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Abstract. We show that the bounded fragment of first-order logic and the hybrid language with
‘downarrow’ and ‘at’ operators are equally expressive even with polyadic modalities, but that their
‘positive’ fragments are equally expressive only for unary modalities.

§1. Introduction. The bounded fragment of first-order logic is obtained by relativiz-
ing quantifiers to a relation symbol. It has been studied by, for example, Feferman &
Kreisel (1966); Feferman (1968); Areces et al. (2001); ten Cate (2005). It has the interpola-
tion property, and a first-order formula is equivalent to a bounded formula iff it is invariant
under generated submodels. The bounded fragment is also important in modal logic. In van
Benthem (1985) it was shown that a first-order sentence in the signature of Kripke frames
is preserved under disjoint unions, generated subframes, and bounded morphic images iff
it is equivalent to a sentence of the form ∀xψ(x), where ψ(x) is a ‘positive’ bounded
formula. Goldblatt (1995) strengthened this by showing that for any class K of Kripke
frames (for unary or polyadic modalities) that is closed under ultraproducts, the closure of
K under the above three operations and ultraroots is defined by the set of all sentences of
the above form ∀xψ(x) that are valid in K . Since any elementary class is closed under
ultraproducts, the modal logic of an elementary class of frames is always the modal logic
of a class of frames defined by sentences very close to the bounded fragment.

Hybrid logic, an extension of modal logic, has been actively studied in recent years.
For background, see, for example, ten Cate (2005) and Areces et al. (2001). As we will
see below, in the latter paper it was shown that the bounded fragment and the hybrid
language H (↓, @) are equally expressive, by translating each fragment into the other.
The translation of hybrid formulas to bounded ones works for modalities of any arity, but
the converse translation was only given in the case where the modal operators are unary,
and Hodkinson (2006, remark 3.16) stated that it does not appear to generalize to polyadic
operators. Here we show that the translation does in fact generalize to polyadic operators,
but that ‘positive’ bounded formulas are strictly more expressive than positive H (↓, @)-
formulas in the polyadic case.

In summary, the bounded fragment and H (↓, @) are equally expressive for modali-
ties of any arity. The ‘positive’ fragments of these languages are equally expressive only
for unary modalities—this is a striking difference between the case of unary modalities,
studied in the literature, and the polyadic case considered here.
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§2. Definitions. Fix a modal signature with a set P of propositional atoms, a set X
of state variables, and (for simplicity) a single modal diamond 3 and box 2, of arity n for
some arbitrary n ≥ 1. (Nominals can be handled without difficulty, so for simplicity we
omit them. Nullary modalities (n = 0) can also be handled.)

The hybrid language H (↓, @) in this signature has syntax

α := p | x | � | ⊥ | ¬α | α1 ∧α2 | α1 ∨α2 | 3(α1, . . . , αn) | 2(α1, . . . , αn) | @xα | ↓xα

for p ∈ P and x ∈ X . We include ∨,2, ⊥ as primitive symbols as well as ∧, ¬,3, �
because we do not want to treat them as abbreviations in the ‘positive’ fragments to be
considered later. But → is an abbreviation: α → β abbreviates ¬α ∨ β.

The corresponding bounded fragment of first-order logic is defined as follows. Let R be
an (n + 1)-ary relation symbol. We will use the elements of X as first-order variables.
For each p ∈ P we associate a unary relation symbol P , and write P̂ for the set of
these symbols. Then the atomic bounded formulas are �, ⊥, P(x), R(x, y1, . . . , yn), and
x = y, for any P ∈ P̂ and x, y, y1, . . . , yn ∈ X . If ϕ,ψ are bounded formulas then so
are ϕ ∧ ψ , ϕ ∨ ψ , and ¬ϕ. Finally, if ψ is a bounded formula, x, y1, . . . , yn ∈ X , and x /∈
{y1, . . . , yn}, then ∃y1 . . . yn(R(x, y1, . . . , yn)∧ψ) and ∀y1 . . . yn(R(x, y1, . . . , yn) → ψ)
are also bounded formulas. The quantification here is ‘bounded’ by R. Again we will regard
ϕ → ψ as an abbreviation of ¬ϕ ∨ ψ , though here we could equally treat it as primitive.

