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Abstract

We define analogues of modal Sahlqvist formulas for the modal mu-
calculus, and prove a correspondence theorem for them.

1 Introduction

The modal mu-calculus provides a perspicuous way of isolating essential laws of
induction and recursion generalizing computational logics such as PDL, CTL,
and CTL*. This paper adds one more strand to its exploration, going back
to a traditional modal concern: frame correspondence theory. It was observed
in [5] how the usual method for obtaining frame correspondents for Sahlqvist-
type axioms can be applied to non-first-order axioms like Löb’s Axiom whose
antecedents have a special ‘PIA syntax’ supporting a minimal valuation that is
definable in the classical fixed-point language FO+LFP. It is then natural to
look for a balance on both sides, in terms of generalized Sahlqvist forms in the
language of the modal mu-calculus that support this style of analysis. Such a
generalization is found in this paper, by employing additional notions and tech-
niques from [6]. We will use only semantic standard models here, but the latter
paper also considers generalized models for the mu-calculus with restrictions on
the predicates that are available in the process of fixed-point approximation.

We will not look into completeness versions of Sahlqvist’s Theorem in this
paper, except for a few remarks on the existence of proof systems that match
semantic frame correspondence arguments. However, this research is part of
a larger project on analyzing special-purpose logics based on the modal mu-
calculus, and finding general techniques for their completeness proofs, which are
still lacking today. An important bridge in obtaining completeness from corre-
spondence results for Sahlqvist axioms has been the celebrated Esakia Lemma
[11] tying modal semantics to topological spaces. This is just one of the many
strategic points in research on modal logic and beyond where Leo Esakia has
shown the way to so many of us. We are happy to dedicate this article to the
memory of this great teacher, colleague, and friend.
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2 Preliminaries

Before we start, we briefly go through the background material and notation
needed for the paper. Our terseness is due to lack of space, not of respect.

2.1 Modal mu-calculus

We fix disjoint sets P of propositional atoms and V of fixed point variables. We
write p, q, s, . . . for propositional atoms, and X,Y, Z, . . . for fixed point variables.

Any element of P ∪V is a modal mu-formula, as are >,⊥. If ϕ,ψ are modal
mu-formulas then so are ϕ ∧ ψ, ϕ ∨ ψ, ♦ϕ, �ϕ, and if X ∈ V and every free
occurrence of X in ϕ is positive (in the scope of an even number of negations),
then µXϕ and νXϕ are modal mu-formulas. We use the usual abbreviations
→,↔. An occurrence of X in ϕ is said to be bound if it is in the scope of a
µX or νX, and free, otherwise. For convenience, occurrences of propositional
atoms will also be called ‘free’ occurrences. A sentence is a modal mu-formula
with no free fixed point variables.

We write ϕ(p1, . . . , pn, X1, . . . , Xm) to indicate that the atoms and free vari-
ables in ϕ are among p1, . . . , pn and X1, . . . , Xm, respectively. It will be implicit
that p1, . . . , pn, X1, . . . , Xm are pairwise distinct. For modal mu-formulas ϕ and
ψ, and ξ ∈ P ∪V, ϕ(ψ/ξ) denotes what we get by replacing all free occurrences
of ξ in ϕ by ψ.

A frame is a pair F = (W,R), where W is a non-empty set and R ⊆W ×W .
An assignment into F is a map h : P ∪ V → ℘(W ). For ξ ∈ P ∪ V and U ⊆W ,
we write hUξ for the assignment that agrees with h on all symbols other than
ξ and whose value on ξ is U . We define [[ϕ]]h ⊆ W by induction on ϕ; the
frame F is implicit in the notation. For ϕ ∈ P ∪ V we put [[ϕ]]h = h(ϕ).
[[>]]h = W , and [[⊥]]h = ∅. We put [[¬ϕ]]h = W \ [[ϕ]]h, [[ϕ ∧ ψ]]h = [[ϕ]]h ∩ [[ψ]]h,
[[ϕ ∨ ψ]]h = [[ϕ]]h ∪ [[ψ]]h, [[♦ϕ]]h = {a ∈ W : ∃b(R(a, b) ∧ b ∈ [[ϕ]]h)}, and
[[�ϕ]]h = {a ∈ W : ∀b(R(a, b) → b ∈ [[ϕ]]h)}. Finally, for a mu-formula ϕ
and X ∈ V with only positive free occurrences in ϕ, we note that the map
f : ℘(W )→ ℘(W ) given by f(U) = [[ϕ]]hU

X
is monotonic (this can be proved by

induction on ϕ), and define

[[µXϕ]]h =
⋂
{U ⊆W : [[ϕ]]hU

X
⊆ U},

[[νXϕ]]h =
⋃
{U ⊆W : [[ϕ]]hU

X
⊇ U}.

By the Knaster–Tarski theorem [21], these are (respectively) the least and great-
est fixed points of f . As alternative notation, for a mu-formula ϕ we write
(F , h), a |= ϕ iff a ∈ [[ϕ]]h.

Let ϕ be any modal mu-formula. It can be checked by induction that if
S ⊆ P ∪ V and no ξ ∈ S occurs free in ϕ, then [[ϕ]]g = [[ϕ]]h for all assignments
g, h into the same frame that agree except perhaps on symbols in S. We say
that ϕ is positive (negative) if every atom and free fixed point variable in ϕ
occurs under an even (odd) number of negations. Suppose that π is positive
and ν negative. It can be checked by induction that π is monotonic and ν
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is antimonotonic: that is, if h, h′ are assignments into the same frame and
h(ξ) ⊆ h′(ξ) for all ξ ∈ P ∪ V, then [[π]]h ⊆ [[π]]h′ and [[ν]]h′ ⊆ [[ν]]h.

We say that ϕ is valid in a frame F = (W,R) if [[ϕ]]h = W for every
assignment h into F , and valid if it is valid in every frame. We let ‘≡’ denote
logical equivalence: ϕ ≡ ψ iff ϕ↔ ψ is valid.

The dual operators to ∧,∨,�,♦, µ, ν are ∨,∧,♦,�, ν, µ, respectively. As
well as the usual ¬(ϕ∧ψ) ≡ ¬ϕ∨¬ψ, ¬�ϕ ≡ ♦¬ϕ, etc, it can be checked that
¬µXϕ(X) ≡ νX¬ϕ(¬X/X) and ¬νXϕ(X) ≡ µX¬ϕ(¬X/X).

2.2 First-order logic plus fixed points (FO+LFP)

We will be very brief here, since first-order logic plus fixed point operators is a
well known and well understood system. We refer the reader to [10] for much
more information on it. We will use ‘FO+LFP’ to stand for first-order logic
augmented by least and also greatest fixed point operators. We work in the
signature with a binary relation symbol R and unary relation symbols P,X for
each p ∈ P and X ∈ V. The atomic formulas of FO+LFP are x = y, R(x, y),
>, ⊥, P (x), and X(x), for any variables x, y, and p ∈ P, X ∈ V. If ϕ,ψ are
formulas then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ∀xϕ, and ∃xϕ. If ϕ is a formula, x
a variable, and S a unary relation symbol (arising either from P or V) all of
whose free occurrences in ϕ are positive, then [LFP (S, x)ϕ] and [GFP (S, x)ϕ]
are formulas with the same free first-order variables as ϕ, but in which S is
now bound. The semantics is as usual; in particular, if all free occurrences of
S in ϕ(x, y1, . . . , yn, S) are positive, then M |= [LFP (S, x)ϕ](a, b1, . . . , bn) iff
a is in the least fixed point of the (monotone) map f : ℘M → ℘M given by
f(U) = {c ∈ M : M |= ϕ(c, b1, . . . , bn, U)}. Semantics of [GFP (S, x)ϕ] are
defined similarly, using greatest fixed points. Occasionally we will take fixed
points of higher-arity relations.

As in the mu-calculus, ≡ will denote the relation of logical equivalence. Any
formula positive in P is monotonic in P as well.

2.3 Standard translations

For a first-order variable x, every modal mu-formula ϕ(p1, . . . , pn, X1, . . . , Xm)
has a standard translation STx(ϕ): a formula ϕ′(x, P1, . . . , Pn, X1, . . . , Xm) of
FO+LFP defined as follows:

1. STx(p) = P (x), STx(X) = X(x), STx(>) = >, and STx(⊥) = ⊥,

2. STx(¬ϕ) = ¬STxϕ, etc.,

3. STx(♦ϕ) = ∃y(R(x, y) ∧ STy(ϕ)), for some variable y 6= x,

4. STx(�ϕ) = ∀y(R(x, y)→ STy(ϕ)), for some variable y 6= x,

5. STx(µXϕ) = [LFP (X,x)STxϕ],

6. STx(νXϕ) = [GFP (X,x)STxϕ].
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For any frame F = (W,R), any assignment h into F , any a ∈W , and any modal
mu-formula ϕ(p1, . . . , pn, X1, . . . , Xm) with STxϕ = ϕ′(x, P1, . . . , Pn, X1, . . . ,
Xm), we have (F , h), a |= ϕ iff F |= ϕ′(a, h(p1), . . . , h(pn), h(X1), . . . , h(Xm)).
We remark that if ϕ is positive in pi then STx(ϕ) is positive in Pi.

3 Sahlqvist’s theorem and the mu-calculus

Here we will describe the existing work that led us to the position recorded in
this paper.

