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This is based on notes I took at Wilfrid’s seminar for Ph.D. students
at Queen Mary College, around autumn 1985. His seminars drew to some
extent on [1, 3, 4, 5].

I started this latex version of the notes in about March 1992, and revised
and expanded it beyond the material in the 1985 notes in Jan 2003. Section 6
is still incomplete. Some of the improvements may be bad improvements, and
there are surely still some errors due to my bad note-taking and transcribing.
Use at your own risk.

I strongly recommend and request that you do not cite these notes in
your own publications. The notes are made available because they may be
helpful, but they are not authoritative or formally published. The original
sources are [1, 3, 4] and these should be cited in preference. Any results given
here that are not in these papers are essentially just exercises.

Thanks to Sz. Mikulás for helpful comments.

1 Well-quasi-orderings

Definition 1.1 If S is any set and κ a cardinal, [S]κ is the set of subsets of
S of size κ, and [S]<κ is the set of subsets of S of size less than κ.

Definition 1.2 A pre-order is a reflexive and transitive binary relation, usu-
ally written ≤,v, etc. Given a pre-order ≤, we write x < y to abbreviate
x ≤ y ∧ y 6≤ x.

Definition 1.3 (wqo) A well-quasi-ordering (wqo) is a pre-order such that
(i) it is well-founded (it has no infinite strictly descending (>) sequences),
and (ii) there is no infinite antichain (a set of pairwise incomparable ele-
ments).

Lemma 1.4 If ≤ is a pre-order on a set I, then the following are equivalent:
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1. ≤ is a wqo.

2. If x0, x1, . . . ∈ I then there are i < j with xi ≤ xj.

3. If x0, x1, . . . ∈ I then there is an infinite X ⊆ N such that xi ≤ xj for
all i < j in X.

4. Any X ⊆ I has a finite subset of minimal elements: there is finite
Y ⊆ X such that ∀x ∈ X∃y ∈ Y (y ≤ x).

Proof. For the equivalence of 1–3, it is enough to show 1 ⇒ 3. Assume (1).
Let f : [N]2 → {≤, >,⊥} be such that xif(i, j)xj for all i < j < ω. Here, a⊥b
means a and b are incomparable. By Ramsey’s theorem (see corollary 4.4
below), there is infinite X ⊆ N such that f¹[X]2 is constant. Assuming (1),
the constant value is not ⊥ or >; hence it is ≤, and we are done.

Clearly, 4 ⇒ 2. To show 2 ⇒ 4, assume X ⊆ I fails (4). Define
x0, x1, . . . ∈ X by induction: given n < ω, since {x0, . . . , xn−1} is finite and
X fails (4), there is xn ∈ X with xi 6≤ xn for all i < n. Then the sequence
x0, x1, . . . fails (2). ¤

This is reminiscent of König’s tree lemma: well-founded replaces the tree
condition, and the lack of infinite antichains replaces the finitely-branching
condition. The lemma’s conclusion, that any infinite sequence of distinct ele-
ments contains an infinite increasing subsequence, corresponds to the infinite
branch that König’s lemma provides.

Now we see a little Nash-Williams theory.

Definition 1.5 Given a pre-order ≤ on I, a bad sequence is an infinite
sequence x0, x1, . . . in I such that xi 6≤ xj whenever i < j. We say such a
sequence is minimal bad if it is bad, and for each n there is no bad sequence
x0, . . . , xn−1, yn, yn+1, . . . with yn < xn.

By the lemma, a wqo is one without bad sequences. Any infinite subse-
quence of a bad sequence is bad.

Lemma 1.6 If ≤ is well-founded but is not a wqo then there is a minimal
bad sequence.

Proof. By induction. There are bad sequences. Choose x0 ∈ I minimal
such that it is the first element of a bad sequence — this is possible as ≤ is
well-founded. Inductively, if xi (i < n) are chosen, choose xn such that it is
minimal such that x0, . . . , xn extends to a bad sequence. Clearly the result
x0, x1, . . . is a minimal bad sequence. ¤
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Lemma 1.7 Let x0, x1, . . . be minimal bad. Put Y = {x ∈ I : x < xi for
some i}. Then ≤ is a wqo on Y .

Proof. If not, then there is a bad sequence y0, y1, . . . in Y . Each yi is <
some xi′ . Choose i < ω to make i′ as small as possible. By throwing away
y0, . . . , yi−1 we can assume i = 0.

Claim: x0, . . . , xi′−1, y0, y1, . . . is bad.

Proof of Claim: If not, then as the x-part and y-part are from bad se-
quences, we must have xm ≤ yn for some m < i′ and some n. Now by
definition of Y , we have yn < xn′ for some n′. By choice of i′ as small as
possible, n′ ≥ i′. So xm ≤ yn < xn′ and m < n′, contradicting x0, x1, . . .
being bad. This proves the claim.

The claim contradicts the choice of x0, x1, . . . as minimal bad. Thus the
lemma is proved. ¤

Definition 1.8 Given a pre-order (I,≤), define I<ω to be the set of all finite
sequences of elements of I, ordered by: (x0, . . . , xm−1) ≤ (y0, . . . , yn−1) iff
there is a one-one order-preserving map f : m → n such that xi ≤ yf(i) for
all i < m.

Lemma 1.9 The relation ≤ on I<ω is a pre-order, and if < is well-founded
on I then < is well-founded on I<ω.

