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Abstract

In this survey article we discuss some aspects of finite variable logics. We
translate some well-known fixed-point logics into the infinitary logic Lω∞ω, dis-
cussing complexity issues. We give a game characterisation of Lω∞ω, and use it to
derive results on Scott sentences. In this connection we consider definable linear
orderings of types realised in finite structures. We then show that the Craig inter-
polation and Beth definability properties fail for Lω∞ω. Finally we examine some
connections of finite variable logic to temporal logic. Credits and references are
given throughout.

1 Some extensions of first-order logic

Quisani: Hello. Who are you? I am Yuri’s imaginary student, and I usually talk to him
at this time.

Author: I’m afraid he may be a bit late. I am a computer scientist from London, England.
I have some imaginary students myself, so maybe I can help. I was reading your earlier
conversation on 0–1 laws [Gu3].

Quisani: I remember it. We examined the 0–1 law for logics such as Lω∞ω, in which infinite
conjunctions and disjunctions are allowed, as well as the first-order operations, but only
finitely many variables can occur in any formula.

Author: Right: the top ‘ω’ represents this restriction on variables. The bottom ‘∞’ means
that subject to this restriction, the conjunction or disjunction of any set of formulas,
even an uncountable one, is a formula. The bottom ‘ω’ is fixed and is not so important
here, but for the record it means that only finite quantifier depth is permitted — unlike
some other logics I could mention. So formally, any atomic L-formula is an Lω∞ω-formula,
if ϕ is an Lω∞ω-formula and x a variable then ¬ϕ and ∃xϕ are Lω∞ω-formulas, and if Φ is
a set of Lω∞ω-formulas using only finitely many variables all told, then

∧
Φ and

∨
Φ are

Lω∞ω-formulas.

Quisani: I like the way the restriction to finitely many variables in Lω∞ω is balanced by the
possibility of infinite boolean operations; but for computing I guess the finite-variable
restriction is the more important. Have you worked on finite variable logics?
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Author: A little. Would you like to look into them now? We could discuss the way
various fixed point logics are subsumed by Lω∞ω and so inherit its 0–1 law. Then there’s
an interesting game characterisation of Lω∞ω. We could go on to look at the failure in
Lω∞ω of properties such as Craig interpolation and Beth definability, and then maybe go
over the use of finite variable logic in analysing the expressiveness of temporal logic.

Quisani: I think that might be interesting, yes.

Author: Very well. The study of finite variable logics goes back some years, but a lot of
work has been done recently because of their connection with computer science. In the
early 1980’s people were searching for logics stronger than first-order logic for use on
finite structures. First-order logic is weak in this regard.

Quisani: But I thought any finite structure could be defined up to isomorphism by a
single first-order sentence. Doesn’t that mean first-order logic is as powerful as could
be?

Author: What you say is true, but first-order logic is not good at defining classes of finite
structures. For instance, there is no first-order sentence defining the class of all finite
structures (in any fixed signature or vocabulary) of even cardinality.

Quisani: Surely this is immediate from the compactness theorem for first-order logic. If
arbitrarily large finite structures satisfy a first-order sentence, then some infinite ones
do.

Author: True, but as computer scientists we are mainly interested in finite structures. So
what I really meant was, there’s no first-order sentence whose finite models are precisely
those finite structures of even size.

Quisani: Ah yes: this is because of the 0–1 law for first-order logic! For any first-order
sentence, the proportion of structures of size n satisfying it tends to 0 or 1 as n → ∞.
So no first-order sentence can express that its models have even size, as the property
‘even size’ does not have a limit.

Author: Your argument is not strictly correct, because there’s only a 0–1 law for first-
order logic if the signature is relational — without function or constant symbols. For
example, if c is a constant and P a unary predicate, the proportion of finite structures
of any given size that satisfy P (c) is 1/2.

Quisani: Well, at least I showed that there’s no first-order sentence in a relational sig-
nature whose finite models are just the finite structures of even size. Hmm. Hang on,
there’s a much more direct way to see it. If there were a sentence σ with function sym-
bols, relation symbols, anything — say ∀x∃y(P (f(g(x, x)))→ f(x) = g(x, y)∨f(x) = x)
— whose finite models are all the structures of its signature that have even size, then
it can’t matter at all how the non-logical symbols P, f, g are interpreted in a structure.
σ must express ‘even size’ even if they give no help at all. P could be false everywhere,
so we can replace it in σ by ⊥. And f and g could just be constant functions, with any
constant value at all! So ρ = ∃z∀x∃y(⊥ → z = z ∨ z = x) says that its models have
even size, but in the empty signature! For any structure A in this signature, we have

A |= ρ ⇐⇒ 〈A, ∅, (x 7→ z), (〈x, y〉 7→ z)〉 |= σ for some z ∈ A, ⇐⇒ |A| is even.

So ρ defines the structures in the empty signature of even size, and we know this is
impossible! So functions can’t help in defining structures of even size.
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Author: Right, good. We may see other ways that the 0–1 law can be used, later on. But
to resume, papers including [AU], [T], [CH], [I2], [Gu1], [L], [Ko], [Va] and [TK] studied
logics extending first-order logic by operations such as least fixed point (LFP), monotone
fixed point (MFP), inflationary or iterative fixed point (IFP), and partial fixed point
(PFP).

Quisani: I’m afraid you will have to remind me what these are.

Author: All right. Think of a first-order formula ϕ(x1, . . . , xn, P ) of signature L ∪ {P},
where P is an n-ary relation symbol not in L. If M is an L-structure, ϕ defines an
operation Fϕ : Mn →Mn by

Fϕ(S) = {(a1, . . . , an) ∈Mn : M |= ϕ(a1, . . . , an, S)}.

Quisani: Don’t you mean dom(M)n here, rather than Mn?

Author: Strictly, yes, but I will use the same notation for a structure as for its domain or
universe. This keeps it simpler. Anyway, we can iterate the function Fϕ, starting from
S = ∅.

Quisani: Ah yes: in LFP we add a new n-ary relation symbol, interpreted as the least
fixed point of Fϕ, for each such ϕ.

Author: Only for ϕ in which P occurs only positively. In this case we know that the
least fixed point exists. For then, Fϕ is monotonic, by which I mean S ⊆ S ′ ⇒ Fϕ(S) ⊆
Fϕ(S ′), so the sequence Fϕ(∅), F 2

ϕ(∅), . . . is increasing. Thus there must be an α such
that Fα

ϕ (∅) = Fα+1
ϕ (∅), and this set is the least fixed point of Fϕ. In MFP we allow any

ϕ such that Fϕ is monotonic, though the set of such ϕ is undecidable so this logic is

rarely taken seriously. For IFP, we allow any ϕ, and consider Gϕ(S)
def
= S∪Fϕ(S). Then

Gϕ(∅), G2
ϕ(∅), . . . is an increasing sequence and will contain a fixed point of Gϕ, though

this may not be its least fixed point. In each case we add a new relation symbol and
interpret it as the fixed point.

Quisani: What about PFP?

Author: For PFP we just see if Fϕ(∅), F 2
ϕ(∅), . . . reaches a fixed point. If it does, we

interpret the new relation symbol as that fixed point; if not, we interpret it as the empty
relation.

Quisani: So we have lots of new relation symbols, with specified interpretations. What
happens then?

Author: Using this larger stock of relation symbols, we can form new formulas using the
usual first-order formation rules. We can then get more new relation symbols from these
by taking fixed points again, although here there are relevant normalisation results —
see [I2] and [GuS1] for example.

Quisani: OK, I remember now. We get LFP ⊆ MFP ⊆ IFP ⊆ PFP in expressive power.

Author: Right. Now it is easy to see that any sentence of LFP, MFP or IFP can be
evaluated on a finite structure in time polynomial in the size of the structure.

Quisani: Right! For example, given ϕ(x1, . . . , xn, P ), the sequence Fϕ(∅), F 2
ϕ(∅), . . . is an

increasing sequence of sets of n-tuples, so it must reach a fixed point in at most mn steps
on a structure of size m.
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Author: That’s it. But in around 1982 Immerman [I2] and Vardi [Va] independently
showed that, in the presence of linear order, LFP is actually equivalent in expressive
power on finite structures to the polynomial time queries, P. (This is when there’s a
special non-logical symbol ‘<’ that is interpreted as a linear order on the structure, just
as ‘=’ is always equality.) The proof works by coding the run of a P-time Turing machine
into the structure, using the linear order. We write a sentence of LFP saying that the
Turing machine accepts.

Quisani: So in expressive power, LFP = MFP = IFP = P on linearly-ordered structures.

Author: Yes, good.

Quisani: What if there’s no linear order around?

Author: Although Gurevich and Shelah [GuS1] showed that even then, LFP, MFP and
IFP are equivalent in power on finite structures, in general they become less powerful
than P. But in some situations — we will see this later — they do stay as strong as P.

Quisani: What about PFP?

Author: Because for arbitrary ϕ the sequence Fϕ(∅), F 2
ϕ(∅), . . . may not be increasing, it

may take more than P-time to see if it converges. But the calculation can still be done
in space polynomial in the size of the structure. And Abiteboul and Vianu [AV1] showed
that if there’s a linear order, PFP = PSPACE in expressive power. They proved that
PFP = first-order logic plus a WHILE operator, which [Va, remarks 2 and 4] (and see
also [CH, theorem 6.3]) had earlier proved to equal PSPACE in the presence of linear
order.

2 The logic Lω∞ω

Quisani: How is all this related to finite variable logic?

Author: Yes, I’m coming to that. These logics, and also some others such as transitive
closure and Datalog, are all translatable into Lω∞ω. This was first proved (for LFP on a
fixed structure) by Rubin [R], and it appeared in Barwise’s [B]; then Kolaitis and Vardi
observed that there’s a translation that works on all finite structures.

Quisani: Let me think. Ah, I see how to do it. By substituting ϕ for P in ϕ(x1, . . . ,
xn, P ) repeatedly, we can write a first-order L-formula ϕm(x1, . . . , xn, ∅) defining the set
Fm
ϕ (∅) for each m < ω. So on finite structures, the fixed point can be written in Lω∞ω as

the countable disjunction of these?

Author: Yes, at least for LFP and MFP. For IFP, we replace ϕ by ϕ ∨ P . For PFP,
Fϕ(∅), F 2

ϕ(∅), . . . may not have a fixed point, so there we use∨
m<ω

ϕm(x̄, ∅) ∧ ∀x̄(ϕm(x̄, ∅)↔ ϕm+1(x̄, ∅)).

Also, you have to check that the ϕm can be written with a bounded number of variables.

Quisani: Well, inductively, if ϕm can be written with k variables, x1, . . . , xk, then I think
we can write ϕm+1 with x1, . . . , xk. We want to substitute ϕm(x1, . . . , xn, ∅) for each
subformula P (t1, . . . , tn) in ϕ. Here, the ti are terms. Ah, I see a problem! We can’t
just substitute ϕm(t1, . . . , tn, ∅): if the ti use function symbols this may cause clashes of
variables.
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Author: You could start by replacing each such subformula P (t1, . . . , tn) of ϕ by ∃v1, . . . ,
vn(

∧
i≤nvi = ti ∧ P (v1, . . . , vn)), where the vi are chosen not to clash with the tj.

Quisani: Ah yes: so we can assume that all the atomic subformulas P of ϕ are of the form
P (xi1 , . . . , xin), where xi1 , . . . , xin are distinct. Now we can just permute the variables x1,
. . . , xk used in ϕm(x1, . . . , xn, ∅) so that xi1 , . . . , xin become free. Then we can substitute
it for P (xi1 , . . . , xin) in ϕ.

Author: That’s it.

Quisani: So all these logics are subsumed by Lω∞ω on finite structures. How does Lω∞ω
relate to P and PSPACE?

Author: There are non-recursive classes of finite structures that can be defined in Lω∞ω.
For example:

Definition 2.1 1. If ‘<’ is a binary relation symbol, let lin(<) be the first-order
sentence of L3

∞ω (the formulas of Lω∞ω that are written with just three variables)
saying that < is an irreflexive linear order.

