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The ‘bisimulation theorem’ in [3] says that when there are no nominals, every first-order
f(x) in the correspondence language that is invariant under quasi-injective bisimulations over
all models is equivalent to a hybrid #H({)-sentence over all models. Here are examples showing
that this fails with nominals, and fails over finite models even without nominals. I hope to
put them in a paper soon.

Notation summary. We let PROP, NOM be the sets of propositional atoms and nominals,
respectively. A Kripke model is a triple A = (W, R, V'), where W # () is the domain of A,
R CW?2, and V : PROPUNOM — p(W), such that V(c) is a singleton {¢?} for each ¢ € Nom.
We identify (notationally) A with W. A pointed Kripke model is a pair (A, a) where A is a
Kripke model and @ € A. When needed, we write R* instead of R.

For U C W we write R | U = RNU?. For a binary relation S on W and a € W, we write
S(a) for {b € A: aSb}.

We let R = {(w,w) : w € W}, R""! = R*" | R = {(w,u) € W? : Jv(wR"wRu)} for
n < w, RS" = Uk<n RF, and R* = Un<o B", the reflexive transitive closure of R. We say
that A is rooted (at a) if R*(a) = W for some a € W; such an a is called a root of A.
A cluster is an equivalence class of the equivalence relation R* N (R~1)* on W, where R™! is
the converse of R.

The submodel of A generated by a € A is the submodel (R*(a),R | R*(a)) of A with
domain R*(a). This is a well-defined Kripke model only when ¢* € R*(a) for each ¢ € Nom
— this needs to be checked each time.

For Kripke models A, B, a bisimulation Z : A — B is a relation Z C A x B such that
for each (a,b) € Z: A,a |= p iff B,b |= p for each p € PrROP U NoM; if aRd’ then there is
v € B with bRBY and o/ ZV (‘Forth’); and a similar condition swapping A, B (‘Back’). Z is
quasi-injective if aZb, aZb', and b(RP)*b/ imply b = b', and similarly swapping A, B.

1 Two general lemmas

LEMMA 1.1 Let(J,j) and (K, k) be pointed Kripke models and Z : J — K a quasi-injective
bisimulation with jZk. Let J',K' be their submodels generated by j, k, respectively, and
assume that J' is a well-defined Kripke model. Then so is K', and Z' = ZN(J'xK') : J' — K’
is also a quasi-injective bisimulation with jZ'k.



Proof. Let ¢ € NOM be arbitrary. As J' is well defined, ¢/ € J' = (R7)*(j). By (possibly
iterated) Forth for Z, there is y € (R¥)*(k) = K’ with ¢/ Zy. As J,¢’ |= ¢ and Z preserves
¢, we have K,y |= ¢, so y = ¢, Hence, ¢ € K’ for each nominal ¢, and K’ is well defined.
Since j € J' and k € K’, we have jZ'k. Suppose zZ'y, 2’ € J', and R’ 2’. So zZy and
xR’x'. As Z is a bisimulation, there is 3 € K with yRXy' and 2/ Zy’. Since xZ'y, we have
ye K',soy € R(y) C K'. So 2/Z'y/, proving ‘Forth’ for Z’. ‘Back’ is similarly proved.
Since Z' C Z, it is plain that Z’ is quasi-injective. O

DEFINITION 1.2 We say that a relation Z C X x Y is functional at © € X if there exists
a unique y € Y with xZy, and functional at y € Y if there exists a unique x € X with zZy.

LEMMA 1.3 Let M, N be rooted Kripke models with roots m,n, respectively, and let Z :
M — N be a quasi-injective bisimulation with mZn. Then:

1. Z is functional at m.
2. Z is functional at ™ for each nominal c.

3. Let C be a cluster in M, and suppose that Z is functional at some point ¢ € C'. Then
Z is functional at every point in C.

4. If M =EVay(xR*y V yR*x) then Z is functional at every point in N.

Proof. In the proof, we write R for the accessibility relation in both M, N.