Proof. Reflexivity and transitivity of ≤ on I<ω are clear. If there is an
infinite strictly decreasing chain x̄i (i < ω) in I<ω, then as the lengths of the
x̄i must form a non-increasing sequence of natural numbers, we can assume
the x̄i all have the same length, m say. For each i there is j < m such that
xi+1,j < xij. Hence there is j such that the above holds for infinitely many i.
Thus (xij : i < ω) contains a strictly decreasing subsequence, contradicting
the well-foundedness of < on I. ¤

Theorem 1.10 (Higman) If ≤ is a wqo on I, then ≤ is a wqo on I<ω.

Proof. By lemma 1.9, ≤ is well-founded. If the theorem fails, then by
lemma 1.9 there is a minimal bad sequence x̄0, x̄1, . . . of sequences x̄i =
(xi,0, . . . , xi,ji−1). Now the null sequence is vacuously ≤ any sequence, so
each x̄i has length ≥ 1. So we can write it as (xi,0, tail(x̄i)). As tail(x̄i)
has length < len(x̄i), we have tail(x̄i) < x̄i in I<ω (note the strict <). So
by lemma 1.7, Y = {tail(x̄i) : i < ω} is a subset of a well-quasi-ordered
set, and so itself well-quasi-ordered. So by lemma 1.4 we can assume that
tail(x̄0) ≤ tail(x̄1) ≤ . . .. (This might not preserve minimal badness, but
minimality is no longer needed.) Also, I is a wqo, so there are i < j with
xi,0 ≤ xj,0. Hence by “piecing together”, x̄i ≤ x̄j, a contradiction. ¤
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Exercise 1.11 Let (I,≤) be a wqo. Define a relation ≤ on the set ℘<ω(I)
of finite subsets of I, by s ≤ t iff there is a map f : s → t with i ≤ f(i) for all
i ∈ s. Show that (℘<ω(I),≤) is a wqo (cf. [1, p. 32]). Repeat for the variant
of ≤ where f is required to be one-one.

Remark 1.12 (Rado) Theorem 1.10 fails for the set I<ω1, the set of count-
able sequences of elements of I.

Proof. Let I = {(i, j) : i < j < ω}, ordered by (i, j) ≤ (k, l) iff either i = k
and j ≤ l, or else i, j < k. One can check that this is a wqo on I. Now for
i < ω let αi be the sequence ((i, i + 1), (i, i + 2), . . .). Then for all i < j < ω,
αi 6≤ αj. So the sequence (αi : i < ω) is bad. ¤

Exercise 1.13 Show that exercise 1.11 fails for the full power set ℘(I).

Exercise 1.14 (cf. exercise 1.11) Let (I,≤) be a wqo. Define a relation
4 on ℘<ω(I) by s 4 t iff there is a map g : t → s with g(i) ≤ i for all i ∈ t.
Find (I,≤) such that (℘<ω(I), 4) is not a wqo. [I think this non-preservation
is well-known but thanks to Sz. Mikulás for pointing this example out to me.]

2 Kruskal’s theorem

Definition 2.1 A tree is a finite connected graph without cycles. Let T, S
be trees. We say that T immediately yields S if a tree isomorphic to S can be
got from T by either removing one “leaf” vertex and its only attaching edge,
or turning (a) into (b) below:

h xxxx

(a) (b)

We write S > T if there are n > 1 and trees T1, . . . , Tn such that S ∼=
T1, Tn

∼= T and Ti immediately yields Ti+1. We write S ≤ T if S < T or
S ∼= T .

Note that |S| < |T | if S < T . Hence < is well-founded on finite trees.
Question: is there an infinite sequence of trees T0, T1, . . . such that if i < j
then Ti 6≤ Tj (i.e., a bad sequence)? Kruskal answered “no”. We’ll prove
this.

Definition 2.2 A pointed tree is a tree in which some vertex is distinguished
as the “root”. A tree is then partially ordered by: x ≤ y if the path from the
root to y passes through x — x is nearer to the root than y. For any vertices
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x, y there’s a greatest lower bound x ∧ y, the furthest node from the root on
both paths to x and to y.

A decent embedding of pointed trees T, S is a 1-1 map f : T → S
satisfying:

1. u ≤ v ⇒ f(u) ≤ f(v)

2. f(u) ∧ f(v) = f(u ∧ v).

One can show that if there’s a decent embedding f : T → S then T ≤ S as
non-pointed trees. So it is enough to show that if we pre-order the class of
pointed trees by T ≤ S iff there’s a decent embedding from T to S, then ≤
is a wqo.

Theorem 2.3 The pointed trees are a wqo under this ordering.

Proof. As trees are finite, it’s clearly well-founded. If it’s not a wqo, take
a minimal bad sequence of trees, T0, T1, . . .. Since the sequence is bad, each
Ti has at least two vertices (as the 1-point tree embeds decently into any
pointed tree). So Ti can be written as in the diagram below.
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Each Tij is < Ti (use the inclusion map; “≤” fails because all trees
are finite), and so Y = {Tij : i < ω, j < n(i)} is a wqo by lemma 1.7.
Hence by Higman’s theorem, Y <ω is also a wqo. Now replace Ti by the fi-
nite sequence (Ti,0, . . . , Ti,n(i)−1). We deduce that there’s i < j such that
(Ti,0, . . . , Ti,n(i)−1) ≤ (Tj,0, . . . , Tj,n(j)−1). We can now construct a decent em-
bedding : Ti → Tj, contradicting badness. ¤

Kruskal’s theorem is now proved. The argument seems to me to be essentially
to be proving that a sequence T0, T1, . . . is not bad by induction on the “slope”
of a sequence T0, T1, . . . of trees, where T0, T1, . . . has slope < U0, U1, . . . iff
Ti < Ui for all i. This ordering is well-founded in the sense that non-empty
“closed” sets of sequences (e.g., the bad sequences) have minimal elements.
A tree is shown to be decomposable into a finite sequence of smaller pieces,
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in such a way that a decent embedding of sequences can be patched together
to give a decent embedding of the original trees. Higman’s theorem is used
to extend the inductive hypothesis to sequences of smaller objects.

