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Abstract

In this paper, we introduce a new fragment of the first-order temporal language, called
the monodic fragment, in which all formulas beginning with a temporal operator (Since
or Until) have at most one free variable. We show that the satisfiability problem for
monodic formulas in various linear time structures can be reduced to the satisfiability
problem for a certain fragment of classical first-order logic. This reduction is then used to
single out a number of decidable fragments of first-order temporal logics and of two-sorted
first-order logics in which one sort is intended for temporal reasoning. Besides standard
first-order time structures, we consider also those that have only finite first-order domains,
and extend the results mentioned above to temporal logics of finite domains. We prove
decidability in three different ways: using decidability of monadic second-order logic over
the intended flows of time, by an explicit analysis of structures with natural numbers time,
and by a composition method that builds a model from pieces in finitely many steps.

1 Introduction

Temporal logic has found numerous applications in computer science, ranging from the tradi-
tional and well-developed fields of program specification and verification [34, 30, 31], temporal
databases [12, 13, 3, 42, 17], and distributed and multi-agent systems [15], to more recent uses
in knowledge representation and reasoning [6, 7, 8, 40, 46]. This is true of both propositional
and first-order temporal logic. However, the mainstream of theoretical studies in the disci-
pline has mostly been restricted to the propositional case—witness the surveys [14, 43], or
the two-volume monograph [16, 17] where only one chapter is devoted to first-order temporal
logics.

The reason for this seems clear. Though some axiomatizations of first-order temporal
logics are known (e.g., [38] presents axiomatizations for first-order logics with Until and
Since over the class of all linear flows and over the rationals), a series of incompleteness
theorems [1, 4, 16, 19, 32, 44, 45], started by unpublished results of Scott and Lindström in
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the 1960s, show that many of the first-order temporal logics most useful in computer science
are not even recursively enumerable. But in contrast to classical first-order logic, where the
early undecidability results of Turing and Church stimulated research and led to a rich and
profound theory concerned with classifying fragments of first-order logic according to their
decidability (see, e.g., [9]), there were no serious attempts to convert the ‘negative’ results
in first-order temporal logic into a classification problem. Apparently, the extremely weak
expressive power of the temporal formulas required to prove undecidability left no hope that
any useful decidable fragments located ‘between’ propositional and first-order temporal logics
could ever be found. (See, e.g., Theorems 2 and 3 below.)

The main aim of this paper is to define and investigate a new kind of sub-language of
the first-order temporal language which, on the one hand, is considerably more expressive
than the propositional language, yet on the other hand gives rise to decidable fragments of
first-order temporal logics. Roughly speaking, these fragments are obtained by:

(1) restricting the pure classical (non-temporal) part of the language to an arbitrary decid-
able fragment of first-order logic, and

(2) restricting the temporal part of the language to the monodic formulas whose subformulas
beginning with a temporal operator have at most one free variable.

Condition (1) allows the use of classical decidability results to select a suitable first-order part
of the language, while (2) leaves enough room for non-trivial interactions between quantifiers
and temporal operators (as in the Barcan formula, ∃x3ϕ(x) ↔ 3∃xϕ(x)). Thus, we can
talk about objects in the intended domain using the full power of the selected fragment of
first-order logic; however, temporal operators may be used to describe the development in
time of only one object (two are enough to simulate the behaviour of Turing machines or
tilings; see below).

The bulk of the paper is devoted to showing that these two conditions do result in decidable
temporal fragments over various flows of time. As a consequence, we obtain for instance
that the two-variable monodic fragment, and the temporal guarded monodic fragment, are
decidable where the flow of time is arbitrary, finite, 〈N, <〉, 〈Z, <〉, 〈Q, <〉, or (for finite
domains at least) 〈R, <〉. The obtained results and the developed techniques can be applied
to prove the decidability of various propositional multi-dimensional modal logics, including
some temporal epistemic logics close to those in [15] and used in multi-agent systems, and
temporal description logics used in knowledge representation (cf. [46]). Thus, the results of
the paper are of significance both for applications in CS and AI, and for theoretical studies
in temporal logic. Moreover, we hope that the discovery of natural decidable fragments of
first-order temporal logic will stimulate further research in this field.

In this paper, we confine ourselves to considering satisfiability of temporal formulas with-
out equality or function symbols, interpreted in models with constant first-order domains and
strictly linear flows of time: in particular, the aforementioned 〈N, <〉, 〈Z, <〉, and 〈Q, <〉.
We are interested both in models with arbitrary domains and in those with only finite do-
mains. Actually, none of the decidable fragments to be constructed below has the finite
domain property: the set of formulas (in these fragments) satisfiable in arbitrary temporal
models properly contains the set of formulas satisfiable in models with finite domains. We
show, however, that the decidability results mentioned above hold for the temporal logics (on
〈N, <〉, 〈Z, <〉, 〈R, <〉, etc.) with finite domains.
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Our results also apply to two-sorted first-order languages in which one sort is specially
intended for talking about time. The predicate temporal language, ‘T L’, provides only ‘im-
plicit’ access to time: quantification over points in time in the sense of first-order logic is not
permitted, and the only means of expressing temporal properties is by the operators Since
and Until. A common alternative is to reason about time explicitly, using first-order logic.
Following this approach in the propositional case yields monadic first-order logic interpreted
in strict linear orders, while in the predicate case it leads to a two-sorted first-order language,
called ‘T S’ in what follows, one sort of which refers to points in time and the other to the
first-order domain. The relation between T L and T S has been investigated intensively in the
context of temporal databases (see, e.g., [2, 3, 12, 13]). In the propositional case, both lan-
guages are known to have the same expressive power over most classes of flows of time—i.e.,
the temporal propositional language is expressively complete, see [26, 16]. This turns out not
to be so in the first-order case: the formula

∃t1∃t2(t1 < t2 ∧ ∀x(P (t1, x) ↔ P (t2, x)))

is not expressible in T L over any interesting class of flows of time [2, 3, 12, 27]. However,
it remained open in the literature on temporal databases whether there is a natural charac-
terization of the fragment of T S for which T L is expressively complete. We will show that
a natural such fragment—called T S1t—consists of all formulas in which ‘domain’ quantifiers
∀x are applied to formulas with at most one free temporal variable (observe that this con-
dition, approximately dual to monodicity, is violated in the formula above). Moreover, the
fragment T L1 of monodic T L-formulas turns out to be expressively complete for the fragment
T S1 of monodic T S1t-formulas. The translation from T S1 into T L1 is effective, so all our
decidability results for fragments of T L1 carry over to the corresponding fragments of T S1.

We will give three different decidability proofs for monodic fragments. They all rely
on representing a temporal model satisfying a given monodic formula ϕ in the form of a
‘quasimodel’, the most important feature of which is that the size of its domain is finitely
bounded (in terms of ϕ). Our first algorithm expresses the existence of a quasimodel satisfying
such a ϕ by a formula of monadic second-order logic. This fact, together with the Büchi and
Rabin decidability theorems, makes it possible to reduce the satisfiability problem for monodic
formulas in models based on 〈N, <〉, 〈Z, <〉, 〈Q, <〉, and some other linear temporal structures
to the satisfiability problem for a certain fragment of classical first-order logic. The complexity
of the satisfiability-checking algorithm supplied by such a reduction is non-elementary. To
construct an algorithm of better performance (at least for some flows of time) we investigate
the structure of quasimodels on 〈N, <〉 satisfying a given T L1-formula ϕ, and obtain a second,
more explicit and elementary satisfiability-checking algorithm for 〈N, <〉, provided of course
that we have an ‘elementary’ oracle capable of deciding the satisfiability problem for the
classical first-order formulas mentioned above. A modified algorithm checks satisfiability in
models with finite domains. Our third algorithm covers the flow of time 〈R, <〉 in the finite-
domain case, and is an adaptation of the second proof of decidability of propositional temporal
logic with Until and Since over 〈R, <〉 given in [11].

The paper is organized in the following way. In Section 2 we define the syntax and se-
mantics of the temporal logics under consideration and prove that their monadic two-variable
fragments are undecidable. We then introduce the fragment T L1 of monodic formulas. In
Section 3 we introduce quasimodels. In Section 4 we give our first decision procedure for
monodic formulas, using monadic second-order logic. In Section 5 we give the second one,
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and in Section 6 its modified form for finite domains. In section 7 we describe the third algo-
rithm, for 〈R, <〉 in the finite-domain case. In Section 8, we prove the expressive completeness
of T L1 for T S1, and use the obtained criteria to single out a number of decidable fragments
of first-order temporal logics, including fragments of T S1, and the two-variable, monadic, and
guarded monodic fragments of T L1. We show also some applications to temporal epistemic
and description (propositional) logics. Finally, in Section 9, we list some open problems.

Acknowledgments. We are grateful to Robin Hirsch, Ágnes Kurucz, Maarten Marx,
and Szabolcs Mikulás for stimulating discussions, comments and suggestions. The work of
the first author was partially supported by U.K. EPSRC grant GR/L85978. The work of the
third author was partially supported by U.K. EPSRC Visiting Fellowship GR/M36748 and
by grant no. 99–01–0986 from the Russian Foundation for Basic Research.

2 First-order temporal logic

Denote by T L the first-order temporal language constructed in the standard way from the
following alphabet:

• predicate symbols P0, P1, . . . , each of which is of some fixed arity,

• individual variables x0, x1, . . . ,

• individual constants c0, c1, . . . ,

• the booleans ∧, ¬,

• the universal quantifier ∀x for each individual variable x,

• the temporal operators S (Since) and U (Until).

The set of predicate symbols in T L is assumed to be non-empty. 0-ary predicates, i.e.,
propositional variables, are denoted by p0, p1, . . . . We will assume that there is a sufficient
supply of those variables, unary predicate symbols, and an infinite set var of individual
variables. L is the classical (non-temporal) first-order language that results from T L by
omitting all formulas containing S or U .

We will use the following standard abbreviations:

∃xϕ = ¬∀x¬ϕ;
3ϕ = >Uϕ;
2ϕ = ¬3¬ϕ;

2+ϕ = ϕ ∧2ϕ;
3+ϕ = ϕ ∨3ϕ;
©ϕ = ⊥Uϕ.

T L is interpreted in first-order temporal models of the form M = 〈F, D, I〉, where F =
〈W,<〉, the underlying frame, is a strict linear order1 representing the flow of time, D is a
non-empty set, the domain of M, and I is a function associating with every moment of time
w ∈W a first-order L-structure

1I.e., < is irreflexive, transitive and ∀x, y ∈ W (x < y ∨ y < x ∨ x = y).
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I(w) =
〈
D,P

I(w)
0 , . . . , c

I(w)
0 , . . .

〉
,

the state of M at moment w, in which P I(w)
i , for each i, is a predicate on D of the same arity

as Pi (for a propositional variable pi, the predicate pI(w)
i is simply one of the propositional

constants >, ‘truth’, or ⊥, ‘falsehood’), and c
I(w)
i is an element of D. We require that

c
I(w)
i = c

I(v)
i for any w, v ∈ W (‘rigid constants’). To simplify notation, we will omit the

superscript I and write Pwi , pwi , cwi , etc., if I is clear from the context.
An assignment in D is a function a from var to D. The truth-relation (M, w) |=a ϕ

(or simply w |=a ϕ, if M is understood) in the model M under the assignment a is defined
inductively in the usual way:

• w |=a Pi(y1, . . . , y`) iff Pwi (a(y1), . . . , a(y`)) is true in I(w) (we write this also as I(w) |=a

Pi(y1, . . . , y`), or I(w) |= Pi[a(y1), . . . , a(yl)], or indeed as (a(y1), . . . , a(yl)) ∈ P
I(w)
i );

• w |=a ϕ ∧ ψ iff w |=a ϕ and w |=a ψ;

• w |=a ¬ψ iff w 6|=a ψ;

• w |=a ∀xψ iff w |=b ψ for every assignment b in D that may differ from a only on x;

• w |=a ϕSψ iff there is v < w such that v |=a ψ and u |=a ϕ for every u in the interval
(v, w) = {u ∈W : v < u < w};

• w |=a ϕUψ iff there is v > w such that v |=a ψ and u |=a ϕ for every u ∈ (w, v).

It follows, in particular, that

• w |=a 3ϕ iff there is v > w such that v |=a ϕ;

• w |=a 3+ϕ iff there is v ≥ w such that v |=a ϕ;

• w |=a 2ϕ iff v |=a ϕ for all v > w;

• w |=a 2+ϕ iff v |=a ϕ for all v ≥ w;

• w |=a ©ϕ iff there exists an immediate successor v of w (i.e., v > w and (w, v) = ∅)
such that v |=a ϕ.

For a class F of strict linear orders, we let TL(F), ‘the temporal logic of F ’, denote the
set of T L-formulas that are valid in F :

TL(F) = {ϕ ∈ T L : (M, w) |=a ϕ for all M = 〈F, D, I〉 with F ∈ F ,
all w ∈ D, and all assignments a in D}.

TLfin(F) stands for the set of those T L-formulas that are valid in all models based on linear
orders in F and having finite domains. Instead of TL({〈N, <〉}), TLfin({〈N, <〉}) we write
TL(N) and TLfin(N), respectively; similar notation is used for 〈Z, <〉, 〈Q, <〉, and 〈R, <〉.
Remark 1. In this paper we consider only models with constant domains. Satisfiability in
models with expanding domains is known to be reducible to satisfiability in models with
constant domains (see [47]).
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2.1 Undecidable fragments of T L

The following two theorems indicate some limits outside which one cannot hope to find de-
cidable fragments of first-order temporal logics.

For ` < ω, let T L` be the `-variable fragment of T L (i.e., every formula in T L` contains
at most ` distinct individual variables). And by T Lmo we denote the monadic fragment of
T L (i.e., the set of formulas which contain only unary predicates and propositional variables).

Theorem 2. Let F be either {〈N, <〉} or {〈Z, <〉}. Then the set T L2 ∩ T Lmo ∩ TL(F) is
not recursively enumerable.

Proof We show this by reducing the recurrent tiling problem for N×N (which is Σ1
1-complete;

see [24]) to the satisfiability problem for the monadic T L2-formulas in F . Recall that a tile t

is a 1×1 square with fixed orientation and coloured edges right(t), left(t), up(t), and down(t).
The N×N recurrent tiling problem is formulated as follows: given a finite set T of tiles and a
tile t0 ∈ T, determine whether there is a tiling of N×N by T such that t0 occurs infinitely often
in the first row. More precisely, the problem is to find out whether there exists a function f
from N× N into T such that, for all m,n ∈ N,

• right(f(n,m)) = left(f(n+ 1,m)),

• up(f(n,m)) = down(f(n,m+ 1)),

• the set {n ∈ N : f(n, 0) = t0} is infinite.

With a given a set T = {t0, . . . , tn} of tiles we associate unary predicates P0, . . . , Pn. We also
require two unary predicates, Q1 and Q2, which will be used in the formula

R(x, y) = 3(Q1(x) ∧Q2(y)).

Now define a first-order temporal formula ϕT in T L2 ∩ T Lmo as the conjunction of the
following formulas:

∃x23(P0(x) ∧3>),
∀x∃yR(x, y),
∀x, y((R(x, y) → 2R(x, y)) ∧ (¬R(x, y) → 2¬R(x, y))),

2+∀x(
n∨
i=0

Pi(x) ∧
∧
i6=j

(Pi(x) → ¬Pj(x))),

2+∀x, y(Pi(x) ∧R(x, y) →
∨

up(ti)=down(tj)

Pj(y)),

2+∀x(Pi(x) →©
∨

right(ti)=left(tj)

Pj(x)).

Let us show that ϕT is satisfiable in a model based on the frame in F iff there is a recurrent
tiling of N× N by T.