2. For any n < ω let len≥n(<) be the following (first-order) sentence of L2
∞ω, the

two-variable fragment of Lω∞ω, with n quantifiers:

∃x∃y(x < y ∧ ∃x(y < x ∧ . . .)) · · ·)

So len≥n says that there is a <-chain of at least n elements.

3. Let lenn(<) = len≥n(<) ∧ ¬len≥n+1(<).

Then for any set S ⊆ ω, the L3
∞ω-sentence

lin(<) ∧
∨
n∈S

lenn(<)

defines those linear orders whose size is in S.

Quisani: So if S is non-recursive, the class defined by this is not even recursively decidable,
let alone in P or PSPACE.

Author: Exactly. So even L3
∞ω can express properties not in P. By using directed graphs

instead of linear orders, we can even get away with L2
∞ω here.

Quisani: What about the converse? Is PSPACE ‘contained’ in Lω∞ω?

Author: If there’s a linear order, yes, as PSPACE is then equivalent to PFP in expressive
power. But not in general: ‘even’ is in P, but not in Lω∞ω . . .

Quisani: . . . because there’s a 0–1 law for Lω∞ω.

Author: Right: Kolaitis and Vardi proved this [KV]. And it gives a 0–1 law for all the
other logics. This had been proved for each in turn before. For instance, [BGK] proved
the 0–1 law for IFP, and hence for LFP and MFP.

5



3 Games

Quisani: What else is known about Lω∞ω apart from 0–1 laws?

Author: There is a nice game-theoretic characterisation of Lω∞ω, in the style of Ehren-
feucht–Fräıssé games and the related theorem of Karp [Kar] for the full L∞ω. It comes
from [B], where it’s couched in terms of back-and-forth systems. [I1] and [P] give a ‘game’
version, which you can also read about in [KV] and [DLW]. Suppose we have structures
M,N in the same signature, with disjoint domains, and two players, nowadays usually
‘Spoiler’ and ‘Duplicator’, play a game on them. Spoiler is male, and Duplicator, female.
Besides being less sexist, this lets us use ‘he’ and ‘she’ in proofs, and in our heads, to
distinguish the players.

Quisani: So how do Spoiler and Duplicator play here?

Author: For Lk∞ω, the k-variable fragment of Lω∞ω, we use what’s called a k-pebble game.
In fact there are 2k pebbles, 2 of each ‘colour’, 1, 2, . . . , k. At the start there may already
be pebbles in play: some may be on the elements of an n-tuple in M, for some n ≤ k,
the other pebbles of the same colours being on an n-tuple in N . In each round, Spoiler
picks up a pebble and places it on an element of one of the structures —

Quisani: — so if all pebbles are already in play, Spoiler will be moving a pebble?

Author: Yes, and then Duplicator puts the other pebble of the same colour on an element
of the other structure. So at each stage of the game — at the start and after each round
— the pebbles in M will be on some tuple ā and those in N on a tuple b̄; player Spoiler
wins at that stage if ā and b̄ do not satisfy exactly the same atomic formulas.

Quisani: Let me get this clear. Say initially, before any moves, the pebbles coloured 3, 4
and 6 are in play. Suppose the two pebbles of colour 3 are on a3 ∈ M and b3 ∈ N , and
similarly for 4 and 6. Then Spoiler wins the game outright, before any moves are made,
if there is an atomic formula ϕ(x, y, z) such that the statement ‘M |= ϕ(a3, a4, a6) ⇐⇒
N |= ϕ(b3, b4, b6)’ is not true.

Author: Yes, exactly. Otherwise, the game goes on for another round. If the game goes
on infinitely long, Duplicator wins.

Quisani: Isn’t this what’s called a ‘closed game’?

Author: Yes, very good. The condition for Duplicator to win is that she never loses at
any finite stage. So by a theorem of Gale and Stewart [GaS], our game is determined:
in any situation, either Spoiler or Duplicator has a winning strategy.

Quisani: Now you will say that Duplicator has a winning strategy iff M and N agree on
all sentences of Lk∞ω.

Author: Yes, well spotted. We write M ≡k∞ω N in this case — when there are initially
no pebbles in play. In the general case we have:

Theorem 3.1 (essentially Barwise) In the k-pebble game beginning with pebbles on
ā, b̄, Duplicator has a winning strategy iff M |= ϕ(ā) ⇐⇒ N |= ϕ(b̄) for all formulas
ϕ ∈ Lk∞ω.

Quisani: I have some questions about this theorem. What is a strategy, formally?
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Author: It’s just a set of rules telling a player what move to make in any position. We
can allow non-deterministic strategies, so a player may be given more than one option.
A strategy can be formalised by functions, though I don’t think this helps much. Here,
we could represent a strategy for Spoiler in an obvious way by a single function ξ :
Mk×Nk → ℘({1, . . . , k}× (M ∪N)). A useful, though not fully general, way of writing
a strategy for Duplicator is as a ‘back-and-forth system’: a non-empty set E of partial
functions θ : M → N with |θ| ≤ k, E being closed under restrictions, and such that
for any θ ∈ E with |θ| < k and any elements a ∈ M , b ∈ N there are θ′, θ′′ ⊇ θ with
a ∈ dom(θ′) and b ∈ rng(θ′′). I’ll leave you to work out how this formalises the notion
of a strategy for Duplicator! As a hint, E is a winning strategy for Duplicator iff all
its maps preserve atomic and negated-atomic formulas. As I said, [B] and others use
back-and-forth systems instead of games.

Quisani: From this, it seems that the moves prescribed by a strategy depend only on the
current position. Are strategies allowed to remember previous moves?

Author: No, only what is on the ‘board’ at the time. But this is no disadvantage to either
player, as the notions of winning and losing don’t depend on the history either. In the
ordinary Ehrenfeucht–Fräıssé game for first-order logic [E], it is the same, but there we
never move pebbles, so the entire history is always visible anyway.

Quisani: It also seems that if M and N are finite, there’ll be only finitely many strategies.

Author: True.

Quisani: But the theorem is true for infinite structures too?

Author: Oh, yes. And the signature can be infinite, and can have function symbols, unlike
in the Ehrenfeucht–Fräıssé game for first-order logic.

Quisani: Must ā and b̄ be k-tuples?

Author: They can be n-tuples for any n ≤ k, including n = 0. But it simplifies the
notation in the proof a bit if we stick to k-tuples. Let’s prove Theorem 3.1, for it is a
critical result and the proof is revealing.

Quisani: I see you want me to try to prove it, as usual! Well, the ‘⇒’ direction seems
easy enough. We show it by induction on ϕ. Assume that Duplicator has a winning
strategy. Obviously, ‘M |= ϕ(ā) iff N |= ϕ(b̄)’ holds for atomic ϕ, as otherwise Spoiler
wins immediately, before any moves are made. The negation and infinitary conjunction
and disjunction cases are clear by the inductive hypothesis. If now M |= ∃xiϕ(a1, . . . ,
ak), then M |= ϕ(a1, . . . , ai−1, a

′, ai+1, . . . , ak) for some a′ ∈ M . If Spoiler moves a
pebble of colour i to a′, then Duplicator must have a response b′ ∈ N, using her winning
strategy. So she has a winning strategy in the game that starts with pebbles on a1, . . . ,
ai−1, a

′, ai+1, . . . , ak and b1, . . . , bi−1, b
′, bi+1, . . . , bk: namely, ‘continue with the strategy

already in progress’. Inductively, N |= ϕ(b1, . . . , bi−1, b
′, bi+1, . . . , bk), so N |= ∃xiϕ(b1,

. . . , bk), as required.

Author: Good; and the case where N |= ∃xiϕ(b1, . . . , bk) is similar. Now try the converse;
it is more interesting.

Quisani: That sounds worrying. Let’s see. Suppose Duplicator has no winning strategy.
If she has already lost at the start, so that the pebbles are initially on tuples ā and b̄
satisfying different atomic formulas, then already the right-hand condition fails, even for
atomic ϕ. Or maybe Spoiler can force a win after one move; then the starting position
is better for her, but not much.
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Author: So why don’t you try to rank the positions by how good they are for her?

Quisani: OK, so a position ā, b̄ has rank ≥ 0 iff ā and b̄ satisfy the same atomic formulas,
and it has rank ≥ α + 1 iff (i) it has rank ≥ α, and (ii), for every move Spoiler makes,
there is a move that Duplicator can make in response to create a new position ā′, b̄′ of
rank ≥ α.

Author: Good. What about the case where α is a limit ordinal?

Quisani: Can this happen? If the structures are finite, there are only finitely many
positions.

Author: In this theorem we are not assuming them to be finite. And even if they are, a
position could still have rank ≥ α for all finite α.

Quisani: Well, let’s just say that ā, b̄ has rank ≥ δ for a limit ordinal δ iff it has rank ≥ α
for all α < δ.

Author: Good; and a position has rank α if it has rank ≥ α but not ≥ α + 1, and rank
−1 if it doesn’t have rank ≥ 0. Now can you characterise the positions of rank ≥ α by
formulas?

Quisani: Well, the position ā, b̄ has rank at least 0 iff ā, b̄ agree on the set F0 of all atomic
formulas written with variables from x1, . . . , xk. Ah, I see: let’s define a set Fα so that
the same holds for rank at least α.

Author: Good move!

Quisani: Obviously we’ll put Fδ =
⋃
α<δ Fα for limit δ. For α+ 1, we want every possible

move of Spoiler to have a response from Duplicator leaving the resulting tuples agreeing
on Fα-formulas. That is, if Spoiler has a move in one structure that produces a tuple
satisfying exactly a particular set Φ of formulas in Fα, then Duplicator should have a
similar move in the other structure; and this must hold for each set Φ ⊆ Fα. So let’s
define

Fα+1 = {∃xi(
∧

Φ ∧ ¬
∨

(Fα \ Φ)) : Φ ⊆ Fα, i ≤ k}.
(Here, I wrote Fα \Φ for the set of all formulas in Fα but not in Φ.) Yes, this seems to
work. We have

rank(ā, b̄) ≥ α + 1 iff
(
M |= ϕ(ā) ⇐⇒ N |= ϕ(b̄) for all ϕ ∈ Fα+1

)
,

for all α, ā ∈M, b̄ ∈ N .

Author: Excellent, but you should also include Fα in Fα+1 — you forgot about part (i)
of your definition of having rank ≥ α + 1. So the correct definition is

Fα+1 = Fα ∪ {∃xi(
∧

Φ ∧ ¬
∨

(Fα \ Φ)) : Φ ⊆ Fα, i ≤ k}.

Can you finish the proof now?

Quisani: I think so. If ā, b̄ agree on all Lk∞ω-formulas, then they’ll agree on all formulas
of each Fα, as we used only k variables in the Fα. So the position ā, b̄ has rank ≥ α for
all ordinals α —

Author: — say it has rank ∞ —

Quisani: — right, and Duplicator has the strategy ‘keep the rank at∞’. She can do this
because if the current position has rank∞, then for anything that Spoiler does, and any
α, she has a response leaving a position of rank ≥ α — ah, but does she have a response
to give a single position of rank ∞?
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Author: Yes. She only has a set of responses in any position, not a proper class. So by
the axiom of replacement in set theory, the ranks of resulting positions form a set. If
she can respond with rank better than any α, then she must have a response of rank∞.

Quisani: Right: otherwise there’d be a strict upper bound α to the ranks of all resulting
positions, so Duplicator couldn’t have a response leaving a position of rank ≥ α. I think
Theorem 3.1 is proved now. I can also see that the game is determined, without having
to quote the Gale–Stewart theorem. If the starting position has rank∞, Duplicator has
the winning strategy ‘keep the rank at ∞’. If not, then Spoiler has the strategy ‘reduce
the rank’. There is no infinite decreasing sequence of ordinals, so after finitely many
rounds the rank will hit zero, and then Spoiler can win after one more move. So this
strategy is winning for Spoiler.

