Counterexamples for hybrid bisimulation theorem: (i) with nominals, (ii) in the finite

Ian Hodkinson

July 14, 2024

The 'bisimulation theorem' in [3] says that when there are no nominals, every first-order $\theta(x)$ in the correspondence language that is invariant under quasi-injective bisimulations over all models is equivalent to a hybrid $\mathcal{H}(\downarrow)$ -sentence over all models. Here are examples showing that this fails with nominals, and fails over finite models even without nominals. I hope to put them in a paper soon.

Notation summary. We let PROP, NOM be the sets of propositional atoms and nominals, respectively. A *Kripke model* is a triple A = (W, R, V), where $W \neq \emptyset$ is the *domain* of A, $R \subseteq W^2$, and $V : \text{PROP} \cup \text{NOM} \to \wp(W)$, such that V(c) is a singleton $\{c^A\}$ for each $c \in \text{NOM}$. We identify (notationally) A with W. A *pointed Kripke model* is a pair (A, a) where A is a Kripke model and $a \in A$. When needed, we write R^A instead of R.

For $U \subseteq W$ we write $R \upharpoonright U = R \cap U^2$. For a binary relation S on W and $a \in W$, we write S(a) for $\{b \in A : aSb\}$.

We let $R^0 = \{(w, w) : w \in W\}$, $R^{n+1} = R^n \mid R = \{(w, u) \in W^2 : \exists v(wR^n vRu)\}$ for $n < \omega$, $R^{\leq n} = \bigcup_{k \leq n} R^k$, and $R^* = \bigcup_{n < \omega} R^n$, the reflexive transitive closure of R. We say that A is rooted (at a) if $R^*(a) = W$ for some $a \in W$; such an a is called a root of A. A cluster is an equivalence class of the equivalence relation $R^* \cap (R^{-1})^*$ on W, where R^{-1} is the converse of R.

The submodel of A generated by $a \in A$ is the submodel $(R^*(a), R \upharpoonright R^*(a))$ of A with domain $R^*(a)$. This is a well-defined Kripke model only when $c^A \in R^*(a)$ for each $c \in \text{NOM}$ — this needs to be checked each time.

For Kripke models A, B, a bisimulation $Z : A \to B$ is a relation $Z \subseteq A \times B$ such that for each $(a, b) \in Z$: $A, a \models p$ iff $B, b \models p$ for each $p \in \text{PROP} \cup \text{NOM}$; if aR^Aa' then there is $b' \in B$ with bR^Bb' and a'Zb' ('Forth'); and a similar condition swapping A, B ('Back'). Z is quasi-injective if aZb, aZb', and $b(R^B)^*b'$ imply b = b', and similarly swapping A, B.

1 Two general lemmas

LEMMA 1.1 Let (J, j) and (K, k) be pointed Kripke models and $Z : J \to K$ a quasi-injective bisimulation with jZk. Let J', K' be their submodels generated by j, k, respectively, and assume that J' is a well-defined Kripke model. Then so is K', and $Z' = Z \cap (J' \times K') : J' \to K'$ is also a quasi-injective bisimulation with jZ'k.

Proof. Let $c \in \text{NOM}$ be arbitrary. As J' is well defined, $c^J \in J' = (R^J)^*(j)$. By (possibly iterated) Forth for Z, there is $y \in (R^K)^*(k) = K'$ with $c^J Z y$. As $J, c^J \models c$ and Z preserves c, we have $K, y \models c$, so $y = c^K$. Hence, $c^K \in K'$ for each nominal c, and K' is well defined.

Since $j \in J'$ and $k \in K'$, we have jZ'k. Suppose xZ'y, $x' \in J'$, and $xR^{J'}x'$. So xZy and $xR^{J}x'$. As Z is a bisimulation, there is $y' \in K$ with $yR^{K}y'$ and x'Zy'. Since xZ'y, we have $y \in K'$, so $y' \in R(y) \subseteq K'$. So x'Z'y', proving 'Forth' for Z'. 'Back' is similarly proved. Since $Z' \subseteq Z$, it is plain that Z' is quasi-injective.

DEFINITION 1.2 We say that a relation $Z \subseteq X \times Y$ is *functional at* $x \in X$ if there exists a unique $y \in Y$ with xZy, and *functional at* $y \in Y$ if there exists a unique $x \in X$ with xZy.

