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Introduction

A classical problem in algebraic logic is to characterise classes of representable algebras. Taking the

example of the representable Tarskian relation algebras, we will discuss how games can help with

such problems, and how they lead to a deeper study of representability.

Outline

1. Algebras of relations: a quick introduction to relation algebras, representable relation algebras

2. Case study: atomic and finite relation algebras

• atom structures; representations of finite relation algebras

• two examples: McKenzie’s algebra; the so-called ‘anti-Monk algebra’

3. Games to characterise representability: the games, axioms from games, examples

4. Infinite relation algebras

5. Infinite atom structures; relation algebras from graphs

6. Games in algebraic logic: pros and cons

1 Algebras of relations

Algebraic formalisation of unary relations began with Boole in the 19th century. It was very success-

ful. The boolean algebra axioms are sound and complete: every boolean algebra is isomorphic to a

field of sets [30].

De Morgan proposed considering binary (and higher-arity) relations. Peirce and Schröder devel-

oped the theory and established many hundreds of laws of binary relations (see, e.g., [29]). [25] has

an interesting discussion of the history. But Pierce lamented:

The logic of relatives is highly multiform; it is characterized by innumerable immedi-

ate conclusions from the same set of premises. . . . The effect of these peculiarities is that

this algebra cannot be subjected to hard and fast rules like those of the Boolian calculus;

and all that can be done in this place is to give a general idea of the way of working with

it.
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In the 1940s, Tarski and his collaborators began to investigate binary relations with modern alge-

bra. Tarski laid down the notion of a field of binary relations, by which he meant a subalgebra of a

product of algebras of the form

Re(X) = (℘(X × X),∪, \, ∅, X × X, IdX , −1, | ),

for some set X , where

IdX = {(x, x) : x ∈ X},
R−1 = {(y, x) : (x, y) ∈ R},
R|S = {(x, y) : ∃z((x, z) ∈ R ∧ (z, y) ∈ S)}.

He wanted to characterise the algebras isomorphic to fields of binary relations. Such algebras are

called representable relation algebras, the class of them is denoted RRA, and the isomorphism is

called a representation.

It’s easily seen why Tarski wanted to admit subalgebras of Re(X). They are simply obtained by

omitting some of the relations in Re(X), but they still contain ∅, X × X , and IdX , and are closed

under the operations, so they can certainly be considered as algebras of binary relations. But why

products? The answer is probably that under this definition, RRA is a variety — an equationally

axiomatised class. This was proved by Tarski in [31]. It follows from Birkhoff’s theorem [1] that

RRA is closed under subalgebras, products, and homomorphic images.

An algebra is simple if it has no non-trivial proper homomorphic images. We remark that all

simple representable relation algebras are isomorphic to subalgebras of Re(X) for some X: there is

no need to consider products. For simplicity of exposition, we will generally restrict our attention here

to simple algebras; but most of what we say is either true for arbitrary ones, or can easily be generalised

to them. We also generally consider only non-degenerate relation algebras, satisfying 0 6= 1. (When

0 = 1, the algebra has only one element; it is isomorphic to Re(∅) and so is representable. This case

is not interesting.)

Relation algebras In 1940s, Tarski proposed axioms to capture RRA. These axioms defined the

class RA of ‘relation algebras’.

Definition 1 A relation algebra is an algebra of the form A = (A,+,−, 0, 1, 1
,
,˘, ; ) such that

• (A,+,−, 0, 1) is a boolean algebra

• (A, ; , 1
,
) is a monoid

• ‘Peircean law’ (actually discovered by De Morgan):

(a ; b) · c 6= 0 ⇐⇒ (ă ; c) · b 6= 0 ⇐⇒ a · (c ; b̆) 6= 0 for all a, b, c ∈ A.

Considering triangles helps to make the point of the third axiom clear:
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The above axioms are equivalent to Tarski’s original ones, which were equations. The relation

algebra axioms actually capture all equations valid in RRA that can be proved with 4 variables [24,

32].
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Did Tarski’s axioms capture RRA? Well, soundness (RRA ⊆ RA) is easily seen. But complete-

ness failed. In a rightly celebrated 1950 paper, Lyndon [21] gave an example of A ∈ RA \ RRA. In

1964, Monk [27], building on work of Lyndon [23] and Jónsson [17], showed that RRA is not finitely

axiomatisable, so proving the key ‘negative’ result in the field. Many more negative results about

RRA are now known. One of the stronger ones is:

Theorem 2 (see [10, theorem 18.13]) There is no algorithm that will tell whether an arbitrary finite

relation algebra is representable.

The following problem was stated for ‘cylindric algebras’ in [7], but the version for relation alge-

bras is just as pertinent: find a simple intrinsic characterisation of (the algebras in) RRA. In the next

sections, we will look into this question using games.

2 Case study: atomic and finite relation algebras

First, we try to cast relation algebras and representations in a more manageable form. This is quite

useful for atomic relation algebras, and for representations of finite relation algebras. We will consider

the general case later.

Atomic relation algebras An element a of a relation algebra A is said to be an atom if a is a

minimal non-zero element with respect to the standard boolean algebra ordering ‘≤’, where x ≤
y ⇐⇒ x + y = y. A is said to be atomic if every non-zero element of it is ≥ an atom of it. All

finite relation algebras are atomic, of course. We will say more about infinite atomic relation algebras

in sections 4 and 5.