Suppose first that f : N× N → T defines a recurrent tiling. Put D = N,

P
I(n)
i = {m ∈ D : f(n,m) = ti},
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for n ∈ N, and select for every i ∈ N an infinite set Mi ⊆ N such that Mi ∩Mi′ = ∅ whenever
i 6= i′. Now put, for i ∈ D and n ∈ N, i ∈ Q

I(n)
1 and i + 1 ∈ Q

I(n)
2 iff n ∈ Mi. Also specify

that 0 /∈ QI(n)
2 . It should be clear that ϕT is satisfied in 〈〈N, <〉 , D, I〉. It follows that ϕT is

satisfiable in F .
Conversely, suppose ϕT is satisfied in a model M = 〈F, D, I〉, for F ∈ F . Then F = 〈W,<〉

contains an infinite ascending chain, say 0, 1, 2, . . . such that 0 |= ϕT and i+1 is the immediate
successor of i. By the first conjunct of ϕT, we find an a0 ∈ D for which 0 |= P0[a0] and the set
{n ∈ N : n |= P0[a0]} is infinite. Let RI(n) = {〈a, b〉 ∈ D2 : n |= 3(Q1 ∧Q2)[a, b]}. According
to the second conjunct, we have an R-ascending chain a0R

I(0)a1R
I(0)a2 . . . of elements in

D. By the third conjunct, for all n, i, j ∈ N, we have aiRI(n)aj iff aiR
I(0)aj . Now define a

function f by putting, for all i, j ∈ N, f(i, j) = tk whenever i |= Pk[aj ]. It is straightforward
to check that f is a recurrent tiling of N× N. 2

It follows, in particular, that if F is any one of the classes mentioned in the formulation
of Theorem 2 then TL(F) is not recursively axiomatizable (cf. [16]).

Theorem 3. Let F be one of the following classes of temporal frames: {〈N, <〉}, {〈Z, <〉}, the
class of all strict linear orders. Then T L2 ∩T Lmo ∩ TLfin(F) is not recursively enumerable.

Proof We are going to reduce the following undecidable problem to the satisfaction problem
for the monadic T L2-formulas in models with finite domains: given a Turing machine, deter-
mine whether it comes to a stop having started from the empty tape. Let A be a single-tape
right-infinite deterministic Turing machine with state space S, initial state s0, halt state s1,
tape alphabet A (b ∈ A stands for blank) and transition function δ. The configurations of
A will be represented by infinite words of the form £a0 . . . ai . . . anb

ω, where £ marks the
left side of the tape, all a0, . . . , an save one, say ai, are in A, while ai belongs to S × A
and represents the active cell and the current state. The start configuration, for instance, is
represented by £(s0, b)bω. Let A′ = A ∪ {£} ∪ (S ×A), and A′′ = A′ \ {£}.

We want to construct a monadic T L2-formula ϕA which is satisfiable in a model with a
finite domain D (based on a frame in F) iff A comes to a stop (i.e., reaches the halt state)
having started from £(s0, b)bω. Roughly, the idea is to codify configurations of A by elements
x ∈ D using the behaviour of x over time.

First, with every α ∈ A′ we associate a unary predicate Pα. The sentence

∀x
(
P£(x) ∧2

∨
α∈A′′

(Pα(x) ∧ ¬
∨

α 6=β∈A′′

Pβ(x))
)

(1)

means that ‘now’, all objects in D are in P£ while later each of them belongs to precisely
one of the sets Pα, for α ∈ A′′. To mark the object representing the active cell of a given
configuration and its immediate predecessor and successor, we use three unary predicates, S,
L, and R, defined by the formulas:

2+∀x(S(x) ↔
∨

(s,a)∈A′

P(s,a)(x)), (2)

2+∀x((L(x) ↔©S(x)) ∧ (S(x) ↔©R(x))), (3)
2+∀x¬(S(x) ∧3S(x)). (4)
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The transition from one configuration to another is simulated by means of the formula:

χ(x, y) =
∧

δ(α,β,γ)=(α′,β′,γ′)

3+
(
L(x) ∧ Pα(x) ∧©(Pβ(x) ∧©Pγ(x))

)
→

2+
(
(L(x) → Pα′(y)) ∧ (S(x) → Pβ′(y)) ∧ (R(x) → Pγ′(y))

∧
∧
α∈A′

(¬L(x) ∧ ¬S(x) ∧ ¬R(x) ∧ Pα(x) → Pα(y))
)
.

The following two formulas define a unary predicate C (clock); its intended meaning is to fix
the moment of time the machine reaches this or that configuration.

∀x(3+C(x) ∧2+¬(C(x) ∧3C(x))), (5)
∀x, y(χ(x, y) → 3+(C(x) ∧©C(y))). (6)

It remains only to ensure that there exists a sequence representing a halt configuration:

∃x3+
∨

(s1,a)∈A′

P(s1,a)(x), (7)

and that each configuration save the start one on the empty tape has a predecessor:

∀y
(
¬(P£(y) ∧©(P(s0,b)(y) ∧2Pb(y)) → ∃xχ(x, y)

)
. (8)

Let ϕA be the conjunction of (1)–(8) and the formula 2+ © >, which ensures that every
moment of time (starting from the one satisfying this formula) has an immediate successor.
It is not hard to check that ϕA is satisfied in a model with a finite domain (based on a frame
in F) iff A comes to a stop having started from the empty tape. Indeed, the ‘⇐’-part of the
proof should be clear. For the converse, suppose that ϕA is satisfied in a world w of a model
based on some linear order and having a finite domain, D. By (7), (1), and (2)–(4), there
is h ∈ D representing a halt configuration. Observe that, by (5) and (6), we cannot have
objects c0, . . . , cn ∈ D such that c0 = cn and w |= χ[c0, c1] ∧ . . . ∧ χ[cn−1, cn]. Let c0, . . . , cn
be a maximal chain in D for which cn = h and w |= χ[ci, ci+1], 0 ≤ i < n. Such a chain
exists since D is finite. So there is no c ∈ D with w |= χ[c, c0]. In view of (8), this can only
mean that c0 represents the start configuration on the empty tape. Thus, by definition of χ,
A reaches a halt configuration having started from the empty tape.

Thus, the set T L2∩T Lmo∩TLfin(F) is undecidable. On the other hand, its complement
(in the set of monadic T L-formulas) is recursively enumerable. For, it is not hard to see
that satisfiability of monadic and indeed arbitrary ML-formulas in models based in F and
having domains of ≤ n elements, for fixed n, can be reduced to satisfiability of propositional
temporal formulas in F , which is known to be decidable (see e.g. [16]). 2

2.2 Monodic formulas

Note that both undecidability proofs above use temporal formulas of the form ϕUψ with two
free variables. We now consider the ‘monodic’ fragment of T L without formulas of that sort.

Definition 4 (monodic formulas). Denote by T L1 the set of all T L-formulas ϕ such that any
subformula of ϕ of the form ψ1Uψ2 or ψ1Sψ2 has at most one free variable. Such formulas
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will be called monodic. In other words, monodic formulas allow quantification into temporal
contexts only with one free variable. From now on we will be assuming that all our formulas
are monodic.

For a set Γ of T L-formulas, denote by subnΓ the closure under negation of the set of
all subformulas of formulas in Γ containing ≤ n free variables; subϕ denotes the set of all
subformulas in a formula ϕ, and conϕ the set of all constants in ϕ. Without loss of generality,
we may identify ψ and ¬¬ψ; so subnΓ is finite whenever Γ is finite. In what follows we will
not be distinguishing between a finite set Γ of formulas and the conjunction

∧
Γ of formulas

in it.
For every formula ψ(x) = ϕ1Uϕ2 or ψ(x) = ϕ1Sϕ2 with one free variable x, we reserve a

unary predicate Pψ(x), and for every sentence ψ = ϕ1Uϕ2 or ψ = ϕ1Sϕ2 we fix a propositional
variable pψ. Pψ(x) and pψ are called the surrogates of ψ(x) and ψ, respectively.

Given a formula ϕ, we denote by ϕ the formula that results from ϕ by replacing all
its subformulas of the form ψ1Uψ2 and ψ1Sψ2 which are not within the scope of another
occurrence of U or S by their surrogates. Thus, ϕ contains no occurrences of temporal
operators at all—i.e., it is an L-formula; we will call ϕ the L-reduct of ϕ. For a set Γ of
T L1-formulas, we let Γ = {ψ : ψ ∈ Γ}.

3 Codifying models

Imagine that we need to find out whether a T L1-sentence ϕ is satisfiable. Following the
motto ‘divide and conquer’, we separate the temporal and the pure first-order parts of T L1,
focusing attention mainly on the former and pretending that we have a friend who knows how
to deal with the latter. We assume that this friend can obtain for us an L-structure realizing
any given set of subsets of subϕ, if such a structure exists at all. In this way, we build up a
complete stock of such structures; one of them should satisfy the L-reduct of ϕ. Our task is
then to try to fit these structures together into a temporal model satisfying ϕ. When doing
this, we need only take care of formulas of the form ψ1Uψ2 and ψ1Sψ2 in subϕ, relying upon
our good friendship as far as other formulas are concerned.

The aim of this section is to show that modulo ϕ, every temporal model can be codified in
a structure called a quasimodel. A quasimodel may be viewed as a model in which the states
have pairwise disjoint domains, each domain has a bounded number of elements (depending
on ϕ), and each domain element satisfies some specified set of subformulas of ϕ. The corre-
spondence between elements in different states will be established by special functions called
runs.

Let x be a variable not occurring in ϕ. Put

subxϕ = {ψ{x/y} : ψ(y) ∈ sub1ϕ}.

Definition 5 (type). By a type for ϕ we mean any boolean-saturated subset t of subxϕ: that
is,

• ψ ∧ χ ∈ t iff ψ ∈ t and χ ∈ t, for every ψ ∧ χ ∈ subxϕ;

• ¬ψ ∈ t iff ψ /∈ t, for every ψ ∈ subxϕ.

We say that two types t and t′ agree on sub0ϕ if t ∩ sub0ϕ = t′ ∩ sub0ϕ. Given a type t for
ϕ and a constant c ∈ conϕ, the pair 〈t, c〉 will be called an indexed type for ϕ (indexed by c)
and denoted by tc(x) or simply tc.

9



There are only finitely many types for ϕ—at most

[(ϕ) = 2|subxϕ|,

to be more precise. To a certain extent, every state w in a model under a given assignment
can be characterized (modulo ϕ, of course) by the set of types that are realized in this state
and the set of types that hold on its constants. This motivates the following definition.

Definition 6 (state candidate). Suppose that T is a set of types for ϕ that agree on sub0ϕ,
and T con = {〈t, c〉 : c ∈ conϕ} a set of indexed types such that {t : 〈t, c〉 ∈ T con} ⊆ T . Then
the pair C = 〈T, T con〉 is called a state candidate for ϕ.

Not all state candidates can represent states in temporal models. To single out those that
can, we require one more definition.

Definition 7 (realizable state candidate). Consider a first-order L-structure

D =
〈
D,PD

0 , . . . , c
D
0 , . . .

〉
(9)

and suppose that a ∈ D. The set

tD(a) = {ψ ∈ subxϕ : D |= ψ[a]}

is clearly a type for ϕ. Say that D realizes a state candidate 〈T, T con〉 if the following conditions
hold:

• T = {tD(a) : a ∈ D},

• T con = {
〈
tD(cD), c

〉
: c ∈ conϕ}.

A state candidate is said to be finitely realizable if there exists a finite L-structure realizing
it.

Denote by ](ϕ) the number of distinct realizable state candidates for ϕ. It should be clear
that

](ϕ) ≤ 2[(ϕ) · [(ϕ)|conϕ|.

Lemma 8. A state candidate C = 〈T, T con〉 for ϕ is (finitely) realizable iff the L-formula

αC =
∧
t∈T

∃x t(x) ∧ ∀x
∨
t∈T

t(x) ∧
∧

〈t,c〉∈T con

t(c)

is satisfied in some (respectively, finite) L-structure.

Proof Follows immediately from the definitions. 2

Lemma 9. Let κ be a cardinal, κ ≥ ℵ0. Then every realizable state candidate 〈T, T con〉 is
realized in an L-structure D of the form (9) such that, for every t ∈ T , the set

Dt = {a ∈ D : D |= t[a]}

is of cardinality κ.

10



Proof Follows from classical model theory, since the language L is countable and does not
contain equality. 2

We are now in a position to define the central notion of this section, that of a quasimodel.
Let F = 〈W,<〉 be a linear order.

Definition 10 (state function). A state function for ϕ over F is a map f associating with
each w ∈W a realizable state candidate f(w) = 〈Tw, T conw 〉 for ϕ.

Definition 11 (run). Let f be a state function for ϕ over F = 〈W,<〉, with f(w) = 〈Tw, T conw 〉
for w ∈W . By a run in f we mean a function r from W into the set

⋃
w∈W Tw such that

• r(w) ∈ Tw, for all w ∈W ,

• for every ψ1Uψ2 ∈ subxϕ and every w ∈ W , we have ψ1Uψ2 ∈ r(w) iff there is v > w
such that ψ2 ∈ r(v) and ψ1 ∈ r(u) for all u ∈ (w, v),

• for every ψ1Sψ2 ∈ subxϕ and every w ∈ W , we have ψ1Sψ2 ∈ r(w) iff there is v < w
such that ψ2 ∈ r(v) and ψ1 ∈ r(u) for all u ∈ (v, w).

Definition 12 (quasimodel). Suppose f is a state function for ϕ over F and R a set of runs
in f . The pair m = 〈f,R〉 is called a quasimodel for ϕ (over F) if the following conditions
hold:

• for every c ∈ conϕ, the function rc defined by rc(w) = t, for 〈t, c〉 ∈ T conw , w ∈ W , is a
run in R,

• for every w ∈W and every t ∈ Tw, there exists a run r ∈ R such that r(w) = t.

In this case the state candidates f(w) are called quasistates of m. Say that ϕ is satisfied in
the quasimodel m if there is w ∈W such that ϕ ∈ t, for some (or, equivalently, all) t ∈ Tw.

Remark 13. Note that, for any two sets of runs R1 and R2 in f , if R1 ⊆ R2 and 〈f,R1〉 is
a quasimodel for ϕ then 〈f,R2〉 is a quasimodel for ϕ as well. Consequently, there exists a
quasimodel for ϕ based on a state function f iff 〈f,Ωf 〉 is a quasimodel for ϕ, where Ωf is
the set of all runs in f . If we are interested in satisfiability of temporal formulas in arbitrary
models then it is enough to consider quasimodels of the form 〈f,Ωf 〉; to simplify notation, we
will denote such quasimodels by f . To deal with satisfiability in models with finite domains,
we shall need quasimodels 〈f,R〉 with finite R.

Theorem 14. A T L1-sentence ϕ is satisfiable in a model based on F = 〈W,<〉 iff it is
satisfied in a quasimodel for ϕ over F.

Proof Suppose ϕ is satisfied in a model M = 〈F, D, I〉. For every w ∈ W , define f(w) =
〈Tw, T conw 〉 by taking

ta = {ψ ∈ subxϕ : (M, w) |=a ψ}, where a ∈ D and a(x) = a,
Tw = {ta : a ∈ D},
T conw = {〈tcI(w) , c〉 : c ∈ conϕ}.

It is easy to see that for every a ∈ D, the function r(w) = tI(w)(a), w ∈W , is a run in f . Let
R be the set of all such runs. Then 〈f,R〉 is clearly a quasimodel satisfying ϕ. Note that R
is finite whenever D is finite.

11



Conversely, suppose that ϕ is satisfied in a quasimodel f for ϕ over F. Take a cardinal
κ ≥ ℵ0 exceeding the cardinality of the set Ωf of all runs in f and put

D = {〈r, ξ〉 : r ∈ Ωf , ξ < κ}.

Then for any w ∈W and any type t,

|{〈r, ξ〉 ∈ D : r(w) = t}| =
{
κ, if t ∈ Tw,
0, otherwise.

