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Outline of talk

Most propositional temporal logics are decidable.

But the decision problem in predicate (first-order)

temporal logics has seemed near-hopeless.

I will report on some recent work on this problem.

I will consider monodic fragments of the first-order

temporal language, in which formulas beginning with

a temporal operator have at most one free variable.

The first-order part is also restricted.

Validity of formulas in these fragments can be de-

cided by combining:

• an algorithm to decide the first-order part of the

formula,

• an algorithm deciding monadic second-order logic

over the given flow of time.

Works for linear and (with additional restrictions) for

branching time.
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1. First-order temporal logic

We want to combine temporal and first-order logic,

to gain expressive power.

We use a first-order extension of the branching-time

temporal logic CT L∗ [Emerson–Halpern, 1986].

L — first-order relational signature without equality.

We fix a set V of first-order variables.

Syntax

• Any atomic L-formula is a temporal formula.

• If ϕ,ψ are (temporal) formulas, so are

¬ϕ

ϕ∧ψ

∃xϕ (where x is any variable in V )

ϕ U ψ (until)

ϕ S ψ (since)

©ϕ (tomorrow)

Eϕ (for some history)
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Semantics

A flow of time is an irreflexive partial order T = (T,<).

< is called the earlier-later relation.

T is linear if any two distinct times are <-related.

It’s a tree if for all t ∈ T , {u ∈ T : u < t} (the past of t)

is linearly ordered by <.

A history (or branch) of T is a maximal linearly-

ordered subset of T .

We often consider ω-trees: trees with all branches

isomorphic to N = {0,1,2, . . .}.

For non-linear flows, we often have an idea of the

‘intended history’.

Semantics — evaluate formulas at a time point but

relative to a history.
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Evaluation

Models have the form M = (T,(Dt : t ∈ T )), for a flow

of time T = (T,<) and first-order L-structures Dt with

fixed domain D (say).

For a time t ∈ T , a history h of T containing t, and an

assignment a of variables to elements of D, define

M,h, t |=a ϕ by induction on ϕ:

• for atomic ϕ, we let M,h, t |=a ϕ iff Dt |=
a ϕ

• booleans as usual

• M,h, t |=a ∃xϕ iff M,h, t |=b ϕ for some assign-

ment b that agrees with a on all variables other

than x

• M,h, t |=a ©ϕ iff there is an immediate succes-

sor t+ of t in h with M,h, t+ |=a ϕ

• M,h, t |=a ϕ U ψ iff there is u ∈ h with t < u,

M,h,u |=a ψ, and M,h,v |=a ϕ for all v with

t < v < u (strict interpretation!)

• ϕ S ψ — mirror image

• M,h, t |=a Eϕ iff M,h′, t |=a ϕ for some history h′

of T containing t.
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Remarks

• We use constant domains. (Expanding domains

can be represented in this setting.)

• ©ϕ ≡ ⊥ U ϕ, but it helps later when defining

fragments to have © as primitive.

Fragments

This is a powerful logic. Sometimes it’s too much.

So we define some fragments:

• propositional temporal logic (CT L∗+Since):

require that all L-relations are nullary; throw out

∃. The Dt are essentially just propositional val-

uations.

• linear fragment: over linear time, the history h

is unique so can be dropped from the notation.

And Eϕ ≡ ϕ, so we throw out E.

• more to come. . .
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Some abbreviations

∨,→,∀: as usual

Gϕ = ϕ∧¬(> U ¬ϕ)

Aϕ = ¬E¬ϕ.

Some formulas

A∀x(researches(x) U ∃y admin job for(y,x))

AG∀x(∃y admin job for(y,x) →¬researches(x))

AG∀x(researches(x) → E© researches(x))

7



 

Validity

A formula ϕ is valid over a flow of time T if it is true

at all times and histories under all assignments in all

models with flow of time T .

ϕ is valid in linear time if it is valid in all linear flows.

Define valid over trees, ω-trees, etc., similarly.

A formula ϕ is satisfiable if ¬ϕ is not valid.

Other semantic choices

• Bundled semantics: we can restrict h to come

from a given set B — a bundle — of histories.

B is included as part of M. We require
⋃

B = T .

This gives a different notion of validity

(weaker — fewer validities).