Semantics for both languages is given by Kripke models M = (W, R, h), where W 
=
∅, R ⊆ W n+1, and h : P → ℘(W ). (We use ‘R’ for both the relation symbol and
the corresponding relation.) We also need an assignment: a function g : X → W . The
semantics M , g |� ϕ of the bounded fragment is as usual for first-order logic: in particular,
M , g |� P(x) iff g(x) ∈ h(p), for p ∈ P . The main clauses for H (↓, @) are

• M , g, w |� p iff w ∈ h(p), for p ∈ P,
• M , g, w |� x iff w = g(x), for x ∈ X ,
• M , g, w |� 3(α1, . . . , αn) iff there are w1, . . . , wn ∈ W with R(w,w1, . . . , wn)

and M , g, wi |� αi for each i = 1, . . . , n,
• M , g, w |� 2(α1, . . . , αn) iff for all w1, . . . , wn ∈ W with R(w,w1, . . . , wn), we

have M , g, wi |� αi for some i ∈ {1, . . . , n},
• M , g, w |� @xα iff M , g, g(x) |� α,
• M , g, w |� ↓xα iff M , g′, w |� α, where g′ agrees with g except perhaps on x

(we write ‘g′ =x g’ for this), and g′(x) = w.

As usual, 2(α1, . . . , αn) is equivalent to ¬3(¬α1, . . . , ¬αn).

§3. Known translations. Let us recall some existing translations from the literature.
Areces et al. (2001, §3.1) define a ‘standard first-order translation’ of H (↓, @)-formulas
with only unary diamonds (i.e., n = 1). The standard translation of each formula lies in
the bounded fragment. Unfortunately, as pointed out in ten Cate & Franceschet (2005,
§2), the translation is not quite correct. It tries to minimize the number of variables used,
and this causes problems with ↓.1 If no special effort is made to economize on variables,
the translation becomes correct, and it extends easily to the polyadic case, as follows.

1 ten Cate & Franceschet (2005) give a different ‘standard translation’ of H (↓, @) into first-order
logic, using the clauses (↓xϕ)i = ∃x(x = vi ∧ ϕi ) and (@xϕ)i = ∃vi (vi = x ∧ ϕi ). This
translation is not into the bounded fragment.
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Let v0, v1, . . . , be new variables not in X , and define for each H (↓, @)-formula α and
each i ≥ 0 a first-order formula αi as follows:

pi = P(vi )

xi = x = vi

�i = �
⊥i = ⊥

(¬α)i = ¬αi

(α1 ∗ α2)
i = αi

1 ∗ αi
2, for ∗ ∈ {∧, ∨}

3(α1, . . . , αn)i = ∃vi+1 . . . vi+n

⎛
⎝R(vi , vi+1, . . . , vi+n) ∧

∧
1≤ j≤n

αi+ j

⎞
⎠

2(α1, . . . , αn)i = ∀vi+1 . . . vi+n

⎛
⎝R(vi , vi+1, . . . , vi+n) →

∨
1≤ j≤n

αi+ j

⎞
⎠

(@xα)i = αi (x/vi )

(↓xα)i = αi (vi/x).

Here, ϕ(x/y) denotes the result of substituting x for every free occurrence of y in ϕ. This
does not cause clashes because no quantifiers Qx or Qvi appear in αi , for any Q ∈ {∀, ∃}
and x ∈ X . It can be checked that αi is always a bounded formula. We can call α0

the standard translation of α. It is easily seen that for any model M = (W, R, h) and
assignment g : X ∪ {v0, v1, . . .} → W , we have M , g, g(v0) |� α iff M , g |� α0 for
every H (↓, @)-formula α.

For n = 1, a converse translation (ϕ �→ H T (ϕ)) of the bounded fragment into H (↓, @)
was given in Areces et al. (2001, §3.1):2

H T (P(x)) = @x p

H T (R(x, y)) = @x3y

H T (x = y) = @x y

H T (�) = �
H T (⊥) = ⊥

H T (¬ϕ) = ¬H T (ϕ)

H T (ϕ ∗ ψ) = H T (ϕ) ∗ H T (ψ), for ∗ ∈ {∧, ∨}
H T (∃y(R(x, y) ∧ ϕ)) = @x3↓y H T (ϕ)

H T (∀y(R(x, y) → ϕ) = @x2↓y H T (ϕ).