LEMMA 1.3 Let M, N be rooted Kripke models with roots m, n, respectively, and let $Z : M \to N$ be a quasi-injective bisimulation with mZn. Then:

- 1. Z is functional at m.
- 2. Z is functional at c^M for each nominal c.
- 3. Let C be a cluster in M, and suppose that Z is functional at some point $c \in C$. Then Z is functional at every point in C.
- 4. If $M \models \forall xy(xR^*y \lor yR^*x)$ then Z is functional at every point in N.

Proof. In the proof, we write R for the accessibility relation in both M, N.

- 1. By assumption, mZn. Suppose $y \in N$ and mZy. Since n is a root of N, we have $y \in R^*(n)$, so y = n as Z is a quasi-injective bisimulation.
- 2. We are given that mZn. Since m is a root of M, we have $c^M \in R^*(m)$, so by (possibly iterated) Forth there is $y \in N$ with c^MZy . Since Z preserves nominals, $y = c^N$.
- 3. Fix the unique $d \in N$ with cZd. Let $x \in C$ be arbitrary. Then $x \in R^*(c)$, so by (always possibly iterated) Forth there is $y \in R^*(d)$ with xZy.

To show uniqueness, let $y' \in N$ with xZy' be given. Since $c \in R^*(x)$, by Forth there is $d' \in R^*(y')$ with cZd'. But Z is functional at c, so d' = d. Now $y \in R^*(d)$ and $d = d' \in R^*(y')$, so $y \in R^*(y')$ — and xZy, xZy'. As Z is quasi-injective, y' = y.

4. Take $y \in N$. As n is a root of N and mZn, by Back we have xZy for some $x \in M$. If $x' \in M$ and x'Zy, then by assumption, $x' \in R^*(x)$ or $x \in R^*(x')$. Either way, as Z is a quasi-injective bisimulation, x = x'.

2 Bisimulation theorem fails with nominals

This was left open in [3].

All Kripke models in this section are for a hybrid signature PROP \cup NOM with a single nominal, c, and no propositional atoms. Figure 1 shows two such pointed models, (M, m) and (N, n).

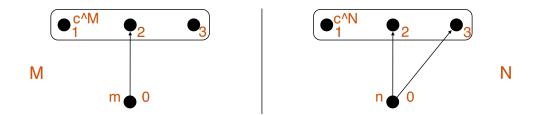


Figure 1: pointed Kripke models (M, m) and (N, n)

Formally, M and N have the same domain, $\{0, \ldots, 3\}$; $\mathbb{R}^M = \{1, 2, 3\}^2 \cup \{(0, 2)\}$, and $\mathbb{R}^N = \mathbb{R}^M \cup \{(0, 3)\}$. Finally, $c^M = c^N = 1$ and m = n = 0. The ovals in the figure are \mathbb{R} -cliques, and clusters.

Let $\varphi(x)$ be a first-order formula in the correspondence language, saying that the submodel generated by x is isomorphic to M by an isomorphism taking x to m. This is first-order definable because M is finite and (so) has finite depth.

Formally, let $\Delta(x_0, \ldots, x_3)$ comprise $\{x_i \neq x_j : i < j \leq 3\}$, $\{x_i R x_j : i R^M j\}$, $\{\neg(x_i R x_j) : i, j \leq 3, \neg(i R^M j)\}$, and $\{c = x_1\}$. This is essentially the (basic) diagram of M (see [2, p.16]), with x_i assigned to i for each $i \leq 3$. Then define

$$\varphi(x_0) = \exists x_1 x_2 x_3 \big(\bigwedge \Delta \land \forall y (x_0 \ R^{\leq 3} \ y \to \bigvee_{i \leq 3} y = x_i)\big).$$

LEMMA 2.1 Let A be a Kripke model and suppose that $a_0 \in A$ is a root of A. Then $A \models \varphi(a_0)$ iff $(A, a_0) \cong (M, m)$, where (M, m) is as on the left of figure 1.

Proof. Clearly, $M \models \varphi(m)$, and \Leftarrow follows as φ is preserved under isomorphism.

