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Introduction 1/3. Canonical models and frames

In this talk, we consider only normal modal logics.

For a (normal) modal logic L, let:

• W = {maximal L-consistent sets}
• ΓR∆ iff φ ∈ ∆ ⇒ 3φ ∈ Γ, for Γ,∆ ∈W

• h(p) = {Γ ∈W : p ∈ Γ} for each propositional atom p.

Then (W,R, h) is ‘the’ canonical model for L.
And (W,R) is ‘the’ canonical frame for L.

But these are not unique! The domain W depends on how many
propositional atoms we allow.
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Introduction 2/3. Canonical logics

A modal logic is said to be:

• canonical, if it is valid in every canonical frame for the logic (made of
maximal consistent sets using any set of propositional atoms),

• κ-canonical, for a cardinal κ, if it is valid in the canonical frame for
the logic made using κ atoms.

κ-canonical ⇒ λ-canonical for λ < κ.
n-canonical for all n < ω ̸⇒ ω-canonical [Goldblatt, 4, §6].

Fine’s problem (second of three) [2, 1975]

Kit Fine asked (adapted to the definition above):

‘. . . can an ω-canonical [modal] logic fail to be α-canonical for
some cardinal α > ω?’

Utterly basic question about canonicity. But still open ∼50 years later.
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Introduction 3/3. Resolved logics

We call logics that are either canonical or not ω-canonical resolved.
These are the ones satisfying ω-canonical ⇒ canonical.
Fine was asking whether all modal logics are resolved.

No unresolved logics have been identified. The following are resolved:

• Sahlqvist-axiomatisable logics — all canonical
• logics of elementary classes of frames — all canonical [Fine]
• subframe logics [Fine (transitive), Wolter (arbitrary)]
• transitive cofinal subframe logics [Zakharyaschev]

We will sketch a proof that quite a few other modal logics are resolved:

1. extensions of ‘K52’
2. logics of ‘achronal width 1’
3. (multimodal) logics of ‘finite achronal width’ — covers 1, 2, 4, 5
4. Fine’s logics of finite width
5. linear temporal logics (with F, P )

We do it for case 1. If time, we look at cases 2–3.
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Case 1: extensions of K52 (Goldblatt)

For n < ω, the logic K5n is axiomatised by 5n = 3np→ 23p.
Here, 3n = 33 · · ·3 (n times).

Sahlqvist correspondent of 5n is ∀xyz(xRny ∧ xRz → zRy).
Here, Rn = R | R | · · · | R (n-fold relational composition).
So K5n is canonical.

50 is symmetry axiom ‘B’.
51, aka. 5, is part of the axiomatisation of S5.

We look at 52 = 33p→ 23p.
We will show that all normal modal logics containing 52 are resolved.
This should illustrate the general method.
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Futures

Let F = (W,R) be a Kripke frame.
For a point x ∈W , the future of x is the set R(x) = {y ∈W : xRy}.

If F |= 52, (∗) all points in the future of a point x have the same future
— because the correspondent of 52 is ∀xyzt(xRyRt ∧ xRz → zRt).

LEMMA 1 If F |= 52, then for every n < ω and x ∈W , all points in
Rn(x) have the same future.

Proof. By induction on n. Trivial for n = 0 because R0(x) = {x}.
Assume the lemma inductively for n. Suppose xRnyRy′ and xRnzRz′.
We show that y′, z′ have the same future.
Inductively, y, z have the same future. So z′ ∈ R(z) = R(y).
So both y′, z′ lie in the future of y.
Since F |= 52, by (∗) they have the same future. 2
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Varieties of BAOs

We work with boolean algebras with operators (BAOs) with a single
unary operator 3. Well known to be interchangeable with modal logic.

For a BAO A, we let A+ denote its canonical frame.
So A+ = ({ultrafilters of A}, R), where µRν iff ∀a ∈ A(a ∈ ν ⇒ 3a ∈ µ).
Aσ denotes the canonical extension of A — based on ℘(A+).

DEFINITION 2 Let V be a variety of BAOs.
Say V is (totally) canonical if Aσ ∈ V for every A ∈ V .
Say V is ω-canonical if Aσ ∈ V for every countable A ∈ V .
Say V is resolved if it’s either canonical or not even ω-canonical.

If A is the free V -algebra on κ generators, then A+ ‘is’ the canonical
frame with κ atoms for the logic of V .
Follows that definition 2 matches the earlier definitions for modal logics.
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THEOREM 3 Every ω-canonical variety V |= 52 is canonical.
That is, every variety V |= 52 is resolved.