2 In Areces et al. (2001), ⊥, ∨, ∀ were abbreviations. We have added explicit clauses for them,
obtained by working through their definitions.
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For any model M , assignment g, and world w of M , we have M , g |� ϕ iff M , g, w |�
H T (ϕ) for every bounded formula ϕ.

§4. New translations. We now generalize the translation H T to arbitrary n. We define
for each bounded formula ϕ an H (↓, @)-formula ϕ∗ as follows.

1. P(x)∗ = @x p

2. R(x, y1, . . . , yn)∗ = @x3(y1, . . . , yn)

3. (x = y)∗ = @x y

4. �∗ = �, ⊥∗ = ⊥, (¬ϕ)∗ = ¬ϕ∗, (ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗, and (ϕ ∨ ψ)∗ = ϕ∗ ∨ ψ∗

5. We now consider the case ϕ = ∃y1 . . . yn(R(x, y1, . . . , yn) ∧ ψ). The translation
is easier to define if x, y1, . . . , yn are distinct, and we can suppose so without loss
of generality. (E.g., ∃y(R(x, y, . . . , y) ∧ ψ) is logically equivalent to the bounded
formula ∃y y2 . . . yn(R(x, y, y2, . . . , yn)∧ψ ∧∧n

i=2 yi = y), where y2, . . . , yn are
new distinct variables.) Assuming inductively that ψ∗ has been defined, we let

ϕ∗ = @xα0, where

α0 = 3(↓y1
@xα1, �, . . . , �), where

α1 = 3(y1, ↓y2
@xα2, �, . . . , �), where

...

αn−1 = 3(y1, . . . , yn−1, ↓yn
@xαn), where

αn = ψ∗.

6. Let ϕ = ∀y1 . . . yn(R(x, y1, . . . , yn) → ψ). Again, although not essential, it
helps to suppose that x, y1, . . . , yn are distinct. This can be done by, for example,
replacing ∀y(R(x, y, . . . , y) → ψ) by ∀y y2 . . . yn(R(x, y, y2, . . . , yn) → ψ ∨
¬ ∧n

i=2 yi = y), where y2, . . . , yn are new variables. Assuming that ψ∗ has been
defined, we put

ϕ∗ = @xβ0, where

β0 = 2(↓y1
@xβ1, ⊥, . . . , ⊥), where

β1 = 2(¬y1, ↓y2
@xβ2, ⊥, . . . , ⊥), where

...

βn−1 = 2(¬y1, . . . , ¬yn−1, ↓yn
@xβn), where

βn = ψ∗.

We now show that this translation preserves meaning, so that indeed every bounded
formula is expressible in H (↓, @).

THEOREM 4.1. For every model M = (W, R, h), every assignment g : X → W , and
every w ∈ W , we have M , g |� ϕ iff M , g, w |� ϕ∗ for every bounded formula ϕ.

Proof. The proof is by induction on ϕ. First, if ϕ is P(x), we have M , g, w |� P(x)∗ iff
M , g, g(x) |� p, iff g(x) ∈ h(p), iff M , g |� ϕ. Second, M , g, w |� R(x, y1, . . . , yn)

∗
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iff M , g, g(x) |� 3(y1, . . . , yn), iff there are b1, . . . , bn ∈ W with R(g(x), b1, . . . , bn)
and M , g, bi |� yi for each i . Since M , g, bi |� yi iff bi = g(yi ), this is iff
R(g(x), g(y1), . . . , g(yn)) and so iff M , g |� R(x, y1, . . . , yn) as required. Third,
M , g, w |� (x = y)∗ iff M , g, g(x) |� y, iff g(x) = g(y), iff M , g |� x = y.