• May restrict to models with finite domain D.

Again, this gives a different notion of validity

(stronger — more validities).
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Propositional temporal logic: good news

Most propositional temporal logics are quite well be-

haved:

Over linear time:

• N, Z, Q, R, and linear-time validity of proposi-

tional temporal formulas is decidable and finitely

axiomatisable.

• Validity problem PSPACE-complete [Sistla & Clarke

1985; Reynolds 200?].

Over ω-trees:

• Decidable.

• Finitely axiomatisable. If drop Since (i.e., CT L∗),

recursively axiomatisable. [Reynolds]

• Without Since, validity 2EXPTIME-complete

[lower bound: Vardi–Stockmeyer 1985;

upper bound: Emerson–Jutla 1988].
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Predicate temporal logic: bad news

Of course, predicate logic is undecidable.

But temporal predicate logic is worse.

Negative results began with unpublished work of Scott

and Lindström in 1960s.

Example

Over N, even with only 2 variables and unary rela-

tion symbols, predicate temporal logic is

• undecidable,

• not recursively axiomatisable.

Can be proved by reduction of tiling problem (or halt-

ing problem).

Note: 2-variable and monadic fragments of first-order

logic are decidable.
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What did we do to deserve this?

We took a ‘3-dimensional product’:

• two dimensions for the 2 first-order variables,

• one more dimension for time.

3-dimensional products are often badly behaved

(undecidable, not finitely axiomatisable).

How can we recover?

Limit the interaction between dimensions.

• When we quantify over domain elements (∃xϕ),

we do it at a single time point.

• But when we move through time, (ϕ U ψ etc),

there may be many free variables in the for-

mula.

This is not fair! The negative results retreat if

we ban it from happening.
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2. Monodic first-order temporal logic

A formula ϕ is monodic if every subformula of ϕ of

the form ψ U χ or ψ S χ or ©ψ or Eψ has at most one

free variable.

Examples

Barcan formula, ∀xGϕ(x) ↔ G∀xϕ(x)

“List all persons who have been unemployed be-

tween jobs” [Chomicki–Toman]:

> S ∃y WorksFor(x,y)
∧ ¬∃y WorksFor(x,y)
∧ > U ∃y WorksFor(x,y)

Non-example

Rigidity of a binary relation (over N):

G∀xy(R(x,y) ↔©R(x,y)).
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3. Monodic fragments over linear time

Any first-order L-formula is monodic. So validity for

monodic formulas is undecidable.

But given an oracle for first-order L-satisfiability, we

can decide monodic satisfiability over linear time.

We can get rid of the oracle by restricting to a

decidable fragment of first-order logic.

• If we restrict ∃ in formulas to guarded form,

∃x̄(R(x̄, ȳ)∧ϕ(x̄, ȳ)) for atomic R(x̄, ȳ),

we get the temporal guarded fragment, T GF .

The monodic guarded fragment (the monodic

fragment of T GF) is decidable over linear time,

N,Z,Q, etc., and for finite domains (the general

case is open), R.

• So are the monodic loosely guarded and

monodic packed/clique-guarded fragments.

• So is the monodic 2-variable fragment.

• So is the monodic monadic fragment, etc.
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Proof of decidability: quasimodels

Let F be the monodic guarded, packed, 2-variable,

or monadic fragment.

A quasimodel for a sentence σ ∈ F is obtained from

a model of σ by

• regarding formulas beginning with a temporal

operator as atomic (i.e. unary or nullary relation

symbols)

• replacing each L-structure Dt by its ‘σ-theory’ Σt

(theory w.r.t. subformulas of σ – a finite object)

• axiomatising the links between the Σt (t ∈ T )

that are enforced by their origin in a model.

Lemma 1. Let T be linear. Then σ has a model over

T iff it has a quasimodel over T .
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Quasimodels and decidability

A quasimodel boils down to a monadic expansion

of the flow of time, with properties expressible in

monadic second-order logic.

Lemma 2. We can construct from σ a monadic

second-order sentence σ̂ such that for any linear T ,

T |= σ̂ iff there is a quasimodel for σ over T .

Put the two lemmas together to obtain:

Theorem. Assume that T is linear with decidable

monadic second-order theory (e.g., N,Z,Q). Then

it is decidable whether a sentence in F is satisfiable

over T .
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Complexity

Seems to be MAX(EXPSPACE, complexity of un-

derlying first-order fragment).