For \Rightarrow , suppose that $A \models \varphi(a_0)$. Let $a_1, a_2, a_3 \in A$ witness the $\exists x_1 x_2 x_3$ in φ , where x_0 is assigned to a_0 . Define a map $f : M \to A$ by $f(i) = a_i$ for each $i \leq 3$. Then $f(m) = a_0$, and f is an embedding by definition of Δ .

We show that f is surjective, hence an isomorphism. Suppose for contradiction that there is $b \in A \setminus \{a_0, \ldots, a_3\}$. Since a_0 is a root of A, we have $b \in R^n(a_0)$ for some $n < \omega$. Choose bso that n is least possible. Since $b \notin \{a_0\} = R^0(a_0)$, we have n > 0, so there is $b' \in R^{n-1}(a_0)$ with b'Rb. As n is minimal, $b' \in \{a_0, \ldots, a_3\}$.

Now $M \subseteq (\mathbb{R}^M)^{\leq 2}(0)$ by inspection of figure 1. Because $f(0) = f(m) = a_0$ and f preserves R, we have $f(M) = \{a_0, \ldots, a_3\} \subseteq \mathbb{R}^{\leq 2}(a_0)$. So $a_0 \mathbb{R}^{\leq 2} b'$, and hence $a_0 \mathbb{R}^{\leq 3} b$. But $A \models \varphi(a_0)$, so $A \models \bigvee_{i \leq 3} b = a_i$, a contradiction. \Box

We now observe that φ is invariant under well-defined generated submodels.

LEMMA 2.2 Let (J, j) be a pointed Kripke model and let J' be its submodel generated by j. Assume that $c^J \in J'$, so that J' is a well-defined Kripke model. Then $J \models \varphi(j)$ iff $J' \models \varphi(j)$.

Proof. All quantifiers in φ are effectively relativised to the subset $R^{\leq 3}(j)$ of J'.

The following fails if we delete the nominal c from M, N, φ .

PROPOSITION 2.3 $\varphi(x)$ is invariant on all models under quasi-injective bisimulations.

Proof. Let (J, j) and (K, k) be pointed Kripke models and $Z : J \to K$ a quasi-injective bisimulation with jZk. Suppose that $J \models \varphi(j)$. We show that $K \models \varphi(k)$.

Let J', K' be the generated submodels of J, K generated by j, k, respectively, and $Z' = Z \cap (J' \times K')$. Since $J \models \varphi(j)$, it follows that $c^J \in J'$, so J' is a well-defined Kripke model, and j is a root of it. Then by lemma 1.1, K' is also a well-defined Kripke model (ie. $c^K \in K'$) and $Z' : J' \to K'$ is a quasi-injective bisimulation with jZ'k.

By lemma 2.2, $J' \models \varphi(j)$, so by lemma 2.1, $(J', j) \cong (M, m)$. By inspection of figure 1, J' comprises the root j and a cluster containing $c^{J'}$, and $J' \models \forall xy(xR^*y \lor yR^*x)$. So by lemma 1.3, $Z' : J' \to K'$ is a bijection (this may fail without c). Hence, it is an isomorphism, and $(J', j) \cong (K', k)$. Since $J' \models \varphi(j)$, we obtain $K' \models \varphi(k)$. By lemma 2.2 again, $K \models \varphi(k)$.

PROPOSITION 2.4 $\varphi(x)$ is not equivalent even over finite models to any $\mathcal{H}(\downarrow)$ -sentence.

Proof. It's an exercise to show that the pointed Kripke models (M, m) and (N, n) in figure 1 agree on all $\mathcal{H}(\downarrow)$ -sentences. By lemma 2.1, $M \models \varphi(m)$ and $N \not\models \varphi(n)$, the latter because (N, n) is rooted and not isomorphic to (M, m). So φ cannot be equivalent to a $\mathcal{H}(\downarrow)$ -sentence even over models with ≤ 4 points.

Combining these propositions gives:

THEOREM 2.5 The bisimulation theorem in [3] fails, both classically (over all models) and over finite models, with a single nominal and no propositional atoms.

[1] recovers a positive result classically, using a broader notion of bisimulation under which (M, m) and (N, n) are bisimilar and φ is not invariant.

3 Bisimulation theorem fails in the finite

We give an example of a first-order formula $\theta(x)$ that is invariant under quasi-injective bisimulations on finite models (in fact we show more), but is not equivalent over finite models to any $\mathcal{H}(\downarrow)$ -sentence. No propositional atoms or nominals are needed.