Author: This is practically a proof of the Gale–Stewart theorem, anyway; but well done!
You’re good at games.

Quisani: Well, I remember an earlier discussion with my friend on games [Gu2]. But isn’t
the axiom of replacement a bit heavy? Surely it cannot be needed in computer science?

Author: It is not needed if the structures are finite. Then all ranks of positions are finite
or ∞.

Quisani: Right: this is because there are only finitely many possible positions.

Author: Yes.

Quisani: It is interesting to compare all this with the first-order case. There, an Ehren-
feucht–Fräıssé game of length n characterises the formulas of quantifier depth at most n.
Yet here, we have a game of length ω to characterise the formulas with infinite boolean
operations, not infinite quantifier depth.

Author: It is striking, I agree. But the boolean operations become trivial in a game
context, as your proof shows. And in infinitary logics like Lk∞ω, the quantifier depth can
be unbounded even in a single formula — think of a conjunction of formulas of arbitrarily
large quantifier depth — and so the game must go on indefinitely long. [DLW] have more
information here.

Quisani: I see.

4 Scott heights and sentences

Author: Do you also see that your proof of the theorem gives more? We can actually
extract a single Lω∞ω-formula specifying the ways the game can go, starting with a given
tuple on one side.

Quisani: I don’t see this. But so far, we considered a pair of tuples in two different
structures that ‘agreed’ on a set Fα of formulas. Now it sounds like you want to list
explicitly which Fα-formulas are true for a single tuple, in one structure.

Author: Yes, I do. Let’s fix k as in the theorem. For a given α, if ā is a k-tuple in a
structure M , let the α-type of ā be:

tpα(ā)
def
= {ϕ ∈ Fα : M |= ϕ(ā)}.

So a position ā, b̄ is of rank ≥ α iff ā and b̄ have the same α-type. And in a fixed
structure M, the relation ∼α of having the same α-type is an equivalence relation on
Mk.
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Quisani: And as α increases, it gets finer: the ∼α-classes get smaller, or at least, no
bigger. This must stop at some point.

Author: Right, there must be an ordinal α (with |α| ≤ |M |k) such that in M , any two
k-tuples having the same α-type have the same (α+ 1)-type. The least such α is called
the Scott height of M .

Quisani: Does it stop there? Maybe two tuples in M could have the same α- and the
same (α + 1)-type, but different (α + 2)-types?

Author: It does stop. What does ∼α really mean?

Quisani: It came from the games, really. Let’s play the k-pebble game on two copies of
M, not different structures M,N this time. If ā, b̄ are tuples in M, then ā ∼α b̄ means
that the position ā, b̄ has rank ≥ α.

Author: So if ∼α is the same as ∼α+1 in M —

Quisani: — then any position of rank ≥ α is also of rank ≥ α + 1. Ah! But now, if a
position has rank ≥ α + 1 then by definition, for any move of Spoiler, Duplicator has a
response to leave a position of rank ≥ α, which must also have rank ≥ α + 1. So the
original position must have had rank ≥ α + 2. And so on: by induction on β we can
show that any position of rank ≥ α has rank ≥ β for all β ≥ α. So it has rank ∞, and
all the ∼β for β ≥ α are the same on M .

Author: You’ve got it.

Quisani: Can we say in Lk∞ω that α is the Scott height?

Author: Try it. It is not so hard.

Quisani: Well, we can define x̄ ∼α ȳ by
∧
ϕ∈Fα(ϕ(x̄)↔ ϕ(ȳ)). So the sentence ∀x̄ȳ(x̄ ∼α

ȳ → x̄ ∼α+1 ȳ) says that the Scott height is at most α.

Author: But you used 2k variables here: k for x̄ and k for ȳ. Can you say it in Lk∞ω?

Quisani: Let me see . . . well, α is at least the Scott height if ∼α = ∼α +1, which happens
when for every ϕ ∈ Fα+1, the set of tuples in M satisfying ϕ is a union of ∼α-classes.
But the ∼α-class of a tuple ā is definable in M by

∧
tpα(ā)∧¬∨(Fα \ tpα(ā)). Now take

the disjunction of these formulas over all ā ∈ Mk satisfying ϕ. This is equivalent to ϕ
in M .

Author: Right — so if α is the Scott height or greater, each ϕ ∈ Fα+1 must be equivalent
in M to

ϕ′ =
∨

Φ∈S

(∧
Φ ∧ ¬

∨
(Fα \ Φ)

)
,

where S = {tpα(ā) : ā ∈Mk,M |= ϕ(ā)}.
Quisani: And the Lk∞ω-sentence

ηM =
∧

ϕ(x̄)∈Fα+1

∀x̄(ϕ(x̄)↔ ϕ′(x̄))

says that the Scott height of M is at most α.

Author: Well, yes and no. It is true that if N |= ηM then the α-type of a k-tuple in N
determines its (α + 1)-type, yes?

Quisani: ‘Determines’ in what sense?
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Author: In the usual sense that any two k-tuples in N of the same α-type will also have
the same (α + 1)-type.

Quisani: Yes, this is true. But N has Scott height at most α iff this holds. I don’t see
the problem.

Author: We agree that if N |= ηM then α-types determine (α+ 1)-types in N, so that N
has Scott height at most α. But the converse fails, as ηM says much more than this.

Quisani: Ah, now I see what you’re getting at, I think. For each ϕ ∈ Fα+1, ηM specifies
a particular infinitary boolean combination ϕ′ of Fα-formulas that’s equivalent to ϕ. So
we can work out from ηM exactly which (α+ 1)-type any k-tuple in a model of ηM has,
once we know its α-type.

Author: Right. A structure N could have Scott height ≤ α but not be a model of ηM , if
a different formula ϕ′ is equivalent to ϕ in N .

Quisani: Can you give an example?

Author: The obvious one would be where we have quantifier elimination. If every formula
is equivalent in M to a quantifier-free one, then M has Scott height 0. If k = 2, take M
to be the complete graph on two vertices, and N to be its complement, the graph with
two vertices and no edges.

NM

v vv v

These both have quantifier elimination, and Scott height 0. But if E is the edge relation,
the formula ϕ(x1) = ∃x2E(x1, x2) is equivalent in M to truth and in N to falsity.

Quisani: Then ηM includes a conjunct equivalent to ∀x1(ϕ(x1) ↔ x1 = x1), and this is
false in N . So N |= ¬ηM .

Author: Good. I think we’ve cleared that one up. If we wanted an Lω∞ω-sentence (in a
fixed signature) really saying that the Scott height of an L-structure is at most α, we
could use the disjunction

∨
M ηM taken over all L-structures M of Scott height at most

α; this is essentially well-formed as Fα+1 is a set.

Quisani: Yes, I see. It’s then easy to say that the Scott height is exactly α.

Author: Right. But suppose that N does satisfy ηM . What does it mean if tuples ā ∈Mk,
b̄ ∈ Nk have the same α-type?

Quisani: Er — it means that Duplicator can win the game on M,N starting from ā, b̄?

Author: Yes: if N |= ηM then the (α + 1)-types are determined by the α-types in N in
the same way as they are in M . So if ā ∈ M, b̄ ∈ N have the same α-type, as they do,
they’ll have the same (α + 1)-type.

Quisani: That is, for any ā ∈M, b̄ ∈ N, if the position ā, b̄ has rank ≥ α then it has rank
≥ α + 1.

Author: Yes.

Quisani: So now it’s just like when we were only looking at M, a minute ago. If the
position ā, b̄ has rank ≥ α then it must have rank ≥ α + 1, and so ≥ α + 2, and so on.
So it has rank ∞.
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Author: Good.

Quisani: Now we have it. If N |= ηM and tuples ā ∈ Mk, b̄ ∈ Nk have the same α-type,
then the position ā, b̄ has rank ≥ α, so rank ∞, and Duplicator can win from it.

Author: And we can do this for n-tuples for any n ≤ k. So by Theorem 3.1, we have:

Theorem 4.1 Suppose that M,N are structures, M has Scott height at most α, N |=
ηM , and ā ∈ M, b̄ ∈ N are n-tuples of the same α-type, where n ≤ k. Then Duplicator
has a winning strategy in the k-pebble game starting with pebbles on ā, b̄, and so ā and
b̄ agree on all Lk∞ω-formulas.

Quisani: Yes, I believe it.

Author: In the case of n = 0, suppose Φ is the set of all sentences in Fα that are true in
M, that is, the α-type of the empty tuple, and let Φ′ be all the rest — the Fα-sentences
false in M . Then the single Lk∞ω-sentence σ = ηM ∧

∧
Φ ∧ ¬∨Φ′ characterises M up to

Lk∞ω-equivalence. We have N |= σ iff M ≡k∞ω N . Such a sentence σ is called a Scott
sentence of M .

Quisani: I have heard of Scott sentences before.

Author: Yes, you can read [Sco] to see. There are other, slightly different ways of writing
Scott sentences, without using our Fα, and you can read [DLW] (for example) for details.

Quisani: I suppose we don’t see Scott sentences in first-order logic because the necessary
infinitary boolean operations are not allowed.

Author: Yes, but note that if the signature is finite and without function symbols then
all formulas in the Fn for n < ω are first-order. To prove this, it is enough to show that
Fn is finite for each n. We can do this by a trivial induction on n. The case n = 0 needs
our hypothesis on the signature. So if M (and its signature) is finite, then the Scott
sentence σ is first-order.

Quisani: Wow! So if M,N are structures in a finite signature that agree on all first-order
sentences using k variables, and M is finite, then M and N agree on all Lk∞ω-sentences.

5 Defining the types

Author: Do you think the relations x̄ ∼α ȳ are themselves definable?

Quisani: Of course: I defined them a minute ago, in L2k
∞ω, as you pointed out.

Author: Yes, but is there a more direct definition: by induction on α, perhaps?

Quisani: Ah, possibly. Let me see: from first principles, we can define ∼0 explicitly, by∧
ϕ∈F0

(ϕ(x̄) ↔ ϕ(ȳ)). Then inductively, ā ∼α+1 b̄ holds iff (i) ā ∼α b̄, and (ii) for every
ā′ differing from ā in one place, there’s a b̄′ differing from b̄ in the same place and such
that ā′ ∼α b̄′, and vice versa. Hey, this is like an inductive definition in LFP! We have
a formula

ε(x̄, ȳ,∼) = x̄ ∼0 ȳ ∧ x̄ ∼ ȳ ∧
∧
i≤k

(
∀xi∃yi(x̄ ∼ ȳ) ∧ ∀yi∃xi(x̄ ∼ ȳ)

)
,

where x̄ = x1, . . . , xk and ȳ = y1, . . . , yk. This is positive in ∼. Can we take a fixed
point?
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Author: Yes, except that as α increases the relations ∼α shrink, rather than grow — the
classes get smaller, remember? In fact, the least fixed point of your ε is ∅.

Quisani: Whoops! What’s gone wrong?

Author: The way we want to use ε is not usual in LFP. We want to start with ∼ = M2k

and then iterate, and not with ∼ = ∅ as usual. That is, we want to take the greatest
fixed point of Fε, not its least fixed point.

Quisani: Is this greatest fixed point expressible in LFP?

Author: Yes: if ψ(x̄, R) is positive in R then its greatest fixed point is obtainable, in the
obvious notation, as ¬LFP(¬ψ(x̄,¬R)). This is an easy exercise. Note that ¬ψ(x̄,¬R)
is also positive in R, so this is well-formed.

Quisani: Right. I remember I’ve seen that trick before. I always find it funny how we
get three negations when we do that.

Author: So to sum up, if the signature is finite and without function symbols we can get
a formula E(x̄, ȳ) of LFP saying that ‘x̄ ∼α ȳ for all α’.

Quisani: Why do we need to restrict the signature?

Author: So that x̄ ∼0 ȳ, and hence ε, are first-order.