The boolean cases are straightforward. So let ϕ be ∃y1, . . . , yn(R(x, y1, . . . , yn) ∧ ψ),
where x, y1, . . . , yn are distinct, and inductively assume the result for ψ . The easiest proof
for ϕ is ‘by inspection’. In more detail, we claim that for each d = 0, . . . , n, we have
M , g, w |� ϕ∗ iff

†(d): there exist a j
i ∈ W for 1 ≤ i ≤ n and 1 ≤ j ≤ d, and assignments g = g0 =y1

g1 =y2 g2 · · · =yd gd , with

• ai
i = a j

i = g j (yi ) whenever 1 ≤ i ≤ j ≤ d,

• R(g(x), a j
1 , . . . , a j

n ) whenever 1 ≤ j ≤ d,
• M , g j , g(x) |� α j whenever 0 ≤ j ≤ d.

To prove the claim, first observe that †(0) is equivalent to M , g0, g(x) |� α0, and so
to M , g, w |� ϕ∗. Suppose 1 ≤ d ≤ n. We show that †(d − 1) and †(d) are equivalent.
Clearly, †(d) implies †(d −1). Assume †(d −1): so M , gd−1, g(x) |� αd−1. By definition
of αd−1, there exist ad

1 , . . . , ad
n ∈ W with R(g(x), ad

1 , . . . , ad
n ), M , gd−1, ad

i |� yi for 1 ≤
i < d, and M , gd−1, ad

d |� ↓yd
@xαd , whence there is gd =yd gd−1 with gd(yd) = ad

d

and M , gd , gd(x) |� αd . With †(d − 1), this implies that ai
i = gd−1(yi ) = ad

i = gd(yi )

for 1 ≤ i < d. Noting that gd(x) = g(x), we see that †(d) holds. The claim now follows
by induction on d.

†(n) implies that (†) there are a1
1, a2

2, . . . , an
n ∈ W with R(g(x), a1

1, . . . , an
n ), and an

assignment gn agreeing with g except perhaps on y1, . . . , yn , with gn(yi ) = ai
i for each

i , and M , gn, g(x) |� ψ∗. Also, it is easily seen that (†) implies †(n), since we may take
a j

i = ai
i for every i, j and define the g j accordingly. Inductively, (†) holds iff there are

a1
1, a2

2, . . . , an
n , gn as above, with M , gn |� ψ . But this is exactly what it means to say that

M , g |� ϕ.
Since (∀y1 . . . yn(R(x, y1, . . . , yn) → ψ))∗ is equivalent to (¬∃y1 . . . yn

(R(x, y1, . . . , yn) ∧ ¬ψ))∗, this case follows from the preceding one. �
Our translation generalizes the existing one given in §3 because for n = 1, ϕ∗ is the

same as H T (ϕ) if we omit the unnecessary but convenient @x in αn−1.
For a formula ϕ, let |ϕ| denote the length of (i.e., number of symbols in) ϕ. We count

variables and relation symbols as 1, so that, for example, |P(x)| = 4, |R(x, y1, . . . , yn)| =
2n + 4, |� → ⊥| = |¬� ∨ ⊥| = 4, and |↓x @x p| = 5. It can be checked that

|∃y1 . . . ∃yn(R(x, y1, . . . , yn) ∧ ψ)| = |ψ | + 4n + 7,

|(∃y1 . . . yn(R(x, y1, . . . , yn) ∧ ψ))∗| = |ψ∗| + 2n2 + 5n + 2.

|∀y1 . . . ∀yn(R(x, y1, . . . , yn) → ψ)| = |ψ | + 4n + 8,

|(∀y1 . . . ∀yn(R(x, y1, . . . , yn) → ψ))∗| = |ψ∗| + (5n2 + 9n + 4)/2.

An induction now shows that |ϕ∗| ≤ |ϕ|2 for every bounded formula ϕ, so the translation
(ϕ �→ ϕ∗) is quadratic. If n is fixed in advance, then since also |ϕ∗| ≤ (n + 1)|ϕ|, it is
linear.
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There is an alternative translation ϕ �→ ϕ∗∗. Just to give the idea, for n = 2 we put

(∃y1 y2(R(x, y1, y2) ∧ ψ)∗∗ = @x3
(↓y1

@x3
(�, ↓y2

(ψ∗∗ ∧ @x3(y1, y2))
)
, �)

.