3.1 Classical Sahlqvist correspondence

Sahlqvist formulas originated in [19]. In spite of (or perhaps because of) their
importance in modal logic today, there seems to be no universally agreed modern
definition of them. We will adopt the following simple definition.

DEFINITION 3.1 [Sahlqvist formula]

1. Any positive formula is a Sahlqvist formula.

2. Any formula of the form ¬�ns (a negated ‘boxed atom’) is a Sahlqvist for-
mula, where n ≥ 0, �0ϕ = ϕ, �n+1ϕ = �(�nϕ), and s is a propositional
atom.

3. If ϕ,ψ are Sahlqvist formulas then so are ϕ ∨ ψ and �ϕ.

Many commonly arising modal axioms are equivalent to Sahlqvist formulas. To
illustrate, the formula �p → p is equivalent to ¬�p ∨ p, which is constructed
from the negated boxed atom ¬�p (clause 2) and the positive formula p (clause
1) using ∨ (clause 3). It is common to include ϕ ∧ ψ in clause 3 above — for
example, the definition of Sahlqvist formulas in [7, definition 3.51] boils down
to this. We do not allow ∧ in clause 3 for two reasons. First, any formula
obtained by adding ∧ to clause 3 is in any case equivalent to a conjunction of
Sahlqvist formulas as defined above, because any occurrence of ∧ can be moved
up through the ∨s and �s using distributivity. Second, the argument coming up
in a moment is simpler without ∧ in clause 3. But when we come to Sahlqvist
mu-formulas, we will want to include ∧.

Sahlqvist formulas have two key properties:

Correspondence. For any Sahlqvist formula ϕ, there is a first-order sentence
χϕ, called the frame correspondent of ϕ, that is true in an arbitrary Kripke
frame iff ϕ is valid in that frame. Moreover, χϕ can be computed from ϕ
by a simple algorithm.

Completeness. For any Sahlqvist formula ϕ, the basic modal logic K aug-
mented with ϕ as an extra axiom is sound and complete for the class of
frames defined by χϕ.
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The properties are of course related, and further algebraic properties have been
established (e.g., [14]). The celebrated ‘Esakia lemma’ [11] is used in a key step
in the proof of completeness (e.g., [20]). In this paper we are concerned only
with correspondence, and we confine our discussion to that topic. There are
several proofs of Sahlqvist correspondence in the literature: e.g., [19, 2, 20, 7].
But the idea can be simply explained, as follows. It will be familiar to many
readers, but we (briefly) go through the steps because we intend to generalise
them later.

Let ϕ be a Sahlqvist formula and F = (W,R) a Kripke frame.

Step 1. Assume that ϕ is not valid in F . This says that there is a model
M = (F , h), for some assignment h of atoms into F , and some world a ∈ W ,
such that M, a |= ¬ϕ. Now ¬ϕ is plainly equivalent to a formula of the form

σ(ν1, . . . , νm, β1, . . . , βn), (1)

where σ(p1, . . . , pm, q1, . . . , qn) is a formula made from distinct atoms p1, . . . ,
pm q1, . . . , qn using only ∧ and ♦ (the duals of the operations in clause 3 of def-
inition 3.1); each of q1, . . . , qn occurs exactly once in σ; ν1, . . . , νm are negative
formulas; β1, . . . , βn are boxed atoms; and (1) is shorthand for the result

σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn)

of uniformly replacing each atom pi in σ by νi and each qj by βj . So ϕ is not
valid in F iff there are a, h with

(F , h), a |= σ(ν1, . . . , νm, β1, . . . , βn). (2)

Step 2. Now we observe the following critical fact. Let x be any first-order
variable.

LEMMA 3.2 The standard translation STx(σ(p1, . . . , pm, q1, . . . , qn)) of σ is
equivalent to a formula ψ(x, P1, . . . , Pm, Q1, . . . , Qn) of the form

∃y1 . . . yn
(
ψ(x, P1, . . . , Pm, ȳ) ∧

∧
1≤j≤n

Qj(yj)
)
, (3)

for some first-order formula ψ(x, P1, . . . , Pm, ȳ) positive in each of P1, . . . , Pm,
where ȳ = (y1, . . . , yn) is a tuple of distinct variables different from x.

The proof is a simple induction on the structure of σ, and it can be done precisely
because (as a result of clause 3 of definition 3.1) σ only involves ∧ and ♦, and
each qj occurs exactly once in σ. If we allowed ∧ in clause 3, ψ would be more
complicated: a disjunction of formulas of the form (3).

With (3) at hand, we see that (2) literally says that for some a, h,

(∗) there are b1, . . . , bn ∈ W , standing in a certain relation to a and to each
other specified by ψ (formally, by F |= ψ(a, [[ν1]]h, . . . , [[νm]]h, b1, . . . , bn))
and such that (F , h), bj |= βj for each 1 ≤ j ≤ n.
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Step 3. The next critical step is to observe that without loss of generality we
can replace h by a ‘minimal assignment’ h◦, satisfying h◦(s) ⊆ h(s) for every
atom s occurring in ϕ. In fact, h◦ is the assignment where each h◦(s) is as small
as possible subject to the condition that (F , h◦), bj |= βj for 1 ≤ j ≤ n. The
definition of h◦ is uniform in b1, . . . , bn.

To find h◦, for each atom s we collect up all the boxed atoms βj involving
s. To illustrate, suppose that there are just two of them: β3 = �2s, and
β7 = �0s = s. (So β1, β5, etc., are boxed atoms involving other atoms than s.)
Then (∗) states that (F , h), b3 |= �2s and (F , h), b7 |= s. This will be preserved
if we replace h by an assignment g with g(s) = {w ∈ W : F |= ∃z(R(b3, z) ∧
R(z, w))} ∪ {b7}. This is the ‘minimal’ assignment satisfying (F , g), b3 |= �2s
and (F , g), b7 |= s. Any assignment g′ making β3 true at b3 and β7 at b7 must
plainly satisfy g(s) ⊆ g′(s), and in particular, we have g(s) ⊆ h(s). Let h◦ be
the ‘minimal assignment’ that assigns the minimal value g(s) to each atom s as
just explained. If s does not occur in any βj then h◦(s) = ∅.

Now h◦(s) ⊆ h(s) for all atoms s. Consequently, by antimonotonicity of
negative formulas, [[νi]]h ⊆ [[νi]]h◦ for i = 1, . . . ,m. Since P1, . . . , Pm occur only
positively in ψ, the truth of ψ(a, [[ν1]]h, . . . , [[νm]]h, b1, . . . , bn) in (∗) is unaffected
by our replacing h by h◦.

So if (∗) holds for some assignment h, then it holds for h◦. Since if (∗) holds
for h◦ then it certainly holds for some h, we conclude that ϕ is not valid in F
iff (∗) holds for some a and for h◦.

We now make one final observation: it is automatic that (F , h◦), bj |= βj for
each 1 ≤ j ≤ n, since h◦ is defined precisely to achieve this. We conclude that
ϕ is not valid in F iff:

(∗∗) there are a, b1, . . . , bn ∈ W with F |= ψ(a, [[ν1]]h◦ , . . . , [[νm]]h◦ , b1, . . . , bn),
where h◦ is defined as above.

Step 4. The final critical step is to notice that for each atom s, the value
h◦(s) is first-order definable with the parameters b1, . . . , bn. We have

h◦(s) = {c ∈W : F |= δs(c, b1, . . . , bn)},

where δs(x, y1, . . . , yn) is a certain first-order formula in the frame language,
and one that we can explicitly construct. In the example above, we had h◦(s) =
{c ∈ W : F |= ∃z(R(b3, z) ∧ R(z, c))} ∪ {b7} — this is definable as {c ∈ W :
F |= δs(c, b1, . . . , bn)}, where

δs(x, y1, . . . , yn) = ∃z(R(y3, z) ∧R(z, x)) ∨ x = y7.

Summing up. In the light of (∗∗) and step 4, we see that ϕ is not valid in F
iff

F |= ∃xȳ θ(x, ȳ), (4)

where θ denotes the result of replacing each subformula of ψ(x, P1, . . . , Pm, ȳ)
of the form Pi(t) (for some 1 ≤ i ≤ m and some variable t) by: the formula
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obtained from STt(νi) by replacing each subformula S(v) (for an atom s and a
variable v) by δs(v/x, y1, . . . , yn) (which is the definition of h◦(s)). By construc-
tion, (4) means exactly the same as (∗∗) and is equivalent to ϕ’s failing to be
valid in F . Consequently, the negation ∀xȳ¬θ(x, ȳ) of the first-order sentence
in (4) is our desired frame correspondent for ϕ.

We would like to generalise this argument, eventually to the mu-calculus.

3.2 PIA formulas

In [4], van Benthem showed how to generalise steps 3 and 4 to a wider class
of modal formulas than boxed atoms, at the cost of ending up with a frame
correspondent not in first-order logic but in FO+LFP: first-order logic plus the
least and greatest fixed point operators.

What step 3 needs is the existence of a minimal assignment that makes a
formula β true at a given world y of a Kripke frame, given that there exists
at least one assignment making β true at y. As we saw, if β is a boxed atom
�ds then there is indeed a minimal assignment to s, namely, {w ∈ W : F |=
Rd(y, w)}, where R0(y, w) is y = w and Rd+1(y, w) is ∃z(R(y, z) ∧Rd(z, w)).