Quisani: Does E work on infinite structures?

Author: Yes. The number of iterations before a fixed point is reached is the Scott height,
which may be infinite; but once a fixed point is arrived at, it is what we want.

Quisani: Yes, I see.

6 Ordering the types

Author: We can say even more, still. Abiteboul and Vianu [AV2, section 3.2] showed that
the E-classes can be linearly ordered. There’s a single LFP formula L(x̄, ȳ) defining a
linear pre-order on Mk for any finite structure M , so that L(ā, b̄) ∧ L(b̄, ā) holds iff
E(ā, b̄). The formula L does not depend on M .

Quisani: That’s amazing. You mean there’s a LFP-definable linear order in any finite
structure?

Author: A linear pre-order, yes.

Quisani: How is it done?

Author: [DLW] give an argument for it, which in a nutshell goes like this. Assume again
that the signature is finite and without function symbols. As M is finite, E = ∼n
for some n < ω, so it’s enough to order the ∼n-classes for each finite n. We do this
by induction on n. First, the finitely many ∼0-classes are linearly ordered arbitrarily.
Assume inductively that we’ve ordered the ∼n-classes, as p1, . . . , pr say. We want to
linearly order the ∼n+1-classes. Remember that ∼n+1 refines ∼n, so each ∼n+1-class lies
in a unique ∼n-class. If p, q are ∼n+1-classes contained in distinct ∼n-classes pi, pj, say,
then we let p < q iff i < j. So it remains to order the ∼n+1-classes contained in each
single ∼n-class.

So fix a ∼n-class, p`. We associate with each k-tuple ā ∈ p` a string of zeros and
ones of length kr, as follows. Place our k pebbles on ā. Then define the (r(i− 1) + j)th
digit of the string to be 1 iff Spoiler (say) can move the ith pebble so as to give a new
k-tuple ā′ ∈ pj.
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Quisani: So for example, the digits `, r + `, . . . , r(k − 1) + ` will always be 1, because
Spoiler can choose not to move a pebble at all, in which case ā′ = ā ∈ p`.

Author: That’s right. Now it follows from the definitions that the strings associated with
k-tuples ā, b̄ ∈ p` are the same iff ā ∼n+1 b̄. So the lexicographical order on strings
induces a linear order on the ∼n+1-classes in p`, and this completes the induction.

Quisani: Wow! And this order is LFP-definable?

Author: Yes. It’s easiest to find a suitable IFP-formula first, and then use the theorem
of [GuS1] that IFP = LFP on finite structures. To show the idea, let’s write a formula
ϕ(x̄, ȳ, <) whose greatest fixed point is the (irreflexive) linear pre-order we want. As
before, x̄ = x1, . . . , xk and ȳ = y1, . . . , yk are k-tuples of distinct variables. First, the
base case. Enumerate the maximal consistent conjunctions of atomic and negated atomic
formulas of Lk∞ω, as α1(x̄), . . . , αr(x̄), say. There are finitely many of them because of
our assumption on the signature. Then ϕ will have a conjunct of the form

α(x̄, ȳ) =
∨

i<j≤r
αi(x̄) ∧ αj(ȳ).

Quisani: This is to order the ∼0-classes.

Author: Right. Now for the iterative step. Let x̄ ∼ ȳ abbreviate the formula x̄ 6< ȳ∧ȳ 6< x̄.
At the nth stage of the iteration, this says x̄ ∼n ȳ. We’ll have x̄ < ȳ at the (n + 1)th
stage if (1) x̄ < ȳ already at the nth stage, or else (2) x̄ ∼n ȳ and for some i ≤ k and
some ∼n-class c represented by z̄, say, (2a) Spoiler can move yi in such a way as to
put ȳ in c but can’t move xi to put x̄ in there, while (2b) all lexicographically previous
possibilities (smaller i, or same i and <-smaller z̄) are the same for x̄ and ȳ.

Quisani: Right! So now you just have to say this in logic.

Author: Yes. . . how about this:

(1)︷ ︸︸ ︷
(x̄ < ȳ)∨

(2)︷ ︸︸ ︷
(x̄ ∼ ȳ ∧

∨
i≤k
∃z̄ψi),

where ψi is
(2a) ∃yi(ȳ ∼ z̄) ∧ ¬∃xi(x̄ ∼ z̄)
(2b) ∧ ∧j<i(∀xj∃yj(x̄ ∼ ȳ) ∧ ∀yj∃xj(x̄ ∼ ȳ))

∧ ∀z̄′ < z̄(∃xi(x̄ ∼ z̄′)↔ ∃yi(ȳ ∼ z̄′))

Here, z̄ and z̄′ are k-tuples of new variables. The final formula ϕ(x̄, ȳ, <) is thus

α(x̄, ȳ) ∧
(
x̄ < ȳ ∨ (x̄ ∼ ȳ ∧

∨
i≤k
∃z̄ψi)

)
.

It doesn’t depend on the structure M .

Quisani: I believe it. Very nice. The predicate < isn’t positive in ϕ, but there is a
greatest fixed point, which is the pre-order we want, and we can express this in IFP.

Author: Yes. But remember that the order we get is not on the points of a structure,
but on its E-classes. In some structures, E is not very interesting. On structures of size
≥ k in the empty signature, for example, tpα(ā) really only says which elements of the
tuple ā are equal and which are not, however big α is.
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Quisani: So all k-tuples of distinct elements are E-equivalent, for example. The Scott
height is 0. This is not much use.

Author: On the other hand, sometimes the E-classes are closely related to the structure
— for distinct points a, b, we have ¬E(a, . . . , a, b, . . . , b). [DLW] calls such structures
k-rigid.

Quisani: Doesn’t this mean the structure itself can be linearly ordered?

Author: Yes, the LFP-formula L(x, . . . , x, y, . . . , y) defines a linear order on any finite
k-rigid structure, and so we get LFP = P on such structures. This generalises the result
of [I2,Va] that I mentioned before.

Quisani: Right, you said we’d see some situations in which the fixed-point logics stay as
strong as P. I thought you’d forget.

Author: So did I. But even for arbitrary structures, something can still be salvaged. The
E-classes are really all that Lk∞ω can know about a structure. It has no finer resolution.
So any Lk∞ω-formula can be ‘rephrased’ to talk about the classes, which are linearly
ordered. In effect, as far as Lk∞ω is concerned, we can take all structures to be linearly
ordered! The same goes for fragments of Lω∞ω that can express the order, such as LFP
and PFP. And we know linearly-ordered structures are nice in some ways —

Quisani: — yes, we have LFP = P and PFP = PSPACE on finite linearly-ordered struc-
tures.

Author: Right. This allows us to prove that LFP = PFP on finite structures iff P =
PSPACE, a result of Abiteboul and Vianu [AV2].

Quisani: How?

Author: Do you see which is the easy direction?

Quisani: — I think ‘⇒’. If LFP is as expressive as PFP, then this is certainly true on
linearly ordered structures, where we know LFP = P and PFP = PSPACE. So P =
PSPACE for ordered structures. But P and PSPACE are by definition sets of sets of
character strings, and a string can be regarded as an ordered structure. So P = PSPACE.

Author: Good. Now the converse: assume P = PSPACE, and take a sentence σ ∈ PFP.

Quisani: Right, it dawns on me what to do . . . we can rephrase σ, giving a sentence σ′

of PFP talking about the linear ordering of the E-classes. So σ′ is essentially equivalent
to σ, but is evaluated in a linearly-ordered structure. We know that on linearly-ordered
structures, PFP = PSPACE and P = LFP. But PSPACE = P, so there’s a LFP-sentence
σ′′ equivalent to σ′ on the E-classes. Now translate σ′′ back into a sentence about the
original structure.

Author: Well done. This result is interesting because it relates complexity to logic without
a given linear order, and also because LFP and PFP do not always themselves correspond
to P and PSPACE. Anyway, we’ve had a good run with the games. Much of the work
we have covered is taken from [DLW], which I strongly recommend. I also recommend
a coffee.

Quisani: Good idea.
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7 The Craig interpolation property

Quisani [still drinking coffee]: Can we do anything else with all these results?

Author [could not find any coffee]: We can do quite a lot with them. For example, we
can use them to show that, as in first-order logic on finite structures [Gu1], and unlike
in classical first-order logic, the Craig interpolation and Beth definability properties fail
for Lω∞ω.

Quisani: As computer scientists, we are mainly interested in finite structures. Are you
saying these properties fail on finite structures, or generally?

Author: They fail whoever you are — whether you restrict the semantics to finite struc-
tures or not.

Quisani: I know first-order logic has the interpolation property on all structures but not
on finite ones [Gu1]. So is interpolation for finite structures stronger? Does it imply
interpolation generally?

Author: I can’t see why. Let’s look at the definition. The Craig interpolation property
says that if A,B are sentences in signatures LA, LB, and |= A → B, then there’s a
sentence C in the common signature LA∩LB which is an ‘interpolant’: we have |= A→ C
and |= C → B. By |= X I mean that every structure in the signature of X is a model
of X — and here we have a choice, as you said. We may restrict to finite structures X,
or we may allow any structure. We get two different interpolation properties.

Quisani: So OK, let’s write |= for full validity and |=f for validity on finite structures.
Assume we have interpolation for finite structures: so |=f A→ B ⇒|=f A→ C∧C → B
for some C. Now for arbitrary ones, if |= A→ B, then clearly |=f A→ B, so there’s a
C with |=f A→ C ∧ C → B. . . ah, but how do we know that |= A→ C ∧ C → B?

Author: Exactly.

Quisani: So are there logics with the interpolation property for finite structures but not
for arbitrary structures?

Author: I can’t think of one. Anyway, to show that the Craig interpolation property fails
for Lω∞ω in either semantics, consider the L3

∞ω-sentences

A = lin(<) ∧
∨

n even

lenn(<), B = lin(≺)→
∨

n even

lenn(≺).

Here, < and ≺ are different binary relation symbols, and lin and lenn are as we defined
them at the beginning (definition 2.1). Now, do you see that |= A→ B?

Quisani: Yes: any model of A is a <-linear order of finite even length, so any other linear
order ≺ on it must also be of even length.

Author: And an interpolant C would be an Lω∞ω-sentence in the empty signature, just
using ‘=’. It follows that the models of C would be exactly the finite structures of even
size.

Quisani: Why?

Author: Well, if M |= C, choose a linear order ‘≺’ on M . We still have (M,≺) |= C, as
C doesn’t mention ‘≺’. But |= C → B, so (M,≺) |= B. So (M,≺) |= ∨

n even lenn(≺),
and so M must be finite, of even size.
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Quisani: Ah, I get the idea. For the converse, if M has even size then choose a linear
order ‘<’ on M . So (M,<) |= A. But |= A → C, so (M,<) |= C, and as C doesn’t
involve ‘<’ we get M |= C. Very good.

Author: So could the interpolant C exist?

Quisani: No. We know the property ‘this structure has even size’ can’t be expressed in
Lω∞ω, as it has a 0–1 law.

Author: Good; or we can use Theorem 3.1. Clearly Duplicator has a winning strategy
in the k-pebble game between any two structures of size at least k, if the signature is
empty. So by Theorem 3.1, no sentence of ‘∅k∞ω’ will tell apart two structures of size
≥ k.

Quisani: And the same idea works if we restrict to finite structures?

Author: Yes: the proof only involved finite structures. Come to think of it, it seems to me
that a similar proof might show that the logic L∞ω +W has the interpolation property
for finite structures but not for arbitrary ones, where W is a generalised quantifier saying
that a binary relation well-orders the universe. You were asking for an example of this —

Quisani: — I’ll try it. But something else is puzzling me now. If C can’t express ‘even
size’, how can A and B?

Author: Well, A says that its models are linear orders of even size. The limiting proba-
bility of this is 0, as almost all structures are not linear orders. For B, the probability
is 1, for the same reason.

Quisani: Yes, I see now. It’s obvious really.