By Lemma 9, for every w ∈ W there exists an L-structure I(w) with domain D realizing
f(w) and such that cw = 〈rc, 0〉, for every c ∈ conϕ, and

r(w) = {ψ ∈ subxϕ : I(w) |= ψ[〈r, ξ〉]}, (10)

for all r ∈ Ωf and ξ < κ. Let M = 〈F, D, I〉. We show by induction on ψ that for all ψ ∈ subϕ
and w ∈W , and any assignment a in D,

I(w) |=a ψ iff (M, w) |=a ψ.

The basis of induction—i.e., the case when ψ = Pi(x1, . . . , x`)—is clear; for then, ψ = ψ. The
induction step for ψ = ψ1 ∧ ψ2, ψ = ¬ψ1, and ψ = ∀xψ1 follows by the induction hypothesis
from the obvious equations:

ψ1 ∧ ψ2 = ψ1 ∧ ψ2, ¬ψ1 = ¬ψ1, ∀xψ1 = ∀xψ1.

Let ψ(y) = χ1Uχ2 and a(y) = 〈r, ξ〉. We then have ψ = Pψ(y), so by (10) and the induction
hypothesis,

I(w) |=a Pψ(y) iff χ1Uχ2 ∈ r(w)
iff ∃v > w(χ2 ∈ r(v) & ∀u ∈ (w, v)χ1 ∈ r(u))
iff ∃v > w(I(v) |=a χ2 & ∀u ∈ (w, v)I(u) |=a χ1)
iff ∃v > w((M, v) |=a χ2 & ∀u ∈ (w, v)(M, u) |=a χ1)
iff (M, w) |=a χ1Uχ2.

The formula ψ(y) = χ1Sχ2 is considered analogously.
Since ϕ ∈ r(w) for some w ∈W , we must have also (M, w) |= ϕ, as required. 2

4 Embedding into second-order monadic theories

We can now quickly deduce decidability results by translating into monadic second-order logic
the statement that a quasimodel satisfying ϕ exists.

We will use some auxiliary formulas. Introduce a unary predicate variable Rψ for each
ψ ∈ subxϕ. If t is any type for ϕ, let

χt(x) =
∧
ψ∈t

Rψ(x) ∧
∧

ψ∈(subxϕ)\t

¬Rψ(x),

12



saying that the Rψ(x) define the type t at x. Also, ρ denotes the conjunction of the two
formulas

∀x
∧

ψ1Uψ2∈subxϕ

(
Rψ1Uψ2(x) ↔ ∃y(x < y ∧Rψ2(y) ∧ ∀z(x < z < y → Rψ1(z)))

)
,

∀x
∧

ψ1Sψ2∈subxϕ

(
Rψ1Sψ2(x) ↔ ∃y(y < x ∧Rψ2(y) ∧ ∀z(y < z < x→ Rψ1(z)))

)
—this says that the Rψ(x) define a run.

Let Σ be the set of all realizable state candidates for ϕ, and Ps (s ∈ Σ) a unary predicate
variable. We now define the monadic second-order sentence σϕ as follows:

∃
s∈Σ

Ps

(
∀x
[ ∨
s∈Σ

Ps(x) ∧
∧

s,s′∈Σ
s 6=s′

¬(Ps(x) ∧ Ps′(x))
]
∧

∨
〈T,T con〉∈Σ
ϕ∈

S
T

∃x P〈T,T con〉(x)

∧
∧

c∈conϕ
∃

ψ∈subxϕ
Rψ

[
ρ ∧ ∀x

∧
〈T,T con〉∈Σ
〈t,c〉∈T con

(P〈T,T con〉(x) → χt(x))
]

∧ ∀x
∧

〈T,T con〉∈Σ
t∈T

[
P〈T,T con〉(x) → ∃

ψ∈subxϕ
Rψ(ρ ∧ χt(x))

])
.

If F = 〈W,<〉 is a linear order, then F |= σϕ iff there exist (possibly empty) subsets
Ps ⊆W (s ∈ Σ) which partition W in such a way that the state function f : W → Σ defined
by w ∈ Pf(w), for all w ∈ W , is a quasimodel for ϕ in the sense of Remark 13: the second
line states that each constant of conϕ defines a run coded by the Rψ, and the third line
expresses the second condition of Definition 12. The last conjunct on the first line says that
ϕ is satisfied in this quasimodel. Hence, F |= σϕ iff ϕ is satisfied in a quasimodel for ϕ over
F.

Note that if Σ can be constructed from ϕ by an algorithm, then so can σϕ.
We can now apply known facts on decidability of monadic second-order logic to obtain

decidability results for monodic fragments.

Theorem 15. Let T L′ ⊆ T L1 and suppose that there is an algorithm which is capable
of deciding, for any T L′-sentence ϕ, whether an arbitrarily-given state candidate for ϕ is
realizable. Let F be one of the following classes of flows of time:

1. {〈N, <〉},

2. {〈Z, <〉},

3. {〈Q, <〉},

4. the class of all finite strict linear orders,

5. any first-order-definable class of strict linear orders—for example, the class of all linear
orders.

Then the satisfiability problem for the T L′-sentences in F , and so the decision problem for
the fragment TL(F) ∩ T L′, are decidable.
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Proof By assumption, the sentence σϕ is constructible effectively from ϕ.

1. By Theorem 14, ϕ is satisfiable in a model based on 〈N, <〉 iff ϕ is satisfied in a quasi-
model for ϕ over 〈N, <〉, iff (by the foregoing) 〈N, <〉 |= σϕ. This last statement is
decidable, by a result of Büchi [10].

2. The case of 〈Z, <〉 is similar.

3. The case of 〈Q, <〉 is again similar, except that the decidability of the problem ‘〈Q, <〉 |=
σϕ’ follows from Rabin’s theorem on the decidability of S2S [35].

4. As before, we see that ϕ is satisfiable in a model based on a finite linear order iff σϕ is
true in some finite linear order. As is well-known, it follows from Büchi’s theorem [10]
that this last statement is decidable.

5. By considering the standard translation of ϕ into two-sorted first-order logic (see Sec-
tion 8.1) and applying the downward Löwenheim–Skolem–Tarski theorem, it can be
seen that ϕ has a model with flow of time in F iff it has a model with countable flow
of time in F . By Theorem 14, this holds iff ϕ is satisfied in a quasimodel for ϕ over a
countable order in F .

Let ψ be a formula of monadic second-order logic, and let P be a monadic predicate
variable not occurring in ψ. Define the relativization ψP of ψ to P , by ψP = ψ for
atomic ψ, (¬ψ)P = ¬ψP , (ψ1 ∧ ψ2)P = ψP1 ∧ ψP2 , (∀xψ)P = ∀x(P (x) → ψP ), and
(∀Qψ)P = ∀QψP . Evidently, for any sentence ψ and any linear order F, we have
F |= ∃P (∃xP (x)∧ψP ) iff F′ |= ψ for some (non-empty) suborder F′ of F—the intended
interpretation of P is the domain of F′.

Now any countable strict linear order is a sub-order of 〈Q, <〉. Let λ be a sentence
of linear order defining F . Then σϕ (assumed not to involve P ) is satisfiable in some
countable F ∈ F iff

〈Q, <〉 |= ∃P (∃xP (x) ∧ (λ ∧ σϕ)P ).

By Rabin’s theorem, this last statement is decidable.

This completes the proof of the theorem. 2

Remark 16. A similar result for scattered orders (those not embedding 〈Q, <〉) can be obtained
by combining these methods. A similar encoding will establish decidability of fragments
TLfin(N)∩T L′, for T L′ as in Theorem 15, using Theorem 29 below in place of Theorem 14.
This proves Theorem 26 below.

Various applications of Theorem 15 can be found in Section 8.

5 Satisfiability in 〈N, <〉: arbitrary models

The translation into monadic second-order logic given in the preceding section reduces the
satisfiability problem for monodic sentences to decidable problems of high computational
complexity—for example, the complexity of monadic second-order logic over 〈N, <〉 (that is,
‘S1S’) is itself non-elementary [36]. In this section we demonstrate another way of proving
decidability of fragments of linear temporal logics, which is more direct, makes plain the
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structure of these models, and does yield an elementary decision procedure, provided of
course that determining the realizability of state candidates is elementary. For simplicity we
will be considering here the logic TL(N) in the language with only one temporal operator
Until; it is easy to add Since if required. The idea is to show that every quasimodel satisfying
a given T L1-formula ϕ can be converted into another quasimodel which also satisfies ϕ and
is based on a periodical state function, with the period being of some bounded length. In
the next section we will use this idea to obtain a satisfiability criterion for T L1-formulas in
models (on 〈N, <〉) with finite domains.

Fix a T L1-sentence ϕ.
We will use the following notation regarding certain sequences of elements, in partic-

ular, state functions f = f(0), f(1), . . . and runs r = r(0), r(1), . . . . Given a sequence
s = s(0), s(1), . . . and i ≥ 0, we denote by s≤i and s>i the head s(0), . . . , s(i) and the
tail s(i+ 1), s(i+ 2), . . . of s, respectively; s1 ∗ s2 denotes the concatenation of sequences s1
and s2; |s| denotes the length of s, and

sω = s ∗ s ∗ s ∗ . . .

An infinite subsequence g = f(n0), f(n1), . . . of a state function f for ϕ will also be understood
as a state function for ϕ defined by g(i) = f(ni), i ∈ N.

Lemma 17. Let 〈f,R〉 be a quasimodel for ϕ such that f(n) = f(m) for some n < m. Then〈
f≤n ∗ f>m,R≤n ∗ R>m

〉
is also a quasimodel for ϕ, where

R≤n ∗ R>m = {r≤n1 ∗ r>m2 : r1, r2 ∈ R, r1(n) = r2(m)}.

Proof It suffices to observe that if r1 and r2 are runs in f and r1(n) = r2(m), then r≤n1 ∗r>m2

is a run in f≤n ∗ f>m. Let us check, for instance, the ‘⇒’-condition for ψ1Uψ2 ∈ subxϕ.
Suppose that ψ1Uψ2 ∈ r1(k) for some k ≤ n. Then, since r1 is a run, there is l > k such that
ψ2 ∈ r1(l) and ψ1 ∈ r1(l′) for all l′ ∈ (k, l). If l ≤ n then we are done. Otherwise, when l > n,
we have ψ1Uψ2 ∈ r1(n) = r2(m), and so are done again, since r2 is a run.

Now, because 〈f,R〉 is a quasimodel, for every r1 ∈ R there is r2 ∈ R such that r1(n) =
r2(m), and vice versa (swapping n,m). It now follows that

〈
f≤n ∗ f>m,R≤n ∗ R>m

〉
is a

quasimodel for ϕ. 2

Definition 18. If g is a subsequence of f , and both 〈f,R〉 and 〈g,Q〉 are quasimodels for ϕ,
then we call 〈g,Q〉 a subquasimodel of 〈f,R〉.

For instance,
〈
f≤n ∗ f>m,R≤n ∗ R>m

〉
in the formulation of Lemma 17 is a subquasimodel

of 〈f,R〉.

Lemma 19. Every quasimodel f for ϕ contains a subquasimodel f ′ = f1 ∗ f2 such that
|f1| ≤ ](ϕ) and each quasistate in f2 occurs in this sequence infinitely many times.

Proof If each f(n), for n ∈ N, occurs infinitely often in f then let f ′ = f = f2 (f1 is empty).
Otherwise, we take n to be the maximal number such that f(n) 6= f(m), for all m > n, and
apply Lemma 17 to the quasimodel f deleting from its head f≤n all repeating quasistates,
which yields us a subquasimodel f ′ = f1 ∗ f>n satisfying the required properties. 2
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Definition 20. Suppose that f = f(0), f(1), . . . is a sequence of realizable state candidates
for ϕ of the form f(i) = 〈Ti, T coni 〉, r is a sequence of elements from Ti, i ∈ N, such that
r(i) ∈ Ti, and n ∈ N. Suppose also that a formula ψ1Uψ2 ∈ subx(ϕ) occurs in r(n). Then
we say that r realizes ψ1Uψ2 in m steps (starting from n), if there is l ∈ (0,m) such that
ψ2 ∈ r(n+ l) and ψ1 ∈ r(n+ k) for all k ∈ (0, l).

Lemma 21. Let f = f1 ∗f2 be a quasimodel for ϕ (with quasistates of the form 〈Ti, T coni 〉 for
i ∈ N) such that n = |f1| ≤ ](ϕ) and each quasistate in f2 occurs in it infinitely often. Then
f contains a subquasimodel of the form f1 ∗ f0 ∗ f>l2 , for some l ≥ 0, such that

(i) |f0| ≤ |subxϕ| · ](ϕ) · [2(ϕ) + ](ϕ);
(ii) for every t ∈ Tn there is a run r in f1 ∗ f0 ∗ f>l2 coming through t and realizing all

formulas of the form ψ1Uψ2 ∈ r(n) in |f0| steps (for tc ∈ T conn the run rc realizes all formulas
of the form ψ1Uψ2 ∈ rc(n) in |f0| steps);

(iii) f0(0) = f>l2 (0).

Proof Suppose t ∈ Tn, ψ1Uψ2 ∈ t and r is a run in f through t, i.e., r(n) = t. Take the
minimal m > 0 such that ψ2 ∈ r(n +m) and ψ1 ∈ r(n + k) for all k ∈ (0,m). Assume now
that 0 < i < j < m, r(n + i) = r(n + j) and f(n + i) = f(n + j). In view of Lemma 17,
f1 ∗ f≤i2 ∗ f>j2 is a subquasimodel of f and r≤n+i ∗ r>n+j is a run in it coming through t ∈ Tn.
It follows that we can construct a subquasimodel f1 ∗ f≤0

2 ∗ f3 of f and a run r1 in it which
comes through t ∈ Tn and realizes ψ1Uψ2 in m1 ≤ [(ϕ) · ](ϕ) steps.

Then we consider another formula of the form ψ′1Uψ′2 ∈ t and assume that it is realized in
m2 > m1 steps in r1. Using Lemma 17 once again (and deleting repeating quasistates in the
interval f3(m1), . . . , f3(m2)) we select a subquasimodel f1 ∗ f≤0

2 ∗ f≤m1
3 ∗ f4 of f and a run r2

through t ∈ Tn which realizes both ψ1Uψ2 and ψ′1Uψ′2 in 2 · [(ϕ) · ](ϕ) steps.
Having analyzed all distinct formulas of the form ψ1Uψ2 in t ∈ Tn we obtain a subquasi-

model f1 ∗ f≤0
2 ∗ f ′ ∗ f>k of f and a run r′ through t which realizes all such formulas in

m′ ≤ |subxϕ| · [(ϕ) · ](ϕ) steps.
After that we consider in the same manner another type t′ ∈ Tn. However this time we can

delete quasistates only after f ′(m′), and so to realize in some run through t′ a formula ψ1Uψ2 ∈
t′, we need again ≤ [(ϕ) · ](ϕ) new steps. Since |Tn| ≤ [(ϕ), at most |subxϕ| · [2(ϕ) · ](ϕ)
quasistates are required to satisfy (ii).

Finally, not more than ](ϕ) quasistates may be needed to comply with (iii). 2

Definition 22 (suitable pair). A pair t, t′ of types for ϕ is called suitable if for every ψ1Uψ2 ∈
subxϕ,

ψ1Uψ2 ∈ t iff either ψ2 ∈ t′ or ψ1 ∈ t′ and ψ1Uψ2 ∈ t′.

Lemma 23. Suppose that f1 and f2 are finite sequences of realizable state candidates for ϕ
of length l1 and l2, respectively, and let

f = f1 ∗ fω2

with f(n) = 〈Tn, T conn 〉, n ∈ N. Then f is a quasimodel for ϕ whenever the following conditions
hold:

1. for every i, 0 ≤ i ≤ l1 + l2, and every ti ∈ Ti, there are ti−1 ∈ Ti−1 (only if i > 0) and
ti+1 ∈ Ti+1 (only if i < l1 + l2)2 such that the pairs ti−1, ti and ti, ti+1 are suitable;

2Note that f(l1 + l2) = f(l1) = f2(0).
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2. for every i ≤ l1 and every ti ∈ Ti, all formulas of the form ψ1Uψ2 ∈ ti are realized in
l1 + l2 − i steps in some sequence ti, ti+1, . . . , tl1+l2 in which ti+j ∈ Ti+j and every pair
of adjacent elements is suitable;

3. every pair of adjacent elements in t0c , . . . , t
l1+l2
c , where tic ∈ T coni , is suitable and, for

every i ≤ l1, all formulas of the form ψ1Uψ2 ∈ ti are realized in this sequence in l1+l2−i
steps.