[4] studied first-order sentences ϕ(S) (for a unary relation symbol S corre-
sponding to the atom s) that admit such a minimal assignment, in the sense
that in any first-order structure M there is a minimal S ⊆M with M |= ϕ(S).
It was shown that a sufficient condition for ϕ(S) to admit a minimal assign-
ment is that it has the intersection property (IP): namely, that for any M ,
index set I, and subsets Si ⊆ M (i ∈ I), if M |= ϕ(Si) for each i ∈ I then
M |= ϕ(

⋂
i∈I Si). The minimal assignment to S that makes ϕ(S) true is then

simply
⋂
{S ⊆ M : M |= ϕ(S)}. It was also proved that ϕ(S) has IP iff it is

equivalent to a sentence of the form

∀y(ψ(S, y)→ S(y)),

where ψ(S, y) is positive in S. Such sentences have the form ‘positive implies
atomic’, or for short, ‘PIA’.

This is for first-order logic, and no similar characterisation of the modal
version of IP was given. Nonetheless, [4] did exhibit a modal analogue of ‘PIA
implies IP implies minimal assignment exists’. This arises by considering modal
formulas ϕ(s) that we will call semantically PIA formulas, whose standard trans-
lations STx(ϕ(s)) are equivalent to PIA formulas of the form

∀y(ψ(S, x, y)→ S(y)), (5)

for ψ positive in S. Boxed atoms are examples: STx(�ds) ≡ ∀y(Rd(x, y) →
S(y)), which is of the required form (5). But there are many more. First, any
atom s is a semantically PIA formula, since its standard translation STx(ϕ)
is S(x) — this is equivalent to ∀y(y = x → S(y)), which is of the form (5).
Second, it can be verified that the semantically PIA formulas ϕ(s), for a fixed
atom s, are closed under ∧ and � (though not under ∨). Third, if ϕ(s) is
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semantically PIA and π(s) is positive in s then π(s)→ ϕ(s) is also semantically
PIA. Since for Sahlqvist purposes we would like a syntactically defined class of
semantically PIA formulas, we say that a modal formula ϕ(s) is syntactically
PIA if it is obtained from atoms by applying ∧, �, and π(s) → ·, where π(s)
is positive in s. Boxed atoms are plainly (very) special cases of syntactically
PIA formulas. Any syntactically PIA formula, and indeed any semantically
PIA formula, admits a minimal assignment to s as required by step 3 of the
correspondence proof in section 3.1.

For step 4, we also need that the minimal assignment is definable in first-
order logic. The minimal S satisfying (5) need not be first-order definable.
However, it is definable in FO+LFP. This is because the minimal S satisfying
(5) (in a frame F = (W,R), for a given x ∈ W ) is the intersection of all S
satisfying (5). By the Knaster–Tarski theorem, this intersection is the least
fixed point of the monotone map fψ,x : ℘(W )→ ℘(W ) given by fψ,x(S) = {a ∈
W : F |= ψ(S, x, a)}, for S ⊆W . It is therefore defined by the FO+LFP-formula
[LFP(S, y)ψ](x, y).

The astute reader will have noticed that step 3 also required that we can take
the union of the minimal assignments to a given atom s from all of the boxed
atoms βj involving s, obtaining a single (definable) minimal assignment that
still satisfies all these βj . This is true for syntactically PIA formulas, for much
the same reason that they are closed under ∧, but properly it is a consideration
for the ‘clause 3’ structure of the Sahlqvist formula.

We conclude that we can allow negated syntactically PIA formulas in clause
2 of definition 3.1, if we do not mind the frame correspondent being in FO+LFP
instead of first-order logic.

3.3 PIA mu-calculus formulas

The main contribution of the current paper now begins. As suggested in [4], if
we are willing to admit frame correspondents in FO+LFP, why not go further
and consider formulas of the modal mu-calculus, whose standard translations
automatically lie in this language? Let us say that a modal mu-calculus formula
β(s) is semantically PIA if its standard translation STx(β) is equivalent to a
FO+LFP-formula of the form

∀y(ψ(S, x, y)→ S(y)), (6)

where ψ is positive in S. There will always be a FO+LFP-definable minimal
assignment to s making β true at a world a in a frame F , namely, {c : F |=
ψ′(a, c)}, where ψ′(x, y) = [LFP (S, y)ψ](x, y).

This definition of PIA formula is semantic. As before, we now have the
problem of defining a wide syntactic class of semantically PIA mu-formulas.
Starting from an atom s and fixed-point variables, we can close under ∧, �,
and π(s) → · as before, where π(s) is now a modal mu-sentence positive in s.
It turns out that we can also close under the greatest fixed point operator ν.
This will be seen in section 4. Any sentence ϕ(s) obtained in this way admits a
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minimal assignment to s that makes ϕ true at a world x of a frame; the minimal
assignment is definable in FO+LFP. So we could allow the negations of such
formulas in clause 2 of definition 3.1.

3.4 Clause 1

In step 3 of the correspondence proof, we noted that the negative formulas kept
their truth values when we replaced the original assignment h by the minimal
one, h◦. All that was needed for this was antimonotonicity, which still holds if
we allow positive mu-calculus formulas in clause 1 of definition 3.1.

3.5 Clause 3

Sahlqvist formulas were defined as the closure of positive formulas and negated
boxed atoms under ∨,�. We have seen how we can generalise boxed atoms
(to PIA mu-formulas) and positive formulas (to positive mu-calculus formulas).
Now we would like to generalise the ‘clause 3’ structure: the closure operations
∨,�.

All we required of these operations was that, when dualised to ∧,♦, they
allow lemma 3.2 to be proved. If we include ∨ here as well, a form of the lemma
involving a disjunction of formulas of the form (3) can be proved. We would
like to add µ, and to leverage this powerful operator we would like to have
both ∧ and ∨ available. (For example, we can already express ♦(p ∧ q) using ∧
and ♦, so we would like to express its ‘transitive closure’ version ♦∗(p ∧ q), by
σ1(p, q) = µX((p ∧ q) ∨ ♦X). This requires ∧ and ∨.)

It turns out that a disjunctive form of lemma 3.2 can be proved for any
formula σ(p1, . . . , pm, q1, . . . , qn) built using only ∨,♦, µ, where the formula ψ
in (3) is now in FO+LFP of course.

To allow ∧ as well, we have to make restrictions. For example, the standard
translation STx(σ2) of the formula σ2(q1, q2) = µX(q1 ∨ (q2 ∧ ♦X)), express-
ing ‘q2 until q1’, is not equivalent to a disjunction of formulas of the form
∃y1y2(ψ(x, y, z) ∧ Q1(y1) ∧ Q2(y2)) given in (3). A sufficient restriction is to
allow σ ∧ τ only if (i) σ and τ have no atoms from q1, . . . , qn (corresponding to
the boxed atoms) in common, and (ii) if either has a free fixed point variable
then the other is a sentence not involving q1, . . . , qn. This restriction allows σ1
but not σ2.

Now lemma 3.2 was only a tool for the correspondence proof. What is the
effect of the restrictions on ∧ in σ on actual Sahlqvist formulas? The effect of
(i) is nil, since we can meet it by using fresh atoms in τ — this doesn’t matter
since in (1) we substitute formulas for the atoms of σ. The effect of (ii) is that
for ϕ∨ψ to be a Sahlqvist formula, if one of ϕ,ψ is not a sentence then the other
must be a sentence not involving any negated boxed atoms — i.e., a positive
sentence.

The ‘reason’ why lemma 3.2 can be proved for such formulas σ is that they
are completely additive in each qk. Formally, if F is a frame and hi (i ∈ I 6= ∅)
are assignments into F that agree on all atoms other than qk, and h is the
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assignment given by h(p) =
⋃
i∈I hi(p) for each atom p, then for any world a of

F we have (F , h), a |= σ iff (F , hi), a |= σ for some i ∈ I. The restrictions on ∧
are to ensure that this holds.

Suppose for example that σ only involves the atom q, and STx(σ) = ψ(x,Q),
say. Let ψ0(x), ψ1(x, y) denote the result of replacing each subformula Q(v) of
ψ by ⊥ and v = y, respectively. Then by complete additivity,

STx(σ) ≡ ψ0(x) ∨ ∃y(ψ1(x, y) ∧Q(y)).

This form is close enough to (3) for the correspondence proof to work. If σ
involves multiple atoms, the argument can be iterated. So we can replace clause
3 of definition 3.1 by a construction allowing (the duals of) ∨,♦, µ, and the
restricted ∧ as just explained.

The trouble-maker is clearly ∧. If σ(p1, . . . , pm, q1, . . . , qn) does not involve
∧ then we can prove a stronger form of complete additivity. Passing to the dual
operations ∧,�, ν, this becomes a strong form of ‘complete multiplicativity’
analogous to the intersection property (IP), which we will use to show that
∧,�, ν and POS → · can be applied to PIA formulas while preserving the
existence of a definable minimal assignment.

3.6 Sahlqvist formulas in the mu-calculus

Let us formalise the position we have arrived at. All formulas below are of the
modal mu-calculus.

DEFINITION 3.3 [PIA formulas] Let s be an atom. We define the syntacti-
cally PIA formulas β(s) involving only the atom s, as follows.

1. s is a syntactically PIA formula.

2. Any fixed point variable X is a syntactically PIA formula.

3. If β(s), γ(s) are syntactically PIA formulas then so are β ∧ γ, �β, and
νXβ (for any fixed point variable X).

4. If β(s) is a syntactically PIA formula and π(s) is any modal mu-sentence
positive in s and involving no other atoms than s, then π(s) → β(s) is a
syntactically PIA formula.