1. By assumption, mZn. Suppose y € N and mZy. Since n is a root of N, we have
y € R*(n), so y =n as Z is a quasi-injective bisimulation.

2. We are given that mZn. Since m is a root of M, we have ¢™ € R*(m), so by (possibly
iterated) Forth there is y € N with ¢ Zy. Since Z preserves nominals, y = ¢/,

3. Fix the unique d € N with ¢Zd. Let = € C be arbitrary. Then z € R*(c), so by (always
possibly iterated) Forth there is y € R*(d) with zZy.

To show uniqueness, let y' € N with 2Zy’ be given. Since ¢ € R*(x), by Forth there
is d € R*(y') with ¢Zd'. But Z is functional at ¢, so d = d. Now y € R*(d) and
d=d € R*(y), soy € R*(y') — and xZy, xZy'. As Z is quasi-injective, y’ = y.

4. Take y € N. As n is a root of N and mZn, by Back we have zZy for some x € M. If
' € M and 2/Zy, then by assumption, 2’ € R*(z) or € R*(z'). Either way, as Z is a
quasi-injective bisimulation, z = 2.

O

2 Bisimulation theorem fails with nominals

This was left open in [3].

All Kripke models in this section are for a hybrid signature PROP U NOM with a single
nominal, ¢, and no propositional atoms. Figure 1 shows two such pointed models, (M, m)
and (N, n).
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Figure 1: pointed Kripke models (M, m) and (N, n)

Formally, M and N have the same domain, {0,...,3}; RM = {1,2,3}2 U {(0,2)}, and
RN = RM U {(0,3)}. Finally, c™ = ¢V =1 and m = n = 0. The ovals in the figure are
R-cliques, and clusters.

Let ¢(x) be a first-order formula in the correspondence language, saying that the submodel
generated by x is isomorphic to M by an isomorphism taking x to m. This is first-order
definable because M is finite and (so) has finite depth.

Formally, let A(xo,...,x3) comprise {z; # x; : i < j < 3}, {&; Rz : iRMj}, {=(x;Rx;)
i,7 <3, ~(iRMj)}, and {c = z1}. This is essentially the (basic) diagram of M (see [2, p.16]),
with z; assigned to i for each ¢ < 3. Then define

¢(x0) = Friwaws( \ A AVy(wo Ry = \ y = 21)).
i<3

LEMMA 2.1 Let A be a Kripke model and suppose that ag € A is a root of A. Then
A E plag) iff (A,ap) = (M, m), where (M, m) is as on the left of figure 1.

Proof. Clearly, M |= ¢(m), and < follows as ¢ is preserved under isomorphism.

For =, suppose that A = p(ag). Let ay,as,a3 € A witness the Ixizox3 in ¢, where zg is
assigned to ag. Define a map f: M — A by f(i) = a; for each i < 3. Then f(m) = ag, and
f is an embedding by definition of A.

We show that f is surjective, hence an isomorphism. Suppose for contradiction that there
isbe A\ {ao,...,as}. Since ag is a root of A, we have b € R"(ag) for some n < w. Choose b
so that n is least possible. Since b & {ao} = R%(ap), we have n > 0, so there is ¥ € R" !(ap)
with &' Rb. As n is minimal, ¥’ € {aqg, ..., as}.

Now M C (RM)<2(0) by inspection of figure 1. Because f(0) = f(m) = ap and f preserves
R, we have f(M) = {ao, ...,a3} € R=?*(ag). So ag RS2V, and hence ag R=3b. But A |= ¢(ao),
so A = V,<3b = a;, a contradiction. O

We now observe that ¢ is invariant under well-defined generated submodels.

LEMMA 2.2 Let (J,j) be a pointed Kripke model and let J' be its submodel generated by j.
Assume that ¢’ € J', so that J' is a well-defined Kripke model. Then J = o(5) iff J' = ©(j).

Proof. All quantifiers in ¢ are effectively relativised to the subset R<3(5) of J'. O
The following fails if we delete the nominal ¢ from M, N, .

PROPOSITION 2.3 ¢(z) is invariant on all models under quasi-injective bisimulations.