Proof We have to show that there is a run coming through an arbitrarily given tn ∈ Tn, for
every n ∈ N. If n ≤ l1, then we first use condition 1 to construct a sequence t0, . . . , tn such
that ti ∈ Ti and every pair of adjacent elements in it is suitable. After that, in accordance with
condition 2, we continue this sequence to t0, . . . , tn, . . . , tl1+l2 in order to realize all formulas
of the form ψ1Uψ2 ∈ tn. Then we again use 2 to continue it to t0, . . . , tl1+l2 , . . . , t2(l1+l2),
realizing all U-formulas in tl1+l2 . And so forth. The resulting sequence is clearly a run in f .

If n > l1 then, using 1, we construct a sequence t0, . . . , tn, . . . , tm such that ti ∈ Ti, every
pair of adjacent elements in it is suitable and m = k(l1 + l2), for some k ≥ 1. After that, by
2, we run on this sequence to

t0, . . . , tn, . . . , tm, . . . , t(k+1)(l1+l2)

realizing all the U-formulas in tm, and so on, thus obtaining a run through tn.
Finally, we observe that the sequence

t0c , . . . , t
l1−1
c ∗ (tl1c , . . . , t

l1+l2−1
c )ω

is a run in f , for every c ∈ conϕ. 2

As a consequence of the two preceding lemmas we immediately obtain the following:

Theorem 24. A T L1-sentence ϕ is satisfiable iff there are two sequences f1 and f2 of real-
izable state candidates for ϕ such that f1 ∗ fω2 satisfies conditions 1–3 of Lemma 23, all state
candidates in f1 are distinct (and so |f1| ≤ ](ϕ)),

|f2| ≤ |subxϕ| · [2(ϕ) · ](ϕ) + ](ϕ),

and ϕ ∈ t for all t ∈ T0.

Proof By Theorem 14 and Lemmas 19, 21, ϕ is satisfiable iff ϕ is true in the first quasistate
of a quasimodel of the form f1 ∗ f0 ∗ f>l2 described in Lemma 21. It remains to observe that
f1 ∗ fω0 satisfies the conditions of Lemma 23. 2

Given two finite sequences f1 and f2 of state candidates for ϕ, we can effectively check
whether they satisfy conditions 1–3 of Lemma 23. The only missing thing to make the
criterion of Theorem 24 effective is therefore an algorithm for detecting whether a given
state candidate for ϕ is realizable. Modulo such an (elementary) algorithm, we obtain an
(elementary) algorithm for deciding ϕ.

Now we extend the developed technique to obtain a similar satisfiability criterion in models
with finite domains.
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6 Satisfiability in 〈N, <〉: finite domains

To begin with, let us observe that formulas in T L1 behave differently in models with arbitrary
and finite domains.

For ` ≥ 1, put T L`1 = T L1 ∩ T L`.

Theorem 25. For every T L′ ⊇ T L1
1 ∩ T Lmo,

TLfin(N) ∩ T L′ % TL(N) ∩ T L′.

Proof Let
ϕ = 2∃x(P (x) ∧ ¬(>SP (x))).

In English: ‘at every moment, someone starts to get old’—or perhaps, ‘every day has its
dog’. Then ϕ ∈ T L1

1 ∩ T Lmo, and it is readily checked that ϕ is satisfied in the model
M = 〈〈N, <〉 ,N, I〉 with

I(n) = 〈N, Pn = {0, . . . , n}〉 ,

but is false in all models with finite domains. Indeed, if we interpret 2 as ‘at all times’, then
in any model of ϕ with linear flow of time W and domain D we have |D| ≥ |W |. Thus,
¬ϕ ∈ TLfin(N) ∩ T L′ and ¬ϕ /∈ TL(N) ∩ T L′. 2

Our aim in this section is to prove the following analogue of Theorem 15 (1):

Theorem 26. Let T L′ ⊆ T L1 and suppose that there is an algorithm which is capable of
deciding, for a T L′-sentence ϕ, whether an arbitrarily-given state candidate for ϕ is finitely
realizable. Then the satisfiability problem for T L′-formulas in models with finite domains,
and so the decision problem for the fragment TLfin(N) ∩ T L′, are decidable.

To this end we will modify Theorem 24 to show that a T L1-sentence ϕ is satisfied in a
model with a finite domain iff there is a quasimodel based on a state function f = f1∗fω2 as in
Theorem 24, f(n) being a finitely realizable state candidate for all n ∈ N, and the quasimodel
having a finite set of runs R in it. The idea is to strengthen conditions 1 and 2 of Lemma 23
in such a way that sequences tl1 , . . . , tl1+l2 , realizing formulas of the form ψ1Uψ2, could be
short-circuited, i.e., tl1+l2 = tl1 . Then we will be able to compose infinite runs of the form

t0, . . . , tl1−1, 〈tl1 , . . . , tl1+l2−1〉ω ,

the number of which is clearly finite. Yet, there remains one more technical problem: to
ensure that we have enough runs, i.e., that every type in every quasistate lies on some run.
To solve it, we will need two kinds of sequences of types in quasistates: one,

s2 = 〈tl1 , . . . tl1+l2−1〉 ,

to realize U-formulas, and another one,

s3 =
〈
t′l1 , . . . t

′
l1+l2−1

〉
,

to make sure that we have enough runs. The resulting runs will then have the forms

t0, . . . , tl1−1, (s2 ∗ s3)ω and t0, . . . , tl1−1, (s3 ∗ s2)ω.

Let us fix a T L1-sentence ϕ and an enumeration
〈
t1, . . . , tnϕ

〉
of all types for ϕ, nϕ ≤ [(ϕ).

The following claim is a ‘finite version’ of Lemma 9:

18



Lemma 27. There is m < ω such that, for every finitely realizable state candidate C =
〈T, T con〉 and every sequence 〈ni : 0 < i ≤ nϕ〉, in which ni = 0 whenever ti 6∈ T and ni > m
otherwise, C is realized in an L-structure D such that |Dti | = ni, for every i ≤ nϕ.

Proof Suppose that C1, . . . ,Ck are all distinct finitely realizable state candidates for ϕ (so
that k ≤ ](ϕ)) and that Cj is finitely realized in Dj . Then it is enough to takem = max{

∣∣∣Dj
ti

∣∣∣ :
0 < i ≤ nϕ, 0 < j ≤ k}. 2

Definition 28. A quasimodel 〈f,R〉 for ϕ over a linear order F = 〈W,<〉 is said to be finitary
if f(w) is a finitely realizable state candidate for all w ∈W , and R is finite.

Now we can prove a finite analogue of Theorem 14; it holds for any linear flow of time.

Theorem 29. A T L1-sentence ϕ is satisfied in a model with a finite domain iff it is satisfied
in a finitary quasimodel 〈f,R〉 for ϕ.

Proof The implication (⇒) was established in the proof of Theorem 14.
(⇐) Suppose ϕ is satisfied in a finitary quasimodel 〈f,R〉 for ϕ, and let m be the number

supplied by Lemma 27. Define the domain of the model to be constructed by taking

D = {〈r, ξ〉 : r ∈ R, ξ < m}.

By Lemma 27, for every n ∈ N there exists an L-structure I(n) with domain D realizing f(n)
and such that cn = 〈rc, 0〉, for every c ∈ conϕ, and

r(n) = {ψ ∈ subxϕ : I(n) |= ψ[〈r, ξ〉]},

for all r ∈ R and ξ < m. Let M = 〈D, I〉. In precisely the same way as in the proof of
Theorem 14 one can show that ϕ is satisfied in M. 2

Let 〈f,R〉 be a quasimodel for ϕ. Define an equivalence relation ∼R on N by taking

i ∼R j iff f(i) = f(j) and ∀r ∈ R r(i) = r(j),

and denote by [n]R the ∼R-equivalence class generated by n.
Besides, for each n ∈ N, we define one more equivalence relation ∼nR on N by taking i ∼nR j

iff f(i) = f(j) and

• for every r ∈ R there is r′ ∈ R such that r(n) = r′(n) and r(i) = r′(j),

• for every r ∈ R there is r′ ∈ R such that r(n) = r′(n) and r(j) = r′(i).

Lemma 30. For every n ∈ N, the number of pairwise distinct ∼nR-equivalence classes does
not exceed

\(ϕ) = ](ϕ) · 22·2|subxϕ|
.

Proof Fix some n ∈ N and define a function σi(k, l), for i ∈ N, k, l ≤ nϕ, by taking

σi(k, l) =
{

1 if ∃r ∈ R r(n) = tk & r(i) = tl,
0 otherwise.

We then have i ∼nR j iff f(i) = f(j) and σi(k, l) = σj(k, l), for all k, l ≤ nϕ. It remains to
observe that the number of functions from {1, . . . , nϕ}2 into {0, 1} is 2n

2
ϕ . 2
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The finite analogue of Lemma 19 we need is proved similarly to that lemma with the help
of Lemma 17.

Lemma 31. Every quasimodel 〈f,R〉 for ϕ with finite R contains a subquasimodel 〈f1 ∗ f2,Q〉
with finite Q such that |f1| ≤ ](ϕ) and [n]Q is infinite, for every n ≥ |f1|.

However, to prove a finite version of Lemma 21, a somewhat subtler deleting technique is
required:

Lemma 32. Let 〈f,R〉 be a quasimodel for ϕ, n < i < j, and i ∼nR j.
Then

〈
f≤i ∗ f>j ,Q = R≤i ∗n R>j

〉
is also a quasimodel for ϕ, where

R≤i ∗n R>j = {r≤i1 ∗ r>j2 : r1, r2 ∈ R, r1(i) = r2(j), r1(n) = r2(n)}.

Moreover, for all n′ > j, if n ∼R n′ then n ∼Q n′ − (j − i).

Proof Follows immediately from the definition of i ∼nR j. 2

Lemma 33. Let 〈f = f1 ∗ f2,R〉 be a quasimodel for ϕ (with quasistates having the form
〈Ti, T coni 〉) such that n = |f1| ≤ ](ϕ), R is finite, and [m]R is infinite for all m > n. Then
〈f,R〉 contains a subquasimodel of the form

〈
f1 ∗ f0 ∗ f>l2 ,Q

〉
, for some l ≥ 0, such that Q is

finite and
(i) |f0| ≤ |subxϕ| · \(ϕ) · 22·2|subxϕ|

+ \(ϕ);
(ii) for every t ∈ Tn there is a run r ∈ Q through t realizing all formulas of the form

ψ1Uψ2 ∈ r(n) in |f0| steps (for tc ∈ T conn the run rc realizes all formulas of the form ψ1Uψ2 ∈
rc(n) in |f0| steps);

(iii) n ∼Q |f1 ∗ f0|.3

Proof Suppose t ∈ Tn, ψ1Uψ2 ∈ t and r is a run in R through t. Then there exists
m > 0 such that ψ2 ∈ r(n + m) and ψ1 ∈ r(n + k) for all k ∈ (0,m). Assume now
that 0 < i < j < m, r(n + i) = r(n + j) and n + i ∼R

n n + j. In view of Lemma 32,〈
f1 ∗ f≤i2 ∗ f>j2 ,Q0 = R≤n+i ∗n R>n+j

〉
is a subquasimodel of 〈f,R〉, r≤n+i ∗ r>n+j is a run

through t, and for all n′ > n + j we have n ∼Q0 n
′ − (j − i) whenever n ∼R n′. Thus we

obtain a subquasimodel 〈
f1 ∗ f≤0

2 ∗ f3,Q0

〉
of 〈f,R〉 such that Q0 is finite, there is a run r1 ∈ Q0 through t, realizing ψ1Uψ2 in m1 ≤
2|subxϕ| · \(ϕ) steps, and such that, for all n′ > n +m1 we have n ∼Q0 n

′ − (j − i) whenever
n ∼R n′. In particular, [n]Q0 is infinite.

After that we consider another formula ψ′1Uψ′2 ∈ t and assume that it is realized in
m2 > m1 steps in r1. Using Lemma 32 once again (and deleting quasistates in the interval
f3(m1), . . . , f3(m2)) we construct a subquasimodel〈

f1 ∗ f≤0
2 ∗ f≤m1

3 ∗ f4,Q1

〉
of 〈f,R〉 and a run r2 through t realizing both ψ1Uψ2 and ψ′1Uψ′2 in 2 · 2|subxϕ| · \(ϕ) steps,
with [n]Q1 being infinite.

3Note that f(n) = f0(0) = f>l
2 (0) = f(|f1 ∗ f0|).
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Having analyzed all distinct formulas of the form ψ1Uψ2 in t we obtain a subquasimodel〈
f1 ∗ f≤1

2 ∗ f ′,Q′
〉

of 〈f,R〉 with finite Q′ and a run r′ ∈ Q′ through t realizing all U-formulas in m′ ≤ |subxϕ| ·
2|subxϕ| · \(ϕ) steps. The class [n]Q′ is infinite.

Then we consider in the same manner another type t′ ∈ Tn. However, this time we can
delete quasistates only after f ′(m′). And so forth. Thus we arrive at a subquasimodel〈

f1 ∗ f≤0
2 ∗ f ′′,Q′′

〉
of 〈f,R〉 with finite Q′′, infinite [n]Q′′ and such that all formulas of the form ψ1Uψ2 in all
t ∈ Tn are realized by some r ∈ Q′ in ≤ |subxϕ| · \(ϕ) · 22·2|subxϕ|

steps.
Finally, we need at most \(ϕ) new quasistates to comply with (iii). 2

We are in a position now to prove the finite analogue of Lemma 23.

Lemma 34. Suppose f1 and f2 are finite sequences of realizable state candidates for ϕ of
length l1 and l2, respectively, and let

f = f1 ∗ fω2
with f(n) = 〈Tn, T conn 〉, for n ∈ N. Suppose also that the following conditions hold:

1. for every i < l1 + l2 and every ti ∈ Ti, there is a sequence t0, . . . , tl1+l2−1 of types for ϕ
such that

1.1. tj ∈ Tj, for every j < l1 + l2,
1.2. the pair ti, ti+1 is suitable, for every i < l1 + l2 − 1,
1.3. the pair tl1+l2−1, tl1 is suitable;

2. for every i ≤ l1 and every ti ∈ Ti, there is a sequence t0, . . . , tl1+l2−1 such that

2.1. all formulas of the form ψ1Uψ2 are realized in l1 + l2 − i steps in t0, . . . , tl1+l2−1,
2.2. tj ∈ Tj, for j < l1 + l2,
2.3. every pair of adjacent types in the sequence is suitable,
2.4. the pair tl1+l2−1, tl1 is suitable.

3. all pairs of adjacent elements in t0c , . . . , t
l1+l2−1
c , where tic ∈ T coni , as well as the pair

tl1+l2−1
c , tl1c , are suitable, and, for every i ≤ l1, all formulas of the form ψ1Uψ2 ∈ ti are

realized in t0c , . . . , t
l1+l2−1
c in l1 + l2 − i steps.

Then there is a finite set R of runs in f such that 〈f,R〉 is a quasimodel for ϕ.

Proof We have to define a finite set of runs R in f . Say that a sequence t0, . . . , tl1+l2−1 is of
type 1 (type 2) if it satisfies condition 1 (respectively, condition 2 for i = l1) in the formulation
of the lemma. Clearly, there are finitely many sequences of type 1, and every sequence of
type 2 is also a sequence of type 1.