Atomic relation algebras can be quite easily specified. One can prove from the RA axioms that ˘
and ; are additive. That is, (a + b)̆ = ă + b̆, (a + b) ; c = a ; c + b ; c, and a ;(b + c) = a ; b + a ; c are

valid laws in relation algebras. We can even prove from the RA axioms that ˘ and ; are additive over

infinite sums. It follows that in an atomic relation algebra A, the operations˘and ; are determined by

their values on atoms, and we can specify A by stating:

• the set AtA of atoms of A, and which elements of A are the sum of which atoms (this pins

down the boolean structure of A),

• which atoms are ≤ 1
,
,

• ă, for each atom a (it turns out that ă is also an atom),

• for each a, b, c ∈ AtA, whether a ; b ≥ c or not. In this case, we say that (a, b, c) is a ‘consistent

triple’.

Remark: It follows from the Peircean law that (a, b, c) is consistent if and only if its Peircean trans-

forms (a, b, c), (ă, c, b), (c, b̆, a), (b, c̆, ă), (c̆, a, b̆), (b̆, ă, c̆) are all consistent.

Ultrafilters Given a relation algebra A, we’ll write A for its domain as well. An ultrafilter of A is

a subset α ⊆ A such that

1. a, b ∈ α ⇒ a · b ∈ α,

2. a ≥ b ∈ α ⇒ a ∈ α,

3. α contains just one of a, −a, for every a ∈ A.
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Examples of ultrafilters are sets α of the form {b ∈ A : b ≥ a}, for any a ∈ AtA. Such ‘atom-

generated’ ultrafilters are called principal.

For simplicity of notation, we assume that A is simple. Suppose we are given a representation

h : A → Re(X) for some set X . For x, y ∈ X , let

h−1(x, y) = {a ∈ A : (x, y) ∈ h(a)}.

It is easy to check that

Lemma 3 h−1(x, y) is always an ultrafilter of A.

Representations of finite simple relation algebras The following is well known and easily proved:

Lemma 4 Any ultrafilter of a finite relation algebra is principal.

Hence, a representation h : A → Re(X) of a finite (simple) relation algebra A can be viewed in a

simple way as a complete labelled directed graph M = (X, λ), where X is a set and λ : X × X →
AtA is a ‘labelling function’. We just define λ(x, y) to be the (unique) atom in h−1(x, y). It can be

checked that for all x, y, z ∈ X ,

• λ(x, y) ≤ 1
,
⇐⇒ x = y.

• λ(x, y) = λ(y, x)`.

• λ(x, y) ≤ λ(x, z) ;λ(z, y). That is, ‘all triangles are consistent’.

• For all a, b ∈ AtA, if λ(x, y) ≤ a ; b then there is w ∈ X with λ(x, w) = a and λ(w, y) = b.

‘All consistent triples are witnessed wherever possible.’

Conversely, given a map λ : X×X → AtA satisfying these conditions, we can obtain a conventional

representation h : A → Re(X) by defining h(a) = {(x, y) ∈ X × X : a ≥ λ(x, y)}. The ‘(X, λ)’
view of representations of finite relation algebras is very handy, as we will see.

Two finite relation algebras

1. McKenzie’s algebra K.

4 atoms: 1
,
, <, >, ] (so 16 elements altogether).

1̆
,
= 1

,
, <̆ = >, >̆ = <, ]̆ = ].

All triples are consistent except Peircean transforms of:

(1
,
, a, a′) for a 6= a′, (<, <, >), (<, <, ]), and (], ], ]).

2. The ‘anti-Monk algebra’ M. We use this name not out of lack of respect, but because M is in

some way the opposite of what are known as ‘Monk algebras’. We believe M was discovered

by Maddux.

4 atoms: 1
,
, r, b, g.

ă = a for all atoms a (‘symmetric algebra’).

All triples are consistent except Peircean transforms of: (1
,
, a, a′) for a 6= a′, and (r, b, g).

These are both relation algebras. Can you tell if they are in RRA or not?
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3 Games and representability (finite relation algebras)

In [21], Lyndon characterised the finite representable relation algebras by a ‘step by step’ construction:

1. Try to build ‘step by step’ a representation of a given finite relation algebra.

2. Write first-order axioms expressing that you can succeed.

Compare the Henkin construction of a model of a consistent first-order theory T as in [2, §2.1]. This

could be used to test consistency of T : just see if the construction succeeds.

A minor variant of Lyndon’s characterisation is quite easily done using networks and games.

Networks (a.k.a. forcing conditions) A network is like a piece of a representation (if any!). It

satisfies the universal conditions of ‘representation’.

Definition 5 Let A be an atomic relation algebra. An A-network is a complete labelled directed

graph N = (X, λ) where X 6= ∅ and λ : X × X → AtA is a labelling function satisfying, for all

x, y, z ∈ X ,

• λ(x, y) ≤ 1
,
⇐⇒ x = y,

• λ(x, y) = λ(y, x)`,

• λ(x, y) ≤ λ(x, z) ;λ(z, y) — all triangles in N are consistent.

We write N for any of N, X, λ. We rely on the context to tell which one is meant.