8 The Beth definability property

Quisani: Now what about Beth? What is this property? I’m not sure I remember.

Author: Take a signature L and an n-ary relation symbol R /∈ L. Let T be an L ∪ {R}-
theory in a logic. We say that T implicitly defines R over L if for any structures
M,N |= T such that the L-reducts MdL, NdL of M and N are the same, we have
M = N .

Quisani: I suppose an L ∪ {R}-theory is a set of sentences of the logic in the signature
L∪{R}? And taking the L-reduct of a structure just means forgetting the interpretations
of symbols not in L?

Author: That’s right.

Quisani: What do you mean by MdL, NdL being the same?

Author: I mean they’re equal, identical, =. If you like, you can read the whole definition
as saying that any L-structure has at most one expansion to a model of T .

Quisani: OK.

Author: Now we say that T explicitly defines R over L if there is an L-formula ϕ(x1, . . . ,
xn), an ‘explicit definition’, such that M |= ∀x1, . . . , xn(R(x1, . . . , xn) ↔ ϕ(x1, . . . , xn))
for all L ∪ {R}-structures M |= T .

Quisani: We call ϕ an explicit definition of R because R and ϕ are equivalent in any
model of T even though ϕ doesn’t mention R?

17



Author: Right. Then we say that the logic has the Beth property if any L ∪ {R}-theory
T that implicitly defines R over L also explicitly defines it.

Quisani: OK. And this property fails for Lω∞ω?

Author: Yes, it does, both for finite structures (insert the word ‘finite’ before ‘structure’
throughout the definitions) and for arbitrary ones.

Quisani: I guess the reason is the same as for Craig. Perhaps we could define a nullary
relation P and a unary relation Q implicitly, in terms of a given linear order <, by saying
that P is true iff < is a finite linear order (we use an infinite disjunction to say this), the
<-first and last elements satisfy Q, and exactly one of each pair of <-adjacent elements
satisfies Q. I think we can code two relations into a single one. Then P is true iff the
structure is a linear order of odd size. I guess it’s not explicitly definable, for the same
reasons as before.

Author: Unfortunately, lin(<) ∧ ∨n odd lenn(<) defines P explicitly (see definition 2.1).
Your approach works in the first-order finite-model case, and [Gu1] used it, but I don’t
think it works here.

Quisani: Well, maybe Beth survives if the implicit definition is first-order but the explicit
one may be infinitary.

Author: No. We’ll show:

Theorem 8.1 For all k ≥ 3, there’s a first-order theory Tk in L3
∞ω that implicitly defines

a linear order which can’t be explicitly defined in Lk∞ω.
Hence the Beth property also fails for Lk, the k-variable fragment of first-order logic.

Quisani: Yes, but you’re only claiming that the Beth property fails for Lk∞ω for each
k ≥ 3. Is that enough to show that it fails for Lω∞ω?

Author: Remind me at the end to mention that. For now, we’ll fix a k and find our
Tk. Here we use the 0–1 law in a deeper way. This part of the argument is due to
the algebraic logicians Andréka, Düntsch and Németi [ADN]. They were only looking
at the first-order case, but it’s not hard to do Lω∞ω too, and this was done in [HKL].
The algebraic logic community have worked on finite variable logics for many years,
and they’ve built a considerable body of further work, for instance on the ‘weak Beth
property’.

Quisani: The what?

Author: Ask me later! But I’d just like to say that they have studied logics related to k-
variable logics but with different semantics, such as ‘relativised semantics’. These logics
often do have nice properties like Craig interpolation, Beth definability, decidability, and
others, even on finite structures. Recent references for some of this work include [ABN,
Ve2].

Anyway, let’s prove theorem 8.1. We use graphs. Do you remember the extension
axioms in graphs?

Quisani: Yes, my friend was explaining them when we discussed 0–1 laws [Gu3]. The
k-extension axiom says that given any two disjoint sets X, Y of nodes of combined size
less than k, there’s a node outside X and Y that’s joined by edges to every node of X
but to no node of Y . This can be written as a first-order sentence with k variables.
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Author: Good, you remembered. These axioms all have limiting probability 1. Now
suppose we have graphs G,H satisfying the k-extension axiom, and k-tuples ā ∈ G,
b̄ ∈ H satisfying the same quantifier-free type. If Spoiler, Duplicator play the k-pebble
game on G,H starting from the position ā, b̄, then —

Quisani: — then I think Duplicator has a winning strategy. If Spoiler moves pebble i
to a new point a′ ∈ G, say, then we can chop the set of points in G covered by the
remaining pebbles into two disjoint sets X and Y, where X gets the points connected to
a′ by edges, and Y gets the rest. We then translate these sets to the corresponding sets
X ′, Y ′ ⊆ H, using the map ā 7→ b̄.

Author: Are X ′ and Y ′ disjoint?

Quisani: Yes: the map preserves all quantifier-free formulas. And obviously, the combined
size of X ′ and Y ′ is at most k − 1. So we can use the k-extension axiom in H, and find
b′ ∈ H \ (X ′ ∪ Y ′) connected to all of X ′ and none of Y ′. Duplicator can respond with
this b′, and it’ll leave new tuples ā′, b̄′ satisfying the same quantifier-free formulas again,
just like ā, b̄. So nothing is lost, and Duplicator can continue in the next round in the
same way. If Spoiler moved in H instead, Duplicator uses the k-extension axiom in G.
She never loses, so she wins.

Author: Very nice. It is important that ‘nothing is lost’: it is really saying that the rank
of the new position is the same as the old, so must be ∞. You’ve shown in effect that
any graph satisfying the k-extension axiom has Scott height 0.

Quisani: Yes, I see what you mean. But I thought I showed much more. I essentially
determined ηG for Lk∞ω: it is the k-extension axiom!

Author: — yes, I forgot! Well done.

Quisani: So to summarise, by Theorem 4.1 we get:

Theorem 8.2 If graphs G,H satisfy the k-extension axiom, then whenever k-tuples
ā ∈ G, b̄ ∈ H satisfy the same quantifier-free formulas, they also satisfy the same Lk∞ω-
formulas.

Author: OK, well put. Now let’s leave all this for a moment. Fix a finite graph G,
and suppose ‘<’ linearly orders its nodes in some arbitrary way. So we can write the
nodes of G as {g1, . . . , gr}, with g1 < g2 < · · · < gr. Consider the following first-order
L3
∞ω-sentence δG:

lin(<) ∧ lenr(<)

∧
∧

1≤i,j≤r
G|=E(gi,gj)

∀xy(‘x, y are the ith, jth elements along <, resp.’→ E(x, y))

∧
∧

1≤i,j≤r
G6|=E(gi,gj)

∀xy(‘x, y are the ith, jth elements along <, resp.’→ ¬E(x, y)).

Here, the formula lin(<) ∧ lenr(<) says that ‘<’ is an r-element linear order (see defi-
nition 2.1). Let νn(x) = ∃y(y < x ∧ ∃x(x < y ∧ · · ·)) · · ·) with n quantifiers. Then the
clause ‘x is the ith element along <’ abbreviates a formula of the form νi(x)∧¬νi+1(x),
which uses only two variables. And E is the binary relation symbol used for the graph
edge relation.

Essentially, δG describes the diagram of G.
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Quisani: How’s that?

Author: Well, what does a model of δG look like?

Quisani: Let M |= δG. Then < linearly orders dom(M) as {m1, . . . ,mr}, say. And for
each i, j ≤ r we have M |= E(mi,mj) if G |= E(gi, gj), and M |= ¬E(mi,mj) otherwise.
Ah, I see: δG forces M to be exactly the same as G. In fact, the map gi 7→ mi is a graph
isomorphism from G to M .

Author: Good: the graph part (reduct) of any model of δG is isomorphic to G. So can we
conclude that any two models of δG with the same graph reduct are actually the same?

Quisani: Yes.

Author: No! δG doesn’t just specify the graph structure of its models. It also says
what the graph looks like under a certain linear order. It specifies that in the given
enumeration ‘<’ of the nodes, the first and ninth elements (say) have a graph edge
between them, etc. This certainly constrains ‘<’. But why should it determine it
completely?

Quisani: Hmm — it may not do. For example, if G has no edges at all, any ordering
fits. So then there are r! models of δG, all with the same graph reduct, whereas what
we really want is a G with a unique enumeration that fits the pattern described by δG.

Author: Yes. Now suppose there are two different enumerations (orderings) (G,<), (G,≺)
of G, both of which fit the pattern of δG, so that G looks the same in both enumerations
— the first and ninth elements in both are joined by a graph edge, etc. This simply
means that (G,<) ∼= (G,≺). That is, there’s an automorphism of the graph G that
takes < to ≺.

Quisani: An automorphism is just an edge-preserving permutation of the nodes of G?

Author: Yes. Now what if G is rigid: without non-trivial automorphisms?

Quisani: Then this can’t happen: there can’t be two different enumerations of G fitting
the pattern coded in δG. If (G,<), (G,≺) |= δG then < = ≺. So δG implicitly defines <!

Author: Yes, exactly. It’s a nice argument, isn’t it?

Quisani: But can < be explicitly defined in Lk∞ω over δG?

Author: No, not if the k-extension axiom holds in G. Do you see why?

Quisani: Well, we showed that any graph satisfying the k-extension axiom has quantifier-
elimination in Lk∞ω. Right, then. Take a model M of δG. If < had an explicit definition
ϕ(x, y) over δG, then we’d have M |= ∀xy(x < y ↔ ϕ(x, y)). But the graph reduct of
M is isomorphic to G, so it satisfies the k-extension axiom. ϕ is a formula of graphs, so
by theorem 8.2 it’s equivalent in G to a quantifier-free graph formula ψ(x, y) of graphs
— and this poor ψ has to define a linear order on G! But ψ will be symmetric, because
graphs are. And < isn’t symmetric. Contradiction!

Author: Good.

Quisani: So if G is rigid, then < is implicitly defined by δG; and if it satisfies the k-
extension axiom then < can’t be explicitly defined over δG.

Author: Well put.

Quisani: So to show that the Beth property fails for Lk∞ω, all we need to do now is find a
finite rigid graph G = Gk satisfying the k-extension axiom. Can this be done for all k?
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Author: Yes: each k-extension axiom has limiting probability 1, and so does ‘rigidity’,
as Erdös and Renyi [ER] proved. So there are many finite graphs with both properties.
[ADN] construct such a graph explicitly, and it can be given other properties too.

Quisani: A very nice argument. But you’ve only covered the case Lk∞ω. What about
Lω∞ω?

Author: The Beth property fails for Lω∞ω too. Choose a Gk as before, for each k. There
is an infinite supply of each, so we can assume that the sizes of the Gk are strictly
increasing: |G1| < |G2| < · · ·. Choose a linear order on each Gk, write δGk as before
using this order, and let δ =

∨
k≥1 δGk . This is an L3

∞ω-sentence that implicitly defines a
linear order < in every Gk.

Quisani: Why is that? Oh, I think I see. Let M1,M2 be models of δ with the same graph
parts. Then M1 |= δGk1 and M2 |= δGk2 for some k1, k2. So the graphs of M1,M2 are
isomorphic to Gk1 , Gk2 . So Gk1 and Gk2 must be isomorphic. This means they must
have the same size, at least. But you chose the Gk all different sizes, so k1 = k2. Now
M1,M2 |= δGk1 , and we assumed M1,M2 have the same graph parts. So as before,
M1 = M2.

Author: Very good — so δ implicitly defines <. Now, if < were explicitly definable in
Lω∞ω, then it would be definable in some Lk∞ω. But we know Lk∞ω can’t explicitly define
a linear order on Gk.

Quisani: Right! And the proof shows that the Beth property fails for Lω∞ω even if we
restrict the semantics to finite structures.

9 The weak Beth property

Quisani: You also asked me to ask you about the weak Beth property.

