ā is a tuple of elements of H, and H |= γ(ā) for some guard
γ, then there is g ∈ AutH such that all elements of g(ā) are in K.

Here and below, if ā = (a1, . . . , an),
we write g(ā) for (g(a1), . . . , g(an)).
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Automorphisms preserve formulas

Lemma 5 Let g ∈ AutH, let ϕ(x̄) be any first-order formula with
|x̄| = n, say, and let ā be an n-tuple of elements of H. Then

1. H |= ϕ(ā) ⇐⇒ H |= ϕ(g(ā)),

2. If ϕ ∈ S(σ) and all elements of ā, g(ā) are in K, then
M |= ϕ(ā) ⇐⇒ M |= ϕ(g(ā)).

Proof.

1. Automorphisms preserve all first-order formulas.

2. Holds because ϕ ∈ S(σ) is represented by a new relation
symbol, which means the same in M+ and H, and is preserved
by g ∈ AutH.

¥
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(iv) Preservation lemma

Lemma 6 For each subformula ϕ(x̄) of σ, and each tuple ā of
elements of K, we have H |= ϕ(ā) ⇐⇒ M |= ϕ(ā).

Proof. The lemma is shown by induction on ϕ.

For atomic ϕ it is clear.

The boolean cases are easy.

Consider the case ϕ(x̄) = ∃ȳ(γ(x̄, ȳ) ∧ ψ(z̄)). Inductively assume the
result for ψ.

Wlog. the free variables of γ are x̄ȳ, and all variables in z̄ occur in x̄ȳ.
For a tuple c̄ of length x̄ȳ, let c̄† be to c̄ as z̄ is to x̄ȳ.
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Case ϕ(x̄) = ∃ȳ(γ(x̄, ȳ) ∧ ψ(z̄)): M |= ϕ(ā) ⇒ H |= ϕ(ā)

If M |= ϕ(ā), there is b̄ in M with M |= γ(ā, b̄) ∧ ψ(āb̄†).

By choice of K, there are ā′, b̄′ in K with ā′b̄′ ∼= āb̄.

So M |= γ(ā′, b̄′) ∧ ψ(ā′b̄′†).

So H |= γ(ā′, b̄′) ∧ ψ(ā′b̄′†) by inductive hypothesis (and γ q.f.).
Hence, H |= ϕ(ā′).

Now the map ā′ 7→ ā is a partial isomorphism of K.
By EPPA, there is g ∈ Aut(H) with g(ā′) = ā.

So by lemma 5, H |= ϕ(ā) as required.
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Case ϕ(x̄) = ∃ȳ(γ(x̄, ȳ) ∧ ψ(z̄)): H |= ϕ(ā) ⇒ M |= ϕ(ā)

Suppose that H |= ϕ(ā). So H |= γ(ā, b̄) ∧ ψ(āb̄†) for some b̄ in H.

H |= γ(ā, b̄), so by faithfulness, there is g ∈ Aut(H) with g(āb̄) in K.

So:

H |= γ(g(ā), g(b̄)) ∧ ψ(g(āb̄)†) as g preserves γ, ψ,

M |= γ(g(ā), g(b̄)) ∧ ψ(g(ā)g(b̄)†) by inductive hypothesis (& γ q.f.)

M |= ϕ(g(ā)) by definition of ϕ,

M |= ϕ(ā) by lemma 5.

¥

We know that M |= σ. By the lemma, H |= σ. So we have a finite
model of σ.
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(v) Guards with quantifiers (packed fragment)

Consider a conjunct χ of a guard γ in σ of the form χ = ∃ȳα(x̄, ȳ),
where α is atomic.

• Introduce a new |x̄|-ary relation symbol Rχ.

• Replace χ in γ by Rχ(x̄).

• Add to σ two GF conjuncts:

– ∀x̄ȳ(α(x̄, ȳ) → Rχ(x̄)),

– ∀x̄(Rχ(x̄) → ∃ȳα(x̄, ȳ)).

Do this for all χ in all γ in σ. Call the result σ∗.

σ∗ is in the packed fragment and all its guards are quantifier-free.
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Assume σ has a model M .

M expands to a model M∗ |= σ∗ (let M∗ |= Rχ(ā) iff M |= χ(ā)).

By the foregoing, there is a finite model H of σ∗.

Any model of σ∗ is a model of σ. So we’re done.