Games on A-networks Let A be a non-degenerate atomic relation algebra — so AtA 6= ∅ — and

let n ≤ ω. The game Gn(A) has two players — ∀ (male) and ∃ (female) — and n rounds. If n = 0,

there are no rounds and we declare ∃ the winner. Assume n > 0. In round 0, ∀ picks a0 ∈ AtA, and

∃ plays an A-network N0 with a0 occurring as a label in it. In round t (1 ≤ t < n), suppose that the

current network at the start of the round is Nt−1. Play goes as follows. First, ∀ picks x, y ∈ Nt−1 and

a, b ∈ AtA with a ; b ≥ Nt−1(x, y):

?
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If there is already a node z ∈ Nt−1 with Nt−1(x, z) = a and Nt−1(z, y) = b, then ∃ simply sets

Nt = Nt−1. If not, she has more work to do. She begins by adding a new node z (say) to Nt−1, and

labelling the edges (x, z) with a and (z, y) with b. This forms the basis of the new network Nt:
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∃ now has to complete the labelling of Nt, by defining Nt(u, v) for all remaining pairs (u, v)
of nodes. These are the ones other than (x, z), (z, y), and pairs of nodes of Nt−1, whose labels are

already fixed:
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It can be very hard for ∃ to complete the labelling. Nt must be a network, so all its triangles must

be consistent. Moreover, Nt is then passed on to the next round (if any), in which ∀ can make new

choices. So even if ∃ succeeds in creating a network Nt, she may have left herself open to a lethal

attack by ∀ in a later round. If in some round she cannot manage to complete the labelling and create

a network, she loses. Thus, ∃ wins the play of Gn(A) if she always responds legally to ∀’s moves.

Note that it is in ∃’s interests to play as small a network (with as few nodes) as possible. Although

she is permitted, by the rules of the game, to make arbitrarily large extensions to the networks played

in the game, she only needs to include the nodes shown in the diagrams above. Additional nodes are

superfluous and will only make it easier for ∀ to win, by giving him more rope to hang her with. We

will always assume that she plays this way, so that N0 has at most two nodes, and for each t, Nt+1

has at most one more node than Nt.

The connection of the game to representability is given by the following theorem. It is more or

less what Lyndon proved (but he didn’t use games). The theorem is not restricted to simple relation

algebras, but it only covers finite relation algebras; we will consider what to do about infinite relation

algebras later.

Theorem 6 Let A be a finite relation algebra.

1. A ∈ RRA if and only if ∃ has a winning strategy in Gω(A).

2. ∃ has a winning strategy in Gω(A) if and only if she has one in Gn(A) for all finite n.

3. One can construct first-order sentences σn for n < ω (independently of A) such that A |= σn

if and only if ∃ has a winning strategy in Gn(A).

Hence, for a finite relation algebra A, we have A ∈ RRA ⇐⇒ A |= {σn : n < ω}.
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Proof. We sketch the main ideas of the proof. For a rigorous treatment, see [10, chapter 11].

1. If A ∈ RRA then ∃ can use a representation as a guide in winning Gω(A). Conversely, if she

has a winning strategy in Gω(A), then from plays of the game in which she uses her strategy

and ∀ plays all possible moves at some stage, we can recover a representation of A.

2. ⇒ is clear. For the converse, we observe that because A is finite, ∃ has only finitely many

possible responses to ∀’s move in any round. König’s tree lemma can now be used to collimate

her responses in the finite games into a single winning strategy in Gω(A).

3. First, given an A-network N , and k < ω, we write an axiom τk(N) saying that ∃ can win

Gk(A) starting from N . We go by induction on k. All quantifiers are implicitly relativised to

atoms.

τ0(N) =
∧

x∈N

(

N(x, x) ≤ 1
,

∧
∧

y∈N\{x}

N(x, y) 6≤ 1
,
)

∧
∧

x,y∈N

N(x, y) = N(y, x)` ∧
∧

x,y,z∈N

N(x, y) ≤ N(x, z) ;N(z, y).

τk+1(N) =
∧

x,y∈N

∀a, b
(

N(x, y) ≤ a ; b → ∃N ′ ⊇ N

(τk(N
′) ∧

∨

z∈N ′

(N ′(x, z) = a ∧ N ′(z, y) = b))
)

.

We then let σn = ∀a0∃N(τn−1(N) ∧
∨

x,y∈N N(x, y) = a0) for n > 0, and σ0 = >.

¥

The axioms σn (plus the RA axioms) seem to give an intrinsic characterisation of the finite alge-

bras in RRA. But is it a simple one? Can you tell whether McKenzie’s algebra and the anti-Monk

algebra satisfy the σn for all n?

It’s easier to use the games Gn directly.

Example 7 (McKenzie’s algebra K) Recall that this relation algebra has 4 atoms: 1
,
, <, >, ]. We

have 1̆
,

= 1
,
, <̆ = >, >̆ = <, ]̆ = ]. All triples of atoms are consistent except Peircean

transforms of (1
,
, a, a′) for a 6= a′, (<, <, >), (<, <, ]), and (], ], ]).

Consider the following play of Gω(K). ∀ begins by picking the atom ]. ∃ responds with the

network N0 as shown below.

