
Counterexamples for hybrid bisimulation theorem:

(i) with nominals, (ii) in the finite

Ian Hodkinson

July 14, 2024

The ‘bisimulation theorem’ in [3] says that when there are no nominals, every first-order
θ(x) in the correspondence language that is invariant under quasi-injective bisimulations over
all models is equivalent to a hybrid H(↓)-sentence over all models. Here are examples showing
that this fails with nominals, and fails over finite models even without nominals. I hope to
put them in a paper soon.

Notation summary. We let Prop,Nom be the sets of propositional atoms and nominals,
respectively. A Kripke model is a triple A = (W,R, V ), where W ̸= ∅ is the domain of A,
R ⊆W 2, and V : Prop ·∪Nom → ℘(W ), such that V (c) is a singleton {cA} for each c ∈ Nom.
We identify (notationally) A with W . A pointed Kripke model is a pair (A, a) where A is a
Kripke model and a ∈ A. When needed, we write RA instead of R.

For U ⊆W we write R ↾ U = R∩U2. For a binary relation S on W and a ∈W , we write
S(a) for {b ∈ A : aSb}.

We let R0 = {(w,w) : w ∈ W}, Rn+1 = Rn | R = {(w, u) ∈ W 2 : ∃v(wRnvRu)} for
n < ω, R≤n =

⋃
k≤nR

k, and R∗ =
⋃

n<ω R
n, the reflexive transitive closure of R. We say

that A is rooted (at a) if R∗(a) = W for some a ∈ W ; such an a is called a root of A.
A cluster is an equivalence class of the equivalence relation R∗ ∩ (R−1)∗ on W , where R−1 is
the converse of R.

The submodel of A generated by a ∈ A is the submodel (R∗(a), R ↾ R∗(a)) of A with
domain R∗(a). This is a well-defined Kripke model only when cA ∈ R∗(a) for each c ∈ Nom
— this needs to be checked each time.

For Kripke models A,B, a bisimulation Z : A → B is a relation Z ⊆ A × B such that
for each (a, b) ∈ Z: A, a |= p iff B, b |= p for each p ∈ Prop ∪ Nom; if aRAa′ then there is
b′ ∈ B with bRBb′ and a′Zb′ (‘Forth’); and a similar condition swapping A,B (‘Back’). Z is
quasi-injective if aZb, aZb′, and b(RB)∗b′ imply b = b′, and similarly swapping A,B.

1 Two general lemmas

LEMMA 1.1 Let (J, j) and (K, k) be pointed Kripke models and Z : J → K a quasi-injective
bisimulation with jZk. Let J ′,K ′ be their submodels generated by j, k, respectively, and
assume that J ′ is a well-defined Kripke model. Then so is K ′, and Z ′ = Z∩(J ′×K ′) : J ′ → K ′

is also a quasi-injective bisimulation with jZ ′k.
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Proof. Let c ∈ Nom be arbitrary. As J ′ is well defined, cJ ∈ J ′ = (RJ)∗(j). By (possibly
iterated) Forth for Z, there is y ∈ (RK)∗(k) = K ′ with cJZy. As J, cJ |= c and Z preserves
c, we have K, y |= c, so y = cK . Hence, cK ∈ K ′ for each nominal c, and K ′ is well defined.

Since j ∈ J ′ and k ∈ K ′, we have jZ ′k. Suppose xZ ′y, x′ ∈ J ′, and xRJ ′
x′. So xZy and

xRJx′. As Z is a bisimulation, there is y′ ∈ K with yRKy′ and x′Zy′. Since xZ ′y, we have
y ∈ K ′, so y′ ∈ R(y) ⊆ K ′. So x′Z ′y′, proving ‘Forth’ for Z ′. ‘Back’ is similarly proved.

Since Z ′ ⊆ Z, it is plain that Z ′ is quasi-injective. 2

DEFINITION 1.2 We say that a relation Z ⊆ X × Y is functional at x ∈ X if there exists
a unique y ∈ Y with xZy, and functional at y ∈ Y if there exists a unique x ∈ X with xZy.

LEMMA 1.3 Let M,N be rooted Kripke models with roots m,n, respectively, and let Z :
M → N be a quasi-injective bisimulation with mZn. Then:

1. Z is functional at m.

2. Z is functional at cM for each nominal c.

3. Let C be a cluster in M , and suppose that Z is functional at some point c ∈ C. Then
Z is functional at every point in C.

4. If M |= ∀xy(xR∗y ∨ yR∗x) then Z is functional at every point in N .

Proof. In the proof, we write R for the accessibility relation in both M,N .