Let R consist of all infinite words of the form

s1 ∗ (s≥l12 ∗ s≥l13 )ω and s1 ∗ (s≥l13 ∗ s≥l12 )ω,

where s1, s3 are sequences of type 1 and s2 is a sequence of type 2 such that
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• the pair s1(l1 + l2 − 1), s2(l1) is suitable and

• s2(l1) = s3(l1).

It is readily checked that every such word is a run in f and that 〈f,R〉 is a quasimodel for ϕ.
Needless to say that R is finite. 2

Putting together the two preceding lemmas we obtain:

Theorem 35. A T L1-sentence ϕ is satisfied in a model on 〈N, <〉 with a finite domain
iff there are two sequences f1 and f2 of finitely realizable state candidates for ϕ such that
f1 ∗ fω2 satisfies conditions 1–3 of Lemma 34, all state candidates in f1 are distinct (and so
|f1| ≤ ](ϕ)),

|f2| ≤ |subxϕ| · \(ϕ) · 22·2|subxϕ|
+ \(ϕ),

and ϕ ∈ t, for all t ∈ T0.

The criterion of Theorem 26, reducing the satisfiability problem for T L′-formulas in mod-
els with finite domains to the finite satisfiability problem for L-formulas of the form αC,
follows immediately.

7 Satisfiability in 〈R, <〉: finite domains

Now we will present a third method of reducing decidability of monodic fragments to clas-
sical decidability problems. We will consider only finite domains, with flow of time the real
numbers, 〈R, <〉. (The decidability problems for finite domains over an arbitrary first-order
definable class of flows and over 〈N, <〉, 〈Z, <〉, and 〈Q, <〉 reduce to this case; see Corollary 37.
The case of 〈R, <〉 with arbitrary domains remains open.)

We will prove the following theorem.

Theorem 36. Let T L′ ⊆ T L1 and suppose that there is an algorithm which is capable of
deciding, for any T L′-sentence ϕ, whether an arbitrarily-given state candidate for ϕ is finitely
realizable. Then it is decidable whether such a sentence ϕ is satisfied in a model with flow of
time 〈R, <〉 and finite domain: that is, TLfin(R) ∩ T L′ is decidable.

The proof will occupy most of this section. The method is model-theoretic, based on that
of [11, 23, 28]; see also [16, chapter 6.9]. Very roughly, the idea of the proof is as follows. By
Theorem 29, we need only decide whether there is a finitary quasimodel of a given sentence
ϕ ∈ T L′ with flow of time 〈R, <〉. Such a quasimodel consists of a finite set of runs over 〈R, <〉,
a ‘snapshot’ of the runs at any moment of time giving a finitely realizable state candidate.
Thus, the finitely realizable state candidate gives an instantaneous description of the runs in
the quasimodel. We will show how to describe the runs over longer intervals of R, ranging
from one-point intervals as above, to the whole of R. We may decide whether each possible
description of the runs is satisfiable: for one-point intervals, using the algorithm deciding
T L′, and for more complex ones by decomposing them into simpler parts for which we can
already decide satisfiability (cf. Lemma 46(2,4) below). We will then show that a description
of the runs on the whole of R can always be built up in finitely many steps from instantaneous
descriptions (finitely realizable state candidates)—cf. Lemma 46(3). Combining these ideas
serves to prove Theorem 36; formally, the theorem follows from Lemma 46.

Decidability over various other flows of time or classes of flows of time reduce to Theo-
rem 36.
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Corollary 37. Let T L′ ⊆ T L1 and suppose that there is an algorithm deciding, for any
T L′-sentence ϕ, whether an arbitrarily-given state candidate for ϕ is finitely realizable. Then
it is decidable whether a T L′-sentence is satisfied in a model with finite domain and with any
of the following (classes of) flows of time:

1. 〈N, <〉,

2. 〈Z, <〉,

3. 〈Q, <〉,

4. the class of all finite linear orders,

5. any first-order-definable class of linear orders.

Proof We prove part 1. Given ϕ, introduce a new propositional variable p, and define the
T L1-sentence

ν = �¬(>Sp) ∧ �(>Up ∧ ¬pS> ∧ ¬pU>),

where �ψ abbreviates ψ ∨ >Uψ ∨ >Sψ and �ψ abbreviates ¬�¬ψ. So ν states that p is
bounded below, unbounded above, and that there is no accumulation point of p. Clearly, the
models of ν with flow of time 〈R, <〉 are precisely those in which the interpretation of p is
isomorphic to 〈N, <〉. Now define the relativization ϕp of the temporal connectives in ϕ to
p, by induction in the usual way: αp = α for atomic α, (¬ψ)p = ¬ψp, (ψ1 ∧ ψ2)p = ψp1 ∧ ψ

p
2 ,

(∀xψ)p = ∀xψp, and (ψ1Uψ2)p = (p → ψp1)U(p ∧ ψp2), plus a similar clause for S. Then it is
easily seen that ϕ has a model with flow of time 〈N, <〉 and finite domain iff ν ∧ ϕp has a
model with flow of time 〈R, <〉 and finite domain. This proves part 1.

Parts 2 and 4 of the corollary are proved by similar reductions. For part 5, we also use
the downward Löwenheim–Skolem–Tarski theorem (as in Theorem 15) and the expressive
completeness of U and S over 〈R, <〉 [26, 16]. Part 3 follows, because ϕ has a model with
dense flow of time without endpoints (a first-order definable property) iff it has a model over
〈Q, <〉. The details are left to the interested reader. 2

This gives an alternative proof of Theorem 26.

7.1 3-theories

We begin our proof of Theorem 36 with the definitions needed to describe runs over intervals
of R. To simplify notation, we will frequently identify (notationally) a structure with its
domain: hence, we write W rather than F = 〈W,<〉 for a linear order.

Let Lϕ denote the first-order language (with equality, say, though it is immaterial for our
purposes) in the signature {<,Rψ : ψ ∈ subxϕ}, where the Rψ are unary predicates. An
Lϕ-order is an Lϕ-structure M = 〈W,RMψ : ψ ∈ subxϕ〉 where W is a linear order and the
RMψ are subsets of W .

Definition 38 (3-theory). A 3-theory (in Lϕ) is a set σ of first-order Lϕ-sentences of the
form 3-th(M) = {θ : θ an Lϕ-sentence of quantifier depth at most 3, M |= θ}, for some
Lϕ-order M .
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Up to logical equivalence, there are finitely many 3-theories. Note that by definition, any
3-theory has a model. Let T be the set of types for ϕ; recall that T is finite, with |T | ≤ [(ϕ).
If W is a linear order and r : W → T , define the Lϕ-order Mr to be

〈W, {w ∈W : ψ ∈ r(w)} : ψ ∈ subxϕ〉.

That is, Mr has underlying order W , and Mr |= Rψ(w) iff ψ ∈ r(w), for w ∈ W and
ψ ∈ subxϕ. We let 3-th(r) denote 3-th(Mr).

Definition 39 (endpoints, degenerate). Let σ be a 3-theory. We say that σ has a left endpoint
if σ ` ∃x∀y¬(y < x), that σ has a right endpoint if σ ` ∃x∀y¬(x < y), and we say that σ is
degenerate if σ ` ∀xy¬(x < y).

Let I be a linear order and Mi = 〈Wi, R
i
ψ : ψ ∈ subxϕ〉 (i ∈ I) be Lϕ-orders. We write∑

i∈IMi for the Lϕ-order M with underlying order W =
⋃
i∈IWi×{i}, ordered lexicograph-

ically by 〈w, i〉 < 〈w′, j〉 iff either i < j, or i = j and w < w′ in Wi, and with M |= Rψ(〈w, i〉)
iff Mi |= Rψ(w), for 〈w, i〉 ∈ W and ψ ∈ subxϕ. We write the underlying order of M as∑

i∈IWi. When I = {0, 1} with 0 < 1, we write simply M0 +M1 and W0 +W1.
A well-known Feferman–Vaught argument (see, e.g., [25, Theorem A.6.2]) shows that

if Mi, Ni (i ∈ I) are Lϕ-orders and 3-th(Mi) = 3-th(Ni) for all i, then 3-th(
∑

i∈IMi) =
3-th(

∑
i∈I Ni). Hence, we may use the following notation. Let I be a linear order and for

each i ∈ I let σi be a 3-theory. We write
∑

i∈I σi for the unique 3-theory σ such that
σ = 3-th(

∑
i∈IMi) for any Lϕ-orders Mi |= σi (i ∈ I).

As with Lϕ-orders, we write σ0 + σ1 when I = {0, 1} with 0 < 1.

7.2 Characters

Given a state function f for ϕ over a linear orderW (Definition 10), a run r in f (Definition 11)
is completely described by the Lϕ-order Mr. The 3-theory 3-th(r) does not completely deter-
mine r, but it does carry a great deal of information about r. For example, for an arbitrary
function r : W → T with f(w) ∈ Tw where f(w) = 〈Tw, T conw 〉, 3-th(r) determines whether r
is a run in f , and whether ϕ ∈ r(w) for some w ∈W . Moreover, 3-theories are finite syntactic
objects and can be used in algorithms. So we will use them to represent quasimodels.

We aim to decide satisfiability of ϕ by deciding whether a (finitary) quasimodel for ϕ
exists. Such a quasimodel consists chiefly of a set of runs, and it can be described by a
set of 3-theories—simply the 3-theories of the runs in the quasimodel. The quasimodel also
contains distinguished runs associated with constants, so we will also distinguish certain of
the descriptive 3-theories. This leads us to the following definition.

Definition 40 (character).

1. A character is a pair 〈S, Scon〉, where S is a set of 3-theories and Scon : conϕ→ S is a
function. There are only finitely many characters.

2. A character 〈S, Scon〉 is said to have a left (right) endpoint if every σ ∈ S has a left
(right) endpoint.

3. A character 〈S, Scon〉 is said to be degenerate if

• each σ ∈ S is degenerate,

24



• for each σ ∈ S, the set tσ = {ψ ∈ subxϕ : σ ` ∃xRψ(x)} is a type for ϕ,
•
〈
{tσ : σ ∈ S}, {〈tScon(c), c〉 : c ∈ conϕ}

〉
is a finitely realizable state candidate for

ϕ.

A finitary quasimodel for ϕ is formally a state function f on a linear order W whose values
are finitely realizable state candidates, together with a finite set R of runs in f . We may
‘restrict’ such a quasimodel to any suborder W ′ of W , by restricting f and the runs in R to
W ′. In general, such a restriction need not be a quasimodel (we will call it a ‘pre-quasimodel’),
but it still has a character associated with it in the same way as for a full quasimodel, by
taking the 3-theories of the restrictions of the runs to W ′. The smallest possibility is when
W ′ consists of a single point of W—the restriction of the quasimodel to W ′ is then essentially
a finitely realizable state candidate, and the associated character is degenerate.

We aim to try to build a quasimodel for ϕ from smaller pre-quasimodels which are re-
strictions of it. These smaller pre-quasimodels are in turn built from even smaller ones,
and so on, leading eventually to one-point restrictions. We will calculate the character of
each successively larger pre-quasimodel from the characters of the next smaller ones, start-
ing from degenerate characters describing the one-point restrictions, and stopping when the
character tells us that we have a genuine quasimodel. The allowed operations in building a
pre-quasimodel from smaller ones are, roughly speaking: concatenating two pre-quasimodels;
iterating a fixed pre-quasimodel ω times, forwards or backwards; and merging finitely many
pre-quasimodels together in a densely-ordered ‘shuffle’. We note that these operations can in
general be effected in more than one way, so are non-deterministic, and that certain precon-
ditions borrowed from [11] have to be met in order to ensure that the final quasimodel has
order-type R.

Since we are representing pre-quasimodels by their characters, we need to calculate the
character of a pre-quasimodel resulting from smaller ones by these operations. The following
definition will allow us to do this. The building operations cited above are represented by
clauses (iv)–(vii) in the definition. We should note that there can be more than one pre-
quasimodel with a given character, and given that the building operations are also non-
deterministic, the character of the resulting pre-quasimodel is not uniquely determined by
the characters of the smaller ones. Therefore, we define only a relation ‘≡’ between the
‘input’ and ‘output’ characters, not a function.

We will need the notion of a condensation of R: namely, a linear order 〈I,<〉 where I is
the set of equivalence classes of some equivalence relation on R whose equivalence classes are
convex, the ordering < on I being induced from the ordering on R in the obvious way. For
more information on condensations see, e.g., [39].

Definition 41 (≈, ≡). Let I be a linear order, and χ = 〈S, Scon〉 and χi = 〈Si, Sconi 〉 (i ∈ I)
be characters. We write χ ≈

∑
i∈I χi if

(i) for each c ∈ conϕ, Scon(c) =
∑

i∈I S
con
i (c),

(ii) for each σ ∈ S there are σi ∈ Si (i ∈ I) such that σ =
∑

i∈I σi,

(iii) for all i ∈ I and σi ∈ Si, there are σj ∈ Sj (j ∈ I \ {i}) such that
∑

j∈I σj ∈ S.

We write χ ≡
∑

i∈I χi if one of the following holds:

(iv) I is a 2-element order, say {0, 1} with 0 < 1, either χ0 has a right endpoint or χ1 a left
endpoint (not both), and χ ≈ χ0 + χ1,
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(v) I = 〈N, <〉, χi = χ0 for all i ∈ N, χ0 has either a left or a right endpoint (not both),
condition (i) above holds, and S = {

∑
i∈I σi : σi ∈ S0, σi = σ0 for all i ∈ I}.

(vi) As for (v) but with I = 〈N, >〉.

(vii) I is a dense condensation of 〈R, <〉 without endpoints, conditions (i) and (ii) above
hold, and for all i ∈ I (so that i is a convex subset of R):

• i and χi have a left and a right endpoint,

• i is a singleton subset of R iff σ ` ∀xy¬(x < y) for all σ ∈ Si,
• for each σ ∈ Si there are σj ∈ Sj (j ∈ I) with

∑
j∈I σj ∈ S, 〈χj , σj〉 = 〈χi, σ〉 for

some j ∈ I, and for each j ∈ I, the set {k ∈ I : 〈χk, σk〉 = 〈χj , σj〉} is dense in I.

We will see later that the conditions for χ ≡
∑

i∈I χi are decidable.

7.3 Legal and perfect characters

We now define those characters that are reachable from degenerate ones by finitely many
applications of Definition 41.

Definition 42 (legal character). Let Λ denote the smallest set of characters containing all
degenerate characters and such that if I is a linear order, χi ∈ Λ for i ∈ I, and χ ≡

∑
i∈I χi,

then χ ∈ Λ. A character χ is said to be legal if χ ∈ Λ.

We also define those characters that may be descriptions of quasimodels.

Definition 43 (perfect character). A character χ = 〈S, Scon〉 is said to be perfect if for every
σ ∈ S,

• σ ` ∀x(Rψ1Uψ2(x) ↔ ∃y(x < y ∧ Rψ2(y) ∧ ∀z(x < z < y → Rψ1(z)))) for every
ψ1Uψ2 ∈ subxϕ,

• σ ` ∀x(Rψ1Sψ2(x) ↔ ∃y(y < x ∧ Rψ2(y) ∧ ∀z(y < z < x → Rψ1(z)))) for every
ψ1Sψ2 ∈ subxϕ,

• σ ` ∀x∃y, z(y < x < z),

and for some σ ∈ S we have σ ` ∃xRϕ(x).

By an interval of R we mean a linear order whose domain is a non-empty convex subset of
R, the ordering on it being induced from 〈R, <〉. We will often abuse notation by identifying
the subset of R with the linear order. Note that up to isomorphism there are just five
intervals of R, represented by [0, 1], [0, 1), (0, 1], (0, 1), and {0}. Here and below, we use
standard notation for intervals: [x, y) = {z ∈ R : x ≤ z < y} if x ≤ y, etc.

Characters describe runs over some interval of a potential finitary quasimodel. We now
make this precise.