• Monodic one-variable, (two-variable too?), monadic

fragments are EXPSPACE-complete over N.
• Monodic guarded fragment is 2EXPTIME-complete

over N.

Reasoning algorithms

• The monodic monadic fragment over N is ax-

iomatisable (Wolter & Zakharyaschev 2001)
• Resolution-based algorithm (Degtyarev & Fisher

2001, for fragment only)
• Tableau-based algorithms (Kontchakov, Lutz, Wolter

& Zakharyaschev 2001)
• Implementation of tableaux (Günsel 2001)

Extensions

• Can add rigid constants.
• Can’t add equality in general: monodic validities

not r.e. (Degtyarev & Fisher 2001).
• But can add equality safely to guarded fragments.
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4. Monodic fragments over branching time

Here, things are not quite so good.

Over any class of trees containing a tree with at

least two histories through each time, the 1-variable

fragment is undecidable. (– certainly monodic!)

This can be strengthened in technical ways: bun-

dles, just G, modal products, etc.

Proof uses a reduction of tiling problem, via relation

algebras.

What did we do to deserve this?

There are three dimensions again:

• domain point

• time point

• history (fixed in linear case)

Interaction between these is restricted, but still enough

for undecidability.

Evaluation at pairs (t,h) breaks quasimodels.
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Positive branching results

We can get quasimodels working again by imposing

extra restrictions to limit the dimensional interaction

and/or dependence on the history h.

Two different ways are known.

Fragment 1: restrict ∃

A state formula is one made from atomic formulas

and formulas of the form Eψ using only the first-

order operations.

Semantics of state formulas is history-independent.

By requiring that

• ∃x applies only to state formulas,

• U,S,©,E are used monodically

• the ‘first-order part’ lies in a decidable fragment

of first-order logic (guarded fragment, etc),

we obtain a decidable fragment over ω-trees.

Eg: ∀xA[(receive(x) →©shred(x)) U caught] – OK

E∀x[(receive(x) →©shred(x)) U caught] – not OK
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Fragment 2: restrict U, S, E

By requiring that

• U,S,E apply only to sentences (nullodic?),

• © is used monodically,

• the ‘first-order part’ lies in a decidable fragment

of first-order logic,

we obtain a decidable fragment over ω-trees.

Eg: E( [∀x(receive(x) →©shred(x))]︸ ︷︷ ︸
sentence

U caught︸ ︷︷ ︸
sentence

)

︸ ︷︷ ︸
sentence

These results use

1. downward Löwenheim–Skolem theorem, to find

a model over a countable ω-tree,

2. quasimodels

3. decidability of monadic second-order theory of

countable ω-trees (follows from Rabin’s theo-

rem).

The search for the ‘best’ fragment over ω-trees is

still on.

19



 

5. Applications

Predicate temporal logic is important. First-order

structures can represent:

• states of programs (reactive systems): speci-

fication and verification, synthesis of programs

from (temporal) specifications

• states of databases: e-commerce

• states of knowledge bases: description logics

such as ALC

• (some) topological spaces: qualitative spatial

reasoning systems like RCC-8

• Kripke frames for epistemic logics: multi-agent

systems

So it seems worth studying predicate temporal

logics.
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As well as being powerful in its own right, predicate

temporal logic embeds other useful logics – often

monodically – so serves as a unifying framework.

• Agent logics of Halpern et al.

Almost all decidable agent logics can be em-

bedded into decidable monodic fragments.

• Temporal description logics extend standard DLs

with temporal operators.

In ALC , if temporal operators are applied only

to subsumptions and concepts (but not to roles),

then the language is reducible to the two-variable

monodic fragment.

• Spatial logic RCC-8 can be extended with tem-

poral operators.

The resulting logics can be reduced to decid-

able monodic fragments if the topology can be

‘simulated’ in first-order logic.
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6. Conclusion

Predicate temporal logic is poorly behaved.

Monodic fragments of predicate temporal logic are

better behaved.

They give us a new direction of research, new prob-

lems, but also new hope of

• understanding temporal logic better,

• using temporal logic in more advanced applica-

tions.
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