In the end we are only interested in syntactically PIA sentences. These may not
look of the form ‘positive implies atomic’, but we will see that their standard
translations are equivalent to formulas of this form, so we feel the term ‘PIA’ is
justified.

DEFINITION 3.4 We also define the compound PIA formulas, which may
involve more than one atom:

1. Any syntactically PIA formula is a compound PIA formula.

10



2. Any fixed point variable X is a compound PIA formula.

3. If ϕ,ψ are compound PIA formulas then so are ϕ ∧ ψ, �ϕ, and νXϕ (for
any fixed point variable X).

Again, we are only interested in compound PIA sentences.

DEFINITION 3.5 [Sahlqvist mu-formula]

1. Any positive sentence is a Sahlqvist mu-formula.

2. Any negated compound PIA sentence is a Sahlqvist mu-formula.

3. Any fixed point variable is a Sahlqvist mu-formula.

4. If ϕ,ψ are Sahlqvist mu-formulas then so are ϕ ∧ ψ, �ϕ, and νXϕ (for
any fixed point variable X).

5. If ϕ,ψ are Sahlqvist mu-formulas, and if one of them is not a sentence then
the other is a positive sentence, then ϕ ∨ ψ is a Sahlqvist mu-formula.

A Sahlqvist mu-sentence is a Sahlqvist mu-formula that is a sentence.

In summary, a Sahlqvist mu-sentence is any sentence obtained by applying ∧,�,
and ν to fixed point variables, positive sentences, and negated compound PIA
sentences; ∨ can also be applied so long as if one of the disjuncts is not a
sentence then the other is a positive sentence. In the next section we will prove
a correspondence theorem for Sahlqvist mu-sentences.

4 Correspondence theorem

This section contains the formal proofs of the paper. We will prove a correspon-
dence theorem for Sahlqvist mu-sentences (theorem 4.14 below). The initial
sections contain preliminaries.

4.1 Skeletons

Our main technical tool will be formulas that we call skeletons, because they
will support the negative formulas and compound PIA formulas (generalising the
boxed atoms) in Sahlqvist formulas, as in (1). (In this role, they are analogous to
the universal prefix that is extracted in the ‘Sahlqvist–van Benthem algorithm’
in [7]. Skeletons allow a richer Sahlqvist syntax, including, for example, negative
formulas in antecedents — ♦(¬p ∧�p)→ · · · is fine.) We will also use them to
show that PIA and compound PIA formulas really are semantically PIA.

Recall that P is the ambient set of atoms, and V the set of fixed point
variables.

DEFINITION 4.1 [Q-skeleton] Let Q ⊆ P be arbitrary.

11



1. Any atomic mu-formula (i.e., an atom, a fixed point variable, >, or ⊥) is
a Q-skeleton.

2. If σ, τ are Q-skeletons then so are σ∨ τ , ♦σ, and µXσ (for any fixed point
variable X).

3. If σ is a Q-skeleton and τ is a positive sentence involving no atoms from
Q, then σ ∧ τ and τ ∧ σ are Q-skeletons.

REMARK 4.2 Any Q-skeleton is a Q′-skeleton for every Q′ ⊆ Q: increasing
Q strengthens the restrictions on Q-skeletons. However, if σ is a Q-skeleton and
Q′ is a set of atoms not occurring in σ, a simple induction shows that σ is a
Q∪Q′-skeleton.

The main semantic property of skeletons is a form of complete additivity, as
we will see in proposition 4.4. Fix a frame F = (W,R).

DEFINITION 4.3 Let H be a set of assignments into F .

1. Write
⋃
H for the assignment g given by g(ξ) =

⋃
{h(ξ) : h ∈ H} for each

atom or fixed point variable ξ.

2. Let Q ⊆ P be a set of atoms. We say that H is Q-variant if h(p) = h′(p)
for all atoms p ∈ P \ Q and all h, h′ ∈ H. (Important: there are no
restrictions on the values of h ∈ H on fixed point variables.)

PROPOSITION 4.4 Fix Q ⊆ P. Let σ be a Q-skeleton and H a non-empty
Q-variant set of assignments into F . Then [[σ]]⋃H =

⋃
{[[σ]]h : h ∈ H}.

Proof. We prove the proposition by induction on σ. We write g =
⋃
H. If

σ ∈ P ∪ V then [[σ]]g = g(σ) =
⋃
{h(σ) : h ∈ H} =

⋃
{[[σ]]h : h ∈ H}. If σ = ⊥,

the result is trivial. If σ = >, then because H 6= ∅ we have [[>]]g =
⋃
{[[>]]h :

h ∈ H}.
We pass to the inductive steps. First suppose that σ = τ ∨ ξ, where τ, ξ are

Q-skeletons. Then [[σ]]g = [[τ ]]g∪[[ξ]]g. By the induction hypothesis, [[τ ]]g∪[[ξ]]g =⋃
{[[τ ]]h : h ∈ H} ∪

⋃
{[[ξ]]h : h ∈ H} =

⋃
{[[τ ]]h ∪ [[ξ]]h : h ∈ H} =

⋃
{[[σ]]h : h ∈

H}.
Next let σ = ♦τ for some Q-skeleton τ . Let w ∈W . Then w ∈ [[σ]]g = [[♦τ ]]g

iff there is v ∈ [[τ ]]g with R(w, v). Inductively, [[τ ]]g =
⋃
{[[τ ]]h : h ∈ H}. So the

above holds iff there are h ∈ H and v ∈ [[τ ]]h with R(w, v). This is iff there is
h ∈ H with w ∈ [[♦τ ]]h = [[σ]]h: i.e., iff w ∈

⋃
{[[σ]]h : h ∈ H}, as required.

Next suppose that σ = τ ∧ ξ for some Q-skeleton τ and positive1 sentence ξ
involving no atom in Q (the case ξ ∧ τ is handled similarly). As H is Q-variant,
for each h ∈ H, g, h agree on all free symbols in ξ, and so [[ξ]]g = [[ξ]]h for each
h ∈ H. Now [[σ]]g = [[τ ]]g ∩ [[ξ]]g. By the induction hypothesis, this is equal to⋃
{[[τ ]]h : h ∈ H} ∩ [[ξ]]g =

⋃
{[[τ ]]h ∩ [[ξ]]g : h ∈ H} =

⋃
{[[τ ]]h ∩ [[ξ]]h : h ∈ H} =⋃

{[[σ]]h : h ∈ H}.
1This assumption is not used here.
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Finally, suppose that σ = µXτ . By monotonicity it is plain that [[σ]]g ⊇ [[σ]]h
for each h ∈ H, so we have [[σ]]g ⊇

⋃
{[[σ]]h : h ∈ H}. For the converse, we recall

that
[[σ]]g =

⋂
{U ⊆W : [[τ ]]gUX ⊆ U}

and ⋃
h∈H

[[σ]]h =
⋃
h∈H

⋂
{U ⊆W : [[τ ]]hU

X
⊆ U}.

Let y ∈ W and suppose that y /∈
⋃
h∈H[[σ]]h. Then for each h ∈ H there exists

Uh ⊆ W such that [[τ ]]
h
Uh
X

⊆ Uh and y /∈ Uh. Let H′ = {hUh

X : h ∈ H} and

g′ =
⋃
H′. Clearly, H′ is also Q-variant. So by the induction hypothesis, we

obtain [[τ ]]g′ =
⋃
{[[τ ]]h′ : h′ ∈ H′}. As [[τ ]]

h
Uh
X

⊆ Uh for each h ∈ H, we have⋃
{[[τ ]]h′ : h′ ∈ H′} ⊆

⋃
h∈H Uh = V , say. But plainly, g′ = gVX . Thus, we

obtained that [[τ ]]gVX ⊆ V . Now y /∈ V , as y /∈ Uh for each h ∈ H. Thus,

y /∈
⋂
{U ⊆W : [[τ ]]gUX ⊆ U} = [[σ]]g. �

A related theorem was proved using games in [13, proposition 5.5.4]. We will see
that proposition 4.4 has consequences for standard translations of Q-skeletons.

NOTATION 4.5 We will frequently be working with skeletons of the form

σ(p1, . . . , pm, q1, . . . , qn),

and the following notation will be repeatedly useful. We will write N =
{1, . . . , n}. Fix distinct first-order variables x, y1, . . . , yn. For U ⊆ V ⊆ N ,
we will write

σU/V (x, yi, P1, . . . , Pm, Qj : i ∈ U, j ∈ N \ V ) (7)

for the FO+LFP-formula obtained from STx(σ) by replacing every atomic sub-
formula Qk(v) (where k ∈ V and v is a variable) by the formula{

v = yk, if k ∈ U,
⊥, otherwise.

Note that σU/V is a FO+LFP-formula, not a mu-formula.

COROLLARY 4.6 Let Q = {q1, . . . , qn} and let σ(p1, . . . , pm, q1, . . . , qn) be
a Q-skeleton sentence. Then STx(σ) is logically equivalent to

σ∗ = σ∅/N (x, P1, . . . , Pm) ∨
∨

1≤k≤n

∃yk
(
σ{k}/N (x, yk, P1, . . . , Pm) ∧Qk(yk)

)
.