Definition 44 (pre-quasimodel). A pre-quasimodel is a triple p = 〈W, f,R〉, where W is
a linear order isomorphic to an interval of R, f is a state function for ϕ over W , f(w) =
〈Tw, T conw 〉 is a finitely realizable state candidate for ϕ for each w ∈ W , and R is a finite set
of functions r : W → T , satisfying the conditions:
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• r(w) ∈ Tw for every r ∈ R, w ∈W ,

• for each c ∈ conϕ, the map rfc : W → T defined by rfc (w) = t, where 〈t, c〉 ∈ T conw , is in
R,

• for each w ∈W and t ∈ Tw there is r ∈ R with r(w) = t.

Definition 45 (model of a character). Let p = 〈W, f,R〉 be a pre-quasimodel for ϕ, and let
χ = 〈S, Scon〉 be a character. We write p |= χ if

• 3-th(rfc ) = Scon(c) for each c ∈ conϕ,

• {3-th(r) : r ∈ R} = S.

7.4 The main lemma

We will prove:

Lemma 46.

1. If χ is a perfect character, p = 〈W, f,R〉 is a pre-quasimodel, and p |= χ, then 〈f,R〉 is
a finitary quasimodel for ϕ over W in which ϕ is satisfied, and W ∼= 〈R, <〉.

2. If χ is a legal character, then there exists a pre-quasimodel p with p |= χ.

3. If 〈f,R〉 is a finitary quasimodel for ϕ over 〈R, <〉 in which ϕ is satisfied, then there is
a legal perfect character χ with 〈〈R, <〉 , f,R〉 |= χ.

4. Given an oracle that determines whether a given state candidate for ϕ is finitely real-
izable, it is decidable whether there exists a legal perfect character. The algorithm is
uniform in ϕ.

Theorem 29 and parts 1–3 of the lemma show that ϕ has a model with flow of time 〈R, <〉
and finite domain iff there exists a perfect legal character. By part 4 of the lemma, given
T L′ ⊆ T L1 and an algorithm that decides for any sentence ϕ ∈ T L′ whether a given state
candidate for ϕ is finitely realizable, it is decidable whether such a character exists. Hence,
Theorem 36 follows from Lemma 46.

7.5 Proof of Lemma 46(1)

This is straightforward. Let χ = 〈S, Scon〉 be a perfect character, p = 〈W, f,R〉 a pre-
quasimodel, and let p |= χ. Then by the definitions, R is finite, and if r ∈ R we have
3-th(r) ∈ S and so r is a run in f . So m = 〈f,R〉 is a finitary quasimodel for ϕ over W . Let
σ ∈ S be such that σ ` ∃xRϕ(x), and let r ∈ R satisfy 3-th(r) = σ. Then clearly, ϕ ∈ r(w)
for some w ∈W , so that ϕ is satisfied in m. Since σ ` ∀x∃yz(y < x < z), W is isomorphic to
an interval of R and has no endpoints, so we must have W ∼= 〈R, <〉.
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7.6 Proof of Lemma 46(2)

Here, we prove the ‘soundness’ part of Lemma 46. (Some may wonder if it should be called
‘completeness’.) We will show that if χ is a legal character then there is a pre-quasimodel
p |= χ. By definition of Λ, it suffices to prove that this holds for any degenerate χ, and that
if I is a linear order, χi (i ∈ I) are characters having pre-quasimodels, and χ ≡

∑
i∈I χi, then

p |= χ for some pre-quasimodel p.

Let χ = 〈S, Scon〉 be a degenerate character. As in Definition 40, for σ ∈ S let tσ = {ψ ∈
subxϕ : σ ` ∃xRψ(x)}, a type for ϕ. Let W be a one-point ordering with domain {w}, define
f(w) to be the finitely realizable state candidate

〈
{tσ : σ ∈ S}, {〈tScon(c), c〉 : c ∈ conϕ}

〉
for

ϕ, and for σ ∈ S define rσ : W → T by rσ(w) = tσ.
Observe that 3-th(rσ) = σ. For, by definition of Mrσ , for every ψ ∈ subxϕ we have

Mrσ |= Rψ(w) iff ψ ∈ rσ(w) iff σ ` ∃xRψ(x). As σ ` ∀xy¬(x < y), we see that if N |= σ then
N ∼= Mrσ . Since such an N exists, we have Mrσ |= σ. Hence, 3-th(rσ) = 3-th(Mrσ) = σ.

As W is isomorphic to a (one-point) interval of R, p = 〈W, f, {rσ : σ ∈ S}〉 is evidently a
pre-quasimodel, and p |= χ.

For the inductive step, let I be a linear order and χ = 〈S, Scon〉, χi = 〈Si, Sconi 〉, pi =
〈Wi, fi,Ri〉 characters and pre-quasimodels with pi |= χi (for all i ∈ I), and suppose that
χ ≡

∑
i∈I χi. We will define a pre-quasimodel 〈W, f,R〉 and show that 〈W, f,R〉 |= χ.

Let W =
∑

i∈IWi. We show first that (∗) W is isomorphic to an interval of R. If I is
the order 0 < 1, then our assumptions show that either W0 has a right endpoint or W1 a left
endpoint, and not both, so that (∗) is clear. (For example, if W0

∼= [0, 1] and W1
∼= (1, 2)

then W ∼= [0, 2), an interval of R.) If I = 〈N, <〉, then each Wi has a left (say) endpoint,
so again,

∑
i∈IWi is isomorphic to an interval of R; the case I = 〈N, >〉 is similar. Finally,

suppose that I is a dense condensation of R without endpoints whose elements have left and
right endpoints. Then by definition of ≡, Wi

∼= i for each i ∈ I, so (∗) follows. All cases in
the definition of ≡ are now covered, and we are done.

For any functions gi defined on Wi (i ∈ I), we write
∑

i∈I gi for the function g on W
defined by g(〈w, i〉) = gi(w).

Lemma 47. If ri : Wi → T (i ∈ I), then 3-th(
∑

i∈I ri) =
∑

i∈I 3-th(ri).

Proof Write r for
∑

i∈I ri. By definition, 3-th(r) = 3-th(Mr) and 3-th(ri) = 3-th(Mri) for
each i ∈ I. Clearly, Mr =

∑
i∈IMri . So

∑
i∈I 3-th(ri) is by definition 3-th(r). 2

Define a state function f =
∑

i∈I fi on W , and write f(w) = 〈Tw, T conw 〉 for w ∈ W . The
definition of R will divide into cases according to the parts of the definition of ≡, but in all
cases we will arrange that each r ∈ R has the form

∑
i∈I ri for some ri ∈ Ri (i ∈ I), and that

rfc ∈ R for each c ∈ conϕ. Given this much, we can already check that:

r(w) ∈ Tw for all r ∈ R, w ∈W, (11)
3-th(rfc ) = Scon(c). (12)

For (11), let 〈w, i〉 ∈W and r =
∑

i∈I ri ∈ R. Then fi(w) = f(〈w, i〉) = 〈T〈w,i〉, T con〈w,i〉〉. So as
pi is a pre-quasimodel, r(〈w, i〉) = (

∑
i∈I ri)(〈w, i〉) = ri(w) ∈ T〈w,i〉, as required. For (12), as

pi |= χi for each i, we have 3-th(rfi
c ) = Sconi (c). By the definitions and Lemma 47, we obtain

rfc =
∑

i∈I r
fi
c ,

3-th(rfc ) = 3-th
(∑

i∈I r
fi
c

)
=
∑

i∈I 3-th(rfi
c ) =

∑
i∈I S

con
i (c) = Scon(c) ∈ S.

}
(13)

28



Now we go through the cases of Definition 41, defining R and checking that p = 〈W, f,R〉
is a pre-quasimodel and p |= χ.

4. (I = {0, 1}) We define R = {r0 + r1 : r0 ∈ R0 r1 ∈ R1, 3-th(r0 + r1) ∈ S}. This is
clearly finite, since R0, R1 are finite.

• By (13), rfc ∈ R.

• Let w ∈W and t ∈ Tw; we seek r ∈ R with r(w) = t. Let w = 〈w′, i〉 for w′ ∈Wi,
i ∈ I. As pi is a pre-quasimodel, there is ri ∈ Ri with ri(w′) = t. As pi |= χi,
3-th(ri) = σi ∈ Si. As χ ≈ χ0 + χ1, there is σ1−i ∈ S1−i with σ0 + σ1 ∈ S, and
as p1−i |= χ1−i, there is r1−i ∈ R1−i with 3-th(r1−i) = σ1−i. Then by Lemma 47,
r = r0 + r1 satisfies

3-th(r) = 3-th(r0 + r1) = 3-th(r0) + 3-th(r1) = σ0 + σ1 ∈ S,

so clearly, r ∈ R and r(w) = ri(w′) = t.

• To prove S = {3-th(r) : r ∈ R}, we only need check ‘⊆’—that if σ ∈ S then there
is r ∈ R with σ = 3-th(r). By condition (ii) of Definition 41, there are σi ∈ Si
(i = 0, 1) with σ = σ0 +σ1, and since pi |= χi, there are ri ∈ Ri with 3-th(ri) = σi,
for each i. We may take r = r0 + r1.

5. (I = 〈N, <〉) We may assume that pi = p0 for all i ∈ I, since χi = χ0. We define

R = {r : r =
∑
i∈I

ri for some ri ∈ Ri (i ∈ I), ri = r0 for all i, 3-th(r) ∈ S}.

Clearly, |R| ≤ |R0|, so R is finite.

• If c ∈ conϕ then rfi
c = rf0c for all i ∈ I, since pi = p0. It now follows from (13) that

rfc ∈ R.

• We let w ∈W and t ∈ Tw and find r ∈ R with r(w) = t. Suppose that w = 〈w′, n〉,
for w′ ∈ Wn, n ∈ N. As pn is a pre-quasimodel, we may pick rn ∈ Rn with
rn(w′) = t. As pn |= χn, 3-th(rn) ∈ Sn. Define ri = rn for all i ∈ I. Then
by definition of ≡, 3-th(

∑
i∈I ri) =

∑
i∈I 3-th(ri) ∈ S, so r =

∑
i∈I ri ∈ R and

r(w) = rn(w′) = t.

• By definition of ≡, each σ ∈ S has the form
∑

i∈I σi for σi ∈ Si (i ∈ I) with all σi
equal to σ0. By p0 |= χ0, there is r0 ∈ R0 with 3-th(r0) = σ0. Let ri = r0, for each
i, and r =

∑
i∈I ri. Then 3-th(r) = σ, so r ∈ R. Hence, S ⊆ {3-th(r) : r ∈ R},

and the converse inclusion is clear by definition of R.

6. (I = 〈N, >〉) This is similar to the preceding case.

7. (I is a dense condensation of R) This is the most involved case. Again, we may as well
suppose that if χi = χj then pi = pj , for i, j ∈ I. The definition of R has two parts.
First, observe that by Definition 41(ii), for each σ ∈ S there are σi ∈ Si (i ∈ I) such
that σ =

∑
i∈I σi. For each i, pick ri ∈ Ri with 3-th(ri) = σi, and let rσ =

∑
i∈I ri.

Next, noting that it follows from the definition of ≡ that for each character χ, the set
Iχ = {i ∈ I : χi = χ} is either empty or dense in I, choose an equivalence relation ∼ on
I with the properties:
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(∗) ∀i, j ∈ I (i ∼ j ⇒ χi = χj),
for all i ∈ I, Iχi is partitioned by ∼ into |Si| equivalence classes, each dense in I.

If ri ∈ Ri for i ∈ I, the sequence (ri)i∈I is said to be simple if i ∼ j implies ri = rj , for
all i, j ∈ I. Note that there are only finitely many simple sequences. We let

R = {rσ : σ ∈ S} ∪
{∑
i∈I

ri : (ri)i∈I a simple sequence, 3-th(
∑
i∈I

ri) ∈ S
}
.

• Observe that if c ∈ conϕ then by (∗), (rfi
c )i∈I is simple, so by (13) as before,

rfc ∈ R.

• Since by Lemma 47, 3-th(rσ) = σ ∈ S, we have S = {3-th(r) : r ∈ R}.
• Let 〈w, j〉 ∈ W , and t ∈ Tw. We require r ∈ R with r(〈w, j〉) = t. As pj is a

pre-quasimodel, we may pick rj ∈ Rj with rj(w) = t. By Definition 41(vii), there
are σi ∈ Si for i ∈ I such that

∑
i∈I σi ∈ S, 〈χi, σi〉 = 〈χj , 3-th(rj)〉 for some i ∈ I,

and {k ∈ I : 〈χk, σk〉 = 〈χi, σi〉} is dense in I for each i ∈ I. We may therefore
choose a new equivalence relation ∼′ on I satisfying the conditions (∗), such that
if i ∼′ i′ then σi = σi′ . So, writing i/∼′ for the ∼′-class of i (and similarly for
∼), we may define σi/∼′ to be σi, for i ∈ I. Let Iχ/∼ denote the set of ∼-classes
contained in Iχ, and define Iχ/∼′ similarly. By (∗), |Iχ/∼| = |Iχ/∼′| for every χ,
and we know that 3-th(rj) = σe for some e ∈ Iχj/∼′. Since j ∈ Iχj , we may pick
a bijection θ : I/∼ → I/∼′ such that

(a) θ(Iχ/∼) = Iχ/∼′, for all characters χ,
(b) θ(j/∼) = e, so that σθ(j/∼) = 3-th(rj).

Now pick ri ∈ Ri for each i ∈ I \ {j} in such a way that ∀i ∈ I(3-th(ri) =
σθ(i/∼) ∈ Si) and ∀i, k ∈ I (i ∼ k ⇒ ri = rk). Thus, the sequence (ri)i∈I is
simple. For every i ∈ I, the set {k ∈ I : 〈χk, 3-th(rk)〉 = 〈χi, 3-th(ri)〉} contains
i/∼, so by (∗) it is dense in I. We saw that an analogous property holds for
(σi)i∈I . A Feferman–Vaught argument (cf. [25, Theorem A.6.2]) now shows that∑

i∈I 3-th(ri) =
∑

i∈I σi ∈ S. Hence, r =
∑

i∈I ri ∈ R, and r(〈w, j〉) = rj(w) = t.
Remark 48. This part of the argument seems to fail in the arbitrary-domain case—
there is no obvious analogue for the last, density condition of Definition 41(vii) in
that case. This does not necessarily mean that the finite-domain case is ‘easier’,
as opposed to ‘different’. We conjecture that the argument of the first half of [11]
may apply in arbitrary domains.

7.7 Proof of Lemma 46(3)

The argument is very similar to one in [11]. Let m = 〈f,R〉 be a finitary quasimodel
for ϕ over 〈R, <〉 in which ϕ is satisfied. For any interval E of R, we write m�E for
〈E, f�E, {r�E : r ∈ R}〉; note that m�E is a pre-quasimodel. We write χE for the charac-
ter

χE =
〈
{3-th(r�E) : r ∈ R}, (c 7→ 3-th(rfc �E))c∈conϕ

〉
.

It is clear that m�E |= χE for all E, and that χR is perfect. We are going to show that χR is
legal.
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Lemma 49. Let I be a linear order and let Ei be an interval of R for each i ∈ I, such that
E =

⋃
i∈I Ei is also an interval of R, and x < y whenever i < j in I, x ∈ Ei, and y ∈ Ej.

Then

1. 3-th(r�E) =
∑

i∈I 3-th(r�Ei) for each r ∈ R,

2. χE ≈
∑

i∈I χEi.

Proof Let r ∈ R. Then by definition, 3-th(r�E) = 3-th(Mr�E) and 3-th(r�Ei) = 3-th(Mr�Ei)
for each i. Clearly, Mr�E =

∑
i∈IMr�Ei . So

∑
i∈I 3-th(r�Ei) is by definition 3-th(r�E).

We now check that χE ≈
∑

i∈I χEi . Let χE = 〈S, Scon〉, and χEi = 〈Si, Sconi 〉 for i ∈ I.
If c ∈ conϕ, then by definition, Scon(c) = 3-th(rfc �E) and Sconi (c) = 3th(rfc �Ei) for i ∈ I. Of
course, rfc ∈ R. By part 1, we conclude that Scon(c) =

∑
i∈I S

con
i (c).