Proof. Let (J,7) and (K, k) be pointed Kripke models and Z : J — K a quasi-injective
bisimulation with jZk. Suppose that J = ¢(j). We show that K = (k).

Let J', K’ be the generated submodels of J, K generated by j, k, respectively, and Z’ =
Z N (J' x K'). Since J = (), it follows that ¢/ € J', so J' is a well-defined Kripke model,
and j is a root of it. Then by lemma 1.1, K’ is also a well-defined Kripke model (ie. ¢ € K’)
and Z': J' — K' is a quasi-injective bisimulation with jZ'k.

By lemma 2.2, J" E ¢(j), so by lemma 2.1, (J',j) = (M, m). By inspection of figure 1,
J' comprises the root j and a cluster containing ¢/’, and J’ E Vzy(xzR*y V yR*x). So by
lemma 1.3, Z’ : J' — K’ is a bijection (this may fail without ¢). Hence, it is an isomorphism,
and (J',7) = (K',k). Since J' = ¢(j), we obtain K’ | (k). By lemma 2.2 again, K |
(k). O

PROPOSITION 2.4 ¢(x) is not equivalent even over finite models to any H(])-sentence.
Proof. 1It’s an exercise to show that the pointed Kripke models (M, m) and (N, n) in figure 1
agree on all H(])-sentences. By lemma 2.1, M = ¢(m) and N = ¢(n), the latter because

(N, n) is rooted and not isomorphic to (M, m). So ¢ cannot be equivalent to a H(])-sentence
even over models with < 4 points. O

Combining these propositions gives:

THEOREM 2.5 The bisimulation theorem in [3] fails, both classically (over all models) and
over finite models, with a single nominal and no propositional atoms.

[1] recovers a positive result classically, using a broader notion of bisimulation under which
(M, m) and (N,n) are bisimilar and ¢ is not invariant.

3 Bisimulation theorem fails in the finite

We give an example of a first-order formula (z) that is invariant under quasi-injective bisim-
ulations on finite models (in fact we show more), but is not equivalent over finite models to
any H(])-sentence. No propositional atoms or nominals are needed.

We take PROP = NOM = () and omit assignments in Kripke models — they are just frames
A= (W,R). A predecessor of a point x € W is a point y € W with yRz — possibly y = x.

Let 0(z) be a first-order formula saying:

1. R*(x) C R=Y(x)
2. every y € R(z) satisfies yRx V |R(y)| > 2
3. every y € R(w) has at most one predecessor in R(z) (not R<!(z), mind).

This is easy to write up more formally — @ is the conjunction of:
1. Vyz(xRyRz — z = x V xRz)
2. Vy(zRy — yRx V 3zt(yRz NyRt A z # t))

3. Vyzt(xRy NxRzRy N zRtRy — z = t).



LEMMA 3.1 Let (A,a) be a finite pointed Kripke model, rooted at a, and with A = 6(a).
Then A is a cluster.

Proof. As a is a root, A = R*(a). By clause 1 and induction on path lengths, A = R<!(a).
So it suffices to take arbitrary b € R(a) and show that a € R*(b).

For contradiction, suppose that a ¢ R*(b). Then R*(b) C A\ {a} C R(a).

Let D = (R*(b), R | R*(b)) be the submodel of A generated by b. It is a finite directed
graph. By clause 3 of § and because R*(b) C R(a), each node of D has in-degree < 1. By
clause 2 and because a ¢ R*(b) C R(a), it follows that each node of D has out-degree > 2.

But since D is finite, the sum of the in-degrees of nodes in D must equal the sum of their
out-degrees — both are equal to |R [ R*(b)|. This is a contradiction. So indeed, a € R*(b). O

PROPOSITION 3.2 Let (M, m) and (N,n) be finite pointed Kripke models that agree on
H(])-sentences. Then they agree on 0. Hence, 0 is invariant under quasi-injective bisimula-
tions on finite models — and indeed under any relation that preserves H(l)-sentences in the
finite.

Proof. For the first part, suppose M |= 6(m). We show that N |= 6(n).