1. By assumption, mZn. Suppose y ∈ N and mZy. Since n is a root of N , we have
y ∈ R∗(n), so y = n as Z is a quasi-injective bisimulation.

2. We are given that mZn. Since m is a root of M , we have cM ∈ R∗(m), so by (possibly
iterated) Forth there is y ∈ N with cMZy. Since Z preserves nominals, y = cN .

3. Fix the unique d ∈ N with cZd. Let x ∈ C be arbitrary. Then x ∈ R∗(c), so by (always
possibly iterated) Forth there is y ∈ R∗(d) with xZy.

To show uniqueness, let y′ ∈ N with xZy′ be given. Since c ∈ R∗(x), by Forth there
is d′ ∈ R∗(y′) with cZd′. But Z is functional at c, so d′ = d. Now y ∈ R∗(d) and
d = d′ ∈ R∗(y′), so y ∈ R∗(y′) — and xZy, xZy′. As Z is quasi-injective, y′ = y.

4. Take y ∈ N . As n is a root of N and mZn, by Back we have xZy for some x ∈ M . If
x′ ∈M and x′Zy, then by assumption, x′ ∈ R∗(x) or x ∈ R∗(x′). Either way, as Z is a
quasi-injective bisimulation, x = x′.

2

2 Bisimulation theorem fails with nominals

This was left open in [3].
All Kripke models in this section are for a hybrid signature Prop ·∪ Nom with a single

nominal, c, and no propositional atoms. Figure 1 shows two such pointed models, (M,m)
and (N,n).
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Figure 1: pointed Kripke models (M,m) and (N,n)

Formally, M and N have the same domain, {0, . . . , 3}; RM = {1, 2, 3}2 ∪ {(0, 2)}, and
RN = RM ∪ {(0, 3)}. Finally, cM = cN = 1 and m = n = 0. The ovals in the figure are
R-cliques, and clusters.

Let φ(x) be a first-order formula in the correspondence language, saying that the submodel
generated by x is isomorphic to M by an isomorphism taking x to m. This is first-order
definable because M is finite and (so) has finite depth.

Formally, let ∆(x0, . . . , x3) comprise {xi ̸= xj : i < j ≤ 3}, {xiRxj : iRMj}, {¬(xiRxj) :
i, j ≤ 3, ¬(iRMj)}, and {c = x1}. This is essentially the (basic) diagram of M (see [2, p.16]),
with xi assigned to i for each i ≤ 3. Then define

φ(x0) = ∃x1x2x3
(∧

∆ ∧ ∀y(x0 R≤3 y →
∨
i≤3

y = xi)
)
.

LEMMA 2.1 Let A be a Kripke model and suppose that a0 ∈ A is a root of A. Then
A |= φ(a0) iff (A, a0) ∼= (M,m), where (M,m) is as on the left of figure 1.

Proof. Clearly, M |= φ(m), and ⇐ follows as φ is preserved under isomorphism.
For ⇒, suppose that A |= φ(a0). Let a1, a2, a3 ∈ A witness the ∃x1x2x3 in φ, where x0 is

assigned to a0. Define a map f : M → A by f(i) = ai for each i ≤ 3. Then f(m) = a0, and
f is an embedding by definition of ∆.

We show that f is surjective, hence an isomorphism. Suppose for contradiction that there
is b ∈ A \ {a0, . . . , a3}. Since a0 is a root of A, we have b ∈ Rn(a0) for some n < ω. Choose b
so that n is least possible. Since b /∈ {a0} = R0(a0), we have n > 0, so there is b′ ∈ Rn−1(a0)
with b′Rb. As n is minimal, b′ ∈ {a0, . . . , a3}.

NowM ⊆ (RM )≤2(0) by inspection of figure 1. Because f(0) = f(m) = a0 and f preserves
R, we have f(M) = {a0, . . . , a3} ⊆ R≤2(a0). So a0R

≤2 b′, and hence a0R
≤3 b. But A |= φ(a0),

so A |=
∨

i≤3 b = ai, a contradiction. 2

We now observe that φ is invariant under well-defined generated submodels.

LEMMA 2.2 Let (J, j) be a pointed Kripke model and let J ′ be its submodel generated by j.
Assume that cJ ∈ J ′, so that J ′ is a well-defined Kripke model. Then J |= φ(j) iff J ′ |= φ(j).

Proof. All quantifiers in φ are effectively relativised to the subset R≤3(j) of J ′. 2

The following fails if we delete the nominal c from M,N , φ.

