Outline of talk

Most propositional temporal logics are decidable.

But the decision problem in predicate (first-order) temporal logics has seemed near-hopeless.

I will report on some recent work on this problem.

I will consider **monodic fragments** of the first-order temporal language, in which formulas beginning with a temporal operator have at most one free variable. The first-order part is also restricted.

Validity of formulas in these fragments can be decided by combining:

- an algorithm to decide the first-order part of the formula,
- an algorithm deciding monadic second-order logic over the given flow of time.

Works for linear and (with additional restrictions) for branching time.

Organisation

Monodic fragments of first-order

temporal logics

Ian Hodkinson

Joint work with

S Bauer

F Wolter

M Zakharyaschev

1. First-order temporal logic

Syntax, semantics, validity.

Some known results.

- Monodic first-order temporal logic
 Definitions, examples.
- Monodic fragments over linear time Decidability, complexity, reasoning.
- Monodic fragments over branching time Undecidability and decidability.
- 5. Applications
- 6. Conclusion
- 7. References

1. First-order temporal logic

We want to combine temporal and first-order logic, to gain expressive power.

We use a first-order extension of the branching-time temporal logic CTL^* [Emerson–Halpern, 1986].

L — first-order relational signature *without equality*. We fix a set V of first-order variables.

Syntax

- Any atomic *L*-formula is a temporal formula.
- If ϕ, ψ are (temporal) formulas, so are

 $\neg \varphi$ $\varphi \land \psi$ $\exists x \varphi \quad (where x is any variable in \mathcal{V})$ $\varphi \cup \psi \quad (until)$ $\varphi S \psi \quad (since)$ $\bigcirc \varphi \quad (tomorrow)$ $E\varphi \quad (for some history)$

1

Evaluation

Semantics

A *flow of time* is an irreflexive partial order T = (T, <). < is called the *earlier-later relation*.

T is *linear* if any two distinct times are <-related. It's a *tree* if for all $t \in T$, $\{u \in T : u < t\}$ (the past of *t*) is linearly ordered by <.

A *history* (or *branch*) of T is a maximal linearlyordered subset of T.

We often consider ω -trees: trees with all branches isomorphic to $\mathbb{N} = \{0, 1, 2, ...\}$.

For non-linear flows, we often have an idea of the 'intended history'.

Semantics — evaluate formulas at a time point but relative to a history.

Models have the form $\mathfrak{M} = (T, (D_t : t \in T))$, for a flow of time T = (T, <) and first-order *L*-structures D_t with fixed domain *D* (say).

For a time $t \in T$, a history *h* of *T* containing *t*, and an assignment a of variables to elements of *D*, define $\mathfrak{M}, h, t \models^{\mathfrak{a}} \varphi$ by induction on φ :

- for atomic φ , we let $\mathfrak{M}, h, t \models^{\mathfrak{a}} \varphi$ iff $D_t \models^{\mathfrak{a}} \varphi$
- booleans as usual
- M, h,t ⊨^a ∃xφ iff M, h,t ⊨^b φ for some assignment b that agrees with a on all variables other than x
- M, h,t ⊨^a ○φ iff there is an immediate successor t⁺ of t in h with M, h,t⁺ ⊨^a φ
- $\mathfrak{M}, h, t \models^{\mathfrak{a}} \varphi \cup \psi$ iff there is $u \in h$ with t < u, $\mathfrak{M}, h, u \models^{\mathfrak{a}} \psi$, and $\mathfrak{M}, h, v \models^{\mathfrak{a}} \varphi$ for all v with t < v < u (strict interpretation!)
- $\phi S \psi$ mirror image
- M,h,t ⊨^a Eφ iff M,h',t ⊨^a φ for some history h' of T containing t.

5

Remarks

- We use *constant domains*. (Expanding domains can be represented in this setting.)
- ○φ ≡ ⊥ U φ, but it helps later when defining fragments to have as primitive.

Some abbreviations

$$\lor, \rightarrow, \forall$$
: as usual

 $\mathsf{G}\phi = \phi \land \neg (\top \mathsf{U} \neg \phi)$

 $A\phi=\neg E\neg\phi.$

Some formulas

 $A \forall x (researches(x) \cup \exists y \ admin_job_for(y,x))$ $AG \forall x (\exists y \ admin_job_for(y,x) \rightarrow \neg researches(x))$

 $\mathsf{AG}\forall x(researches(x) \rightarrow \mathsf{E} \bigcirc researches(x))$

Fragments

This is a powerful logic. Sometimes it's too much. So we define some fragments:

- propositional temporal logic (*CTL*^{*} + Since): require that all *L*-relations are nullary; throw out
 ∃. The *D_t* are essentially just propositional valuations.
- linear fragment: over linear time, the history *h* is unique so can be dropped from the notation.
 And Eφ ≡ φ, so we throw out E.
- more to come...

4

Validity

A formula φ is *valid over a flow of time T* if it is true at all times and histories under all assignments in all models with flow of time *T*.

 ϕ is *valid in linear time* if it is valid in all linear flows.