Let M', N’ be the generated submodels of M, N generated by m,n, respectively. Since
all quantifiers in 6 are relativised to R<%(z), it is invariant under generated submodels, so
M’ |= 0(m). By lemma 3.1, M’ is a cluster.

Now (M,m) and (NN,n) are finite and agree on (] )-sentences. Since such sentences
are invariant under generated submodels, (M’,m) and (N’,n) also agree on H(])-sentences.
Since M’ is a finite cluster, we can write an H(J)-sentence expressing its isomorphism type
(exercise), and as n is a root of N'| it follows that (M’,m) = (N’,n). So certainly, N’ |= 6(n).

Again as 6 is invariant under generated submodels, N |= 6(n) as required.

The second part follows since quasi-injective bisimulations preserve H (| )-sentences. O

Below, for an ordinal n = {m : m < n}, we write "2 for the set of all functions from n into
2=1{0,1}; <"2 =,,.,, ™2; and ="2 = <"*12. For t € "2 and i < 2, we write t i € "T!2 for
the map extending ¢t by t "i(n) = i.

PROPOSITION 3.3 6(x) is not equivalent over finite models to any H(|)-sentence.

Proof. Suppose for contradiction that 6 is equivalent in finite models to (the standard trans-
lation of) an H(J)-sentence 1, of O-depth n, say.
Let M = (W, R), where W = {a} U <"2 for some point a ¢ <"2, and with

R=({a} x S"2) U {(t,¢t70) 1t € <"2, i < 2} U ("2 x {a}).

Then M = 6(a). It is important here that a ¢ R(a) — a has many predecessors in R(a) (the
elements of "2 at least), so if a € R(a) then clause 3 would fail.
Let N = (W U {e},S), where e ¢ W is a new point (a ‘copy’ of () € 92) and

S =RU{(a,e)} U ({e} x'2).

Then N = —f(a) because the points in '2 now have two predecessors () and e) in S(a), so
clause 3 fails.

But it can be shown (exercise; remark 3.5 may help) that (M,a) and (N,a) agree on all
H(])-sentences of depth < n, including . Since they are finite, they agree on 6 too. As
M = 60(a) and N |= —6(a), this is a contradiction. O



The two propositions combine to give:

THEOREM 3.4 The bisimulation theorem in [3] fails in the finite (with no nominals or
propositional atoms).

REMARK 3.5 The sentence [z ydlzO0" (2 AO(—yA<z)) of O-depth n+4 holds in (N, a)
but not (M, a), but we really need to go right round the circuit to distinguish them, and this
takes O-depth > n. If we allow @ as well, we can use |2 ydlz@Q, O(—y A Oz), of O-depth
4. So the example fails for |, @.

EXAMPLE 3.6 By proposition 3.3 and the bisimulation theorem in [3], # cannot be invari-
ant under quasi-injective bisimulations on arbitrary models. To see an explicit example, pick
a point a ¢ w U <“2 and let

M = ({a}u=v2, ({a} x <2)U{(t,t70) : t € <92, i < 2}).
N = ({a}Uw, {a} xw)U{(n,n+1):n <w}).

Unlike in proposition 3.3, neither model is a single cluster, and indeed they are acyclic, so
no two distinct points in them lie in the same cluster. Then M [ 60(a), and N | —6(a)
because clause 2 fails in N; yet Z = {(a,a)} U, ., ("2 x {n}) : (M,a) — (N,a) is a quasi-
injective bisimulation. One could get another example by adjoining e to M as in the proof of
proposition 3.3, but we cannot use a ‘linear’ (N, a) like the above in the proposition, because
it would differ from (M, a) on the H(])-sentence |z ydlzO(x A O(y A O—z)) of O-depth 5.

By proposition 3.2, weaker notions of bisimulation are unlikely to recover a positive result
here. One may ask whether it might be done by adding suitable operators to the hybrid
language able to express 6, while maintaining existence of first-order standard translations
and invariance of hybrid sentences under quasi-injective bisimulations in the finite.
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