Proof. Let F = (W,R) be a frame, and take any assignment g into F , and
a ∈W . It is enough to show that

a ∈ [[σ]]g ⇐⇒ F |= σ∗(a, g(p1), . . . , g(pm), g(q1), . . . , g(qn)). (8)

Let H be the set of all assignments h into F such that for some k ∈ N :
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• h(qk) ⊆ g(qk) and |h(qk)| ≤ 1,

• h(ql) = ∅ for l ∈ N \ {k},

• h(ξ) = g(ξ) for every ξ ∈ (P ∪ V) \ Q.

Note that H 6= ∅, H is Q-variant, and
⋃
H = g. Now we prove (8). The

right-hand side holds iff F |= σ∅/N (a, g(p1), . . . , g(pm)) or there are k ∈ N
and b ∈ g(qk) with F |= σ{k}/N (a, b, g(p1), . . . , g(pm)). By definition of σU/V
and H, this is iff a ∈ [[σ]]h for some h ∈ H. By proposition 4.4, this is iff
a ∈ [[σ]]⋃H = [[σ]]g, as required. �

Corollary 4.6 will be useful for PIA formulas, but to rewrite Sahlqvist for-
mulas as we did in (1), we need to extend it to formulas that may not be
{q1, . . . , qn}-skeletons, but are only {qi}-skeletons for i = 1, . . . , n. Because of
this weaker assumption, we have to settle for a more complicated conclusion,
but the family resemblance should be clear.

COROLLARY 4.7 Suppose that σ(p1, . . . , pm, q1, . . . , qn) is a {qi}-skeleton
for each i = 1, . . . , n. Then STx(σ) is logically equivalent to

σN = ∃y1 . . . yn
∨
U⊆N

(
σU/N (x, y1, . . . , yn, P1, . . . , Pm) ∧

∧
k∈U

Qk(yk)
)
.

We remark that if σ is normal in qk — that is, σ(p1, . . . , pm, q1, . . . , qk−1,
⊥/qk, qk+1, . . . , qn) ≡ ⊥ — then all disjuncts with k /∈ U are equivalent to ⊥
and can be deleted.

Proof. The proof is by induction on n. The case n = 0 is vacuously true, since
then, σN = σ∅/∅ = STx(σ). Let n > 0 and assume the result for n−1. Treating
Qn as a P and applying the inductive hypothesis to the atoms q1, . . . , qn−1, with
N ′ = {1, . . . , n− 1}, shows that STx(σ) is equivalent to

σN
′

= ∃y1 . . . yn−1
∨

U⊆N ′

(
σU/N ′(x, y1, . . . , yn−1, P̄ , Qn) ∧

∧
k∈U

Qk(yk)
)
, (9)

where we write P̄ for (P1, . . . , Pm). As σ is a {qn}-skeleton, corollary 4.6 tell us
that STx(σ) is also equivalent to

σ∅/{n}(x, P̄ ,Q1, . . . , Qn−1) ∨ ∃yn
(
σ{n}/{n}(x, yn, P̄ , Q1, . . . , Qn−1) ∧Qn(yn)

)
.

Using (9) and the definitions of σ∅/{n} and σ{n}/{n}, the first disjunct of this is
equivalent to

∃y1 . . . yn−1
∨

U⊆N
n/∈U

(
σU/N (x, y1, . . . , yn−1, P̄ ) ∧

∧
k∈U

Qk(yk)
)
,

and the second to

∃y1 . . . yn
∨

U⊆N
n∈U

(
σU/N (x, y1, . . . , yn, P̄ ) ∧

∧
k∈U

Qk(yk)
)
.

STx(σ) is equivalent to the disjunction of these, and so to σN , which completes
the induction. �
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4.2 Skeletons and PIA formulas

In this section we will prove that any syntactically PIA sentence has a standard
translation equivalent to a ‘genuine’ PIA (positive implies atomic) formula of
FO+LFP, and so is semantically PIA. For compound PIA sentences, we will
get a conjunction of FO+LFP PIA formulas, one for each atom.

DEFINITION 4.8 Let Q ⊆ P and let σ be a Q−skeleton.

1. σ is said to be normal if the formula obtained by replacing every free
occurrence of every ξ ∈ Q∪V in σ by ⊥ is logically equivalent to ⊥. (Q is
understood tacitly here. Atoms in P \ Q are not altered in σ.)

2. We write σQ (the ‘dual’ of σ) for the formula obtained from ¬σ by replac-
ing each free occurrence of each ξ ∈ Q ∪ V by ¬ξ. Atoms in P \ Q are
unchanged.

The following is as we would expect when taking duals.

LEMMA 4.9 Let σ, σ1, σ2 be Q-skeletons. Then

1. (σ1 ∨ σ2)Q ≡ σQ1 ∧ σQ2 ,

2. (♦σ)Q ≡ �σQ,

3. (µXσ)Q ≡ νXσQ.

Proof. We prove only the last case. Let σ(p̄, q̄, X, Ȳ ) be given, where p̄ are
atoms not inQ, q̄ are atoms inQ, andX, Ȳ are fixed point variables. Then in the
obvious notation, (µXσ)Q = ¬µXσ(p̄,¬q̄, X,¬Ȳ ) ≡ νX¬σ(p̄,¬q̄,¬X,¬Ȳ ) =
νXσQ. �

This gives us the following alternative view of syntactically PIA formulas. In
the lemma, formulas may have free fixed point variables but we do not display
them.

LEMMA 4.10 Let β(s) be a syntactically PIA formula. Fix an atom q 6= s.
Then β(s) ≡ σ{q}(s/q, s), for some normal {q}-skeleton σ(q, s).

Proof. By induction on β. We have s = σ{q}(s/q) where σ = q (a normal
{q}-skeleton). For a fixed point variable X, X = σ{q}(s/q) where σ = X

(again, X is a normal {q}-skeleton). Suppose that β1(s) ≡ σ
{q}
1 (s/q, s) and

β2(s) ≡ σ{q}2 (s/q, s), for normal {q}-skeletons σ1(q, s), σ2(q, s).

• Let σ(q, s) = σ1(q, s) ∨ σ2(q, s) — plainly a normal {q}-skeleton. By

lemma 4.9, β1 ∧ β2 ≡ σ
{q}
1 (s/q, s) ∧ σ{q}2 (s/q, s) ≡ (σ1 ∨ σ2){q}(s/q, s) =

σ{q}(s/q, s).

• By lemma 4.9, �β1 ≡ �σ{q}1 (s/q, s) ≡ (♦σ1){q}(s/q, s), and ♦σ1 is normal.
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• Let σ(q, s) be the {q}-skeleton µXσ1(q, s). It is clearly normal. By

lemma 4.9, νXβ1 ≡ νXσ{q}1 (s/q, s) ≡ σ{q}(s/q, s).

• Finally, suppose that π(s) is any sentence positive in s and involving
no other atoms than s. Then σ(q, s) = π(s) ∧ σ1(q, s) is a normal {q}-
skeleton, and σ{q}(q, s) ≡ ¬(π(s) ∧ ¬σ{q}1 (q, s)) ≡ π(s) → σ

{q}
1 (q, s). So

π(s)→ β1(s) ≡ σ{q}(s/q, s).

This completes the induction and the proof. �

LEMMA 4.11 Let s be an atom and β(s) a syntactically PIA sentence. Then
STx(β(s)) is equivalent to a ‘PIA’ formula of FO+LFP of the form

∀y(ξ(x, y, S)→ S(y)),

where ξ(x, y, S) is positive in S.

Proof. By lemma 4.10 we have β(s) ≡ σ{q}(s/q, s) for some normal {q}-skeleton
sentence σ(q, s). By corollary 4.6, STx(σ(q, s)) ≡ ∃y(ξ(x, y, S) ∧ Q(y)), where
ξ(x, y, S) is obtained from STx(σ) by replacing every subformula Q(t) by t = y.
(By normality, the disjunct σ∅/N in the corollary is equivalent to ⊥ and we can
dispense with it.) So

STx(β(s)) ≡ STx(σ{q}(s/q, s))

≡ ¬∃y(ξ(x, y, S) ∧ ¬S(y)) ≡ ∀y(ξ(x, y, S)→ S(y)).

By definition, σ(q, s) is positive in s, so ξ is positive in S. �

We now extend this to compound PIA sentences.

PROPOSITION 4.12 Let ϕ(s1, . . . , sm) be a compound PIA sentence. Then
STx(ϕ) is equivalent to a formula of the form∧

1≤k≤m

∀y(ψk(x, y, Sk)→ Sk(y)),

where each ψk(x, y, Sk) is a FO + LFP -formula positive in Sk.

Proof. Much as in lemma 4.10, it can be shown by induction on ϕ that

ϕ(s1, . . . , sm) = σQ(β1(p1)/q1, . . . , βn(pn)/qn)

for some n, where q1, . . . , qn are distinct atoms, Q = {q1, . . . , qn}, σ(q1, . . . ,
qn) is a normal Q-skeleton sentence, β1(p1), . . . , βn(pn) are syntactically PIA
formulas, and p1, . . . , pn ∈ {s1, . . . , sm} are not necessarily distinct.