We take PROP = NOM = \emptyset and omit assignments in Kripke models — they are just frames A = (W, R). A predecessor of a point $x \in W$ is a point $y \in W$ with yRx — possibly y = x.

Let $\theta(x)$ be a first-order formula saying:

- 1. $R^2(x) \subseteq R^{\leq 1}(x)$
- 2. every $y \in R(x)$ satisfies $yRx \vee |R(y)| \ge 2$
- 3. every $y \in R(x)$ has at most one predecessor in R(x) (not $R^{\leq 1}(x)$, mind).

This is easy to write up more formally — θ is the conjunction of:

1.
$$\forall yz(xRyRz \rightarrow z = x \lor xRz)$$

- 2. $\forall y(xRy \rightarrow yRx \lor \exists zt(yRz \land yRt \land z \neq t))$
- 3. $\forall yzt(xRy \land xRzRy \land xRtRy \rightarrow z = t).$

LEMMA 3.1 Let (A, a) be a finite pointed Kripke model, rooted at a, and with $A \models \theta(a)$. Then A is a cluster.

Proof. As a is a root, $A = R^*(a)$. By clause 1 and induction on path lengths, $A = R^{\leq 1}(a)$. So it suffices to take arbitrary $b \in R(a)$ and show that $a \in R^*(b)$.

For contradiction, suppose that $a \notin R^*(b)$. Then $R^*(b) \subseteq A \setminus \{a\} \subseteq R(a)$.

Let $D = (R^*(b), R \upharpoonright R^*(b))$ be the submodel of A generated by b. It is a finite directed graph. By clause 3 of θ and because $R^*(b) \subseteq R(a)$, each node of D has in-degree ≤ 1 . By clause 2 and because $a \notin R^*(b) \subseteq R(a)$, it follows that each node of D has out-degree ≥ 2 .

But since D is finite, the sum of the in-degrees of nodes in D must equal the sum of their out-degrees — both are equal to $|R \upharpoonright R^*(b)|$. This is a contradiction. So indeed, $a \in R^*(b)$. \Box

PROPOSITION 3.2 Let (M, m) and (N, n) be finite pointed Kripke models that agree on $\mathcal{H}(\downarrow)$ -sentences. Then they agree on θ . Hence, θ is invariant under quasi-injective bisimulations on finite models — and indeed under any relation that preserves $\mathcal{H}(\downarrow)$ -sentences in the finite.

Proof. For the first part, suppose $M \models \theta(m)$. We show that $N \models \theta(n)$.

Let M', N' be the generated submodels of M, N generated by m, n, respectively. Since all quantifiers in θ are relativised to $R^{\leq 2}(x)$, it is invariant under generated submodels, so $M' \models \theta(m)$. By lemma 3.1, M' is a cluster.

Now (M, m) and (N, n) are finite and agree on $\mathcal{H}(\downarrow)$ -sentences. Since such sentences are invariant under generated submodels, (M', m) and (N', n) also agree on $\mathcal{H}(\downarrow)$ -sentences. Since M' is a finite cluster, we can write an $\mathcal{H}(\downarrow)$ -sentence expressing its isomorphism type (exercise), and as n is a root of N', it follows that $(M', m) \cong (N', n)$. So certainly, $N' \models \theta(n)$.

Again as θ is invariant under generated submodels, $N \models \theta(n)$ as required.

The second part follows since quasi-injective bisimulations preserve $\mathcal{H}(\downarrow)$ -sentences. \Box

Below, for an ordinal $n = \{m : m < n\}$, we write ⁿ2 for the set of all functions from n into $2 = \{0, 1\}$; ${}^{< n}2 = \bigcup_{m < n} {}^{m}2$; and ${}^{\le n}2 = {}^{< n+1}2$. For $t \in {}^{n}2$ and i < 2, we write $t \frown i \in {}^{n+1}2$ for the map extending t by $t \frown i(n) = i$.

PROPOSITION 3.3 $\theta(x)$ is not equivalent over finite models to any $\mathcal{H}(\downarrow)$ -sentence.

Proof. Suppose for contradiction that θ is equivalent in finite models to (the standard translation of) an $\mathcal{H}(\downarrow)$ -sentence ψ , of \diamond -depth n, say.