Author: Oh yes. Well, the implicit definitions of the ordinary Beth property — the one
we were just using — have the form ∃≤1Rϕ(R), where R is a relation symbol, and ∃≤1R
is a second-order quantifier, meaning that there is at most one value of R making ϕ(R)
true.

Quisani: But we had no second-order quantifiers before. . . ah, I see what you mean! We
said that ϕ defines R implicitly if whenever M,N |= ϕ(R) and the reducts M ′, N ′ of
M,N got by forgetting R are the same, then M,N agree on R as well. So there’s at
most one value of R in M ′ that will make ϕ(R) true.

Author: Yes. That’s it. But suppose we restrict to stronger implicit definitions, of the
form ∃=1Rϕ(R). Here we insist there’s at least one suitable R, as well.

Quisani: You mean that with stronger implicit definitions, there’s more chance of finding
an explicit definition?

Author: Yes. We define a logic to have the weak Beth property if any L ∪ {R}-theory T
that implicitly defines R over L also explicitly defines it (over L), so long as

• any model of the L-reduct of T (throw out all non-L-sentences from T ) expands
to a (necessarily unique) model of T .

Quisani: The ordinary Beth property implies the weak one?

Author: Of course.
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Quisani: We already saw Lω∞ω doesn’t have the ordinary Beth property. Was δ =
∨
k≥1 δGk

already a strong implicit definition of <? Then we’d have shown weak Beth fails too.

Author: No, I’m afraid it wasn’t. The ‘reduct’ of the theory T = {δ} to graphs is empty;
and it’s not true that any model of ∅ in the signature of graphs expands to a model of
δ.

Quisani: OK, so let’s put some subsidiary information in T . I know: let T = {δ}∪{¬∆G :
G a finite graph, ∀k(G 6∼= Gk)}, where ∆G is a first-order sentence saying its models are
isomorphic to G.

Author: Then any finite model of the graph reduct of T expands to a model of δ. But
what about infinite ones?

Quisani: Yes, you are right. At least this T does seem to show weak Beth fails for Lω∞ω
when we restrict the semantics to finite structures. But in the general case, I can’t see
how to add Lω∞ω-sentences to the graph reduct of T to force its models to be finite.
Besides, my additions to T were rather artificial. OK, so does Lω∞ω have the weak Beth
property?

Author: No, it doesn’t! This can be seen using a recent example of Gurevich and Shelah
[GuS2]. They built finite structures called multipedes. A multipede looks a bit like this:
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Quisani: [shudders]

Author: Their essential attributes are:

• The class M of finite ‘odd’ multipedes is definable by a first-order sentence µ,
using (I think) four variables.

• Models of µ are in effect three-sorted structures. In the picture, the three sorts
are the box (the ‘body’), the black dots (‘spine’), and the white dots (‘feet’). All
three sorts are needed, for technical reasons, but we’ll only talk about the spine
here. For biological reasons I should maybe follow [HKL] and call the spine the
‘segments’, but then it might get confused with the body, so I won’t.

• µ forces the spine to be linearly ordered, by ‘≺’, say.

• If the spine of a model of µ is finite, so is the whole model.

The two main properties are:

• M is not k-rigid for any k (see section 6) — for each k, there’s an odd multipede
inM with two distinct points (actually the two feet of any black dot) that satisfy
the same Lk∞ω-formulas. This used a rather fine probabilistic argument. So, as
with δk in §8, there is no Lk∞ω-formula that explicitly defines a linear ordering on
every multipede in M.
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• Every multipede in M is rigid: and in fact, [DHK] showed there’s a first-order
sentence λ(<) that implicitly defines a linear order < on every multipede in M.

Quisani: I begin to like these multipedes a little. Can you explain how they are con-
structed?

Author: Let’s wait till your friend arrives. You could ask him. It will be a very stimulating
and valuable conversation.

Quisani: Ah well. . . but at least it seems clear that < is strongly implicitly defined by
{µ, λ}, but can’t be explicitly defined in Lω∞ω, for the same reason as before!

Author: Does it? How do we know that any model of µ expands to a model of λ?

Quisani: But I thought you said µ defined M. Surely this means any model of µ is a
multipede in M, so λ implicitly defines a linear order on it.

Author: No. Any finite model of µ is a multipede in M. We don’t know about infinite
models: maybe λ doesn’t implicitly define a linear order in them. In fact it can’t always,
as first-order logic has the Beth property!

Quisani: So we need somehow to restrict to finite models of µ. This is where I got stuck
before. How are things better with multipedes?

Author: We can use the ≺-linearly-ordered spine. If this is finite, so is the multipede.
And we can say in L2

∞ω that a linear order is finite. So let µ+ = µ∧∨n<ω lenn(≺) ∈ L4
∞ω

(see definition 2.1 for len). The models of µ+ are exactly the finite odd multipedes. So
any model whatever of µ+ expands uniquely to a model of λ(<). This means that <
is strongly implicitly definable in Lω∞ω. But it is not explicitly definable, as M is not
k-rigid for any finite k. Hence Lω∞ω fails the weak Beth property, and this is true even
restricting to finite structures — which you knew already.

Quisani: Got you. Can’t you use the same idea to show that the k-variable fragment Lk

of first-order logic also fails the weak Beth property? At least, for any k large enough
to write λ, µ in Lk. How many variables does λ need, by the way?

Author: I think five.

Quisani: Uhuh. Anyway, let k be any number large enough to write λ, µ. Find an odd
multipede K inM that’s not k-rigid. Suppose its spine has < n elements. Consider the
Lk-sentence

µ ∧ ¬len≥n(≺),

where len≥n(≺) ∈ L2 from definition 2.1 says there’s a ≺-chain of at least n elements.
The only models of this are odd multipedes, namely those with a spine of size < n. The
problem with infinite models of µ disappears. So λ(<) should strongly implicitly define
< on models of µ ∧ ¬len≥n(≺). But < is not explicitly definable in Lk∞ω, never mind
Lk, as K |= µ ∧ ¬len≥n(≺) and K is not k-rigid.

Author: Yes, very nice. I believe the Budapest group have another (unpublished) example
to show that Lk fails the weak Beth property. Shall we have another break?

Quisani: Yes please.
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10 Temporal logic

Quisani [drinking coffee again]: What is your own interest in finite variable logics?

Author: I came to them from temporal logic. There, we model time by a flow of time
— an irreflexive transitive partial order (T,<), where T is the set of time points, and
‘<’ the earlier–later relation on time points. Often we take the natural or real numbers,
for example. We also have propositional letters or ‘atoms’, p, q, r, . . . , to represent time-
dependent facts, such as ‘it is raining’. Each atom is given a truth value (true or false)
at each time point.

Quisani: This assignment of truth values to atoms is not part of the original flow-of-time
structure?

Author: That’s right. Atoms are best regarded as propositional variables, akin to the
variables in first-order formulas.

Quisani: But atoms don’t get assigned to elements of a structure, do they?

Author: No, they don’t. In temporal logic, each atom is assigned a subset of T , namely
the set of time points where it’s true.

Quisani: Then what?

Author: We then want to talk about the temporal behaviour of the atoms. To do this,
we write temporal formulas, such as Fp and S(p, q). They, too, get truth values at each
time point, derived from the atoms’ values at other points. The formula Fp is true at
t iff p is true at some point u ∈ T with u > t; and S(p, q) is true at t iff there is u < t
where p is true, and moreover, q is true at all points strictly between u and t. We read
Fp as ‘in the future, p’, and S(p, q) as ‘since p, q’, for obvious reasons.

Quisani: And you can form more complex formulas like F (p ∧ S(q, r)), by substitution?

Author: Yes. In general, a temporal logic will specify a (finite) set of connectives, such
as F (unary) and S (binary), and we form formulas by:

1. any atom p, q, r, . . . is a formula;

2. if A,B are formulas then so are ¬A and A ∧B;

3. if ] is an n-ary connective in the given set of connectives, and A1, . . . , An are
formulas, then ](A1, . . . , An) is a formula.

Quisani: Temporal logic is of increasing importance for computer science, is it not?

Author: Yes, computer scientists and software engineers use it to write specifications
with. So they need expressive temporal connectives. The study of expressive power of
connectives is therefore important, and it connects with finite variable logics.

Quisani: This surprises me. Temporal logic seems a way of avoiding variables altogether!

Author: Yes, the ‘pure’ temporal logicians do sometimes say that sneaking variables in
by the back door is inimical to true temporal logic. But we are interested in comparing
its power with first-order logic, so we try to translate temporal formulas into first-order
ones. For example, if we associate with each atom p a unary relation symbol P , then
the atomic temporal formula p can be translated as the atomic first-order formula P (x).

Quisani: The translation has a single free variable because the truth value of an atom
depends on single time points?
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Author: Yes. For the same reason, each translation of a temporal formula should be a
first-order formula with a single free variable. For instance, Fp can be translated as
∃y(y > x ∧ P (y)), and S(p, q) as ∃y(y < x ∧ P (y) ∧ ∀z(y < z < x → Q(z))). Each
translation has x as the only free variable.

Quisani: A flood of variables! What about more complex temporal formulas?

Author: We can translate them too, by induction. Each connective comes with a table,
explaining what it means. The table is in effect the first-order translation of a temporal
formula consisting of the connective applied to distinct atoms. So an n-ary connective
] has a table τ](x, P1, . . . , Pn), which will be, by definition, the translation of ](p1, . . . ,
pn).

Quisani: Right, I get the idea. For example, the table τS(x, P1, P2) of S will be ∃y(y <
x ∧ P1(y) ∧ ∀z(y < z < x→ P2(z))), the same formula we had a moment ago.

Author: Good. Now we can translate all formulas, by induction:

1. an atom p translates to P (x);

2. if formulas A,B translate to ψA(x) and ψB(x) respectively, then ¬A and A ∧ B
translate to ¬ψA(x) and ψA(x) ∧ ψB(x) respectively;

3. if A1, . . . , An translate to ψA1(x), . . . , ψAn(x) respectively, and the table of the n-
ary connective ] is τ](x, P1, . . . , Pn), then the formula A = ](A1, . . . , An) translates
to τ](x, P1/ψA1 , . . . , Pn/ψAn).

In this last formula, we substitute ψAi(v) for each atomic subformula Pi(v) in τ], changing
the variables if necessary to avoid clashes.

Quisani: This reminds me of something earlier . . . but go on.

Author: So we obtain for each temporal formula A(p1, . . . , pn) a translation ψA(x, P1, . . . ,
Pn), such that for any (T,<), if the set of time points in T when the atom pi is true is
Si, then A is true at t iff (T,<) |= ψA(t, S1, . . . , Sn).

Quisani: What does it mean when you write A(p1, . . . , pn)?

Author: Just that the atoms occurring in A are among p1, . . . , pn.

Quisani: It seems to me that there’s a possibility of translation only because every con-
nective has a first-order table. Isn’t this restrictive?

Author: Yes; second-order connectives and fixed-point extensions of classical temporal
logic are considered too, especially in concurrency; the flow of time in these cases is
usually the natural numbers. But first-order temporal logic is often quite adequate in
power. For example, I believe Hans Kamp has conjectured that every English tense
construction is expressible in first-order logic. You can also gain expressive power by
using many-dimensional temporal logic [§13].

11 Expressive completeness

Author: Even in first-order temporal logic, there is the interesting question of how much
of first-order logic can be obtained by translating temporal formulas.

Quisani: Ah! You are asking whether every first-order formula ϕ(x, P1, . . . , Pn) is the
translation of a temporal formula.
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Author: Roughly, yes. For a given class K of flows of time, and a given set Ξ of connec-
tives, the big question is: is it true that for every first-order formula ϕ(x, P1, . . . , Pn)
there is a temporal formula A(p1, . . . , pn), written with the connectives from Ξ, whose
translation ψA(x, P1, . . . , Pn) is K-equivalent to ϕ?

Quisani: What is K-equivalence?