For each l = 1, . . . , n, let χl(x, z) = σ{l}/N (x, z/yl). It follows from corol-
lary 4.6 that

STx(σQ(q1, . . . , qn)) ≡
∧

1≤l≤n

∀z
(
χl(x, z)→ Ql(z)

)
,

16



because by normality, the disjunct σ∅/N in the corollary is equivalent to ⊥ and
can be omitted. By lemma 4.11, we also have

STz(βl(pl)) ≡ ∀y(ξl(z, y, Pl)→ Pl(y)),

for some FO+LFP-formula ξl(z, y, Pl) positive in Pl. For k ∈ {1, . . . ,m}, let
L(k) = {l : 1 ≤ l ≤ n, pl = sk}. Then

STx(ϕ) ≡ STx(σQ(β1(p1)/q1, . . . , βn(pn)/qn))

≡
∧

1≤l≤n

∀z(χl(x, z)→ STz(βl(pl)))

=
∧

1≤l≤n

∀z
(
χl(x, z)→ ∀y[ξl(z, y, Pl)→ Pl(y)]

)
≡

∧
1≤l≤n

∀y
(
∃z(χl(x, z) ∧ ξl(z, y, Pl))→ Pl(y)

)
≡

∧
1≤k≤m

∧
l∈L(k)

∀y
(
∃z(χl(x, z) ∧ ξl(z, y, Sk))→ Sk(y)

)
≡

∧
1≤k≤m

∀y
( [ ∨

l∈L(k)

∃z(χl(x, z) ∧ ξl(z, y, Sk))
]

︸ ︷︷ ︸
ψk(x,y,Sk)

→ Sk(y)
)
,

as required. Clearly, the indicated ψk(x, y, Sk) is positive in Sk. (If L(k) = ∅
then ψk ≡ ⊥.) �

We conclude from proposition 4.12 that the standard translation of a com-
pound PIA sentence ϕ(s1, . . . , sm) is equivalent to a conjunction of FO+LFP-
formulas in PIA form, one for each atom s1, . . . , sm.

4.3 Skeletons and Sahlqvist formulas

The definition of Sahlqvist formula is chosen so that we can view Sahlqvist
formulas in terms of skeletons, by the following analogue of lemma 4.10.

LEMMA 4.13 Let ϕ be a Sahlqvist formula. Then there are a formula σ(p1, . . . ,
pm, q1, . . . , qn, X1, . . . , Xt) that is a {qi}-skeleton for each i = 1, . . . , n, negative
sentences ν1, . . . , νm, and compound PIA sentences β1, . . . , βn (not necessarily
distinct), such that

ϕ ≡ ¬σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn,¬X1/X1, . . . ,¬Xt/Xt). (10)

Proof. By induction on ϕ. If ϕ is a positive sentence then ϕ ≡ ¬σ(¬ϕ/p) where
σ = p. If ϕ is a negated compound PIA sentence ¬β then ϕ ≡ ¬σ(β/q) where
σ = q. If ϕ is a fixed point variable X, then ϕ ≡ ¬σ(¬X/X) for σ = X. Assume
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(10); then (10) holds with ϕ replaced by �ϕ and σ by ♦σ. Also, taking νX1 as
an example,

νX1ϕ
≡ νX1¬σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn,¬X1/X1, . . . ,¬Xt/Xt)
≡ ¬µX1σ(ν1/p1, . . . , βn/qn, X1,¬X2/X2, . . . ,¬Xt/Xt),

which is of the form (10).
Suppose in the obvious notation that

ϕ ≡ ¬σ(ν̄/p̄, β̄/q̄,¬X̄/X̄),
ϕ′ ≡ ¬σ′(ν̄′/p̄′, β̄′/q̄′,¬X̄ ′/X̄ ′),

where σ(p̄, q̄, X̄) is a {q}-skeleton for every q in q̄, and σ′(p̄′, q̄′, X̄ ′) is a {q′}-
skeleton for every q′ in q̄′. We can suppose without loss of generality that no
atom in q̄ occurs in σ′ and no atom in q̄′ occurs in σ. By remark 4.2, σ, σ′,
and hence σ ∨ σ′ are {q}-skeletons and {q′}-skeletons for every q in q̄ and q′

in q̄′, and clearly, ϕ ∧ ϕ′ ≡ ¬(σ ∨ σ′)(ν̄/p̄, ν̄′/p̄′, β̄/q̄, β̄′/q̄′,¬X̄/X̄,¬X̄ ′/X̄ ′) as
required. This covers the case ϕ ∧ ϕ′.

Now suppose that ϕ ∨ ϕ′ is a Sahlqvist formula. Certainly, ϕ ∨ ϕ′ ≡
¬(σ ∧ σ′)(ν̄/p̄, ν̄′/p̄′, β̄/q̄, β̄′/q̄′,¬X̄/X̄,¬X̄ ′/X̄ ′). But we need to check that
(σ ∧ σ′)(p̄p̄′, q̄q̄′, X̄X̄ ′) is an {x}-skeleton for each atom x in q̄q̄′.

If ϕ,ϕ′ are both sentences, then so are σ, σ′. For each atom q in q̄ (resp.,
q′ in q̄′), it is plain that σ′ (resp. σ) is a positive sentence not involving it. So
σ ∧ σ′ is an {x}-skeleton for each x in q̄q̄′.

Suppose instead that ϕ is not a sentence (the other case is similar). Then
(see definition 3.5) ϕ′ is a positive sentence and consequently does not involve
any negated compound PIA sentences. So we may assume that q̄′ is empty. Now
for each q in q̄, σ′ is a positive sentence not involving q, so (σ ∧ σ′)(p̄p̄′, q̄, X̄X̄ ′)
is a {q}-skeleton. This completes the proof. �

4.4 Sahlqvist correspondence for mu-calculus

We are now ready to prove our main result.

THEOREM 4.14 Any Sahlqvist mu-sentence ϕ(s1, . . . , st) has a FO+LFP
frame correspondent — a sentence χϕ of FO+LFP with the property that for
any frame F , we have F |= χϕ iff ϕ is valid in F . The correspondent χϕ can
be computed from ϕ by a simple2 algorithm.

Proof. We follow the same steps as in our original account in section 3. Let
F = (W,R) be any Kripke frame.

2Well, fairly simple.
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Step 1. Assume that ϕ is not valid in F . This is the case iff there are an
assignment h into F and a ∈W with (F , h), a |= ¬ϕ. Now by lemma 4.13,

¬ϕ ≡ σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn),

where σ(p1, . . . , pm, q1, . . . , qn) is a sentence that is a {qi}-skeleton for each 1 ≤
i ≤ n, and ν1, . . . , νm are negative sentences and β1, . . . , βn compound PIA
sentences written with the atoms s1, . . . , st. So

(F , h), a |= σ(ν1/p1, . . . , νm/pm, β1/q1, . . . , βn/qn). (11)

Step 2. By corollary 4.7, STx(σ(p1, . . . , pm, q1, . . . , qn)) is logically equivalent
to

∃y1 . . . yn
∨
U⊆N

(
σU/N (x, P1, . . . , Pm, y1, . . . , yn) ∧

∧
k∈U

Qk(yk)
)
.

So by (11), we see that ϕ is not valid in F iff there are an assignment h into F ,
a, b1, . . . , bn ∈W , and U ⊆ N with

F |= σU/N (a, [[ν1]]h, . . . , [[νm]]h, b1, . . . , bn) and
∧
k∈U

(
bk ∈ [[βk]]h

)
. (12)

Step 3. We now plan to replace h by a ‘minimal’ assignment h◦, preserving
(12). This assignment will depend uniformly on b1, . . . , bn, as before, and it will
also depend on U .

Each βk(s1, . . . , st) (1 ≤ k ≤ n) is compound PIA, so by proposition 4.12 its
standard translation STyk(βk) is equivalent to a FO+LFP-formula of the form∧

1≤l≤t

∀y(ψkl (yk, y, Sl)→ Sl(y)), (13)

where each ψkl is positive in Sl. So the last part of (12) says precisely that

(F , h(sl)) |= ∀y(ψkl (bk, y, Sl)→ Sl(y)) (14)

for each l = 1, . . . , t and each k ∈ U . This condition is plainly equivalent to
(F , h(sl)) |=

∧
k∈U ∀y(ψkl (bk, y, Sl)→ Sl(y)) for each 1 ≤ l ≤ t, and so to:

(F , h(s)) |= ∀y(ρsU (y, b1, . . . , bn, S)→ S(y)) (15)

for each atom s ∈ P, where

ρsU (y, y1, . . . , yn, S) =
∨{

ψkl (yk, y, S) : k ∈ U, 1 ≤ l ≤ t, s = sl
}
. (16)

If s /∈ {s1, . . . , st} then ρsU ≡ ⊥.
Now each ρsU is positive in S. So (15) is in PIA form, and a minimal as-

signment to each s exists. Call this assignment h◦. As we said, it depends on
b1, . . . , bn, and U . For s /∈ {s1, . . . , st} we have h◦(s) = ∅.
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If we replace h by h◦ in (12), the condition bk ∈ [[βk]]h◦ for each k ∈
U is automatic — h◦ is by definition the minimal assignment that ensures
this. Moreover, h◦(s) ⊆ h(s) for all atoms s. By antimonotonicity, [[νl]]h ⊆
[[νl]]h◦ for each 1 ≤ l ≤ m. As σU/N is positive in P1, . . . , Pm, we have
F |= σU/N (a, [[ν1]]h◦ , . . . , [[νm]]h◦ , b1, . . . , bn).