3 Prikry pairs and Ramsey sets

This section is central to what follows.

Definition 3.1

1. We say a set S ⊆ [ω]ω is Ramsey if there is some infinite set M ⊆ ω
such that either [M ]ω ⊆ S or [M ]ω ∩ S = ∅.

2. We say S ⊆ [ω]ω is open if for every X ∈ S there is n < ω such that
whenever Y ⊆ ω is infinite and Y ∩ n = X ∩ n then Y ∈ S.

Remark 3.2 [ω]ω is Ramsey. We can use the axiom of choice and diagonal-
isation to make a non-Ramsey set. S ⊆ [ω]ω is open if whenever X ∈ S then
some finite part of X puts it in S.

Theorem 3.3 (Galvin, Prikry) Every open set is Ramsey. (In fact, Borel
sets are Ramsey.)

Fix S ⊆ [ω]ω. First a definition.

Definition 3.4

1. If X, Y ⊆ ω we write X < Y if for all x ∈ X and y ∈ Y we have x < y.

2. We say that an infinite set M ⊆ ω accepts a finite set X ⊆ ω if
X ∪ N ∈ S for every infinite N ⊆ M with X < N .

3. We say that M rejects X if no infinite N ⊆ M accepts X.

4. We say that M determines X if it either accepts or rejects X.

Remark 3.5

1. If M accepts X, and N ⊆ M is infinite, then N accepts X.

2. The same holds for “rejects”.

3. By definition of “rejects”, for any finite X and infinite M, there is
infinite N ⊆ M that determines X.

6



  

Definition 3.6 A Prikry pair is a pair (X, N) where X, N ⊆ ω, X is finite,
N is infinite and X < N . We partially order Prikry pairs by: (X, N) <
(X ′, N ′) iff X ′ is an end extension of X, N ′ ⊆ N , X ′ \ X ⊆ N .

Lemma 3.7 There is an infinite M ⊆ ω that determines every finite subset
of itself.

Proof. Inductively choose Prikry pairs (Xi, Mi) (i < ω) so that Mi de-
termines every subset of Xi. We let X0 = ∅ and take M0 to be any infi-
nite set determining ∅. Inductively, let Xi+1 = Xi ∪ min(Mi) and choose
Mi+1 ⊆ Mi \ min(Mi) that determines every subset of Xi+1 (use (3) of the
remark repeatedly). Let M =

⋃

i<ω Xi. Observe that M ⊆ Xi ∪Mi for all i.
We claim that M works. If X ⊆ M is finite, then for all i < ω, X ⊆ Xi iff
Mi > X. Let i be least such that this condition holds. Then if N ⊆ M and
N > X, we have N ⊆ Mi. But Mi determines X, and hence so does N . ¤

Lemma 3.8 There is infinite N ⊆ ω that either accepts each finite subset
of itself, or rejects each finite subset of itself.

Proof. Take M as in lemma 3.7. Select elements a0 < a1 < . . . of M by
induction, so that for each i, if X ⊆ {a0, . . . , ai−1} and M rejects X then
M rejects X ∪ {ai}. For this, suppose that a0, . . . , ai−1 are all chosen. Let
X1, . . . , Xk list all subsets of {a0, . . . , ai−1} that are rejected by M . We want
ai so that M rejects all of X1 ∪ {ai},. . . ,Xk ∪ {ai}.

Suppose there’s no such ai. Then for all ai−1 < a ∈ M there’s ja ≤ k
such that M doesn’t reject Xja

∪ {a}. By lemma 3.7, M accepts Xja
∪ {a}.

Clearly there is some j ≤ k such that j = ja for infinitely many a. Put
N = {a : ja = j}. Then N ⊆ M is infinite, and accepts Xj. For let P ⊆ N
be infinite with Xj < P . If p = min(P ), then by choice of N , M accepts
Xj ∪ {p}. So as P \ {p} ⊆ M , we have Xj ∪ {p} ∪ (P \ {p}) ∈ S. That is,
Xj ∪ P ∈ S for all such P ; this contradicts the fact that M rejects Xj.

So we can choose a0, a1, . . . as stated. Put N = {ai : i < ω}. There are
two cases. If N accepts ∅ then by definition, [N ]ω ⊆ S. So N accepts any
finite subset of itself. If not, then it is easily seen by induction on |X| that
N rejects any X ⊆ N . ¤

Proof of theorem 3.3: By lemma 3.8, we can take an infinite N that
uniformly decides all its finite subsets. If N accepts them, then as above, it
accepts ∅ so [N ]ω ⊆ S. If it rejects them, we claim [N ]ω ∩ S = ∅. For if not,
there’s infinite X ⊆ N such that X ∈ S. Now as S is open, we can take n < ω
such that if Y ∩n = X∩n and Y is infinite then Y ∈ S. We can increase n as
we like; so as X is infinite, we can assume that n−1 ∈ X. But now, if P ⊆ N
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is infinite and P > X ∩ n then min(P ) ≥ n. So ((X ∩ n) ∪ P ) ∩ n = X ∩ n,
and (X ∩ n) ∪ P ∈ S. Hence, N accepts X ∩ n, a contradiction. ¤

It’s a good exercise to prove Ramsey’s theorem now. We will wait a little
(see corollary 4.4).