Author: Formulas ϕ(x̄, P1, . . . , Pn), ψ(x̄, P1, . . . , Pn) are said to be K-equivalent if

(T,<) |= ∀x̄(ϕ(x̄, S1, . . . , Sn)↔ ψ(x̄, S1, . . . , Sn))

for all (T,<) ∈ K and all S1, . . . , Sn ⊆ T . I write ϕ(x̄, P1, . . . , Pn) to indicate that every
free variable of ϕ is in the tuple x̄; there is no requirement that every variable in x̄ occurs
free in ϕ.

Quisani: OK. So if you make K smaller or Ξ larger, the answer to your big question is
more likely to be ‘yes’.

Author: Right, the answer depends both on K and Ξ. If it is ‘yes’, we say that Ξ is
expressively complete over K.

Quisani: The word ‘complete’ is almost exhausted, I think.

Author: Yes, it is a bad choice, and it annoys people who work with second-order temporal
logics, but we are probably stuck with it now.

Quisani: I guess we can trivially make a Ξ that’s expressively complete over any class K.
For each formula ϕ(x, P1, . . . , Pn) we add an n-ary connective ]ϕ with table ϕ.

Author: Yes, that’s true; but we’re mainly interested in finite sets Ξ.

Quisani: Is a finite set of connectives ever expressively complete over a class? It seems
unlikely.

Author: As a trivial example, if K consists of a single one-point flow of time, so K =
{({t}, ∅)}, then essentially we have propositional logic. We know from classical theory
that the two connectives ∧ and ¬ can express all other boolean connectives. So here,
Ξ = ∅ is expressively complete over K.

Quisani: We can take Ξ = ∅ because ∧ and ¬ are always available in temporal logic?

Author: Yes, it’s usual to include them by default — as we did.

Quisani: OK, then, are there any non-trivial examples of expressively complete connec-
tives? It still seems unlikely to me.

Author: Kamp proved in [Kam] that S plus its ‘mirror image’, U , standing for ‘until’ and
defined by replacing < by > in the table of S, are together expressively complete over
the class of all Dedekind complete linear orders (such as the natural and real numbers,
but not the rationals). This was the pioneering theorem in the area. [GPSS], [Gab2]
(for the natural numbers) and [GHR2] have more recent proofs.

Quisani: Yet more completeness! Are there any other results like that?

Author: A few. In [GPSS] it was mentioned that adding two more connectives, U ′ and
S ′ (they didn’t give the semantics of these connectives) gives a set that’s expressively
complete over the class of all linear orders. [St] proves this, though I think the first full
published proof will be in [GHR1] or [GHR2]; there are two different proofs in the latter.
[GHR1,2] have other expressive completeness results for certain linear flows. There are
also results for certain trees [Sch], and for many-dimensional logics [Ve1].
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Quisani: How are these results proved?

Author: The proofs are always quite difficult. They’re sometimes similar to eliminat-
ing quantifiers in classical logic, and you can view expressive completeness as a kind of
quantifier-elimination result. Gabbay devised an interesting technique known as separa-
tion to prove expressive completeness results, which has also had practical applications
in executable temporal logic. You can read about it in [Gab2].

12 H-dimension

Author: But what is interesting for us now, I think, is the more general question of when
a given class K admits a finite expressively complete set Ξ of connectives.

Quisani: You could equally ask for which classes K is a given Ξ expressively complete.

Author: A fair point; I don’t know if anyone’s thought about that. I can, however,
explain the connection of expressive completeness to finite variable logics. The memory
that stirred in you a moment ago — what was it?

Quisani: When you were substituting the formulas ψAi for Pi in τ] to obtain the trans-
lation of ](A1, . . . , An), it reminded me of LFP in §2, when we substituted ϕm for P in
ϕ(x̄, P ) to obtain ϕm+1.

Author: Yes, it’s similar. Here, too, we can bound the number of variables needed, just as
before. If for each ] ∈ Ξ, the table τ] uses only k variables, then by careful substitution
we can write every translation ψA with k variables, for any temporal formula A written
with the connectives from Ξ. Since for finite Ξ there will always be such a k, it follows
that:

Theorem 12.1 (Gabbay, [Gab1]) If the class K of flows of time admits a finite set
of expressively complete connectives, then there is a finite k such that every first-order
formula ϕ(x, P1, . . . , Pn) with a single free variable is equivalent over K to some first-
order formula ϕ∗(x, P1, . . . , Pn) written with only k variables.

Author: If the conclusion of the theorem holds, we say that the class K has finite H-
dimension; the least such k is called the H-dimension of K.

Quisani: Ah, so this is the finite-variable connection! [pause] What does the ‘H’ stand
for?

Author: ‘Henkin’ — Leon Henkin worked on the proof theory of finite variable logics.

Quisani: It seems to me that we can use this theorem in two ways. First, we can use it to
show that certain classes have finite H-dimension. For example, the class L of all linear
orders has finite H-dimension, because U, S, U ′, S ′ are expressively complete for it.

Author: Yes; in fact, an inspection of their tables shows that they only need three vari-
ables, so that the H-dimension of L is at most 3. A game argument, given in [IK], will
show that 3 is best possible, so that H-dim(L) = 3. However, I must say that it’s a very
indirect method to use the expressive completeness of U, S, U ′ and S ′, a hard result,
to prove that L has H-dimension 3, when another game argument gives this directly.
Anyway, what was your second application?

Quisani: To use the contrapositive of the theorem to prove negative results. Are there
classes that are known to have infinite H-dimension? If so, these would admit no finite
expressively complete set of connectives.
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Author: An excellent point. Indeed there are such classes; Gabbay showed in [Gab1] that
the class of all flows of time is an example. Another is the class of trees with unbounded
branching factor.

Quisani: How do you prove this?

Author: One way is to use a game, essentially that of [I1] and developed by [IK].

Quisani: Is this the ‘game argument’ you mentioned a moment ago, in connection with
showing that H-dim(L) = 3?

Author: Yes. Let M,N be temporal structures, i.e., flows of time with added assignments
to an arbitrary finite number P1, . . . , Pr of unary relation symbols. Let k, n < ω. We let
G(M,N, k, n) be the game played by Spoiler, Duplicator on M,N using k pebbles, that
stops after n rounds.

Quisani: Apart from stopping after a finite time, is this the same as the Barwise game
we had earlier [§3]?

Author: Yes. Here there are no pebbles in play at the start. We regard M,N as structures
in the signature {<,P1, . . . , Pr}, and the rules are as before. The winning condition for
Spoiler is also as before: at some stage, the atomic formulas of this signature satisfied
by the pebbles in M and in N should not be the same. Similarly, Duplicator wins if
she survives each round: if the pebbles in M and N do always satisfy the same atomic
formulas. We get the following theorem.

Theorem 12.2 (Immerman & Kozen, [IK]) Suppose that K is a first-order-defin-
able class of flows of time, and let k < ω. Then K has H-dimension at most k iff for
all temporal structures M,N whose underlying flows of time are in K, if Duplicator has
a winning strategy for G(M,N, k, n) for all n < ω then she has a winning strategy in
G(M,N, n, n) for all n < ω.

Quisani: What does it mean to say that K is first-order-definable?

Author: Just that it is the class of all models of some first-order theory of signature {<}.
Quisani: I can see the ‘⇒’-direction of the theorem, I think. Thinking of the ordinary
Ehrenfeucht–Fräıssé game, I’d guess that M and N agree on all first-order sentences of
Lk∞ω, i.e., on Lk-sentences, iff Duplicator has a winning strategy in G(M,N, k, n) for all
n. So the second condition of the theorem seems to be saying that if M and N agree
on Lk then they agree on Lω. But if K has H-dimension k then the Lk-theory should
determine the Lω-theory, so this follows.

Author: More or less, yes. The other direction uses first-order compactness, but apart
from this the proof is similar to those in ordinary Ehrenfeucht–Fräıssé games. I’ll not
go into it now. But in fact you will not be able to prove theorem 12.2 correctly, because
it’s only true if you use Gabbay’s original definition of H-dimension k, and not the one
in theorem 12.1!

Quisani: Aagh! Why didn’t you say so?

Author: I didn’t want to complicate things too much. These matters get quite technical.

1. According to Gabbay [Gab1, Definition 1.3], a flow of time (T,<) is said to have
H-dimension k if k is the smallest number such that every formula ϕ(x1, . . . , xm, P1,
. . . , Pn) written with x1, . . . , xm as free variable letters and any number of bound
variable letters can be equivalently rewritten over (T,<) using at most k bound
variable letters and the same free x1, . . . , xm.
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2. A class K of flows of time can be said to have H-dimension k if every sentence
σ(P1, . . . , Pn) is equivalent over K to one written with only k variables, k being
least such that this is possible. (For K = {(T,<)} this is equivalent to (1).)

3. The definition in theorem 12.1 above essentially replaces ‘sentence’ in (2) by ‘for-
mula with one free variable’.

Conditions (2) and (3) are not quite equivalent. Their differences are gone over in [HS].

Quisani: What is this paper [HS]?

Author: It is joint work with András Simon. We carefully compared several notions like
these. Here’s another well-known one: K is said to have the k-variable property if every
formula ϕ(x1, . . . , xk, P1, . . . , Pn) is equivalent over K to a formula ϕ∗(x1, . . . , xk, P1, . . . ,
Pn) written with only k variables. This notion seems very similar to having H-dimension
at most k, but in [HS] we constructed a class K that has H-dimension 3, and has a finite
set of expressively complete connectives, but does not have the k-variable property for
any finite k.

Quisani: Ouch! I see one has to be careful with definitions here.

Author: Yes, the exact form can make quite a difference. Actually, Flum [F] had related
work already. He defines a first-order theory T in signature L to be k-bounded if (es-
sentially) every first-order L-formula is T -equivalent to one where at most k distinct
variables are bound in any branch of its formation tree.

Quisani: Is this related to the k-variable property?

Author: There is a conection, yes, though it seems not to be a completely tight one. If L
is relational, of arity < k, then it can be shown (as in [HS, §3.2]) that T is k-bounded
iff for all n ≥ k, every formula ϕ(x1, . . . , xn) is T -equivalent to a formula ϕ∗(x1, . . . , xn)
written with only n variables. We could say that T has the ‘non-monadic’ n-variable
property for all n ≥ k.

Flum also gives an example (suggested by Ziegler, and in some ways similar to that
in [HS]) of a theory T that is not k-bounded for any k, but such that any formula can
be equivalently rewritten over T using only one bound variable.

Quisani: You were going to use the game to prove that some classes don’t have finite
H-dimension.

Author: OK, let’s see how to use theorem 12.2 to prove that the class K of all flows of
time has infinite H-dimension. K is first-order-definable, by the axioms for irreflexive
partial orders, so the theorem applies. Note that any set is essentially in K: we interpret
< as ∅. We saw earlier [§7] that the k-pebble game cannot tell apart sets (structures
in the empty signature) of size ≥ k. Thus, if M,N are sets in K of size k and k + 1
respectively, and we assign ∅ to all predicates P1, . . . , Pr in each of them, then Duplicator
has a winning strategy in G(M,N, k, n) for all n.

Quisani: Right. But she can’t win G(M,N, k + 1, k + 1), as Spoiler can put the k + 1
pebbles on different elements of N , and she has no response in M . So the second half
of the theorem fails, for this k, and so K has H-dimension > k.

Author: Good; and this holds for all k, so K has infinite H-dimension. Hence by theorem
12.1, it admits no finite expressively complete set of connectives.
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13 Many-dimensional temporal logic

Quisani: What about the converse of theorem 12.1? If K has finite H-dimension, is there
necessarily a finite set of connectives that’s expressively complete for it?

Author: Yes, if we allow temporal logics of the kind that I’ve already mentioned in passing,
where formulas are evaluated at pairs of points (‘intervals’), or in general, m-tuples of
points. They are called m-dimensional logics. The atoms are still usually evaluated at
single points, however.

Quisani: How can they be? Atoms are temporal formulas, too! Either the logic is m-
dimensional or it isn’t.