Parts (ii) and (iii) of Definition 41 follow easily from the fact that

S = {3-th(r�E) : r ∈ R} =
{∑
i∈I

3-th(r�Ei) : r ∈ R
}
. (14)

2

Definition 50 (good interval). We say that an interval E of R is good if χE is legal.

Lemma 51. Any one-point interval of R is good.

Proof Let E be such, with domain {e}; we claim that χE = 〈S, Scon〉, say, is degenerate.
Each σ ∈ S has the form 3-th(r�E) for some r ∈ R. Then Mr�E |= ∀xy¬(x < y), so
σ = 3-th(Mr�E) is degenerate. Further,

tσ = {ψ ∈ subxϕ : σ ` ∃xRψ(x)} = {ψ ∈ subxϕ : Mr�E |= Rψ(e)} = r(e),

a type for ϕ. As m is a finitary quasimodel for ϕ,〈
{tσ : σ ∈ S}, {〈tScon(c), c〉 : c ∈ conϕ}

〉
=
〈
{r(e) : r ∈ R}, {〈rfc (e), c〉 : c ∈ conϕ}

〉
= f(e),

a finitely realizable state candidate for ϕ. 2

Lemma 52. Assume the conditions of Lemma 49, that I = {0, 1} with 0 < 1, and that E0

and E1 are good. Then E is good too.

Proof It suffices to prove that χE ≡ χE0 + χE1 .
As E is an interval of R, either E0 has a right endpoint or E1 a left endpoint. Assume

the former; the other case is similar. If r ∈ R then by definition, 3-th(r�E0) = 3-th(Mr�E0),
so as Mr�E0 |= ∃x∀y¬(x < y), 3-th(r�E0) ` ∃x∀y¬(x < y). Hence, χE0 has a left endpoint.

By Lemma 49(2), χE ≈ χE0 + χE1 , and we conclude that χE ≡ χE0 + χE1 . 2

Lemma 53. Again assume the conditions of Lemma 49, that I ∈ {〈N, <〉 , 〈N, >〉 , 〈Z, <〉},
and that every Ei (i ∈ I) is good. Then E is good.
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Proof We only consider the case I = 〈N, <〉; the case 〈N, >〉 is similar, and 〈Z, <〉 is handled
using 〈N, >〉, 〈N, <〉, and Lemma 52. For i < j in N, write Eij for the interval

⋃
i≤k<j Ek of

R. By Lemma 52 and induction on j− i, Eij is good. There are only finitely many characters,
so by Ramsey’s theorem [37], there is infinite X ⊆ N such that χEij is constant for all i < j
in X. Let x ∈ X be minimal. As E0,x is good, by Lemma 52 it suffices to prove that

⋃
i≥xEi

is good. Therefore, by renaming, we may assume that χEij is constant for all i < j in N. As
R is finite, we may further assume (by Ramsey’s theorem) that for each r ∈ R, 3-th(r�Eij)
is the same for all i < j in N.

We will show that χE ≡
∑

i∈I χEi .
We know that χEi = χE0 for all i ∈ I. Since E0, E1 are disjoint convex subsets of R

whose union is convex, either E0 has a right endpoint or E1 a left endpoint—and not both.
It follows as in Lemma 49 that χE0 has either a left or right endpoint.

Let χE = 〈S, Scon〉 and χEi = 〈Si, Sconi 〉 for i ∈ I, as usual.

• By Lemma 49, Scon(c) = 3-th(rfc �E) =
∑

i∈I 3-th(rfc �Ei) =
∑

i∈I S
con
i (c) for each c ∈

conϕ.

• S = {
∑

i∈I σi : σi ∈ S0, σi = σ0 for all i ∈ I} is true because (14) holds, and by the
above, r�Ei = r�E0 for each r ∈ R, i ∈ I.

Now Definition 41(v) gives χE ≡
∑

i∈I χEi . Since the χEi are assumed legal, so is χE , and
we conclude that E is good. 2

Definition 54. We define a binary relation ∼ on R by x ∼ y iff x = y, or x < y and every
convex subset contained in [x, y] is good, or y < x and every convex subset contained in [y, x]
is good.

Lemma 55. ∼ is an equivalence relation on W , and any ∼-class is itself an interval of R.

Proof Only transitivity needs a proof. Assume that x ∼ y ∼ z in R; we check that x ∼ z.
There are various cases, depending on the order-type of x, y, z. If x < z < y, it is clear.
Assume that x < y < z, let E be a convex subset of [x, z], E0 = E∩ [x, y), and E1 = E∩ [y, z].
If either E0 or E1 is empty, then certainly E is good. Otherwise, we are in the situation of
Lemma 52, so again E is good. The other cases are similar. Hence, x ∼ z, as required.

It is clear by definition that any ∼-class is convex. 2

Lemma 56. Any subinterval E of any ∼-class is good.

Proof There are four cases, depending on the endpoints of E. If E = [x, y] for some x < y
in R, then x ∼ y and the result is trivial. Assume that E has a left-hand endpoint x0 but no
right-hand endpoint. Choose an increasing sequence x0 < x1 < · · · in E, of order type 〈N, <〉
and unbounded in E, and let Ei = [xi, xi+1). Since xi ∼ xi+1, Ei is good. Now we are in the
situation of Lemma 53, and we conclude that E is good. The other two cases, when E has
no left-hand endpoint, can be covered using the cases 〈N, >〉 and 〈Z, <〉 of Lemma 53. 2

Lemma 57. Each ∼-class is a closed interval of R.
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Proof Let E be a ∼-class, and suppose that E has a least upper bound b ∈ R. We show
that b ∈ E. Take e ∈ E, and any interval D of R with D ⊆ [e, b]. Lemma 56 shows that
D ∩ E is good. If D ⊆ E, we are done. Otherwise, D = (D ∩ E) ∪ {b}, and Lemmas 51, 52,
and 56 show that D is good. So b ∼ e and b ∈ E.

Similarly, E contains any greatest lower bound for it. So it is closed. 2

We aim to show that R is a single ∼-class. To this end, assume not: so the condensation
C = R/∼ given by ∼ has at least two elements. Because R is dense, Lemma 57 now shows
that C is a dense ordering. Enumerate R as 〈rn : n < N〉, and choose an open interval I of
C such that the finite set

{〈χE , 3-th(rn�E) : n < N〉 : E ∈ I}

has least possible cardinality. It follows that for each open interval J ⊆ I and each sequence
ξ = 〈χ, σn : n < N〉 of a character and N 3-theories, {E ∈ J : 〈χE , 3-th(rn�E) : n < N〉 = ξ}
is empty or dense in J .

It can now be seen that χS
J ≡

∑
E∈J χE by dint of Definition 41(vii). Certainly, J is

isomorphic to a dense condensation of 〈R, <〉 without endpoints. By Lemma 49(2), condi-
tions (i) and (ii) hold. By Lemma 57, each E ∈ J has a right and a left endpoint, and
since if r ∈ R and E ∈ J then Mr�E |= 3-th(r�E) and the underlying order of Mr�E is E,
χE has left and right endpoints too. Similarly, |E| = 1 iff 3-th(r�E) ` ∀xy¬(x < y) for
all r ∈ R. The last part of Definition 41(vii) holds because for any r ∈ R and E ∈ J ,
{E′ ∈ J : 〈χE′ , 3-th(r�E′)〉 = 〈χE , 3-th(r�E)〉} is dense in J .

So
⋃
J is good. By Lemma 56, each E ∈ J is good, and Lemma 52 now shows that if J

is any subinterval of I then
⋃
J is good.

Take x < y in
⋃
I with x 6∼ y. So there is an interval X ⊆ [x, y] that is no good. Let

X = {E ∈ I : E ⊆ X}. ThenX is a subinterval of I, so
⋃
X is good. LetX< = {z ∈ X : z < v

for all v ∈
⋃
X}, and define X> similarly. By Lemma 56, X< and X> are good. We have

X = X< +
⋃
X +X>, so by Lemma 52, X is itself good, a contradiction.

Hence indeed, R is a single ∼-class, so is good—χR is legal. This completes the proof.

7.8 Proof of Lemma 46(4)

Assume that we have an oracle telling whether a given state candidate for ϕ is finitely real-
izable. We show how to use it to decide whether there exists a legal perfect character. The
decision procedure is uniform in ϕ. Our method is to reduce the problem to the satisfiability
of certain existential monadic second-order sentences in 〈R, <〉. By [11, Theorem 2.9(d)], such
problems are decidable. This reduction is quite quick to present, avoiding several semantic
subtleties, but since [11] uses much the same methods as here, it is a very convoluted way of
obtaining decidability. It is easy but tedious to give a more direct algorithm.

Recall that up to logical equivalence there are finitely many 3-theories. Indeed, we may
easily construct from ϕ a finite set T of Lϕ-sentences of quantifier depth at most 3, closed
under single negations and containing every such sentence up to logical equivalence, and in
particular containing the sentences ∃x∀y¬(y < x), ∃x∀y¬(x < y), ∀xy¬(x < y), and ∃xRψ(x)
for ψ ∈ subxϕ, and their negations. Any 3-theory can be taken to be a certain subset of T , and
a character a pair 〈S, Scon〉 where S ⊆ ℘T (℘ denotes the power set) and Scon : conϕ→ S.

Note that not every such object is a 3-theory (or character). Nonetheless, we have:
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Lemma 58. Given σ ⊆ T and χ = 〈S, Scon〉 where S ⊆ ℘T and Scon : conϕ → S, it is
decidable whether σ is a 3-theory and χ is a character.

Proof σ ⊆ T is a 3-theory iff it contains every sentence in T or its negation, and the
sentence ∃ψ∈subxϕRψ

∧
σ is true in some linear order. Hence, by the decidability of the

universal monadic second-order theory of linear order [22, 11], it is decidable whether σ is a
3-theory or not. Therefore, whether χ is a character is also decidable. 2

By this result, it suffices to show that it is decidable (using the oracle) whether a given
character is legal or perfect. We can decide by inspection whether a character is perfect. For
legality, there are two parts.

Lemma 59. Given S ⊆ ℘T and Scon : conϕ → S, it is decidable (using the oracle) whether
χ = 〈S, Scon〉 is a degenerate character.

Proof We simply check that χ is a character and that each σ ∈ S contains ∀xy¬(x <
y). Then we check by inspection (cf. Definition 5) that for each σ ∈ S, the set tσ =
{ψ ∈ subxϕ : ∃xRψ(x) ∈ σ} is a type for ϕ. Finally, we check with the oracle that〈
{tσ : σ ∈ S}, {〈tScon(c), c〉 : c ∈ conϕ}

〉
is a finitely realizable state candidate for ϕ. χ is a

degenerate character iff all these checks succeed. 2

Lemma 60. Let S be a set of characters and χ be a character. It is decidable whether there
exist a linear order I and characters χi ∈ S (i ∈ I) such that χ ≡

∑
i∈I χi.

Proof We refer to Definition 41. We can certainly decide whether a character has a left or
right endpoint. For the remainder, we need some notation. If α(x) is a first-order formula with
x and perhaps other variables free, and θ is a first-order formula, we define the relativization
θα(x) of θ to α(x) in the usual way, by first renaming variables of θ so that they do not
occur in α, and then setting θα = θ for atomic θ, (θ ∧ θ′)α = θα ∧ θ′α, (¬θ)α = ¬θα, and
(∃yθ)α = ∃y(α(y/x) ∧ θα). We will always use the variable x for relativisation, and θ will
always be a sentence, so that it is harmless to rename its variables. We note that any 3-theory
σ is satisfiable in a countable Lϕ-order, and that any countable linear order embeds in 〈R, <〉.
Hence, if P is a new unary predicate, σP (x) is true in some expansion of 〈R, <〉 interpreting
the symbols of Lϕ ∪ {P}.

Now we go through the cases in Definition 41 once more.

4. (I = {0, 1}) Introduce new unary predicates P0, P1. For 3-theories σ, σ0, σ1, we have
σ = σ0 + σ1 iff the conjunction of the following sentences is true in some expansion of
〈R, <〉: (

∧
σ0)P0(x), (

∧
σ1)P1(x), (

∧
σ)P0∨P1(x),

∧
i<2 ∃xPi(x), and ∀xy(P0(x) ∧ P1(y) →

x < y). By the result of [11] already mentioned, this is decidable. The definition of
χ ≡ χ0 + χ1 is a boolean combination of such conditions, and is therefore decidable.
So we can decide whether χ ≡ χ0 + χ1 for some χ0, χ1 ∈ S, by considering all of the
finitely many possibilities for χ0, χ1.

5. (I = 〈N, <〉) Let P,Q be new unary predicates and let ν be the conjunction of the
sentences ∀x¬(P (x) ∧ Q(x)), ∃x(Q(x) ∧ ∀y < x(¬P (y) ∧ ¬Q(y))), ∀x∃y > xQ(y),
∀x∃y < x∀z ∈ (y, x)¬Q(z), ∀x∃y > x∀z ∈ (x, y)¬Q(z), and ∀x∃y > xP (x). An
expansion of 〈R, <〉 is a model of ν iff (the interpretations of) P,Q are disjoint and
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unbounded above in R, Q has order type 〈N, <〉, and there is no P before the first Q.
Let α(x, y) be the formula P (x) ∧ ∀z((x ≤ z ≤ y ∨ y ≤ z ≤ x) → ¬Q(z)).

Let σ, σi (i ∈ I) be 3-theories with σi = σ0 for all i. Then σ =
∑

i∈I σi iff the conjunction
of the following sentences is true in some expansion of 〈R, <〉: ν, σP (x), and ∀y(P (y) →
(σ0)α(x,y)) (relativizing on x as said before). This statement is decidable, so given
characters χ, χ0 = χ1 = · · · , we can check effectively whether Scon(c) =

∑
i∈I S

con
i (c)

for all c ∈ conϕ and whether S = {
∑

i∈I σi : σi ∈ Si, σi = σ0 for all i}. Thus, whether
χ ≡

∑
i∈I χi for some χ0 = χ1 = · · · in S is decidable.

6. (I = 〈N, >〉) This is no different.

7. (I is a dense condensation of R) We will need to make copies Ls of the signature
Lϕ = {<,Rψ : ψ ∈ subxϕ}, for various objects s, by renaming the symbols Rψ. We
assume that if s 6= t then Ls ∩ Lt consists of just the symbol < for the order. If Ls is
such a copy, and θ is an Lϕ-sentence, we write θLs for the result of replacing the relation
symbols of Lϕ in θ by the corresponding ones in Ls.
For a unary predicate P , we let α(x, y, P ) be ∀z((x ≤ z ≤ y ∨ y ≤ z ≤ x) → P (z)).

Let {χ0, . . . , χn−1} be a set of characters, with n ≥ 2, and let χ = 〈S, Scon〉 be another
character. Write χi = 〈Si, Sconi 〉, as usual. Introduce new unary predicates Xi (i < n),
and consider the following sentences:

• ∀x
∨
i<n(Xi(x) ∧

∧
j 6=i ¬Xj(x)),

•
∧
i<n ∀x∃yz(y < x < z ∧Xi(y) ∧Xi(z)),

• ∀xy
∧
i6=j(x < y ∧Xi(x) ∧Xj(y) →

∧
k<n ∃z ∈ (x, y)Xk(z)).

These three say that the condensation given by ‘x ∼ y iff
∨
i<n α(x, y,Xi)’ is dense

without endpoints, and indeed that the classes included in any Xi occur densely.

• For each c ∈ conϕ, take a copy Lc of Lϕ and add the sentences (
∧
Scon(c))Lc and

∀y(Xi(y) → (
∧
Sconi (c))α(x,y,Xi)

Lc
) for each i < n.

• For each σ ∈ S, take a copy Lσ of Lϕ, and add the sentences (
∧
σ)Lσ and

∀y
∧
i<n (Xi(y) →

∨
σi∈Si

(
∧
σi)

α(x,y,Xi)
Lσ

).