4 Barriers

Definition 4.1 Let X be an infinite subset of ω.

1. We say that B ⊆ [X]<ω is a barrier on X if:

• for every infinite Y ⊆ X, there is an initial segment of Y in B,

• B is an antichain with respect to ⊆.

2. A barrier is a barrier on some infinite X ⊆ ω.

3. Clearly, for a barrier B on X and infinite Y ⊆ X, there is a unique
initial segment of Y in B. We write this initial segment as Y ¹B.

4. The base of a barrier B is defined to be
⋃

B.

Remark 4.2 It can be checked that if B is a barrier on X then X =
⋃

B.
Bearing in mind that X is order-isomorphic to ω, we see that any barrier is
‘isomorphic’ to a barrier on ω. We seem more interested in barrier-ness than
in what the base of a barrier is.

For any n < ω, [ω]n is a barrier on ω. Thinking of n = 1, where
{{0}, {1}, . . .} is a barrier, we will perhaps see (especially in definition 5.1)
that a barrier is a kind of generalised sequence, or rather, the index set of
such a sequence.

4.1 The Nash-Williams Ramsey theorem

Theorem 4.3 (Nash-Williams Ramsey theorem) Let B be a barrier on
X ∈ [ω]ω. Suppose that B = B1 ∪ B2. Then there is an infinite subset Y of
X such that one of Bi ∩ [Y ]<ω (i = 1, 2) is a barrier on Y.

Proof. [Rewritten Jan 2003]. X is in order-preserving bijection with ω, so
we may assume without loss of generality that X = ω. Let

S = {Z ∈ [ω]ω : Z has an initial segment in B1}.

Clearly, S is open, and hence (by theorem 3.3) Ramsey. Take Y ∈ [ω]ω such
that [Y ]ω ⊆ S or [Y ]ω ∩ S = ∅. If [Y ]ω ⊆ S, then clearly B1 ∩ [Y ]<ω is a
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barrier on Y . If on the other hand [Y ]ω ∩ S = ∅, then take any Z ∈ [Y ]ω.
Since B is a barrier on ω, Z has an initial segment in B. But Z /∈ S. So that
initial segment must be in B2. Hence, B2 ∩ [Y ]<ω is a barrier on Y . ¤

Corollary 4.4 (Ramsey’s theorem) If f : [ω]n → k where k, n < ω, then
there is infinite N ⊆ ω such that f¹[N ]n is constant.

Proof. For some fixed n, let B = [ω]n. Obviously, B is a barrier on ω. If
B = B1 ∪ B2 ∪ . . . ∪ Bk, iterated application of the theorem gives an infinite
Y ⊆ ω such that some Bi∩ [Y ]<ω (i ≤ k) is a barrier on Y . If e.g., B1∩ [Y ]<ω

is a barrier on Y , then every n-element subset s of Y is in B1. For if we
end-extend s to an infinite subset S of Y , then S has an initial segment in
B1. As this must have size n, it must be s. The theorem now follows by
letting Bi = f−1(i− 1) for each 1 ≤ i ≤ k, since then [Y ]n ⊆ f−1(j) for some
j < k. ¤

4.2 The barrier B(2)

Definition 4.5

1. If s, t are finite subsets of ω, we write s C t to mean that there are
i1 < . . . < ik and j (1 ≤ j < k) such that s = {i1, . . . , ij} and t =
{i2, . . . , ik}.

2. Given a barrier B and a pre-ordered set Q, we say that a map f : B → Q
is bad if there are no s, t ∈ B with s C t and such that f(s) ≤ f(t).

3. A map f : B → Q is perfect if f(s) ≤ f(t) for all s C t in B.

Note that j = 1 is allowed; k > j by barrier-ness. C is not transitive in
general.

Example 4.6 Suppose B is a barrier on ω. For any infinite X ⊆ ω, tem-
porarily write X0 = X and Xn+1 = Xn \ {min(Xn)}. Each Xn has an initial
segment sn ∈ B. Then s0 C s1 C · · ·. Moreover, if s0 C s1 C · · · C sn in
B, choose infinite X ⊆ ω having s0 ∪ · · · ∪ sn as an initial segment. Then
si = Xi¹B for all i ≤ n. This shows that s0, . . . , sn are recoverable from
s0 ∪ · · · ∪ sn.

If a barrier B ‘is’ the index set of a generalised sequence, and s, t ∈ B,
then s C t means that t is a ‘higher’ index than s.

Definition 4.7 Let B be a barrier on X. Write B(2) = {s ∪ t : s C t in B}.
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Theorem 4.8 B(2) is a barrier on X.

Proof. We show that if s, t, s′, t′ ∈ B, s C t, s′ C t′, and s ∪ t ⊆ s′ ∪ t′, then
s = s′ and t = t′. For let s ∪ t be {i1, . . . , ik} and s′ ∪ t′ be {j1, . . . , jm}, in
increasing order. Then t = {i2, . . . , ik} and t′ = {j2, . . . , jm}. Clearly t ⊆ t′;
so as B is a barrier, we have t = t′. Hence i2 = j2 (as i1 = j1). Hence s, s′

are initial segments of s∪ t, and so they are equal as B is a barrier. So there
are no proper inclusions between elements of B(2).