PROPOSITION 2.3 φ(x) is invariant on all models under quasi-injective bisimulations.
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Proof. Let (J, j) and (K, k) be pointed Kripke models and Z : J → K a quasi-injective
bisimulation with jZk. Suppose that J |= φ(j). We show that K |= φ(k).

Let J ′,K ′ be the generated submodels of J,K generated by j, k, respectively, and Z ′ =
Z ∩ (J ′ ×K ′). Since J |= φ(j), it follows that cJ ∈ J ′, so J ′ is a well-defined Kripke model,
and j is a root of it. Then by lemma 1.1, K ′ is also a well-defined Kripke model (ie. cK ∈ K ′)
and Z ′ : J ′ → K ′ is a quasi-injective bisimulation with jZ ′k.

By lemma 2.2, J ′ |= φ(j), so by lemma 2.1, (J ′, j) ∼= (M,m). By inspection of figure 1,
J ′ comprises the root j and a cluster containing cJ

′
, and J ′ |= ∀xy(xR∗y ∨ yR∗x). So by

lemma 1.3, Z ′ : J ′ → K ′ is a bijection (this may fail without c). Hence, it is an isomorphism,
and (J ′, j) ∼= (K ′, k). Since J ′ |= φ(j), we obtain K ′ |= φ(k). By lemma 2.2 again, K |=
φ(k). 2

PROPOSITION 2.4 φ(x) is not equivalent even over finite models to any H(↓)-sentence.

Proof. It’s an exercise to show that the pointed Kripke models (M,m) and (N,n) in figure 1
agree on all H(↓)-sentences. By lemma 2.1, M |= φ(m) and N ̸|= φ(n), the latter because
(N,n) is rooted and not isomorphic to (M,m). So φ cannot be equivalent to a H(↓)-sentence
even over models with ≤ 4 points. 2

Combining these propositions gives:

THEOREM 2.5 The bisimulation theorem in [3] fails, both classically (over all models) and
over finite models, with a single nominal and no propositional atoms.

[1] recovers a positive result classically, using a broader notion of bisimulation under which
(M,m) and (N,n) are bisimilar and φ is not invariant.

3 Bisimulation theorem fails in the finite

We give an example of a first-order formula θ(x) that is invariant under quasi-injective bisim-
ulations on finite models (in fact we show more), but is not equivalent over finite models to
any H(↓)-sentence. No propositional atoms or nominals are needed.

We take Prop = Nom = ∅ and omit assignments in Kripke models — they are just frames
A = (W,R). A predecessor of a point x ∈W is a point y ∈W with yRx — possibly y = x.

Let θ(x) be a first-order formula saying:

1. R2(x) ⊆ R≤1(x)

2. every y ∈ R(x) satisfies yRx ∨ |R(y)| ≥ 2

3. every y ∈ R(x) has at most one predecessor in R(x) (not R≤1(x), mind).

This is easy to write up more formally — θ is the conjunction of:

1. ∀yz(xRyRz → z = x ∨ xRz)

2. ∀y(xRy → yRx ∨ ∃zt(yRz ∧ yRt ∧ z ̸= t))

3. ∀yzt(xRy ∧ xRzRy ∧ xRtRy → z = t).
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LEMMA 3.1 Let (A, a) be a finite pointed Kripke model, rooted at a, and with A |= θ(a).
Then A is a cluster.

Proof. As a is a root, A = R∗(a). By clause 1 and induction on path lengths, A = R≤1(a).
So it suffices to take arbitrary b ∈ R(a) and show that a ∈ R∗(b).

For contradiction, suppose that a /∈ R∗(b). Then R∗(b) ⊆ A \ {a} ⊆ R(a).
Let D = (R∗(b), R ↾ R∗(b)) be the submodel of A generated by b. It is a finite directed

graph. By clause 3 of θ and because R∗(b) ⊆ R(a), each node of D has in-degree ≤ 1. By
clause 2 and because a /∈ R∗(b) ⊆ R(a), it follows that each node of D has out-degree ≥ 2.

But since D is finite, the sum of the in-degrees of nodes in D must equal the sum of their
out-degrees — both are equal to |R ↾ R∗(b)|. This is a contradiction. So indeed, a ∈ R∗(b). 2

PROPOSITION 3.2 Let (M,m) and (N,n) be finite pointed Kripke models that agree on
H(↓)-sentences. Then they agree on θ. Hence, θ is invariant under quasi-injective bisimula-
tions on finite models — and indeed under any relation that preserves H(↓)-sentences in the
finite.