]w w0 1

The edge (0, 1) is labelled by ]. We know that in any K-network N and nodes x, y of N , we have

N(x, y) = 1
,

if and only if x = y, and N(y, x) = N(x, y)`. So ∃ has no choice over the labels of the

remaining edges of N0. We don’t need an arrow on the edge in the diagram to indicate its direction,

because ]̆ = ], so the converse edge (1, 0) will also be labelled ].
∀ continues by choosing the two nodes 0, 1 of N0, and the atoms >, <. ∃ has to add a new node,

say 2, and label (0, 2) with > and (2, 1) with <. She has no choice in labelling the remaining edges

of her response, N1:
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We prefer to show the edge (2, 0), which will be labelled >̆ = <.

∀ now picks the nodes 0, 1 again, and the atoms <, >. ∃ now has to add a node 3, with (0, 3)
labelled < and (3, 1) labelled >. She has no choice over the remaining edges: in particular, she must

label the edge (2, 3) by <, since all other choices lead to inconsistency of the triangle 2, 0, 3.
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Now ∀ deals the killer blow, picking 2, 3 and the atoms ], ]. ∃ has to add a new node, say 4.
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∃ cannot consistently label the edge (0, 4) by < (because of the triangle 2, 0, 4), nor by > (because

of the triangle 3, 0, 4). She has to use ]. Similarly, she must label (1, 4) with ]. But now, 0, 1, 4 is an

inconsistent triangle, and ∃ has lost. It is clear that she never had any real choice, so what we have

described is a winning strategy for ∀ in Gω(K) (and indeed in G4(K)). ∃ has no winning strategy, so

by theorem 6, K is not representable.

Example 8 (Anti-Monk algebra M) Recall that M has 4 atoms: 1
,
, r, b, g. M is symmetric: we

have x̆ = x for all atoms x. All triples of atoms are consistent except Peircean transforms of (1
,
, a, a′)

for a 6= a′, and (r, b, g).
Consider a typical M-network N as shown below. Observe that all triangles involve at most two

colours from r, b, g, as required for consistency. We don’t need any arrows at all on edges this time,

since ă = a for all atoms a, so the labels on an edge (u, v) and the converse edge (v, u) are always

the same.
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Suppose that N is in play in some round of the game Gω(M). A typical move of ∀ will be to pick

two nodes and some atoms or other. We assume by way of example that he picks the two right-hand

nodes x, y in the diagram, and the atoms p, q, say. If there is a suitable node in N , as in the game

rules, then ∃ has an easy job. We’ll assume there isn’t; it follows that p, q 6= 1
,
. ∃ must now add a new

node on the right as shown:
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Then, she must fill in the remaining labels, to give a network N ′, say:
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In this example, the edge (x, y) that ∀ picked in N is labelled r. His chosen atoms p, q, combined

with r, must not all be different, or his choice would be illegal because r 6≤ p ; q. So two of p, q, r must

be equal. There are two possibilities.

Case 1: p = q. So N looks like:

"""""
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In this case, ∃ simply uses p to label all remaining edges:
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It is clear that all triangles have at least two edges of the same colour, so are consistent.

Case 2: r = p 6= q or r = q 6= p. Let’s suppose that r = q 6= p (the other case is similar):
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Observe that x and z look the same as seen from y: the labels on the edges (y, x) and (y, z)
are the same. ∃ tries to make this true for the other nodes, as well as y. That is, she defines

N ′(t, z) = N(t, x) for all nodes t of N other than x, y:

XXXXXXXXXX

���������� """""

bbbbbu

�
�

�
�

��

N
′

N

'

&

$

%r

r

g

r

g

b
�

�
�

�
�� @

@
@

@
@
u u
u u

y

x

r

p

g

b

z

Now, there are three kinds of triangle in N ′:

1. Triangles consisting of nodes of N . These are certainly consistent, because N is a net-

work.

2. Triangles of the form t, x, z, involving x, z. These have two edges with identical colours,

because N ′(t, z) = N ′(t, x). So they are consistent.

3. Triangles of the form t, u, z, involving z but not x. The sides of such a triangle are

coloured the same as in the triangle t, u, x of N (because z looks the same as x from

t, and from u). But the triangle t, u, x is consistent, by case 1, and hence, so is triangle

t, u, z.

So all triangles of N ′ are consistent, and N ′ is a M-network.

This can be elaborated into a winning strategy for ∃ in Gω(M), showing that M is representable.

This elegant strategy is due to Maddux (personal communication).

Summary

1. McKenzie’s algebra K 6∈ RRA. So RRA ⊂ RA, as Lyndon (1950) showed. In fact, K is one

of the smallest non-representable relation algebras. There are other 4-atom non-representable

relation algebras, but all relation algebras with at most 3 atoms are representable.
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2. The anti-Monk algebra M ∈ RRA.

Exercise: show that if (X, λ) is any representation of M, then X is infinite. This is perhaps

surprising, given that M is symmetric.

4 Infinite relation algebras

Games can still be used to characterise representability of infinite relation algebras. But there are

some issues that need dealing with first.

4.1 Complete representations

Recall that a relation algebra is atomic if every non-zero element of it lies above an atom. All finite

relation algebras are atomic, but not all infinite relation algebras are — indeed, some have no atoms

at all. Even the atomic ones need care. Lemma 3 holds for infinite algebras, but lemma 4 does not:

not all ultrafilters of an infinite relation algebra, even an atomic one, are principal. So we cannot

assume that in a representation of such an algebra, we can associate an atom with every edge in the

representation.