Define valid over trees, ω -trees, etc., similarly.

A formula φ is *satisfiable* if $\neg \varphi$ is not valid.

Other semantic choices

- Bundled semantics: we can restrict *h* to come from a given set \mathcal{B} a bundle of histories. \mathcal{B} is included as part of \mathfrak{M} . We require $\bigcup \mathcal{B} = T$. This gives a different notion of validity (weaker fewer validities).
- May restrict to models with *finite domain D*.
 Again, this gives a different notion of validity (stronger more validities).

8

Propositional temporal logic: good news

Most *propositional* temporal logics are quite well behaved:

Over linear time:

- N, Z, Q, R, and linear-time validity of propositional temporal formulas is decidable and finitely axiomatisable.
- Validity problem PSPACE-complete [Sistla & Clarke 1985; Reynolds 200?].

Over ω -trees:

- Decidable.
- Finitely axiomatisable. If drop Since (i.e., CTL^*), recursively axiomatisable. [Reynolds]
- Without Since, validity 2EXPTIME-complete [lower bound: Vardi–Stockmeyer 1985; upper bound: Emerson–Jutla 1988].

9

Predicate temporal logic: bad news

Of course, predicate logic is undecidable. But temporal predicate logic is worse.

Negative results began with unpublished work of Scott and Lindström in 1960s.

Example

Over $\mathbb N,$ even with only 2 variables and unary relation symbols, predicate temporal logic is

- undecidable,
- not recursively axiomatisable.

Can be proved by reduction of tiling problem (or halting problem).

Note: 2-variable and monadic fragments of first-order logic are decidable.

What did we do to deserve this?

We took a '3-dimensional product':

- two dimensions for the 2 first-order variables,
- one more dimension for time.

3-dimensional products are often badly behaved (undecidable, not finitely axiomatisable).

How can we recover?

Limit the interaction between dimensions.

- When we quantify over domain elements (∃xφ), we do it at a single time point.
- But when we move through time, (φ U ψ etc), there may be many free variables in the formula.

This is not fair! The negative results retreat if we ban it from happening.

2. Monodic first-order temporal logic

A formula φ is *monodic* if every subformula of φ of the form $\psi \cup \chi$ or $\psi S \chi$ or $\bigcirc \psi$ or $E\psi$ has *at most one free variable*.

Examples

Barcan formula, $\forall x G \varphi(x) \leftrightarrow G \forall x \varphi(x)$

"List all persons who have been unemployed between jobs" [Chomicki–Toman]:

> $\top S \exists y WorksFor(x, y)$ $\land \quad \neg \exists y WorksFor(x, y)$ $\land \quad \top U \exists y WorksFor(x, y)$

Non-example

Rigidity of a binary relation (over \mathbb{N}):

$$\mathsf{G}\forall xy(R(x,y)\leftrightarrow \bigcirc R(x,y)).$$

12

Proof of decidability: quasimodels

Let \mathcal{F} be the monodic guarded, packed, 2-variable, or monadic fragment.

A *quasimodel* for a sentence $\sigma \in \mathcal{F}$ is obtained from a model of σ by

- regarding formulas beginning with a temporal operator as atomic (i.e. unary or nullary relation symbols)
- replacing each *L*-structure *D_t* by its 'σ-theory' Σ_t (theory w.r.t. subformulas of σ – a finite object)
- axiomatising the links between the Σ_t (t ∈ T) that are enforced by their origin in a model.

Lemma 1. Let *T* be linear. Then σ has a model over *T* iff it has a quasimodel over *T*.

3. Monodic fragments over linear time

Any first-order *L*-formula is monodic. So validity for monodic formulas is undecidable.

But given an oracle for first-order *L*-satisfiability, we can decide monodic satisfiability over *linear time*.

We can get rid of the oracle by restricting to a decidable fragment of first-order logic.

• If we restrict ∃ in formulas to *guarded form*,

 $\exists \bar{x}(R(\bar{x},\bar{y}) \land \varphi(\bar{x},\bar{y})) \text{ for atomic } R(\bar{x},\bar{y}),$ we get the *temporal guarded fragment*, *TGF*.

The monodic guarded fragment (the monodic fragment of TGF) is decidable over linear time, $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, etc., and for finite domains (the general

- So are the monodic loosely guarded and monodic packed/clique-guarded fragments.
- So is the monodic 2-variable fragment.

case is open), \mathbb{R} .

• So is the monodic monadic fragment, etc.

13

Quasimodels and decidability

A quasimodel boils down to a monadic expansion of the flow of time, with properties expressible in *monadic second-order logic*.

Lemma 2. We can construct from σ a monadic second-order sentence $\hat{\sigma}$ such that for any linear *T*,

 $T \models \widehat{\sigma}$ iff there is a quasimodel for σ over *T*.

Put the two lemmas together to obtain:

Theorem. Assume that *T* is linear with decidable monadic second-order theory (e.g., $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$). Then it is decidable whether a sentence in \mathcal{F} is satisfiable over *T*.