So the guarded and packed fragments have the finite model property
(modulo EPPA). ¥
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5. EPPA for relational structures

I would have liked to prove

Theorem 7 (Herwig, 1995) For any finite relational signature L, the
class of all finite L-structures has the guarded-faithful EPPA.

However, I only have time to prove

Theorem 8 (Hrushovski, 1992) The class of all finite (undirected
loop-free) graphs has the guarded-faithful EPPA. That is, any finite
graph A is an induced subgraph of some finite graph B such that

1. any partial isomorphism of A extends to an automorphism of B,
2. for each b ∈ B, there is g ∈ AutB with g(b) ∈ A,
3. for each edge xy of B, there is g ∈ AutB with g(x), g(y) ∈ A.

Hrushovski’s proof used permutation groups and counting
arguments. Herwig’s proof (of theorem 7) extended this.

However. . .
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. . . we use the simpler combinatorial method of Herwig–Lascar (2000).
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Notation

For a set X, and an integer k > 0, write [X]k for the set of all subsets
of X of size k.

Graphs will be written (V, E), where V 6= ∅ and E ⊆ [V ]2.

I will write an edge {x, y} ∈ E simply as xy. Note: xy = yx.

The idea

Take a finite graph A = (V, E).

(i) We can assume that all nodes of A have the same degree.

(ii) We embed A in a ‘combinatorial’ graph B.

(iii) We show that every partial isomorphism of A extends to an
automorphism of B.

(iv) We arrange guarded-faithfulness by a trick at the end.
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(i): Wlog. all nodes of A have the same degree

It is harmless to replace A by any finite graph A′ of constant degree
that contains (the original) A as an induced subgraph.

Any EPPA extension of A′ is an EPPA extension of A.

E.g., to bring degree of the left-hand graph up to d = 3:
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(ii) What is B?

Assume then that every node of A = (V, E) has degree d, for some
d ≥ 2.

We will let the extension graph B be ([E]d, R), where

R =
{
{X, Y } : X, Y ∈ [E]d, |X ∩ Y | = 1

}
.

That is, for X, Y ∈ [E]d, we let XY be an edge of B iff X ∩ Y has
size 1.

Clearly, B is a finite (undirected loop-free) graph.
(R is irreflexive because for any X ∈ [E]d, we have |X ∩ X| = d > 1.)
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Embedding A in B

Of course, A is not a subgraph of B.

But we can embed A into B, via: for each x ∈ V ,

ν : x 7→ {xy : y ∈ V, xy an edge of A} = {A-edges incident with x}.

ν(x) ∈ [E]d because x has degree d.
ν is one-one because d > 1.

And for distinct nodes x, y of A:

ν(x) ∩ ν(y) =

{
{xy}, if xy is an edge of A,
∅, otherwise.

So xy is an edge of A iff |ν(x) ∩ ν(y)| = 1,
iff ν(x)ν(y) is an edge of B.

Hence, ν is a graph embedding.
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(iii) Extending partial isomorphisms of A to automorphisms of B

Fix a partial isomorphism p of A = (V, E).

p is a partial 1–1 map : V → V that preserves edges and non-edges.
So p induces a partial 1–1 map p̂ : E → E, via

p̂(xy) = p(x)p(y), for edges xy of A with x, y ∈ dom p.

We extend p̂ to a permutation of E, in two stages:

1. define p̂ on edges xy with x ∈ dom p, y /∈ dom p, so that
p̂(xy) = p(x)y′ for some y′ /∈ rng p,

2. extend p̂ in any 1–1 way to the remaining edges.

Then for any x ∈ dom p, p̂ maps the A-edges incident with x onto the
A-edges incident with p(x).
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The automorphism extending p

p̂ induces an automorphism p∗ of B = ([E]d, R), via

p∗(X) = {p̂(e) : e ∈ X}, for X ∈ [E]d.

Clearly, |X ∩ Y | = |p∗(X) ∩ p∗(Y )|. So p∗ ∈ AutB.

We check that p∗ extends p (if we identify A with its ν-image).
For any x ∈ dom p, the following diagram commutes:

p

x → p(x)

ν ↓ ↓ ν

{A-edges incident with x} → {A-edges incident with p(x)}

p∗
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(iv) Guarded-faithfulness

We now have an EPPA extension B = ([E]d, R) ⊇ A = (V, E).
We want to make B guarded-faithful.