Let us start by picking out the representations where we can associate atoms to edges.

Definition 9 A representation h of a relation algebra A is said to be a complete representation if

h−1(x, y) is a principal ultrafilter of A — it contains an atom of A — for every x, y ∈ X .

Complete representations are special kinds of representations. It is not hard to show that in the above

notation,

Theorem 10 [10, theorem 2.21] h is a complete representation just in case h preserves all existing

infima and suprema in A: that is, if S ⊆ A, and S has a least upper bound a ∈ A (with respect to

≥), then

h(a) =
⋃

s∈S

h(s) ⊆ X × X,

and similarly for greatest lower bounds.

This property gave rise to the name ‘complete representation’.

Any representation of a finite relation algebra is complete. A model-theoretic saturation argument

will easily show that any infinite representable relation algebra has incomplete representations. So for

infinite relation algebras, the question of interest is whether they have any complete representation at

all.

Definition 11 A relation algebra is said to be completely representable if it has a complete represen-

tation. We write CRA for the class of completely representable relation algebras.

It is not hard to see that any completely representable relation algebra must be atomic. It’s easy to

find non-atomic representable relation algebras, and these cannot have any complete representation.

But in fact, there are even atomic relation algebras that have a representation but don’t have a complete

representation. They are representable, but not completely representable. The first such relation

algebra was given by Lyndon in [21], though it was not recognised as such at the time.

Games can help to analyse complete representations. We can generalise the game Gn(A) seen

earlier to a game Gκ(A) with κ rounds, where κ is any cardinal. Then we can prove
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Theorem 12 Let A be any atomic relation algebra A. If A is completely representable, then ∃ has

a winning strategy in Gκ(A) for any κ. If ∃ has a winning strategy in Gκ(A) for κ = |AtA| + ℵ0,

then A is completely representable.

There is also an approximate characterisation of complete representability, generalising theorem 6:

Theorem 13 ([9, 10]) For any atomic relation algebra A, the following are equivalent:

1. ∃ has a winning strategy in Gn(A) for all finite n,

2. A is elementarily equivalent to (i.e., satisfies the same first-order sentences as) some completely

representable relation algebra.

It is easily seen that the class CRA of completely representable relation algebras is pseudo-

elementary (see [2, exercise 4.1.17] for the definition). However, there are many negative results

about it. [9, 10] used game-inspired relation algebras to show that CRA is not elementary (it is not

definable by any set of first-order sentences). By theorem 2, it is not definable by a second-order

(or higher-order) sentence, or a sentence of fixed-point logic. The completely representable relation

algebras with countably many atoms can be characterised using the infinitary logic L∞ω, using theo-

rem 12 (this was observed by Väänänen at the meeting). But the countability assumption is necessary:

there are atomic relation algebras A,B, the former with uncountably many atoms, that agree on all

L∞ω-sentences, with B completely representable and A not.1 So CRA is not definable by a sentence

of L∞ω.

4.2 Games and representations for infinite relation algebras

So much for complete representations. What about arbitrary ones? Can we use games to test whether

an infinite relation algebra is representable?

Our game characterisation of the finite representable relation algebras in theorem 6 relied on every

edge in a representation being labelled by an atom — that is, on completeness of the representation.

For infinite relation algebras, which may not have complete representations, this is not going to work.

There are two ways out of this difficulty. We can modify the games to handle arbitrary (possibly

incomplete) representations. One of the changes is that player ∀ will choose arbitrary elements of the

algebra, not just atoms. Then, we can use universal algebra to turn the σn of theorem 6 into equations.

This gives an equational axiomatisation of RRA. The method is very close to one of Lyndon from

1956 [22]. See [8, 10] for details.

Alternatively, we can take advantage of canonical extensions.

Definition 14 The canonical extension Aσ of a relation algebra A is the relation algebra formed from

the set of all sets of ultrafilters of A. We will identify a set {α}, consisting of a single ultrafilter α,

with the ultrafilter α itself. So the atoms of Aσ are essentially the ultrafilters of A. Then:

• The atoms ≤ 1
,

(in the sense of Aσ) are precisely the ultrafilters containing 1
,

(in the sense of

A).

• The converse of an atom (ultrafilter) α is the ultrafilter consisting of the converses of all the

elements of α: in symbols, ᾰ = {ă : a ∈ α}.

• A triple (α, β, γ) of ultrafilters is consistent just when every triple (a, b, c) of elements of A
taken from them (i.e., a ∈ α, b ∈ β, c ∈ γ) satisfies the consistency condition (a ; b) · c 6= 0
(this generalises the consistency condition for atoms given in §2).

1In the notation of [10, theorem 17.25], take A = AKω1
,Kω

and B = AKω,Kω
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Apart from some changes in notation, this definition is due to Jónsson and Tarski [19, 20], and it

generalises Stone’s related construction for boolean algebras [30]. Any relation algebra A has a

canonical extension Aσ, and A embeds in Aσ via a 7→ {α : α an ultrafilter of A, a ∈ α}. For finite

A, we have A ∼= Aσ. Thus, the following generalises theorem 6:

Theorem 15 A relation algebra A is representable if and only if ∃ has a winning strategy in Gn(Aσ)
for all finite n.