Author: Well, we cheat, by evaluating an atom at m points but requiring that its truth
value only depends on the first of these points.

Quisani: But apart from this restriction on the assignments to the atoms, m-dimensional
temporal logic is completely analogous to the original kind?

Author: Yes, completely. The tables of connectives ] of m-dimensional temporal logic are
of the form τ](x1, . . . , xm, P1, . . . , Pn), where P1, . . . , Pn are m-ary relation symbols. The
translations ψA(x1, . . . , xm, P1, . . . , Pn) of the formulas A of such a logic are constructed
as before, by induction and substitution. But because of our restriction on assignments
to atoms, we can arrange that they still have unary relation symbols P1, . . . , Pn for the
atoms. This is because, once we have formed the ‘standard’ translation of a formula,
as before, we can replace its m-ary relations P ∗(v1, . . . , vm), corresponding to atoms, by
unary relations P (v1).

Quisani: Right: it’s only v1 that matters. But I think I would like to see an example.

Author: OK, here’s an interesting example. Let’s define the following set Ξk of connectives
for a k-dimensional temporal logic:

• Mθ, for all maps θ : {1, 2, . . . , k} → {1, 2, . . . , k};

• E;

• B;

• 〈i〉, for all 1 ≤ i ≤ k.

Mθ and 〈i〉 are unary connectives, taking a single argument, and E and B are nullary
(no arguments).

Quisani: How can you tell from this that the logic is k-dimensional?

Author: You can’t. You have to look at the arity of the relations in the tables of the
connectives to work out the dimension of the logic.

Quisani: What are the tables, then?

Author: Each connective ] above has table τ] as follows:

• τMθ
(x1, . . . , xk, Q) is ∃y1 . . . ∃yk[Q(y1, . . . , yk) ∧

∧
i≤k yi = xθ(i)];

• τE(x1, . . . , xk) is x1 = x2;

• τB(x1, . . . , xk) is x1 > x2;
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• τ〈i〉(x1, . . . , xk, Q) is ∃xiQ(x1, . . . , xk).

Quisani: So what would a sample formula look like?

Author: Well, if k = 3, consider the formula

A = 〈2〉[B ∧M(1,2)p ∧ ¬〈3〉¬(M(2,3)B ∧M(1,3)B →M(1,3)q)].

(Here, I used the usual notation for permutations of the set {1, 2, 3}. For example, (1, 3)
denotes the permutation that swaps 1 and 3, leaving 2 fixed.)

Quisani: OK, and what about its translation?

Author: Slightly simplified, the initial translation is

∃x2(x1 > x2 ∧ P ∗(x2, x1, x3) ∧ ∀x3(x1 > x3 ∧ x3 > x2 → Q∗(x3, x2, x1))).

Now we can replace the ternary P ∗, Q∗ by unary P,Q, and get the final translation

ψA = ∃x2(x1 > x2 ∧ P (x2) ∧ ∀x3(x1 > x3 ∧ x3 > x2 → Q(x3))).

Quisani: Oooh — that’s the table of S(p, q)! You seem to have built up the formula A
almost by copying its intended translation!

Author: That’s a shrewd observation. I did; and it can be done in general. Fix any k ≥ 2.
Take any formula ϕ(x1, . . . , xk, P1, . . . , Pn), where P1, . . . , Pn are unary predicates. If
ϕ is written with only the variables x1, . . . , xk, then it can be ‘back-translated’ to a
temporal formula A(p1, . . . , pn) using the connectives of Ξk. We define the map ϕ 7→ A
by induction on ϕ:

• P (xi) 7→M(1,i)p;

• (xi = xj) 7→MθE, where θ : {1, . . . , k} → {1, . . . , k} is any map such that θ(1) = i
and θ(2) = j;

• (xi > xj) 7→MθB, θ as above;

• if ϕ1 7→ A1 and ϕ2 7→ A2, then ¬ϕ1 7→ ¬A1, ϕ1∧ϕ2 7→ A1∧A2, and ∃xiϕ1 7→ 〈i〉A1

for i = 1, . . . , k.

Then if ϕ(x1, . . . , xk, P1, . . . , Pn) 7→ A, we have

` ∀x1, . . . , xk(ϕ(x1, . . . , xk, P1, . . . , Pn)↔ ψA(x1, . . . , xk, P1, . . . , Pn)).

Quisani: So the connectives of Ξk just mimic the first-order formula formation rules on
k variables.

Author: Yes, and because of this they can mimic the construction of any first-order for-
mula written with only k variables.

Quisani: This sounds like expressive completeness again.

Author: Right. So suppose a class K has finite H-dimension. How can we employ our
logic?
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Quisani: Well, suppose K has H-dimension k. This means that any first-order formula
ϕ(x1, P1, . . . , Pn) can be equivalently rewritten over K using only variables x1, . . . , xk.
Ah, I see! For any such formula we can find a temporal formula A of Ξk whose translation
is logically equivalent to it. So, combining the two parts, for any first-order formula
ϕ(x1, P1, . . . , Pn) there is a temporal formula A of Ξk such that ϕ(x1, P1, . . . , Pn) and
ψA(x1, . . . , xk, P1, . . . , Pn) are K-equivalent.

Author: Excellent. This is a weak form of expressive completeness. Every ϕ(x, P1, . . . ,
Pn) has a temporal equivalent, but in a k-dimensional temporal logic. You’ve shown that
if we allow these many-dimensional logics, then we do get an equivalence in theorem 12.1.
More exactly, we obtain:

Theorem 13.1 (Gabbay, [Gab1]) If K is a class of flows of time, then K admits
a finite set of expressively complete many-dimensional connectives iff it has finite H-
dimension.

Quisani: I see I proved the ‘⇐’-direction of theorem 13.1. How is the other direction
proved?

Author: Just as in theorem 12.1. You might like to read [Ve1] or [GHR2] for more on
many-dimensional logics; a great deal of work has been done.

14 Between finite H-dimension and expressive

completeness

Quisani: You didn’t really answer my question before. Does the converse of theorem 12.1
hold if we stick to one-dimensional temporal logic?

Author: No. Gabbay asked this in [Gab1]. It would be good to find a stronger condi-
tion than ‘finite H-dimension’ that’s equivalent to the existence of a finite expressively
complete set of one-dimensional connectives for a class of flows of time; but I showed in
[Hodk] that finite H-dimension alone does not imply this.

Quisani: You found a counter-example?

Author: Yes. Shall we have a look at it?

Quisani: — OK, but I must be going soon.

Author: It uses circles. A circle is a structure (C,<) satisfying the following axioms:

Trichotomy: For all x, y ∈ C, exactly one of x < y, x = y, x > y holds.

Local linearity: For all x ∈ C, {y ∈ C : y > x} and {y ∈ C : y < x} (i.e., the future and
past of x) are linearly ordered by <.

Circularity: ∀xy(x < y → ∃z(y < z ∧ z < x)).

Quisani: Can you give an example of a circle?

Author: If C is the set of days of the week, and we let x ≤ y if and only if y is at most
three days ahead of x, and x > y otherwise, then (C,<) is a circle of size seven.

Quisani: Hmm. I think there’ll be a circle Cn of any finite size n ≥ 3. Just arrange
the n points equally-spaced around a real circle, and define x < y iff it’s quicker to go
anticlockwise from x to y than to go clockwise.
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Author: What if n is even? For example, with four points you’ll get two pairs of opposite
points, (N, S) and (E,W), say. How are opposite points such as N and S ordered?

Quisani: Ah. Well, let’s only consider an odd number of points.

Author: That’s better! In fact, the class C = {Cn : 3 ≤ n < ω, n odd} is the counterex-
ample we use.

Quisani: Wait a minute! Circles are not transitive orders, are they?

Author: No, non-trivial ones never are, because of the ‘circularity’ axiom.

Quisani: So C can’t be a counterexample to ‘⇐’ of theorem 12.1 — it’s not a class of
flows of time!

Author: Don’t worry about this. It’s easy to convert a circle into a flow of time, but
the argument is a little technical and is otherwise not important. You can read it up
in [Hodk] if you want. In any case, circles are intuitively quite natural ‘flows of time’.
Besides, you may have noticed that nowhere have we yet used the fact that we’re dealing
with flows of time.

Quisani: So all the definitions, of ‘expressive completeness’ and so on, can be made for
general binary relations?

Author: Yes, even for general structures, and sometimes it’s essential to do that. So it
is legitimate to ask whether the converse of theorem 12.1 holds for structures such as
circles.

Quisani: And it doesn’t?

Author: No. We can show that (i) C has H-dimension 3 but (ii) C can’t have any finite
expressively complete set of (one-dimensional) connectives. For the first part you can
start by using theorem 12.2 to show that the class of all circles has H-dimension ≤ 3;
I’ll leave it as an exercise for you. Of course, your approach, by counting variables in
tables of connectives, isn’t going to work here —

Quisani: — because C has no finite expressively complete set of connectives!

Author: Quite. We prove it — part (ii), that is — by contradiction. Fix a finite set Ξ of
connectives, and suppose for contradiction that it’s expressively complete for the class
C of all circles of odd size. We can assume that >,⊥ ∈ Ξ; > is a nullary connective with
table x = x, and ⊥ is similar, with table x 6= x.

Quisani: Adding connectives to Ξ preserves expressive completeness, so it’s OK to assume
this.

Author: Yes. Now let A be a formula using the connectives of Ξ, without atoms. E.g.,
A might be ](>,>,⊥,⊥). We don’t need to know the truth values of atoms, because A
hasn’t got any. If C ∈ C, then the truth values of A at any two points t, u ∈ C is the
same.

Quisani: Right; C is completely symmetric so A can’t distinguish between two points.

Author: Good: so we agree that any formula without atoms is true throughout C, or false
throughout it. Now there are only finitely many formulas of the form B = ](B1, . . . , Bn),
for ] ∈ Ξ and B1, . . . , Bn ∈ {>,⊥}.

Quisani: This is because Ξ is finite?

Author: Right. But C is infinite, so we can choose distinct circles C,C ′ ∈ C such that
any such B is true in C iff it’s true in C ′.
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Quisani: You are saying that C and C ′ are of different finite sizes, but they agree on all
temporal formulas without atoms and of ‘depth’ 1.

Author: Yes, exactly. In fact, it follows that they agree on all formulas A without atoms,
regardless of depth.

Quisani: Let me try to prove this — by induction on A. If A ∈ {>,⊥}, it’s clear, and
the case of the boolean connectives is simple. So suppose A = ](A1, . . . , An) for ] ∈ Ξ
and Ai without atoms. Inductively, the two circles C and C ′ agree on the Ai. Replace
each Ai in A by >, if Ai is true in C and C ′, and by ⊥ if it’s false. We get a formula A′,
something like ](>,⊥, . . . ,⊥), and it has the same truth value as A did in C, and in C ′.

Author: Good, so far.

Quisani: Yes! — by choice of C and C ′, they agree on A′, because it has depth 1! So
they agree on A too. QED!

Author: OK. Now suppose that C has size n, and C ′ size > n. Let A be a formula of Ξ
without atoms, whose translation ψA(x0) is C-equivalent to

ν(x0)
def
= ∃x1, . . . , xn

∧
0≤i<j≤n

xi 6= xj,

saying that there are> n elements. We know there is such an A, because Ξ is expressively
complete for C.

Quisani: How do you know that A has no atoms?

Author: It’s true that expressive completeness doesn’t guarantee that A comes without
atoms, but we can simply substitute > (say) for any atoms it does have. Clearly, the
resulting formula will also be equivalent over C to ν.

Quisani: Right: now it’s clear what to do. We know that A is true in C ′, so as it has no
atoms, it’ll be true in C too, and so C should have size > n. But it doesn’t! This is the
contradiction, and proves (ii).

Author: Well done!

Quisani: I’m tired now. I must go. Yuri never came, did he?

Author: No.

Quisani: Never mind, it was quite interesting. Thank you.
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