1. Restrict the nodes of B to {g(a) : a ∈ V, g ∈ Aut(B)}. This gives
point-faithfulness.

2. Now replace R by

{(g(x)g(y) : xy ∈ E, g ∈ Aut(B)}.

This and (1) give guarded-faithfulness. ¥

Remark 9 For a signature L with a single n-ary relation symbol,
Herwig–Lascar got an EPPA extension of any L-structure M of size
≤ 2n!·n·|M |n .
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6. Clique-faithful EPPA for relational structures

Recall:

Theorem (Herwig, 1995) For any finite relational signature L, the
class of all finite L-structures has the guarded-faithful EPPA.

I’d have liked to have proved this before. . .

We now build on it, to show:

Theorem 10 (IH–Otto, 2003) Let L be a finite relational signature.
The class of all finite L-structures has the clique-faithful EPPA.
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Martin Otto
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Vague idea of proof

The problem with an ‘ordinary’ EPPA extension B of A is that some
cliques in G(B) may not get mapped back into A by any
automorphism of B.

Call these ‘false cliques’.

Idea is to break up false cliques.

We’ll construct a ‘cover’ C of B, in which the ‘lifts’ of sets not
mappable mapped back into A by any automorphism of B (e.g., false
cliques in G(B)) cannot be cliques in G(C).
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Proof

Take finite A in finite relational signature L. We will build a finite
clique-faithful EPPA extension of A.

By Herwig’s 1995 theorem, there is a finite L-structure B ⊇ A such
that

1. each partial isomorphism of A extends to an automorphism of B,

2. each x ∈ B is mapped into A by some g ∈ AutB.

If B = A, we are done. So assume that B ⊃ A.
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Small sets

Definition 11 A subset U ⊆ B is said to be

• small if there is some g ∈ AutB with g(U) ⊆ A,

• large (∼ bad) otherwise.

Remark 12

• B is large.

• If U is large then |U | ≥ 2.

• If U is large and g ∈ AutB then g(U)
def
= {g(u) : u ∈ U} is large.

The set U

Write U for the set of large subsets of B.

Note that U = {g(U) : U ∈ U} for any g ∈ AutB.
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Domain of the new EPPA extension C

Definition 13 Let b ∈ B. A map χ : U → ω is said to be a b-valuation
if for all U ∈ U :

• if b /∈ U then χ(U) = 0,

• if b ∈ U then 1 ≤ χ(U) < |U |. (Note |U | ≥ 2.)

Can view χ as a notion [[b ∈ U ]] = χ(U), for large U .
Value is 0 if b /∈ U . Value is positive (many-valued logic!) if b ∈ U .

Definition 14 We let our EPPA extension C have domain

{(b, χ) : b ∈ B, χ a b-valuation}.

We’ll define the L-structure of C in a minute.

Definition 15 Also define the projection π : C → B by π(b, χ) = b.
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Generic sets

Definition 16 A set S ⊆ C is said to be generic if for all distinct
(b, χ), (c, ψ) ∈ S, we have

1. b 6= c,

2. χ(U) 6= ψ(U) for all U ∈ U with b, c ∈ U .

Remark 17 A set is generic iff each two-element subset is generic.

Lemma 18 If S ⊆ C is generic, then π(S)
def
= {π(s) : s ∈ S} is small.

Proof. Let π(S) = U ⊆ B. If U ∈ U , then by genericity,

• π ↾ S is 1–1, so |U | = |S|,

• the map θ : S → {1, 2, . . . , |U |− 1} given by θ(b, χ) = χ(U) is 1–1.

This is impossible. ¥
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The structure of C

Definition 19 Define C as an L-structure as follows.

If R ∈ L is n-ary, and (b1, χ1), . . . , (bn, χn) ∈ C, then let
C |= R((b1, χ1), . . . , (bn, χn)) iff

1. {(b1, χ1), . . . , (bn, χn)} is generic,

2. B |= R(b1, . . . , bn).

R
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Embedding A into C

Lemma 20 A embeds into C.

Proof. Let U ∈ U . So there is no g ∈ AutB with g(U) ⊆ A.
In particular, U 6⊆ A. So |U ∩ A| < |U |.

Enumerate U ∩A as {aU
1 , . . . , aU

n }, with n < |U |. Do this for all U ∈ U .
For a ∈ A, define an a-valuation χa : U → ω by

χa(U) =

{
0, if a /∈ U ,
the i such that a = aU

i , otherwise.