Let M = (W, R), where $W = \{a\} \cup {\leq n 2}$ for some point $a \notin {\leq n 2}$, and with

$$R = (\{a\} \times {}^{\leq n}2) \cup \{(t, t^{\frown}i) : t \in {}^{< n}2, i < 2\} \cup ({}^{n}2 \times \{a\}).$$

Then $M \models \theta(a)$. It is important here that $a \notin R(a) - a$ has many predecessors in R(a) (the elements of ⁿ2 at least), so if $a \in R(a)$ then clause 3 would fail.

Let $N = (W \cup \{e\}, S)$, where $e \notin W$ is a new point (a 'copy' of $\emptyset \in {}^{0}2$) and

$$S = R \cup \{(a, e)\} \cup (\{e\} \times {}^{1}2).$$

Then $N \models \neg \theta(a)$ because the points in ¹2 now have two predecessors (\emptyset and e) in S(a), so clause 3 fails.

But it can be shown (exercise; remark 3.5 may help) that (M, a) and (N, a) agree on all $\mathcal{H}(\downarrow)$ -sentences of depth $\leq n$, including ψ . Since they are finite, they agree on θ too. As $M \models \theta(a)$ and $N \models \neg \theta(a)$, this is a contradiction.

The two propositions combine to give:

THEOREM 3.4 The bisimulation theorem in [3] fails in the finite (with no nominals or propositional atoms).

REMARK 3.5 The sentence $\downarrow x \diamond \downarrow y \diamond \downarrow z \diamond^n (x \land \diamond (\neg y \land \diamond z))$ of \diamond -depth n+4 holds in (N, a) but not (M, a), but we really need to go right round the circuit to distinguish them, and this takes \diamond -depth > n. If we allow @ as well, we can use $\downarrow x \diamond \downarrow y \diamond \downarrow z @_x \diamond (\neg y \land \diamond z)$, of \diamond -depth 4. So the example fails for \downarrow , @.

EXAMPLE 3.6 By proposition 3.3 and the bisimulation theorem in [3], θ cannot be invariant under quasi-injective bisimulations on arbitrary models. To see an explicit example, pick a point $a \notin \omega \cup {}^{<\omega}2$ and let

$$\begin{split} M &= & \left(\{a\} \cup {}^{<\omega}2, \; (\{a\} \times {}^{<\omega}2) \cup \{(t,t \,\widehat{}\, i) : t \in {}^{<\omega}2, \; i < 2\} \right). \\ N &= & \left(\{a\} \cup \omega, \; (\{a\} \times \omega) \cup \{(n,n+1) : n < \omega\} \right). \end{split}$$

Unlike in proposition 3.3, neither model is a single cluster, and indeed they are acyclic, so no two distinct points in them lie in the same cluster. Then $M \models \theta(a)$, and $N \models \neg \theta(a)$ because clause 2 fails in N; yet $Z = \{(a, a)\} \cup \bigcup_{n < \omega} (^n 2 \times \{n\}) : (M, a) \to (N, a)$ is a quasiinjective bisimulation. One could get another example by adjoining e to M as in the proof of proposition 3.3, but we cannot use a 'linear' (N, a) like the above in the proposition, because it would differ from (M, a) on the $\mathcal{H}(\downarrow)$ -sentence $\downarrow x \diamond \downarrow y \diamond \downarrow z \diamond (x \land \diamond (y \land \diamond \neg z))$ of \diamond -depth 5.

By proposition 3.2, weaker notions of bisimulation are unlikely to recover a positive result here. One may ask whether it might be done by adding suitable operators to the hybrid language able to express θ , while maintaining existence of first-order standard translations and invariance of hybrid sentences under quasi-injective bisimulations in the finite.

References

- G. Badia, D. Gaina, A. Knapp, T. Kowalski, and M. Wirsing, A modular bisimulation characterisation for fragments of hybrid logic, 2023, https://arxiv.org/abs/2312. 14661.
- [2] W. Hodges, *Model theory*, Encyclopedia of mathematics and its applications, vol. 42, Cambridge University Press, 1993.
- [3] I. Hodkinson and H. Tahiri, A bisimulation characterization theorem for hybrid logic with the current-state binder, Rev. Symbolic Logic 3 (2010), 247–261.