Complexity

Seems to be MAX(EXPSPACE, complexity of underlying first-order fragment).

- Monodic one-variable, (two-variable too?), monadic fragments are EXPSPACE-complete over ℕ.
- Monodic guarded fragment is 2EXPTIME-complete over N.

Reasoning algorithms

- The monodic monadic fragment over ℕ is axiomatisable (Wolter & Zakharyaschev 2001)
- Resolution-based algorithm (Degtyarev & Fisher 2001, for fragment only)
- Tableau-based algorithms (Kontchakov, Lutz, Wolter & Zakharyaschev 2001)
- Implementation of tableaux (Günsel 2001)

Extensions

- Can add rigid constants.
- Can't add equality in general: monodic validities not r.e. (Degtyarev & Fisher 2001).
- But can add equality safely to guarded fragments.

16

4. Monodic fragments over branching time

Here, things are not quite so good.

Over any class of trees containing a tree with at least two histories through each time, the *1-variable fragment is undecidable.* (– certainly monodic!)

This can be strengthened in technical ways: bundles, just *G*, modal products, etc.

Proof uses a reduction of tiling problem, via relation algebras.

What did we do to deserve this?

There are three dimensions again:

- domain point
- time point
- history (fixed in linear case)

Interaction between these is restricted, but still enough for undecidability.

Evaluation at pairs (t,h) breaks quasimodels.

17

Positive branching results

We can get quasimodels working again by imposing *extra restrictions* to limit the dimensional interaction and/or dependence on the history h.

Two different ways are known.

Fragment 1: restrict ∃

A state formula is one made from atomic formulas and formulas of the form $E\psi$ using only the first-order operations.

Semantics of state formulas is history-independent.

By requiring that

- $\exists x$ applies only to state formulas,
- U,S, O, E are used monodically
- the 'first-order part' lies in a decidable fragment of first-order logic (guarded fragment, etc),

we obtain a decidable fragment over ω -trees.

Eg: $\forall x A[(receive(x) \rightarrow \bigcirc shred(x)) \cup caught] - OK$ $E \forall x[(receive(x) \rightarrow \bigcirc shred(x)) \cup caught] - not OK$

Fragment 2: restrict U, S, E

By requiring that

- U,S,E apply only to sentences (nullodic?),
- \bigcirc is used monodically,
- the 'first-order part' lies in a decidable fragment of first-order logic,

we obtain a decidable fragment over ω -trees.

Eg: E(
$$[\forall x(receive(x) \rightarrow \bigcirc shred(x))]$$
U(caught)
sentence
sentence

These results use

- 1. downward Löwenheim–Skolem theorem, to find a model over a countable ω-tree,
- 2. quasimodels
- 3. decidability of monadic second-order theory of countable ω -trees (follows from Rabin's theorem).

The search for the 'best' fragment over $\omega\text{-trees}$ is still on.

5. Applications

Predicate temporal logic is important. First-order structures can represent:

- states of programs (reactive systems): specification and verification, synthesis of programs from (temporal) specifications
- states of databases: e-commerce
- states of knowledge bases: description logics such as \mathcal{ALC}
- (some) topological spaces: qualitative spatial reasoning systems like RCC-8
- Kripke frames for epistemic logics: multi-agent systems

So it seems worth studying predicate temporal logics.

20

As well as being powerful in its own right, predicate temporal logic embeds other useful logics – often monodically – so serves as a unifying framework.

• Agent logics of Halpern et al.

Almost all decidable agent logics can be embedded into decidable monodic fragments.

• Temporal description logics extend standard DLs with temporal operators.

In \mathcal{ALC} , if temporal operators are applied only to subsumptions and concepts (but not to roles), then the language is reducible to the two-variable monodic fragment.

• Spatial logic RCC-8 can be extended with temporal operators.

The resulting logics can be reduced to decidable monodic fragments if the topology can be 'simulated' in first-order logic.

21

7. References

S Bauer, I Hodkinson, F Wolter, M Zakharyaschev. On non-local propositional and local one-variable quantified CTL^* . Proc. TIME'02, pp. 2–9.

I Hodkinson, F Wolter, and M Zakharyaschev. Decidable fragments of first-order temporal logics. *Ann. Pure Appl. Logic*, 106:85–134, 2000.

I Hodkinson, F Wolter, and M Zakharyaschev. Monodic fragments of first-order temporal logics: 2000–2001 A.D. In R. Nieuwenhuis and A. Voronkov, editors, *Logic for Programming, Artificial Intelligence and Reasoning*, vol. 2250 of *LNAI*, pages 1–23. Springer-Verlag, 2001.

I Hodkinson, F Wolter, and M Zakharyaschev. Decidable and undecidable fragments of first-order branching temporal logics, Proc. LICS'02, pp. 393– 402.

See also www.dcs.kcl.ac.uk/staff/mz

6. Conclusion

Predicate temporal logic is poorly behaved.

Monodic fragments of predicate temporal logic are better behaved.

They give us a new direction of research, new problems, but also new hope of

- understanding temporal logic better,
- using temporal logic in more advanced applications.