We conclude from (12) that ϕ is not valid in F iff there are a, b1, . . . , bn ∈W ,
and U ⊆ N such that with the above h◦,

F |= σU/N (a, [[ν1]]h◦ , . . . , [[νm]]h◦ , b1, . . . , bn). (17)

Step 4. Moreover, for each atom s, the minimal assignment h◦(s) that satisfies
(15) is definable in FO+LFP: it is given by the set of all c in F that satisfy the
FO+LFP-formula ηsU (c, b1, . . . , bn), where

ηsU (y, y1, . . . , yn) = [LFP (S, y)ρsU (y, y1, . . . , yn, S)](y, y1, . . . , yn). (18)

This is a well formed FO+LFP-formula, since ρsU is positive in S.

Summing up. Let ωU (x, y1, . . . , yn) be the formula obtained as follows. We
take σU/N (x, P1, . . . , Pm, y1, . . . , yn) and replace each atomic subformula Pl(t)
(1 ≤ l ≤ m, t a variable) by the formula obtained from STt(νl) by replacing each
atomic subformula S(z) (for some atom s and variable z) by ηsU (z/y, y1, . . . , yn)
from (18) (the parts of ηsU are given in (16) and (13)). Then (17) is equivalent
to

F |= ωU (a, b1, . . . , bn),

and ϕ is not valid in F iff there are a, b1, . . . , bn ∈ W and U ⊆ N such that
this holds. We conclude that the original statement that ϕ is not valid in F is
equivalent to

F |= ∃xy1 . . . yn
∨
U⊆N

ωU (x, y1, . . . , yn).

Thus we obtain our correspondent χϕ as the negation of this. �

5 Examples

We will now give a few examples concerning frame correspondents. We explained
the algorithm that constructs the correspondents in full detail in section 4, and
in spirit in section 3. In the examples, we will take an informal approach true
to the spirit of the algorithm. The reader may like to apply the algorithm to
the examples following the precise steps of the preceding section.

5.1 Löb’s formula, �(�p→ p)→ �p

We simply state the correspondence: F , x |= �(�p → p) → �p iff (1) R is
transitive from x, and (2) R is conversely well-founded at x. Note that the
antecedent �(�p→ p) is PIA, and we can see that its minimal valuation stated
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as a fixed-point by our general procedure amounts to the set {y : ∀z(R∗yz →
Rxz)∧no infinite sequence starts from y}. Substituting this into the consequent
gives the above frame-equivalent.

Now that we have PIA forms, we can go back to earlier work on non-first-
order correspondence and see what was going on. For instance, the modal axiom
(♦p ∧ �(p → �p)) → p discussed in [3] has a PIA conjunct �(p → �p) in its
antecedent. Its corresponding frame property is easily determined.

5.2 Axioms of propositional dynamic logic (PDL)

Consider the axioms of PDL, treating complex program expressions as new re-
lation symbols. For instance, the characteristic axiom for composition, [a; b]p↔
[a][b]p, may be viewed as [c]p↔ [a][b]p. This axiom consists of two implications
that are clearly Sahlqvist forms. Computing their frame equivalents via the
usual algorithm yields Rc = Ra ◦ Rb, where ◦ is composition of binary rela-
tions. Now consider the two axioms for Kleene star: (i) [a∗]p → p ∧ [a][a∗]p,
(ii) p ∧ [a∗](p → [a]p) → [a∗]p. These may be viewed as (i) [b]p → p ∧ [a][b]p,
(ii) p∧ [b](p→ [a]p)→ [b]p. Of these, the first is standard first-order Sahlqvist.
What it says is that Id ⊆ Rb and Ra ◦ Rb ⊆ Rb. The second principle has
an antecedent that is PIA by the rules of our syntax. Suppressing a precise
calculation here, in conjunction with the preceding two inclusions it says that
the relation Rb is equal to the reflexive-transitive closure R∗a.

5.3 ϕ1 = �+s→ s

Here, �+s abbreviates νX�(s∧X), which defines the ‘transitive closure’ of �.
We could treat ϕ1 as a classical Sahlqvist formula in a modal signature with the
box �+ with accessibility relation R+, calculate its correspondent by the clas-
sical method (§3.1) as ∀xR+(x, x), and then replace R+(x, x) by its FO+LFP
definition [LFP (S, x, y) . R(x, y) ∨ ∃z(R(x, z) ∧R+(z, y))](x, x). Note that this
requires a binary LFP operation.

Alternatively, we can use our algorithm. Written out in the mu-calculus,
ϕ1 is νX�(s ∧ X) → s. It is valid in a frame F at a world x iff (F , h), x |=
νX�(s ∧X)→ s for all assignments h into F .

Let H be the set of assignments h (into F) with (F , h), x |= νX�(s ∧ X).
We will show that there is a ‘smallest’ h◦ (with minimum h(s)) in H. Then ϕ1

is valid in F iff (F , h), x |= s for all h ∈ H. Since s is positive, this holds iff
(F , h◦), x |= s.

We calculate h◦ using PIA methods. Clearly, νX�(s ∧ X) ≡ [¬µX♦(s ∨
X)](¬s/s). As µX♦(s∨X) is normal and completely additive in s, its standard
translation STx at x is equivalent to ∃v(λ(v, x) ∧ S(v)), where

λ(v, x) = [LFP (X,x) .∃y(R(x, y) ∧ (y = v ∨X(y))](v, x).

So
STx(νX�(s ∧X)) ≡ ∀v(λ(v, x)→ S(v)). (19)
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This is in PIA form. The minimal assignment to s with respect to x is given by
LFP (S, v) applied to the antecedent λ(v, x). This is equivalent to λ(v, x), as S
does not occur free in λ. ((19) is ‘CIA’ — ‘constant implies atomic’.)

The ‘minimal’ h◦ ∈ H is now given by h◦(s) = {v ∈ F : F |= λ(v, x)}. So ϕ
is valid in F at x iff (F , h◦), x |= s, iff F |= λ(x/v, x). So ϕ1 is valid in a frame
F iff F |= ∀xλ(x/v, x): i.e.,

F |= ∀x
(
[LFP (X,x) .∃y(R(x, y) ∧ (y = x ∨X(y))](x)

)
.

This is our frame correspondent. It uses only unary least fixed points, as do all
correspondents obtained with our algorithm.

5.4 ϕ2 = s→ νX
(
�(X ∧ ¬s′) ∨ (♦s ∧ ♦s′)

)
This can be checked to conform to definition 3.5, if we replace the initial ‘s→ ’
by ‘¬s ∨ ’. The skeleton associated with ϕ1 above was just p ∧ q. For ϕ2, the
skeleton is nontrivial: ϕ2 is equivalent to the Sahlqvist mu-formula

¬σ(η/p, s/q, s′/q′),

where (clearly) s, s′ are PIA formulas, η = ¬(♦s ∧ ♦s′) is negative, and

σ(p, q, q′) = q ∧ µX(p ∧ ♦(q′ ∨X))

is a {q}-skeleton and a {q′}-skeleton. It is not a {p}-skeleton, because in p ∧
♦(q′ ∨ X), the right-hand conjunct is not a sentence but the left-hand one
involves p. The second conjunct of σ is equivalent to a strict form of pUq′. So
ϕ ≡ s→ ¬([¬(♦s ∧ ♦s′)]Us′).

We calculate the frame correspondent of ϕ2. We will suppress some paren-
theses to aid readability. Note that σ is normal in q and q′, so (as we mentioned
after the statement of corollary 4.7) STx(σ) is equivalent to the rather simple
formula

∃yy′
(
x = y ∧ [LFP (X,x) . Px ∧ ∃z(Rxz ∧ (z = y′ ∨Xz))]

∧Qy ∧Q′y′
)
. (20)

We now take STx(η) = ¬(∃v(Rxv∧Sv)∧∃v(Rxv∧S′v)) and replace references to
S, S′ by the minimal valuations for them, which are {y}, {y′}, respectively. We
obtain ¬(∃v(Rxv∧v = y)∧∃v(Rxv∧v = y′)), which simplifies to ¬(Rxy∧Rxy′).
This is substituted for Px in (20) and the conjuncts Qy,Q′y′ are deleted since
they will automatically be true under the minimal assignment. We obtain

∃yy′
(
x = y ∧ [LFP (X,x) .¬(Rxy ∧ Rxy′) ∧ ∃z(Rxz ∧ (z = y′ ∨ Xz))]),

and this holds at a world x iff ϕ2 is not valid at x. So our frame correspondent
for ϕ2 expresses the negation of the above for all x, which boils down to:

∀xyy′
(
x = y → GFP [X,x]

[
∀z(Rxz → (z 6= y′ ∧Xz)) ∨ (Rxy ∧Rxy′)

])
.

22



The correspondent plainly ‘says’ that for any path x = x0Rx1R . . . Rxn = y in
the frame, with n > 0, there is i with 0 ≤ i < n such that Rxix and Rxiy.

This raises some interesting connections with PDL. We do not believe that
there is any PDL formula without tests that is valid in the same frames as ϕ2,
but ϕ2 is valid in the same frames as

ϕ3 = p ∧ 〈(?q ; a)∗〉p′ → 〈(?q ; a)∗〉(♦p ∧ ♦p′),

where q is a new atom and a is a program with accessibility relation R. The
idea is roughly that if (F , h), x |= p ∧ 〈(?q ; a)∗〉p′, then there is y with R∗xy at
which p′ holds, and a path from x to y along which q holds. The minimal values
of p, p′, q are now x, y, and the path, respectively. The consequent now states
that some world t on the path is R-related to worlds satisfying these minimal
values of p, p′ : i.e., Rtx and Rty.