Proof. ⇒: In an important result, Monk proved that if A is representable then Aσ is representable.

(Monk did not publish it; his result is reported in McKenzie’s Ph.D. dissertation [26].) In fact, it can

even be shown that if A is representable then Aσ is completely representable [10, theorem 3.36]. So

by theorem 12, ∃ has a winning strategy in Gn(Aσ) for all finite n.

⇐: Assume that ∃ has a winning strategy in Gn(Aσ) for all finite n. By theorem 13, Aσ is

elementarily equivalent to some (completely) representable relation algebra B. Up to isomorphism, A
is a subalgebra of Aσ. We saw in section 1 that RRA is a variety, and so is closed under elementary

equivalence and under taking isomorphic copies of subalgebras. So we obtain A ∈ RRA as required.

¥

This means that we can still use the games Gn to characterise representability. We just need to

play on the canonical extension, not the relation algebra itself. (For finite algebras, this makes no

difference.)

5 Infinite atom structures

Recall from section 2 that for an atomic relation algebra, if we know the value of the relation algebra

operators applied to atoms, then we can determine these operators on arbitrary elements. For an

atomic relation algebra A, we call

AtA = (AtA, {a ∈ AtA : a ≤ 1
,
}, {(a, ă) : a ∈ AtA}, {(a, b, c) : a, b, c ∈ AtA, a ; b ≥ c})

the atom structure of A. A tuple (S, I, f, C) is called an atom structure if it is the atom structure of

some atomic relation algebra. We used atom structures in section 2 as a kind of notational device to

allow us to present finite relation algebras more concisely. They certainly serve this function, but in

some ways it is with infinite atomic relation algebras that connections between the representability of

an algebra and the properties of its atom structure become most interesting.

Any atomic relation algebra uniquely determines its atom structure, but once we move away from

finite relation algebras, we see that there can be many relation algebras possessing the same atom

structure but with different (non-isomorphic) boolean structures. The boolean structure of A (i.e.,

which suprema of sets of atoms exist in A), together with the atom structure, determine A up to

isomorphism. Informally, we have

atomic relation algebra = atomic boolean algebra + atom structure.

Now all boolean algebras are representable, but the representability problem for relation algebras

is highly non-trivial. So we might surmise that the difficulties in representing an (atomic) relation

algebra reside in its atom structure. More precisely, we might guess that whether an atomic relation

algebra is representable or not is determined by its atom structure. For complete representations, in

which all edges are labelled by atoms, this is of course true (though the ‘completely representable
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atom structures’ are at least as hard to characterise as the completely representable relation algebras).

But for arbitrary representations, it is not so clear.

What are the possible atomic relation algebras with a given atom structure? At one end of the

spectrum we can define the complex algebra CmS of an atom structure S. Its domain is the full power

set of the domain of S, and the relation algebra operations are determined by the atom structure. If

the cardinality of the atom structure S is λ then CmS has cardinality 2λ. At the other end of the

spectrum, the term algebra TmS is the smallest relation algebra whose atom structure is S. It is the

subalgebra of CmS generated, using the relation algebra operations, by the atoms. The cardinality

of the term algebra is λ, for infinite atom structures. It is easily seen that if A is an atomic relation

algebra with AtA = S, then up to isomorphism, A is a subalgebra of CmS and TmS is a subalgebra

of A.

So we may distinguish two types of representability for atom structures. An atom structure is

weakly representable if it is the atom structure of some representable relation algebra. An atom

structure is strongly representable if every relation algebra with that atom structure is representable.

Since RRA is closed under subalgebras, we can easily see that:

Theorem 16

1. An atom structure is weakly representable if and only if its term algebra is representable.

2. An atom structure is strongly representable if and only if its complex algebra is representable.

For finite atom structures, the term algebra is the same as the complex algebra, so weak and strong

representability coincide.

Several questions immediately present themselves:

• Is representability of an atomic relation algebra determined by its atom structure? That is, could

an (infinite) atom structure be weakly representable but not strongly representable?

• Is the class of weakly representable atom structures elementary?

• What about the class of strongly representable atoms structures?

• Can we define either class with finitely many axioms?

The last question is easily dealt with: by theorem 2, there can be no finite axiomatisation of either

class. Also, since RRA is a variety, a result of [33] shows that the class of weakly representable atom

structures is also elementary.

The other questions are more tricky. To help us answer them, we look at a class of interesting

atom structures obtained from graphs.

Graphs and relation algebras By a graph, we mean an irreflexive symmetric ‘edge’ relation on a

finite or infinite set of ‘nodes’. A set I of nodes of a graph is said to be independent if no two nodes

in I are connected by a graph edge. For finite k, a k-colouring of a graph is a partition of its nodes

into at most k independent sets. The chromatic number of a graph is the least finite k for which it has

a k-colouring, and if there is no such k then the chromatic number is ∞.