Proof sketch. Take an arbitrary modal formula φ0(q1, . . . , qn) satisfiable
in B+ for some (large) B ∈ V , under an assignment h of atoms into B+.
It’s enough to show φ0 is satisfiable in A+ for some countable A ∈ V .

Form a two-sorted structure B = (B,B+). Its signature L has

• the BAO operations +,−,0,1,3 on B
• ∈: B × B+ B |= x ∈ y iff x is a member of the ultrafilter y
• R : B+ × B+ B |= ∀xy(xRy ↔ ∀z(z ∈ y → 3z ∈ x))
• unary relation symbols Q0, Q1, . . . : B+ QB

i = h(qi) for i < ω.

Sorts of variables are given by context!

(B+, R
B, QB

i )i<ω (we write just B+) is a Kripke model satisfying φ0.
Write ψ†(x) (an L-formula) for the standard translation of modal fmla ψ.
So B |= ∃xφ†0(x).
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Proof 2/5. Countable A ⪯ B

Fix a countable elementary substructure A = (A,W ) ⪯ B = (B,B+).
Then A ⪯ B ∈ V , so A ∈ V . And A is countable.
We aim to show that φ0 is satisfiable in the canonical frame A+ of A.

Warning: in general, A+ is not (W,RA). (It’s usually uncountable.)

To start, recall that B |= ∃xφ†0(x).
Since A ⪯ B, we have B |= φ

†
0(w0) for some w0 ∈W . Fix such a w0.

Next, for w ∈W let ŵ = {a ∈ A : A |= a ∈ w} — an ultrafilter, in A+.
Then (w 7→ ŵ) is a frame embedding : (W,RA) → A+.

We find a frame embedding f : A+ → B+ with f(ŵ) = w for w ∈W .
(Recall W ⊆ B+.)
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Proof 3/5. A frame embedding f : A+ → B+

As A ≡ B, by Frayne’s theorem (or the K–Sh theorem) there exist an
ultrapower A∗ of A and an L-elementary embedding σ : B → A∗.

1. Expand L to L′ by adding a unary relation symbol µ of sort A for
each ultrafilter µ ∈ A+.

2. Expand A to an L′-structure A′ by interpreting each µ as µ:
that is, A′ |= µ(a) iff a ∈ µ, for each a ∈ A.

3. Let A′∗ be the ultrapower of A′ using the same ultrafilter as before.
It is an L′-expansion of A∗.

4. Expand B to an L′-structure B′ by: B′ |= µ(b) iff A′∗ |= µ(σ(b))

for each µ ∈ A+ and b ∈ B.
Then µB

′
is an ultrafilter of B, so a member of B+.

Our frame embedding f : A+ → B+ is given by f(µ) = µB
′
.

It can be made to satisfy f(ŵ) = w for each w ∈W .
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Ŵ

Ŵ = {ŵ : w ∈W}

A+

W

f(A+)

B+f : µ 7→ µB
′

f

ŵ0 w0
f
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Pause for remarks

A′ ⊆ B′ (L′-substructure), but A′ ̸⪯ B′ and A′ ̸≡ B′ in general.

f : A+ → B+ is not in general a bounded morphism (aka. p-morphism).

Open whether f : A+ → B+ is elementary, though it does preserve
more than just ̸= and ±R.

Open whether A+ ≡ B+ as frames.

(Answers would be very interesting. Surendonk worked on this a lot —
eg [6].)
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Proof 4/5. Heart of proof: ‘f preserves modal formulas’

Let G be the subframe of A+ generated by ŵ0.

Let M be the submodel of B+ = (B+, R
B, QB

i )i<ω with domain f(G).

We show that for each a ∈ M and modal formula ψ, we have

B+, a |= ψ iff M, a |= ψ.

Proof: Induction on ψ.
Big case: assume B+, a |= 3ψ; show M, a |= 3ψ.
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G

G = subframe of A+ generated by ŵ0. M = f(G).

Ŵ
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M

W

f(A+)

B+f : µ 7→ µB

ŵ0 w0

a 3ψ
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G

G = subframe of A+ generated by ŵ0. M = f(G).
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G

G = subframe of A+ generated by ŵ0. M = f(G).
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b ψ
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G

G = subframe of A+ generated by ŵ0. M = f(G).
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G

G = subframe of A+ generated by ŵ0. M = f(G).
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G

G = subframe of A+ generated by ŵ0. M = f(G).
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G
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Proof 5/5. Conclusion

By choice of w0 we had B+, w0 |= φ0.

By the induction just done, M, w0 |= φ0.