Let Y be any infinite subset {y0, y1, . . .} of X, listed in increasing order.
If B is a barrier then Y has an initial segment s ∈ B. Similarly, Y \ {y0} has
an initial segment t ∈ B. Then s C t by barrier-ness. So s ∪ t is an initial
segment of Y in B(2). ¤

Remark 4.9 The proof (and example 4.6) shows that each set s ∪ t ∈ B(2)
allows s, t to be recovered uniquely. So we will always write elements of B(2)
in the form s ∪ t, where (implicitly) s, t ∈ B.

If s∪ t, s′∪ t′ ∈ B(2) and s∪ t C s′∪ t′, then clearly, t is an initial segment
of s′ ∪ t′. Since s′ is as well, we have s′ ⊆ t or t ⊆ s′. Since s′, t ∈ B, we have
t = s′. So s C s′ and t C t′.

Exercise 4.10 Define B(n) for 2 ≤ n < ω, and generalise the above to it.

Corollary 4.11 Given a barrier B on a set X ∈ [ω]ω, and a map f : B → Q,
there exists a barrier D on some Y ∈ [X]ω with D ⊆ B, and such that the
restriction f¹D of f to D is either bad or perfect.

Proof. Put
A1 = {s ∪ t ∈ B(2) : f(s) ≤ f(t)},
A2 = {s ∪ t ∈ B(2) : f(s) 6≤ f(t)}.

Since A1 ∪ A2 = B(2), by the Nash-Williams Ramsey theorem, there is
infinite Y ⊆ X such that some C ⊆ A1 or C ⊆ A2 is a barrier on Y .

Suppose C ⊆ A1. Put

D = {s ∈ B : s ∪ t ∈ C for some t with s C t}.

Then D is a barrier on Y — certainly D is an antichain since D ⊆ B, and
further, if Z ⊆ Y is infinite, there is an initial segment s∪t of Z with s∪t ∈ C,
so s ∈ D is an initial segment of Z.

Let g = f¹D; then g is perfect. For suppose s C t in D. End-extend s∪ t
to an infinite set in Y . This has an initial segment s′ ∪ t′ ∈ C. As in the
proof of theorem 4.8, s = s′ and t = t′. So s ∪ t ∈ C ⊆ A1.

The case C ⊆ A2 is similar; we get a bad g. ¤
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5 Better-quasi-orderings

This is a long and interesting section.

Definition 5.1 (bqo) Let (Q,≤) be a pre-order. We say that ≤ is a better-
quasi-ordering (bqo) if for every barrier B on ω, there is no bad map f : B →
Q.

Because any barrier is isomorphic to a barrier on ω, if ≤ is a bqo then
for every barrier B, there is no bad map : B → Q.

Example 5.2 (ω,≤) is a bqo. For let B be a barrier on ω, and f : B → ω.
Let sn be an initial segment of ω \ n in B. Then s0 C s1 C · · ·. If f is bad,
then f(s0) 6≤ f(s1) 6≤ · · ·, which is impossible.

Considering the barrier [ω]1 = {{n} : n < ω}, we see that a bqo is a wqo.

5.1 Combining bqos

Lemma 5.3 Let ≤,v be bqos on the same set Q. Then 4 =def. ≤ ∩ v is
also a bqo on Q.

Proof. Certainly, 4 is a pre-order. Let B be a barrier on ω, and f : B → Q.
By corollary 4.11, there exists a barrier D ⊆ B such that f¹D is either bad
or perfect with respect to (Q,≤). Since ≤ is a bqo, f¹D cannot be bad, so is
perfect. Since v is a bqo, f¹D cannot be bad with respect to (Q,v), so there
are s C t in D with f(s) v f(t). By perfection, f(s) ≤ f(t). So f(s) 4 f(t),
showing that f is not bad. ¤

5.2 Power sets of bqos

Definition 5.4 Let (Q,≤) be a pre-order. Define a pre-order ≤ on ℘(Q) by
Γ ≤ ∆ iff for all δ ∈ ∆ there is γ ∈ Γ with γ ≤ δ.

The following fails for wqos; cf. exercise 1.14.

Proposition 5.5 If (Q,≤) is a bqo then so is (℘(Q),≤).

Proof. Let B be a barrier on ω, and f : B → ℘(Q). Assume for contradiction
that f is bad. So for each s ∪ t ∈ B(2), f(s) 6≤ f(t), so there is an element
h(s ∪ t) ∈ f(t) such that for every q ∈ f(s) we have h(s ∪ t) 6≥ q. (Recall
from remark 4.9 that s, t are uniquely recoverable from s ∪ t ∈ B(2).) We
have therefore defined a map h : B(2) → Q.

By theorem 4.8, B(2) is a barrier on ω. As Q is a bqo, h is not bad, and
there are s∪t C s′∪t′ in B(2) with h(s∪t) ≤ h(s′∪t′). By remark 4.9, t = s′.
But now, h(s′ ∪ t′) ∈ f(t′) is ≥ h(s ∪ t) ∈ f(t) = f(s′). This contradicts the
definition of h. ¤
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5.3 Minimal bad maps

The presentation of the results of this and the following two sections is similar
to that of [1].