Given a graph Γ, we can make an atom structure S(Γ) = (S, I, f, C) whose atoms are red, blue,

and green copies of each node of Γ, plus 1
,

as an extra atom. That is, the set of atoms is

S = {rx, gx, bx : x ∈ Γ} ∪ {1
,
}. (1)

14



   

(Here and below, if Γ is a graph, we also let Γ denote its set of nodes.) The set I of sub-identity

atoms is just {1
,
}. The converse function f leaves each atom fixed — S(Γ) is symmetric. To define

C, we stipulate that all triples of atoms are consistent (included in C) except Peircean transforms of

(1
,
, a, a′) for a 6= a′, and monochromatic triples of nodes forming an independent set in Γ — that is,

triples (rx, ry, rz) where {x, y, z} ⊆ Γ is independent — and similarly for green and blue.

It turns out, for any graph Γ, that Cm(S(Γ)) is a relation algebra (to prove associativity of com-

position we need to take advantage of the three colours) and so S(Γ) is a genuine relation algebra

atom structure. Surprisingly, perhaps, strong representability of S(Γ) is entirely determined by the

chromatic number of Γ, in the case where Γ is infinite:

Theorem 17 ([11, 10]) For infinite Γ, the relation algebra Cm(S(Γ)) is representable if and only if

Γ has chromatic number ∞.

Proof. First, some notation: if Z ⊆ Γ, we let rZ = {rz : z ∈ Z}, and similarly we define gZ , bZ .

Note that these are all in CmS(Γ), since the domain of the complex algebra is the full power set of

the set of atoms.

⇒: Suppose that h : CmS(Γ) → Re(X) is a representation. Supposing, for contradiction, that Γ
has finite chromatic number, its set of nodes can be partitioned into independent sets I0, . . . , In−1 for

some finite n.

Clearly, in CmS(Γ) we have

1
,
+ rI0 + gI0 + bI0 · · · + rIn−1

+ gIn−1
+ bIn−1

= 1.

Now h respects +: we have h(a + b) = h(a) ∪ h(b), for any a, b ∈ CmS(Γ). So for any distinct

x, y ∈ X , since (x, y) 6∈ h(1
,
), we know that (x, y) ∈ h(cIk

) for some k < n and some colour

c ∈ {r, g, b}. Clearly, X is infinite (since S(Γ) is). Ramsey’s theorem [28] will now show that there

are distinct xi ∈ X for i < ω, some k < n, and a colour c ∈ {r, g, b}, such that letting a = cIk
,

we have (xi, xj) ∈ h(a) for all i < j < ω. In particular, (x0, x1), (x1, x2), (x0, x2) ∈ h(a), so

that (x0, x2) ∈ (h(a) ;h(a)) · h(a) = h((a ; a) · a). But for any nodes p, q, s ∈ Ik we know that

{p, q, s} is independent (since Ik is), and so (cp, cq, cs) is not a consistent triple of atoms. It follows

that (a ; a) · a = 0, and h(0) = ∅, so this is impossible.

⇐: Assume Γ has infinite chromatic number. Call a set X of nodes of Γ small if the induced

subgraph of Γ on the set of nodes X has finite chromatic number. Call a set large if its complement

is small. Then the set of all nodes is large, any superset of a large set is large, and the intersection of

two large sets is still large (because the union of two small sets is small). Using Zorn’s lemma or the

(weaker) boolean prime ideal theorem, for each colour c ∈ {r, g, b} the set {cL : L ⊆ Γ, L large} of

c-coloured copies of large sets can be extended to an ultrafilter µc of CmS(Γ) — that is, an atom of

the canonical extension (CmS(Γ))σ (see definition 14). The underlying set of nodes of any element

of this ultrafilter is not small, and so in particular, not independent.

The three atoms µr, µg, µb are very useful for ∃ when playing the game Gω((CmS(Γ))σ). In fact,

they allow her to win it. First, a little calculation will establish the following facts:

1. Since in CmS(Γ) we have {1
,
}+rΓ+gΓ+bΓ = 1, any ultrafilter must contain one of these four

sets. So for any ultrafilters α, β of CmS(Γ) that do not contain {1
,
}, there are c, c′ ∈ {r, g, b}

such that cΓ ∈ α and c′
Γ
∈ β. Since we have three colours, we can pick a colour c′′ 6= c, c′

(this is why we introduced three colours). Then it can be checked that (α, β, µc′′) is a consistent

triple of atoms of (CmS(Γ))σ.

2. For any ultrafilter α of CmS(Γ) and any c ∈ {r, g, b}, the triple (µc, µc, α) is a consistent triple

of atoms of (CmS(Γ))σ.
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In the game Gω((CmS(Γ))σ), suppose that in some round, the current network is N , and that ∀ picks

nodes x, y ∈ N and atoms (ultrafilters) α, β. If ∃ has to extend the network, we will have {1
,
} /∈ α, β,

so she can choose c′′ as in (1) above. Then letting the new network be N ′ with new node z, she labels

N ′(z, t) = N ′(t, z) = µc′′ for each node t of N with t 6= x, y.
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By facts 1 and 2 above, N ′ is a network. So this gives a winning strategy for her in the game,

showing that (CmS(Γ))σ and hence its subalgebra CmS(Γ) are representable. By theorem 16, S(Γ)
is strongly representable. ¥

The theorem allows us to translate problems about atom structures into problems about graphs.

Graphs seem easier to work with, and far more is known about them.