§5. ‘Positive’ formulas. Finally, we consider ‘positive’ formulas. On the bounded
side, Goldblatt (1995) calls a first-order formula essentially atomic if it is built from atomic
formulas using ∧, ∨, and bounded quantification of the form ∃y1 . . . yn(R(x, y1, . . . , yn)∧
ϕ) and ∀y1 . . . yn(R(x, y1, . . . , yn) → ϕ), where x /∈ {y1, . . . , yn}. See the Introduction
for more on these formulas: in particular (cf. van Benthem, 1985), a bounded formula is
preserved by bounded morphisms iff it is equivalent to an essentially atomic formula. The
essentially atomic formulas are in a sense the ‘positive’ bounded formulas, but beware:
because → involves negation, ∀y1 . . . yn(R(x, y1, . . . , yn) → ϕ) is not a positive first-
order formula.

On the hybrid side, H (↓, @)pos really is the positive fragment of H (↓, @). It is defined
to consist of all H (↓, @)-formulas not involving ¬.

Referring back to §3, we see that for any n, the standard translation of any H (↓, @)pos-
formula is essentially atomic, and that for n = 1, the translation H T from the bounded
fragment to H (↓, @) turns essentially atomic formulas into H (↓, @)pos-formulas. So if
n = 1, the two kinds of formula are equally expressive.

However, Litak has observed that for n ≥ 2, the translation(s) given in §4 do not take
essentially atomic formulas into H (↓, @)pos. For example, if n = 2, we have

(∀yz(R(x, y, z) → ψ)∗ = @x2(↓y@x2(¬y, ↓z@xψ
∗), ⊥),

which is not positive. Litak asked if this is inevitable. We now show that it is, because when
n ≥ 2, there are essentially atomic formulas with no equivalent in H (↓, @)pos.

For notational simplicity, let n = 2. If (W, R) is a frame and a ∈ W then (W, {(b, c) :
R(a, b, c)}) is a directed graph. Essentially atomic formulas can easily express that this
graph has only reflexive or symmetric edges. We will show that these properties cannot be
expressed in H (↓, @)pos.

To do this, from now on we restrict attention to pointed frames A = (W, R, r) with
a distinguished element r ∈ W , such that all triples in R have r as their first element.
A pair (a0, a1) ∈ W 2 with (r, a0, a1) ∈ R is called an edge of A. Given another frame
B = (W ′, R′, r ′) like this, a nonempty set S of partial functions from W to W ′ is said to
be an A-to-B system if

(S1) for all f ∈ S and a ∈ W , we have a = r iff a ∈ dom f and f (a) = r ′,
(S2) for every edge (a0, a1) of A and every f ∈ S , there is an edge (b0, b1) of B such

that f ∪ {(ai , bi )} ∈ S for each i < 2,

(S3) similarly, exchanging A and B.

This definition can be worked up into an Ehrenfeucht–Fraı̈ssé game for H (↓, @)pos, but
we do not need such sophistication here. Note that in (S2) we do not require that f ∪
{(a0, b0), (a1, b1)} ∈ S . (S2) implies that S is a set of partial homomorphisms.

EXAMPLE 5.1. Let A = (W, R, r) and B = (W ′, R′, r ′) be frames such that W is
infinite, R = {(r, a, a) : a ∈ W \{r}}, W ′ 
= {r ′}, and (r ′, b, b) ∈ R′ for every b ∈ W ′\{r ′}.
Then the set S of all finite partial functions f : W → W ′ satisfying (S1) is an A-to-B
system.
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Proof. We check condition (S2). Let f ∈ S . Take any edge of A: it is of the form
(a, a). If a ∈ dom f , then ( f (a), f (a)) is an edge of B and f ∪ {(a, f (a))} = f ∈ S ,
as required. If a /∈ dom f then choose any b ∈ W ′ \ {r ′}. Then (b, b) is an edge of B, and
f ∪ {(a, b)} ∈ S as required.

For (S3), let f ∈ S and let (b0, b1) be an edge of B. As f is finite and W infinite, there
is some a ∈ W \ dom f . Then (a, a) is an edge of A and f ∪{(a, b0)}, f ∪{(a, b1)} ∈ S ,
as required. �

Recall that a hybrid formula is pure if it has no subformulas in P . To evaluate pure
formulas, we only need frames (W, R), not models (W, R, h).