Let Q be pre-ordered by ≤. We assume that Q also carries a transitive
well-founded relation ≺ such that x ≺ y ⇒ x < y for all x, y ∈ Q. We write
x 4 y to mean x ≺ y or x = y.

Definition 5.6

1. For sets s, t ⊆ ω, we write t ��XX s to mean that t is an initial segment
of s, and t ��XX s to mean that t is a proper initial segment of s.

2. For barriers B, C on X, Y , we write B v C (B foreruns C) if Y ⊆ X
and every element of C has an initial segment in B.

3. We say B < C (strictly foreruns) if B v C and some element of C has
a proper initial segment in B. Example: B < B(2).

4. Given f : B → Q and g : C → Q, we write f v g if

(a) B v C,

(b) f(s) = g(s) for all s ∈ B ∩ C,

(c) for all b ∈ B, c ∈ C with b ��XX c, we have g(c) ≺ f(b).

We write f < g if f v g and B < C.

5. We say that a bad map f : B → Q is minimal if there is no bad g = f .
(Minimality is with respect to 4, not v!)

6. If f : B → Q is bad but not minimal bad, then there are C = B and a
bad g : C → Q with f < g. So there are b ∈ B, c ∈ C with b ��XX c. Write
k for the greatest element of b. Fixing f , choose C, g, b, c to make k
minimal. We will write this least value of k as k(f).

Remark 5.7 It can be checked that both vs are reflexive and transitive.
(Take care with condition 4b.)

If C ⊆ B are barriers and C v D, then B v D. If f : B → Q, g : D → Q,
and f¹C v g, then f v g. So if f : B → Q is minimal bad, then so is f¹C.
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5.4 Nash-Williams/Laver theorem

Lemma 5.8 Given f : B → Q which is bad but not minimal bad, there are
D = B and a bad h : D → Q with h = f , such that

1. for some b ∈ B with maximal element k(f), we have b /∈ D,

2. every m ≤ k(f) in the base
⋃

B of B is in the base of D.

Proof. Take bad f : B → Q, not minimal bad, and g = f bad, such that
g : C → Q for some C = B, and for some s ∈ B and t ∈ C we have s ��XX t and
max(s) = k(f) = n, say. Put

S = ({0, 1, . . . , n} ∩
⋃

B) \
⋃

C,

D = C ∪ {b ∈ B : b ⊆
⋃

C ∪ S and b ∩ S 6= ∅}.

Claim: D is a barrier on
⋃

C ∪ S.

Proof of Claim: Certainly, D ⊆ [
⋃

C ∪ S]<ω. We check that D is an ⊆-
antichain. Since this is true for B and for C, it suffices to take b ∈ B with
b ⊆

⋃

C ∪ S and b ∩ S 6= ∅, and c ∈ C, and check that b 6⊆ c 6⊆ b. Since
c ∩ S = ∅, we have b 6⊆ c. If c ⊆ b, then c ⊂ b. But c has an initial segment
b′ ∈ B, so b′ ⊂ b, contradicting that B is a barrier.

Now let X ⊆
⋃

C ∪ S be infinite; we want to find an initial segment of
X in D. If X has an initial segment in C, we are done. Assume it doesn’t.
Let b = X¹B (see definition 4.1). Certainly, b ⊆

⋃

C ∪ S. We claim that
b ∩ S 6= ∅, so that b ∈ D.

Assume for contradiction that b ∩ S = ∅. As X has no initial segment in
C, a barrier on

⋃

C, we have X 6⊆
⋃

C, and so X ∩ S 6= ∅. Take s ∈ X ∩ S.
Now b ∩ S = ∅, and b ��XX X. So max(b) < s ≤ n.

Let Y = X ∩
⋃

C. Then Y is infinite, so has an initial segment c in C.
Since b ��XX X and b ⊆

⋃

C, we have b ��XX Y as well. So b, c are ��XX -comparable.
If c ��XX b, then c has an initial segment b′ in B, and b′ ⊂ b, which is impossible
as B is a barrier. So b ��XX c. But max(b) < n, so by minimality of n we must
have b = c. So X has an initial segment c in C, a contradiction. This proves
the claim.

We now show that D has the two properties cited in the lemma. If b ∈ B,
c ∈ C, and b ��XX c, then b ⊂ c ∈ D; so by the claim, b /∈ D. Since B
contains such a b with max(b) = n, the first property is established. Also,
every x ∈ {0, 1, . . . , n} ∩

⋃

B is the least element of some infinite subset of
⋃

C ∪ S, which by the claim has an initial segment d ∈ D. So x ∈ d, whence
{0, 1, . . . , n} ∩

⋃

B ⊆
⋃

D.
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It is clear that B < D. Define h : D → Q by

h(d) =

{

f(d), if d ∈ B,
g(d), if d ∈ C.

This is well-defined, because f v g. Trivially, if d ∈ B ∩ D, h(d) = f(d).
Also, if b ∈ B, d ∈ D, and b ��XX d, then d /∈ B. So h(d) = g(d) ≺ f(b) since
f v g. So f < h.

Moreover, h is bad. For let s C t in D. There are four cases.

1. If s, t ∈ B, then as f is bad, h(s) = f(s) 6≤ f(t) = h(t).

2. The case where s, t ∈ C is similar, using badness of g.

3. Assume that s ∈ B and t ∈ C. Let b ∈ B be an initial segment of t.
Since f v g, we have g(t) 4 f(b), and so g(t) ≤ f(b).