Proof. For the first part, suppose M |= θ(m). We show that N |= θ(n).
Let M ′, N ′ be the generated submodels of M,N generated by m,n, respectively. Since

all quantifiers in θ are relativised to R≤2(x), it is invariant under generated submodels, so
M ′ |= θ(m). By lemma 3.1, M ′ is a cluster.

Now (M,m) and (N,n) are finite and agree on H(↓)-sentences. Since such sentences
are invariant under generated submodels, (M ′,m) and (N ′, n) also agree on H(↓)-sentences.
Since M ′ is a finite cluster, we can write an H(↓)-sentence expressing its isomorphism type
(exercise), and as n is a root of N ′, it follows that (M ′,m) ∼= (N ′, n). So certainly, N ′ |= θ(n).

Again as θ is invariant under generated submodels, N |= θ(n) as required.
The second part follows since quasi-injective bisimulations preserve H(↓)-sentences. 2

Below, for an ordinal n = {m : m < n}, we write n2 for the set of all functions from n into
2 = {0, 1}; <n2 =

⋃
m<n

m2; and ≤n2 = <n+12. For t ∈ n2 and i < 2, we write t⌢i ∈ n+12 for
the map extending t by t⌢i(n) = i.

PROPOSITION 3.3 θ(x) is not equivalent over finite models to any H(↓)-sentence.

Proof. Suppose for contradiction that θ is equivalent in finite models to (the standard trans-
lation of) an H(↓)-sentence ψ, of 3-depth n, say.

Let M = (W,R), where W = {a} ∪ ≤n2 for some point a /∈ ≤n2, and with

R = ({a} × ≤n2) ∪ {(t, t⌢i) : t ∈ <n2, i < 2} ∪ (n2× {a}).

Then M |= θ(a). It is important here that a /∈ R(a) — a has many predecessors in R(a) (the
elements of n2 at least), so if a ∈ R(a) then clause 3 would fail.

Let N = (W ∪ {e}, S), where e /∈W is a new point (a ‘copy’ of ∅ ∈ 02) and

S = R ∪ {(a, e)} ∪ ({e} × 12).

Then N |= ¬θ(a) because the points in 12 now have two predecessors (∅ and e) in S(a), so
clause 3 fails.

But it can be shown (exercise; remark 3.5 may help) that (M,a) and (N, a) agree on all
H(↓)-sentences of depth ≤ n, including ψ. Since they are finite, they agree on θ too. As
M |= θ(a) and N |= ¬θ(a), this is a contradiction. 2
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The two propositions combine to give:

THEOREM 3.4 The bisimulation theorem in [3] fails in the finite (with no nominals or
propositional atoms).

REMARK 3.5 The sentence ↓x3↓y3↓z3n(x∧3(¬y∧3z)) of 3-depth n+4 holds in (N, a)
but not (M,a), but we really need to go right round the circuit to distinguish them, and this
takes 3-depth > n. If we allow @ as well, we can use ↓x3↓y3↓z@x3(¬y ∧3z), of 3-depth
4. So the example fails for ↓,@.

EXAMPLE 3.6 By proposition 3.3 and the bisimulation theorem in [3], θ cannot be invari-
ant under quasi-injective bisimulations on arbitrary models. To see an explicit example, pick
a point a /∈ ω ∪ <ω2 and let

M =
(
{a} ∪ <ω2, ({a} × <ω2) ∪ {(t, t⌢i) : t ∈ <ω2, i < 2}

)
.

N =
(
{a} ∪ ω, ({a} × ω) ∪ {(n, n+ 1) : n < ω}

)
.

Unlike in proposition 3.3, neither model is a single cluster, and indeed they are acyclic, so
no two distinct points in them lie in the same cluster. Then M |= θ(a), and N |= ¬θ(a)
because clause 2 fails in N ; yet Z = {(a, a)} ∪

⋃
n<ω(

n2 × {n}) : (M,a) → (N, a) is a quasi-
injective bisimulation. One could get another example by adjoining e to M as in the proof of
proposition 3.3, but we cannot use a ‘linear’ (N, a) like the above in the proposition, because
it would differ from (M,a) on the H(↓)-sentence ↓x3↓y3↓z3(x∧3(y ∧3¬z)) of 3-depth 5.

By proposition 3.2, weaker notions of bisimulation are unlikely to recover a positive result
here. One may ask whether it might be done by adding suitable operators to the hybrid
language able to express θ, while maintaining existence of first-order standard translations
and invariance of hybrid sentences under quasi-injective bisimulations in the finite.
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