But as frames, M ∼= G (by f−1).

So φ0 is satisfiable in G — a generated subframe of A+.

Hence, φ0 is satisfiable in A+, as required. Theorem 3 is proved. □

Breathe

So all modal logics extending K52 are resolved.

But the method can do more.
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Case 2: logics of ‘achronal width 1’

Proof above used R(w) = R(a). But it needed only R(w) ⊆ R(a)!

Let

U1 = 2(2q0 → 2q1) ∨ 2(2q1 → 2q0).

Sahlqvist correspondent:

∀xy0y1(xRy0 ∧ xRy1 → [R(y0) ⊆ R(y1)] ∨ [R(y1) ⊆ R(y0)]).

Any two points in any R(x) have ⊆-comparable futures.
True in linear frames, and others too.

Lemma 1 generalises (with similar proof):

LEMMA 4 if F |= U1 then any two points in any Rn(x) have
⊆-comparable futures.

We now extend the proof for K52 to KU1:
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THEOREM 5 Every variety V |= U1 is resolved.

Proof idea. All is as before, except that in the induction, we have n < ω
with B |= w0R

na ∧ (3ψ)†(a), and we need w ∈W with
B |= w0R

nw ∧ (3ψ)†(w)︸ ︷︷ ︸
call this δ(w)

∧R(w) ⊆ R(a).

Assume for contradiction that there’s no such w.
Since V |= U1, by lemma 4 we get
B |= δ(w) → R(a) ⊆ R(w) for all w ∈W .

Even though a /∈W in general, some model theory via A′∗ gives
B |= ∀y(δ(y) → R(a) ⊆ R(y)).

Now B |= δ(a).
So B |= ∃x[δ(x) ∧ ∀y(δ(y) → R(x) ⊆ R(y))] — a witnesses it.
Since A ⪯ B, there is w ∈W with
B |= δ(w) ∧ ∀y(δ(y) → R(w) ⊆ R(y)).

Taking y = a gives B |= δ(w) ∧R(w) ⊆ R(a), contradiction. □
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Case 3: logics of finite achronal width

For 1 ≤ n < ω let

Un =
∨

0≤i≤n
2
(
2qi →

∨
j≤n, j ̸=i

2qj
)
.

Sahlqvist correspondent:

∀x y0 . . . yn
(
(
∧
i≤n

xRyi) →
∨
i̸=j

R(yi) ⊆ R(yj)
)
.

Say S ⊆ F is achronal if no distinct x, y ∈ S have ⊆-comparable futures.

Then F |= Un iff ∀x ∈ F (every achronal subset of R(x) has size ≤ n).

We say that a logic has finite achronal width if it contains some Un.
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Logics of finite achronal width are resolved

Lemma 1 generalises again (using Ramsey’s theorem):
if F |= Un then any achronal subset of any Rm(x) is finite.

The proof for U1 extends to show:

THEOREM 6 For each n ≥ 1, every V |= Un is resolved.

We ‘convert’ from n to 1 by more model theory (adding parameters).

Can formulate a multimodal version of the Un, covering (eg.) linear
temporal logics.
Theorem 6 applies to them too. This is our most general result.
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Facts about the Un

K4 · · · K4I2 K4I1

K · · · KU2 KU1 K52 K5

⊂ ⊂ ⊂

⊂
⊂ ⊂

⊂

⊂

⊂

⊂ ⊂

Here,
4 = 33p→ 3p — transitivity

In = (
∧
i≤n

3qi) →
∨

i,j≤n, i ̸=j
3(qi ∧ (qj ∨3qj)) — Fine [3, 1974]

Correspondent: each R-antichain contained in some R(x) has size ≤ n.

The chains in the figure intersect in K4 and K.
All other inclusions follow by transitivity from the ones shown.
All gaps are proper and contain 2ω logics.
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Kripke-complete extensions of the Un and Fine’s In

• All extensions of any K4In are Kripke complete — Fine [3, 1974].

• KTU1 has a Kripke-incomplete extension, where T = p→ 3p

(reflexivity) — van Benthem [1, 1978].

• K4U2 has a Kripke-incomplete extension — Goldblatt–IH.

• Open whether K4U1 has a Kripke-incomplete extension.
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Conclusion

We have seen that modal logics of finite achronal width are resolved —
that is, either canonical or not even ω-canonical.

But many logics are not of finite achronal width, and are not covered.

Fine’s original question of whether all modal logics are resolved remains
wide open.

We also don’t know whether all canonical frames for a logic are
elementarily equivalent.

So lots to do. . .
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