Since s C t, min(s) /∈ b, so s 6= b, and hence as B is a barrier, b 6⊆ s.
It follows that s C b. If h(s) ≤ h(t) — i.e., f(s) ≤ g(t) — then by
transitivity, f(s) ≤ f(b), contradicting badness of f . So h(s) 6≤ h(t) as
required.

4. Finally assume for contradiction that s ∈ C \ B and t ∈ B \ C. Then
t ∩ S 6= ∅. As s ∩ S = ∅, and s C t, there is x ∈ S ∩ t larger than
all elements of s. So max(s) < n. But s has an initial segment b in
B, which must also have maximum < n. By minimality of n we have
s = b ∈ B, a contradiction.

¤

The main theorem is next. The idea is that B is to be refined in a step-
by-step manner to C = B by reducing values of f . We may need to extend
sequences to do this.

Theorem 5.9 (Nash-Williams, interpreted by Laver) For every bar-
rier B and bad map f : B → Q, there are a barrier C w B and a minimal bad
g : C → Q with f v g.

Proof. If B0 is a barrier and f0 : B0 → Q is bad but not minimal bad,
we can find a barrier B1 with B0 v B1, and a bad map f1 : B1 → Q with
f1 = f0 as in lemma 5.8. If f1 is not minimal bad, we can repeat to get B2

and f2 : B2 → Q, etc. If this process stops after a finite number of iterations,
we’re done.
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Otherwise, it goes on infinitely many times. In this case, we claim that
k(f0) ≤ k(f1) ≤ · · · and the sequence rises infinitely often. Certainly the
sequence cannot fall, as k(fi) is minimal. Each application of the lemma
removes from Bi some set b with maximum k(fi), and Bi+1 contains some
c with b ��XX c. No later Bj contains b, because Bi+1 v Bj, so there would
be b′ ��XX b in Bi+1, so b′ ⊂ c, contradicting that Bi+1 is a barrier. There are
finitely many such sets b, so this cannot happen infinitely often. The claim
is proved.

Let Xi be the base of Bi (i < ω). Since B0 v B1 v · · ·, we have X0 ⊇
X1 ⊇ · · ·. Define X =

⋂

n<ω Xn. Since k(fi) ∈ X for all i (see lemma 5.8),
we see by the claim that X is infinite. Let D = {b : b is in cofinitely many
Bi}.

Claim: D is a barrier on X.
Proof of Claim: Certainly, if b ∈ D then b ⊆ Xi for cofinitely many i < ω,
so b ⊆ X. Also, if b, c ∈ D and b ⊆ c, then b = c (as this holds in cofinitely
many Bi).

Consider any infinite Y ⊆ X. For each Bi, we have Y ⊆ Xi, so some
bi ∈ Bi is an initial segment of Y . Clearly, bi

��XX bi+1 or bi+1
��XX bi. If

bi+1
��XX bi, then as Bi v Bi+1, bi+1 has an initial segment c ∈ Bi. So c ⊂ bi,

which is impossible since Bi is a barrier. So bi
��XX bi+1. If bi

��XX bi+1, then
fi(bi) Â fi+1(bi+1). Otherwise, bi = bi+1, so since fi+1 = fi, we have fi(bi) =
fi+1(bi+1). But ≺ is well-founded, so the sequence (bi : i < ω) becomes
constant at j, say. Then bj ∈ D is an initial segment of Y . The claim is
proved.

We note that D = Bi for each i.
We now define g : D → Q to agree eventually with all fi — i.e., for

all d ∈ D, g(d) = fi(d) for all i with d ∈ Bi. This is well-defined since
f0 v f1 v · · ·. We note that g = fi for each i.

Claim: g is minimal bad.
Proof of Claim: If d C e in D then d C e in some Bi. So g(d) = fi(d) 6≤
fi(e) = g(e). So g is bad.

If there are E = D and bad h : E → Q with h = g, then there are s ∈ D
and t ∈ E with s ��XX t. We may choose i < ω with s ∈ Bi and max(s) < k(fi)
(as the k(fi) rise arbitrarily high). Then (cf. remark 5.7) E = Bi and h = fi,
so h contradicts the value of k(fi). This proves theorem 5.9. ¤

5.5 Sequences

Now for some practical applications. Fix a set Q and a pre-order ≤ on it.
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Definition 5.10

1. We can extend ≤ to
⋃

α ordinal Q
α as follows. For x ∈ Qα, y ∈ Qβ,

put x ≤ y iff there is a one-one order-preserving map ϕ : α → β such
that for all i < α we have xi ≤ yϕ(i). (Regarding Q = Q1, this is an
extension of ≤ on Q.) As usual, x < y means x ≤ y 6≤ x.

2. For x, y ∈
⋃

α Qα, define x ≺ y to mean x is isomorphic to a subse-
quence of y and dom(x) < dom(y) as ordinals. Clearly, ≺ is transitive
and well-founded (as ordinals are), and x ≺ y ⇒ x < y (< as above).

Theorem 5.11 If (Q,≤) is a bqo then so is (
⋃

α Qα,≤).

Proof. Suppose for contradiction that there is a barrier B and a bad map
f : B →

⋃

α Qα. By theorem 5.9, we can assume that f is minimal bad.
By the Nash-Williams Ramsey theorem (theorem 4.3), we can also assume
that either all f(b) have successor length, or they all have limit length. By
remark 5.7, this does not affect minimality.