If we replace CmS(Γ) by a subalgebra (e.g., TmS(Γ)), the left-to right implication in theorem 17

can fail. Even if the nodes of Γ can be partitioned into independent sets I0, . . . , In−1 for some finite

n, it might be that the element {cx : x ∈ Ik} does not belong to the algebra, for some k < n and

some colour c. Indeed, taking the graph Z with nodes Z and edges between consecutive integers only,

a not too difficult exercise shows that the term algebra TmS(Z) is indeed representable, though the

chromatic number of Z is just two. (The first part of the exercise is to calculate exactly which sets of

atoms are generated using the relation algebra operations.) Thus, S(Z) is weakly but (by theorem 17)

not strongly representable, and we conclude:

Theorem 18 There exist weakly but not strongly representable atom structures.

A more complicated sequence of graphs Γk (k < ω) is derived from graphs invented by Erdős [3].

Each Γk has infinite chromatic number, but an ultraproduct Γ of the Γk has chromatic number just

two. We can use this wonderful construction in graph theory to answer the last remaining question

from those listed above. It follows from theorem 17 that every S(Γk) is strongly representable, but an

ultraproduct S(Γ) of them is not strongly representable. (S(−) commutes with taking ultraproducts.)

By Łoś’s theorem (see [2, theorem 4.1.9]), any first-order sentence true in all the S(Γk) must also be

true in S(Γ). We conclude that:

Theorem 19 The class of strongly representable atom structures is not elementary: it cannot be

defined by any set of first-order axioms.

Probabilistic constructions of graphs have been useful on several other occasions. For example, in

theorem 15 we mentioned Monk’s result that if A is a representable relation algebra then so also is its

canonical extension Aσ. We say that RRA is a canonical variety. But does it have an axiomatisation

by equations ε that are individually canonical, in the sense that for any relation algebra A, if A |= ε
then Aσ |= ε? The answer is ‘no’: [16] uses a probabilistic graph construction to show that:

Theorem 20 Any axiomatisation of RRA must have infinitely many non-canonical equations.
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Similar considerations led to a proof that not every canonical variety is generated by an elementary

class of frames [5, 6], solving a problem of Fine in modal logic [4].

More details of these and other related results can be found in [11, 16] or in [10, chapter 14].

6 Games in algebraic logic: pros and cons

Games have made a substantial contribution to our understanding of relation algebras. The idea has

many precursors, notably in the seminal paper of Lyndon [21]. Let us end with a rundown of the pros

and cons of using games in relation algebras and algebraic logic generally.

6.1 Pros

1. Games provide a simple practical test for representability. (They are also very useful for theo-

retical purposes.)

2. Games can be used to produce axioms as well (with care, they sometimes even yield finite

axiomatisations).

3. Sometimes, a winning strategy can be extracted and used for other things, such as decidability,

complexity, finite model property.

4. Games on relation algebras generalise to games for other kinds of algebras of relations, such as

complex algebras (see, e.g., [15]).

5. Most importantly in our view, games can suggest some fairly sophisticated constructions of

relation algebras. These can be used to prove:

(a) RRA is not finitely axiomatisable (first proved by Monk in [27], not using games).

(b) RRA is not axiomatisable by equations using finitely many variables altogether (stated by

Tarski in a video made in 1974 and published by Jónsson in [18]).

(c) RRA is not closed under Monk completions [14, 10]: the example TmS(Z) above shows

this, since its completion is isomorphic to CmS(Z). Hence, RRA is not Sahlqvist-

axiomatisable [34].

(d) In first-order logic, more 3-variable sentences are provable with n + 1 variables than with

n variables, for all n ≥ 3 ([12], motivated by games and relation algebras [13]).

(e) For a finite relation algebra A, it is undecidable whether A ∈ RRA [10].

(f) RRA is canonical (Monk), but any first-order axiomatisation of it has infinitely many

non-canonical axioms [16].

6.2 Cons

We use games as a construction method, essentially forcing, to build representations of relation alge-

bras. In general, the representations so obtained are infinite. These games are not good at building

finite representations.

For example, suppose that A is a finite relation algebra with a ‘flexible atom’, f , say. This means

that (a, b, f) is consistent for all atoms a, b 6= 1
,
. The game Gω(A) shows that A is representable: ∃

can win by using f to label network edges wherever needed, and it will always be consistent to do so.

Problem 21 (Maddux) Must such an A have a finite representation?
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There is a general issue here: find ways of constructing finite representations. Can we combine games

with, e.g., probabilistic constructions?

Some algebraic logicians avoid games and prefer the traditional ‘step by step’ approach, enumer-

ating the requirements of a construction and dealing with them one by one. Certainly, games are not

needed in simple cases, but when the going gets tougher we believe that they are invaluable, and they

bring their own insights. The feeling that games are in some way undignified is addressed by Hodges

[10, page vii], who comments:

‘The notion of a game has to do with people acting together, setting themselves and

each other tasks. As a result, game-theoretic versions of mathematical ideas often have

a direct intuitive appeal when compared with more formalistic treatments. In the period

1900–1950 logic was fighting to establish itself as a serious branch of mathematics, and

if you want your mathematics to be serious you don’t start by talking about people setting

up competitions or exercise sessions. Today logic has won its battle for recognition, and

[we] can afford to make intuitiveness one of [our] chief aims.’
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