LEMMA 5.2. Suppose that S is an A-to-B system. Then for any pure formula α of
H (↓, @)pos, the following holds: for any f ∈ S , any assignment g : X → dom f , and
any a ∈ dom f , if A, g, a |� α then B, f ◦ g, f (a) |� α.

Proof. By induction on α. We consider the main cases. Let f, g, a be given. If α is a
variable x ∈ X , then A, g, a |� x iff a = g(x), which implies f (a) = f ◦ g(x), so
that B, f ◦ g, f (a) |� x . If α = @xβ and A, g, a |� α, then A, g, g(x) |� β. Note that
g(x) ∈ dom f . So inductively, B, f ◦ g, f (g(x)) |� β, and so B, f ◦ g, f (a) |� α. If
α is ↓xβ and A, g, a |� α, then A, g′, a |� β, where g′ =x g and g′(x) = a ∈ dom f .
Inductively, B, f ◦g′, f (a) |� β. So by semantics, B, f ◦g, f (a) |� α since f ◦g′ =x f ◦g
and f ◦ g′(x) = f (a).

Suppose α is 2(β0, β1), and that A, g, a |� α. If f (a) 
= r ′ then trivially, B, f ◦
g, f (a) |� α. So assume that f (a) = r ′ and so a = r . To show that B, f ◦ g, f (a) |�
α, take any edge (b0, b1) of B. By (S3), there is an edge (a0, a1) of A such that fi =
f ∪ {(ai , bi )} ∈ S for each i < 2. Because A, g, r |� 2(β0, β1), there is i < 2 with
A, g, ai |� βi . Note that g : X → dom fi and ai ∈ dom fi . Inductively, B, fi ◦g, bi |� βi

as well. Hence, B, fi ◦g, f (a) |� α. But fi ◦g = f ◦g because rng g ⊆ dom f . Therefore,
B, f ◦ g, f (a) |� α, as required. The case of 3 is similar. �

Now let W = N and R = {(0, i, i) : i > 0}. Let W ′ = {0, 1, 2} and R′ =
{(0, 1, 1), (0, 2, 2), (0, 1, 2)}. Let A = (W, R, 0) and B = (W ′, R′, 0). Let S be the
set of all finite partial maps from W to W ′ satisfying (S1). By Example 5.1, S is an
A-to-B system.

Let ϕ be the essentially atomic formula ∀yz(R(x, y, z) → y = z). Suppose for con-
tradiction that some formula α of H (↓, @)pos is equivalent to ϕ, in the sense that for
any model M , any assignment g into M , and any a in M , we have M , g |� ϕ iff
M , g, a |� α. We can assume without loss of generality that α is pure, so we can work with
frames instead of models. Let g : X → W be given by g(v) = 0 for all v ∈ X . Clearly,
A, g |� ϕ, and so A, g, 0 |� α. Take any f ∈ S . Then g : X → dom f and 0 ∈ dom f ,
so by lemma 5.2, B, f ◦ g, 0 |� α. But plainly, B, f ◦ g 
|� ϕ, since (0, 1, 2) ∈ R′. This is
a contradiction.

The same example shows that symmetry, expressible by the essentially atomic formula
∀yz(R(x, y, z) → R(x, z, y)), is not expressible in H (↓, @)pos. We can adapt the exam-
ples to arbitrary n ≥ 2 by defining R(a, a1, . . . , an) to hold iff a = a3 = · · · = an = r
and (a1, a2) is an edge as above.

The following may be worth investigating.

PROBLEMS 5.3. On which frame classes (e.g., for n = 2) are positive hybrid formulas
as expressive as essentially atomic ones?
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What can we say about modal logics of classes of frames defined by positive hybrid
formulas, for n ≥ 2?

For each n ≥ 2, find a ‘simple’ fragment of H (↓, @) whose formulas are preserved
under bounded morphisms and can express all essentially atomic formulas.

§6. Acknowledgments. Many thanks to the editor Patrick Blackburn and the anony-
mous referee, to Tadeusz Litak for the suggestion to write this note and for valuable
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