Case I: the f(b) have successor length. Write f(b) = f1(b)
∧f2(b) with

f2(b) ∈ Q (we ‘remove’ the last element). By corollary 4.11, we can assume
that each of f1, f2 is either bad or perfect. Now f2 can’t be bad, as Q is a
bqo; hence it is perfect. But f is bad, so f1 must be bad.

Define g : B(2) →
⋃

α Qα by g(s∪t) = f1(s). Then B(2) = B; and because
f1(s) ≺ f(s) for all s, we have g = f . Also, g is bad: for if s ∪ t C t ∪ v in
B(2) (see remark 4.9), then because s C t and f1 is bad, g(s ∪ t) = f1(s) 6≤
f1(t) = g(t ∪ v). This contradicts the minimality of f .

Case II: each f(b) has limit length. Consider s C t in B. Because of
the poor quality of f we have f(s) 6≤ f(t). Define an order-preserving map
ϕ : dom(f(s)) → dom(f(t)) by induction: at each stage, ϕ maps the next
element i < dom(f(s)) to the least j < dom(f(t)) such that f(t)j ≥ f(s)i

and j > ϕ(k) for all k < i. If this succeeded, we’d have f(s) ≤ f(t); so
there must be a proper initial segment of f(s) that’s 6≤ f(t). Take (say) the
shortest such — f(s)t, say.

Define g : B(2) →
⋃

α Qα by g(s ∪ t) = f(s)t. This is a non-trivial use of
B(2). As B < B(2), and f(s)t ≺ f(s) whenever s C t, we have f < g. But g is
bad, for if s∪t C t∪v then g(s∪t) = f(s)t 6≤ f(t), so g(s∪t) 6≤ f(t)v = g(t∪v).
This is a contradiction. ¤

5.6 Matrices

Fix 1 ≤ d < ω, and write Q for ωd. Recall from example 5.2 that (ω,≤) is a
bqo. Extend ≤ to

⋃

α ωα, as in definition 5.10. By theorem 5.11, (
⋃

α ωα,≤)
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is a bqo, and hence so is its subset (Q,≤). Note that x ≤ y in Q iff xi ≤ yi

for all i < d.
By definition 5.10 and theorem 5.11 again, we may extend the order ≤

on Q to an order ≤ on
⋃

α Qα, and it is a bqo.

Definition 5.12 Define v on
⋃

α Qα by: if ξ ∈ Qα, η ∈ Qβ, then ξ v η iff
∀j < β ∃i < α (ξi ≤ ηj)

Lemma 5.13 (
⋃

α Qα,v) is a bqo.

Proof. For a sequence ξ = (ξi : i < α) ∈ Qα, write rng(ξ) for the set
{ξi : i < α} ∈ ℘(Q). Given a barrier B on ω and a map f : B →

⋃

α Qα,
define g : B → ℘(Q) by g(s) = rng(f(s)). By proposition 5.5, there are
s C t in B such that for all q ∈ g(t) there is p ∈ g(s) with p ≤ q. So clearly,
f(s) v f(t). ¤

Definition 5.14 Define 4 on
⋃

α Qα by: ξ 4 η iff ξ ≤ η and ξ v η.

By lemma 5.3, 4 is a bqo on
⋃

α Qα.

Definition 5.15

1. For an ordinal α, let Mα be the set of all maps m : α × d → ω.

2. Define a bijection θα : Qα → Mα by θα(ξ) = m, where m(i, j) = (ξi)j

for i < α, j < d.

3. Let M =
⋃

α Mα. Define a bijection θ = (
⋃

α θα) :
⋃

α Qα → M.

4. For m, n ∈ M, write m ≤ n if, given that m ∈ Mα and n ∈ Mβ, there
is surjective f : β → α such that m(f(i), j) ≤ n(i, j) for all i < β,
j < d.

Theorem 5.16 For any sequence m0, m1, . . . in M, there are n < k < ω
with mn ≤ mk. Indeed, (M,≤) is a (class) bqo.

Proof. Let ξ0, ξ1, . . . ∈
⋃

α Qα be such that θ(ξi) = mi for i < ω. Since
(
⋃

α Qα, 4) is a bqo and B = {{n} : n < ω} is a barrier on ω, the map
({n} 7→ ξn) : B →

⋃

α Qα is not 4-bad, and so there are n < k < ω with
ξn 4 ξk.

Write ξ for ξn and η for ξk; suppose that ξ ∈ Qα and η ∈ Qβ. By ξ ≤ η,
there is a one-one order-preserving map ϕ : α → β with ξi ≤ ηϕ(i) for all
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i < α. By ξ v η, for all i < β there is ψ(i) < α with ξψ(i) ≤ ηi. Define
f : β → α by

f(i) =

{

ϕ−1(i), if i ∈ rng(ϕ),
ψ(i), otherwise.

Then f is surjective, and ξf(i) ≤ ηi in Q for all i < β. Since θ(ξ) = mn and
θ(η) = mk, that is

mn(f(i), j) = (ξf(i))j ≤ (ηi)j = mk(i, j) for all i < β, j < d.

So mn ≤ mk. The bqo part is an exercise. ¤

Probably one can generalise to higher dimensions.

6 Countable linear orderings

Notation 6.1 We will write α, β, γ, . . . for linear orderings. i, j, k, . . . will
denote ordinals. We write α ≤ β if α embeds into β in an order-preserving
fashion. We write α < β if α ≤ β 6≤ α.

Theorem 6.2 (Laver) The class of countable linear orderings is a bqo un-
der <.

(Transcription of notes is incomplete. Please see [1, 3, 4] for the proofs.)
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