In general, the minimal value of q (the path) is not unique, and considering
automorphisms shows that it is not going to be definable in terms of x, y in any
logic at all. So such PDL-formulas seem to be (possibly much) more powerful
than Sahlqvist mu-formulas. On the other hand, Sahlqvist mu-formulas allow
rather free use of fixed points, and in expressive power may go beyond even
PDL-formulas with tests. Consider for example µX�X. As is well known, this
defines the well-founded part of any model. This property appears not to be
definable in PDL. The exact relationship between the two formalisms is to be
the object of further study.

5.5 McKinsey’s axiom: �♦p→ ♦�p

Of course, not every modal mu-formula, or even every modal formula, has a
frame correspondent in FO+LFP. It was mentioned in [4] that McKinsey’s
axiom ϕ = �♦p→ ♦�p has no such correspondent and that this can be proved
using the Löwenheim–Skolem property for LFP (joint work by van Benthem
and Goranko).

Here, we give a little more detail of the proof. It is based on [2]; see also [1,
theorem 21] and [15, theorem 2.2]. Note first that ϕ is equivalent to ♦(�p∨�¬p).
Let F be the frame whose set of worlds consists of three disjoint parts: a
root r; the natural numbers; and the infinite sets X of natural numbers. The
accessibility relation R of F relates r to every X, X to every member of X,
and each natural number to itself; these are the only instances of R. It can be
verified that ϕ is valid in F , because for any assignment of p into F , there must
be an infinite set X of natural numbers all having the same truth value for p,
and �p ∨ �¬p is consequently true at such an X. Hence ♦(�p ∨ �¬p) is true
at the root. Truth of ϕ at all other worlds of F is easy to check.

Suppose for contradiction that χ is a (global) frame correspondent of ϕ
in FO+LFP, so that F |= χ. It follows from the proof of the downward
Löwenheim–Skolem property for FO+LFP in [17, theorem 2.4] that there is
a countable elementary substructure F0 � F containing all the natural num-
bers and with F0 |= χ, and so ϕ is valid in F0. To see that this is impossible,
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enumerate the sets of natural numbers in F0 as X0, X1, . . . , and select by induc-
tion distinct natural numbers x0, y0, x1, y1, . . . in such a way that xn, yn ∈ Xn

for each n (this is possible because Xn is infinite). Now assign p to {x0, x1, . . .}.
Every set Xn in F0 contains a point (xn) satisfying p and a point (yn) satisfying
¬p, so �p ∨�¬p is false at every Xn. Hence, ϕ is false at the root.

6 Coda: proof-theoretic aspects of correspon-
dence arguments

As we observed, our proof gives a constructive algorithm for computing frame
equivalents of modal axioms having the required syntax. There is more here
than meets the eye. For a start, the equivalents computed by the algorithm
need not be the standard formulations one would expect. This is already true
for first-order equivalents of basic modal axioms. For instance, the modal axiom
p → �♦p gets a computed correspondent ∀y(Rxy → ∃z(Ryz ∧ z = x)), and
this only reduces to the natural version ∀y(Rxy → Ryx) (symmetry) after
transformation into a logical equivalent. This ‘simplification’ phase can be still
more drastic for fixed-point formulas. For instance, the description that we
gave of the minimal valuation for the antecedent of Löb’s Axiom was not the
fixed-point produced directly by our general algorithm, but a simplification
reached by analyzing that predicate. And likewise, when we substitute that
simplified predicate into the consequent of Löb’s Axiom, we have to perform
one more simplification to see that ∀y(Rxy → ∀z(R∗yz → Rxz)) is equivalent
to ∀y(Rxy → ∀z(Ryz → Rxz)), and that ∀y(Rxy → ‘no infinite sequence starts
from y’) is equivalent to ‘no infinite sequence starts from x’. What this shows
in general is that optimizing correspondence may involve some manipulation in
the logic of the correspondence language.

This observation raises another, and more important issue, namely, finding
syntactic completeness versions of semantic correspondence results. The point
is that correspondence arguments are proofs, but the issue is where. [3] already
proved the following

Theorem. The correspondence arguments for first-order Sahlqvist
axioms in the basic modal language can all be formalized in a weak
monadic second-order logic with comprehension (universal instanti-
ation for second-order quantifiers) only for first-order definable sets
in the vocabulary {R,=} plus unary predicate parameters.

This is a very weak formalism, and it shows that Sahlqvist’s Theorem has a very
constructive proof. We do not give details of the proof of this result, but the
following may be noted. Substituting first-order definable minimal predicates
is the mentioned universal instantiation. What also needs to be proved is a
syntactic version of the semantic monotonicity of the consequent, using the
syntactic positive occurrence of its proposition letters.

What is the corresponding result for our arguments? This time, the for-
malism can again be the mentioned second-order logic, but now we also allow
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definable predicates in FO+LFP. Again we have to show that all steps in the
proof go through. Note that this is much weaker than using all validities of
FO+LFP, whose logic is highly complex and non-axiomatizable. By the way,
the same may be true for ‘simplification’ of correspondents like that for Löb’s
Axiom in FO+LFP. We seem to need only a small part of all the validities of
that language, say just the obvious fixed-point axioms and rules.

In this light, what is the point of the usual modal completeness versions of
the Sahlqvist Theorem? What these show is that for extracting purely modal
consequences, we do not need the full language of correspondence proofs, but
only a purely modal sublanguage. The usual incompleteness proofs in modal
logic [12] then show that this only goes so far, as this can fail for relatively
simple modal axioms. We do not investigate this here, but we do have one
telling example. [9] shows that the following variant of Löb’s Axiom is frame-
incomplete: �(�p ↔ p) → �p. This formula defines the same class of frames
as Löb’s Axiom, but it fails to derive the latter. What is significant here is that
it does have PI form for its antecedent, so our algorithm would treat it just like
Löb’s Axiom itself.

But we end with an observation about strength of modal deduction. Some-
times, the mu-calculus seems strong enough to prove exact analogues of our
correspondence arguments! Löb’s Axiom itself is a good example. For instance,
the second ‘simplification’ stated above is just the provable fixed-point principle
�µp(�p↔ µp�p). Next, here is a result from [5]:

FACT 6.1 Löb’s Logic is equivalently axiomatized by the two principles (a)
�p→ ��p, (b) µp�p.

Proof. From Löb’s Logic to (a) is a purely modal deduction. Next, (b) is derived
as follows. By the fixed-point axiom of the mu-calculus, �µp(�p→ µp�p). So
it suffices to get �µp�p. Now Löb’s Axiom implies �(�µp�p → µp�p) →
�µp�p, and the antecedent of this is derivable by modal Necessitation from the
mu-calculus fixed-point axiom. Conversely, assume (a) and (b). We show that,
in the modal logic K4, µp�p → (�(�q → q) → �q). The derivation rule for
smallest fixed-points proves µp�p→ α for any formula α if �α→ α is proved.
But K4 proves �(�(�q → q)→ �q)→ (�(�q → q)→ �q). �

While we have not given any deep results, we have hopefully shown how
correspondence arguments have interesting proof-theoretic aspects.

7 Conclusions and future work

We conclude with a discussion of some possible directions for future work.
Multiple recursions. In this paper we defined Sahlqvist mu-formulas and

proved that they have FO+LFP-correspondents. Here, in defining the crucial
syntactic notion of a PIA-formula, we allowed only one atom. Can we also
allow several atoms, while still obtaining mu-formulas that have FO+ LFP-
correspondents? This question is related to the ‘inductive formulas’ of Goranko
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and Vakarelov [16], which are more general than Sahlqvist formulas and admit
minimal valuations constructed step-by-step for each atom. A generalization
of Sahlqvist mu-formulas to allow several atoms in PIA-formulas may require
combining our approach with the one of [16].

Strengthening the modal base. In this paper we only consider the basic modal
language extended with fixed point operators. However, there is room for further
expansions involving hybrid modal languages, or the Guarded Fragment with
fixed point operators. Extensions of classical Sahlqvist correspondence to these
languages have already been studied in, e.g., [8]. We think our approach can be
generalized in the same way.

Fragments of the mu-calculus. One can also look into an opposite direction,
at languages weaker than mu-calculus, and examine the consequences of the
Sahlqvist correspondence developed in this paper. One obvious candidate is
propositional dynamic logic (PDL), which has already played a large role in our
examples.3

The fixed-point correspondence language. We now turn to the other end of
our Sahlqvist correspondence: the logic FO+LFP. It is of course of interest
to know how much power of this logic we are really using. In other words, in
what subfragment of FO+LFP do the correspondents of Sahlqvist mu-formulas
‘land’? For the classical Sahlqvist correspondence this question has been an-
swered by Kracht [18, 7]. But for the modal mu-calculus this question is wide
open.4

Further questions. Of course one could also ask for analogues of other fa-
mous definability results for the mu-calculus, such as the Goldblatt–Thomason
theorem, which gives necessary and sufficient condition for a class of frames to
be modally definable. Another example is Fine’s theorem, which states that
every elementarily definable modal logic is canonical. There are different ways
to formulate canonicity for modal mu-logics, and a useful framework for this
might be the admissible semantics of modal mu-calculus used in [6].

To sum everything up, we hope to have shown that the mu-calculus provides
a natural new take on many traditional issues in modal definability, and that
there is a lot of interesting syntactic and semantic structure awaiting further
exploration.
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