Now define ν : A → C by ν(a) = (a, χa).

Note that ν(A) = {ν(a) : a ∈ A} is generic. So ν : A → C is an
L-embedding. ¥

So we can replace A by ν(A) ∼= A, and prove the theorem for it. This
will be easy after a definition and a rather technical lemma.
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Compatible maps

Definition 21 Let p : C → C be a 1–1 partial map, and let g ∈ AutB.
We say that p is g-compatible if for all (b, χ) ∈ dom p we have

p(b, χ) = (g(b), χ′) for some χ′.
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Technical lemma

Lemma 22 Let p : C → C be a 1–1 partial map with generic domain
and range. Let g ∈ AutB, and suppose that p is g-compatible. Then
p extends to some g-compatible p̂ ∈ AutC.

Proof. As dom p is generic, can write its elements in the form (b, χb).

We have

p(b, χb) = (g(b), χ′
g(b)),

say, for each (b, χb) ∈ dom p.

We need to extend this to a map of the form

p̂ : (b, χ) 7→ (g(b), χ′), for each (b, χ) ∈ C.
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Fix a large set U ∈ U . Then the set of pairs
{ 〈

χb(U), χ′
g(b)

(
g(U)

)〉
: (b, χb) ∈ dom p

}

is (the graph of) a 1-1 partial map on |U | = {0, 1, . . . , |U | − 1}, fixing 0
if defined on it.

Extend it to a permutation θU of |U |, fixing 0. Do this for all U ∈ U .

Now define p̂(b, χ) = (g(b), χ′), where

χ′(g(U)) = θU (χ(U)), for each U ∈ U .

Then p̂

• is a well-defined permutation of C,
• extends p ((b, χb) ∈ dom p ⇒ χ′(g(U))=θU (χb(U))=χ′

g(b)(g(U))),
• is g-compatible,
• is an automorphism of C (because it is g-compatible and

preserves generic sets). ¥
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Checking that C is as required

1. Certainly, C ⊇ ν(A) and C is finite.

2. Let p be a partial isomorphism of ν(A). We need to extend it to
p̂ ∈ AutC.

Let p↓ = ν−1 ◦ p ◦ ν be the corresponding partial isomorphism of
A. By Herwig’s theorem, we can extend p↓ to some g ∈ AutB.

Clearly, p is g-compatible.

And dom p, rng p are generic (as ⊆ ν(A)).

By lemma 22, p extends to some (g-compatible) p̂ ∈ AutC.
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Mapping cliques back into ν(A)

3. Let S ⊆ C be a clique in the Gaifman graph G(C) of C.

We want g ∈ AutC with g(S) ⊆ ν(A).

S is generic. So by lemma 18, π(S) is small.

So there is g ∈ AutB with g(π(S)) ⊆ A.

The map

p : x 7→ ν(g(π(x))) ∈ ν(A) (for x ∈ S)

is 1–1, and has generic domain (S) and range (⊆ ν(A)), and is
g-compatible.

By lemma 22, p extends to p̂ ∈ AutC, and p̂(S) ⊆ ν(A).

This completes the proof. ¥
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Remarks

• The theorem strengthens most previous EPPA results.

• Combined with the combinatorial proof of Herwig’s 1995 result
by Herwig–Lascar, it gives a purely combinatorial proof of them.

• The EPPA extension C is ‘clique-homogeneous’: any partial
isomorphism of C whose domain and range are cliques in G(C)

extends to an automorphism of C. (Exercise!)

• New and simple proof of finite model property for loosely
guarded and packed (and clique-guarded) fragments.

• Otto has a variant argument to give this, using finite model
property of the basic guarded fragment.

This also shows (finite) satisfiability in the packed fragment
reduces to (finite) satisfiability in the guarded fragment!

55



The end

We have

1. described the guarded, loosely guarded, and packed fragments.

2. discussed EPPA, and explained how to use it to establish the
finite model property for guarded fragments,

3. proved two EPPA results along the way to showing that the
guarded and packed fragments have the finite model property.

Decidability of these fragments follows (complexity is not optimal).

There are applications of the finite model property results in algebraic
logic (e.g., in showing that certain relation algebras have ‘nice’ finite
relativised representations). I hope there will be others too.
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