• Finally, for each π = 〈j, σ〉 where j < n and σ ∈ Sj , introduce new unary predicates
Qπ,i,σ′ for i < n and σ′ ∈ Si, and add the sentences:

– ‘The Qπ,i,σ′ are pairwise disjoint’,
–
∧
i<n ∀x(Xi(x) ↔

∨
σ′∈Si

Qπ,i,σ′(x)),
– (∃xQη(x)) → ∀xy(x < y ∧Qη′(x) ∧Qη′′(y) → ∃z ∈ (x, y)Qη(z)), for any three

triples η, η′, η′′ of the form 〈π, i, σ′〉 for fixed π as above and with η′ 6= η′′,

– ∀y(Qπ,i,σ′(y) → (
∧
σ′)

α(x,y,Qπ,i,σ′ )

Lπ
), for each i, σ′,

–
∨
σ∈S(

∧
σ)Lπ .

It is not so hard to check that the conjunction of these sentences is true in some ex-
pansion of 〈R, <〉 iff χ ≡

∑
i∈I χi, where I is a condensation of 〈R, <〉, {χi : i ∈ I} =

{χ0, . . . , χn−1}, and the provisions of Definition 41(vii) are met. Hence, as before, it is
decidable whether χ ≡

∑
i∈I χi via Definition 41(vii) for some χi ∈ S.

2
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Now we decide whether a character λ is legal as follows. Build the set Λ0 of all degenerate
characters, using Lemmas 58 and 59. Given Λn, check for each character χ /∈ Λn whether
χ ≡

∑
i∈I χi for some linear order I and some χi ∈ Λn, using Lemma 60. If so, put χ in

Λn+1. Increment n, and repeat. Terminate when Λn+1 = Λn, and check whether λ ∈ Λn.
This determines whether λ is legal, and completes the proof of Lemma 46 and Theorem 36.

8 Applications

In this section, we apply the conditional decidability criteria obtained above in order to single
out a number of decidable fragments of various temporal logics. We begin by discussing a
major alternative approach to temporal reasoning, via two-sorted first-order logic (see, e.g.,
[2, 3, 12, 13]).

8.1 Two-sorted temporal logic

Consider a first-order logic with two sorts: domain and time. The language T S of the logic
is based on the following alphabet:

• an infinite set of individual variables x0, x1, . . . and a set of constants c0, c1, . . . of domain
sort,

• an infinite set of individual variables t0, t1, . . . of temporal sort,

• the binary predicate symbol < of sort ‘temporal × temporal’,

• predicate symbols P0, P1, . . . of sort ‘temporal × domainn’, n < ω.

Formulas of T S are defined inductively:

• ti < tj is an (atomic) formula, for temporal variables ti, tj ,

• P (t, x1, . . . , xn) is an (atomic) formula, for a predicate symbol P of sort temporal ×
domainn, t a temporal variable, and x1, . . . , xn domain variables,

• if ϕ and ψ are formulas, t a temporal variable, and x a domain variable, then ¬ϕ, ϕ∧ψ,
∀tϕ, and ∀xϕ are formulas.

T S is interpreted in first-order temporal models of the usual form M = 〈F, D, I〉, where
F = 〈W,<〉 is a flow of time (i.e., a strict linear order), D is a non-empty set, the domain of
M, and I is a function associating with every moment of time w ∈W a first-order L-structure

I(w) =
〈
D,P

I(w)
0 , . . . , c

I(w)
0 , . . .

〉
,

in which P
I(w)
i , for each i, is a predicate on D of arity n whenever Pi is of arity n + 1, and

c
I(w)
i ∈ D.

An assignment in M is a function a = a1 ∪ a2 such that a1 associates with every temporal
variable t a moment of time a1(t) ∈ W and a2 associates with every domain variable x an
element a2(x) of D.

The truth relation M |=a ϕ is defined inductively as follows:
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• M |=a ti < tj iff F |= a1(ti) < a1(tj),

• M |=a P (t, x1, . . . , xn) iff 〈a2(x1), . . . , a2(xn)〉 ∈ P I(a1(t)),

• M |=a ∀tϕ iff M |=b ϕ for every assignment b that may differ from a only on t,

• M |=a ∀xϕ iff M |=b ϕ for every assignment b that may differ from a only on x,

and the standard clauses for the booleans.
It should be clear that the temporal operators U and S of T L are expressible in T S. On

the other hand, there are T S-formulas that are not expressible in T L over any interesting
class of flows of time (see below). It turns out, however, that T L and T L1 are expressively
complete for some natural fragments of T S.

Definition 61. Let T S1t (respectively, T S1x) consist of all T S-formulas ϕ without subfor-
mulas of the form ∀xψ (∀tψ) such that ψ contains more than one free temporal (respectively,
domain) variable. Let T S1 = T S1t ∩ T S1x.

Suppose that each n-ary predicate symbol Qi of T L is associated with the (n + 1)-ary
predicate symbol Pi of T S. Define a translation † from T L into T S by taking, for some fixed
temporal variable t,

Qi(x1, . . . , xn)† = Pi(t, x1, . . . , xn),
(ϕ ∧ ψ)† = ϕ† ∧ ψ†,

(¬ϕ)† = ¬(ϕ†),
(∀xϕ)† = ∀x(ϕ†),
(ψUϕ)† = ∃t′(t < t′ ∧ ϕ†{t′/t} ∧ ∀t′′(t < t′′ < t′ → ψ†{t′′/t})),
(ψSϕ)† = ∃t′(t′ < t ∧ ϕ†{t′/t} ∧ ∀t′′(t′ < t′′ < t→ ψ†{t′′/t})),

where t′ and t′′ are new temporal variables.
Note that for every T L-formula ϕ, we have ϕ† ∈ T S1t, and for every ϕ ∈ T L1 we have

ϕ† ∈ T S1.
The meaning of the translation † is explained by:

Definition 62. Let M = 〈F, D, I〉 be a T S-model and a = (a1, a2) an assignment in M. Let
N = 〈F, D, J〉 be a T L-model, b an assignment in N. We say that 〈M, a〉 and 〈N, b〉 are
equivalent, and write 〈M, a〉 ∼ 〈N, b〉, if P I(w)

i = Q
J(w)
i for all w, i, and a2 = b.

Lemma 63. Suppose 〈M, a〉 ∼ 〈N, b〉. Then for every T L-formula ϕ and every moment of
time w, if a(t) = w then

〈N, w〉 |=b ϕ iff M |=a ϕ†.

Proof An easy induction on ϕ. 2

Definition 64. Let F be a class of flows of time, L′ ⊆ T L, and L′′ ⊆ T S. We say that L′ is
expressively complete for L′′ on F if for every ϕ ∈ L′′ with at most one free temporal variable,
there exists a formula ϕ̂ ∈ L′ such that (ϕ̂)† and ϕ are equivalent in all models based on flows
of time in F .
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Theorem 65. Let F be any class of dedekind-complete flows of time (for example, the class
{〈N, <〉 , 〈Z, <〉 , 〈R, <〉} ∪ {F : F a finite linear order}). Then

1. T L is expressively complete for T S1t on F .

2. T L1 is expressively complete for T S1 on F .

Proof By Kamp’s theorem ([26]; see also [16, chapters 9–12]), the propositional temporal
logic with S and U is expressively complete for monadic first-order logic over F . So for
any formula ϕ(t, P1, . . . , Pk) of monadic first-order logic with one free variable t and unary
predicates P1, . . . , Pk, we may fix a propositional temporal formula ϕ(p1, . . . , pk) such that for
every first-order structure M based on a flow of time F = 〈W,<〉 ∈ F , and every valuation V

in F with V(pi) = PM
i , we have

〈〈F,V〉 , w〉 |= ϕ iff M |= ϕ[w/t], for all w ∈W.

For ψ ∈ T S1t with a free temporal variable t, if any, and ψ′ ∈ T L, we say that ψ′ expresses
ψ if the translation (ψ′)† of ψ′ is equivalent to ψ in any first-order temporal model based on
a flow of time in F . Suppose now that χ = χ(t, Q1, . . . , Qk) ∈ T S1t. We prove that for every
subformula ψ of χ with at most one free temporal variable, there is a T L-formula ψ̂ that
expresses ψ. The proof is by induction on ψ.

Case 1: ψ is atomic. If ψ = t < t, then put ψ̂ = ⊥. If ψ = Qi(t, x1, . . . , xn), then put
ψ̂ = Pi(x1, . . . , xn).

Case 2: ψ = ∀xψ1. By the induction hypothesis, there exists ψ̂1 that expresses ψ1. But
then, ψ̂ = ∀xψ̂1 expresses ψ.

Case 3: otherwise. Let ψ1, . . . , ψl be a list of all subformulas of ψ of the form either
Qi(t′, y1, . . . , yn) or ∀zψ′ that have an occurrence in ψ that is not within the scope of a
domain quantifier ∀y. Since ψ ∈ T S1t, every ψi of the form ∀zψ′i has at most one free
temporal variable. Thus, by the induction hypothesis, there exists ψ̂i ∈ T L that expresses
ψi, for each i ≤ l.

Now replace in ψ every occurrence of a ψi(t′) that is not within the scope of a ∀y by a
predicate symbol Qψi

(t′) of the monadic first-order logic. Denote the resulting monadic first-
order formula by ψ′(t, Qψ1 , . . . , Qψl

). Take the propositional formula ψ′(qψ1 , . . . , qψl
), and in

it, replace every propositional variable qψi
by ψ̂i. The resulting formula ψ̂ clearly expresses

ψ.
This completes the induction. So there is a T L-formula χ̂ expressing χ, proving the

former claim of the theorem. To prove the latter, it is enough to observe that if ψ ∈ T S1

then ψ̂ ∈ T L1. 2

Remark 66. Clearly, the T S-sentence

∃t1∃t2(t1 < t2 ∧ ∀x(P (t1, x) ↔ P (t2, x)))

is not in T S1t. By results of [27, 3, 2], it cannot be expressed in T L over the flow of time
〈Q, <〉 nor over the class of all finite linear flows. It follows from Theorem 65 that over these
flows, it is not equivalent to any T S1t-sentence.
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For a class H of flows of time, denote by TS(H) the set of all T S-sentences that are true
in all models based on frames in H, and by TSfin(H) the set of T S-sentences true in all
models based on frames in H and having finite domains. Given a set T L′ ⊆ T L1, let

T S ′ = {ϕ ∈ T S1 : ϕ̂ ∈ T L′},

where ϕ̂ is as defined in the proof of Theorem 65. Since ϕ̂ is constructed effectively from ϕ (see
[26]), as an immediate consequence of Lemma 63 and Theorem 65 we obtain the following:

Corollary 67. Suppose that every F ∈ H is dedekind-complete, and that T L′ ⊆ T L1. If
the fragment TL(H) ∩ T L′ is decidable, then the fragment TS(H) ∩ T S ′ is decidable. If the
fragment TLfin(H) ∩ T L′ is decidable, then the fragment TSfin(H) ∩ T S ′ is decidable.

8.2 Two-variable fragment

We remind the reader that the language T L2
1 contains all monodic T L-formulas with at most

two variables. Let T S2
1 be the sublanguage of T S1 whose formulas contain at most two

domain variables. Clearly, T S2
1 = {ϕ ∈ T S1 : ϕ̂ ∈ T L2

1}. Below, F will denote any of the
classes of flows of time mentioned in the formulation of Theorem 15—that is,

1. {〈N, <〉},

2. {〈Z, <〉},

3. {〈Q, <〉},

4. the class of all finite strict linear orders,

5. any first-order-definable class of strict linear orders.

F+ will range over these and {〈R, <〉}. G will be one of 〈N, <〉, 〈Z, <〉, and the class of all
finite strict linear orders, and G+ will range over these and {〈R, <〉}.

Theorem 68. The fragments TL(F) ∩ T L2
1, TLfin(F+) ∩ T L2

1, TS(G) ∩ T S2
1,

and TSfin(G+) ∩ T S2
1 are decidable.

Proof The L-formula αC, corresponding to a state candidate C for a formula ϕ ∈ T L2
1,

contains at most two individual variables. As is well known (see [41, 33]), the satisfiability
problem for such formulas is decidable. Moreover, as the two variable fragment of L has the
finite model property, the finite satisfiability is decidable as well. All that remains is to use
the criteria of Theorems 15, 26, and 36 and Corollaries 37 and 67. 2

As T L2
1 contains the set T L1 of T L-formulas with at most one variable, T S2

1 contains the set
T S1

1 of T S1-formulas with at most one domain variable, and T S1
1 = {ϕ ∈ T S1 : ϕ̂ ∈ T L1},

we also have:

Corollary 69. The fragments TL(F) ∩ T L1, TLfin(F+) ∩ T L1, TS(G) ∩ T S1
1,

and TSfin(G+) ∩ T S1
1 are decidable.
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Remark 70. It is worth noting that the set of formulas T L1 corresponds to the propositional
language LS,U ,2 with the temporal operators S, U and the modal (epistemic) operator 2.
Indeed, we may define a translation T from LS,U ,2 onto T L1 by taking, for a fixed individual
variable x,

T(pi) = Pi(x),
T(ϕ ∧ ψ) = T(ϕ) ∧ T(ψ),

T(¬ϕ) = ¬T(ϕ),
T(ϕUψ) = T(ϕ)UT(ψ),
T(ϕSψ) = T(ϕ)ST(ψ),
T(2ϕ) = ∀x T(ϕ).

Recall that the product L× S5 of a propositional temporal logic L, determined by a class H
of linear orders 〈W,<〉, and S5 is the set of all formulas in LS,U ,2 that are valid in frames of
the form 〈W × V,<,∼〉, where 〈W,<〉 ∈ H, V is a non-empty set, 〈w, v〉< 〈w′, v′〉 iff v = v′

and w < w′, and ∼ is an equivalence relation on W ×V defined by 〈w, v〉 ∼ 〈w′, v′〉 iff w = w′.
For more information on products of modal logics, we refer the reader to [18].

It is easy to see that a formula ϕ ∈ LS,U ,2 belongs to L×S5 iff T(ϕ) is valid in all first-order
temporal models based on linear orders 〈W,<〉 validating L. Thus we obtain, for example,
that L(N)×S5 is decidable, where L(N) denotes the propositional temporal logic determined
by 〈N, <〉. Observe that this logic coincides with the temporal-epistemic logic from [15] of
one agent who doesn’t forget, doesn’t learn, and who knows time (the decidability of which
is of course known already).

We do not know whether the logic L(N)×fS5, determined by the class of frames of the form
〈N× V,<,∼〉 with finite V , has been considered in the literature. This logic, the propositional
version of TLfin(N)∩T L1, is different from the temporal-epistemic logic L(N)×S5 (the proof
is similar to that of Theorem 25) and corresponds to the assumption that there are only finitely
many possible runs of the multi-agent system.

8.3 Monadic fragment

One more interesting fragment of T L is the set T Lmo of monadic temporal formulas. The
corresponding fragment T Smo consists of those T S-formulas involving only predicate symbols
of sort ‘temporal × domain’ or ‘temporal’. As was shown in Section 2, the fragments T L2 ∩
T Lmo ∩ TL(N) and T L2 ∩ T Lmo ∩ TLfin(N) are undecidable. However, this is not the case
for the languages T Lmo1 = T L1 ∩ T Lmo and T Smo1 = T S1 ∩ T Smo. For then, the formula
αC, corresponding to a state candidate C for ϕ ∈ T Lmo1 , is a monadic L-formula, and as is
well-known (see [29]), the monadic fragment of first-order logic is decidable and has the finite
model property. This yields:

Theorem 71. The fragments TL(F) ∩ T Lmo1 , TLfin(F+) ∩ T Lmo1 , TS(G) ∩ T Smo1 ,
and TSfin(G+) ∩ T Smo1 are decidable.

8.4 Guarded fragment

Let us consider now the following natural generalization of the first-order guarded formulas
of [5].
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Definition 72 (guarded fragment). Denote by T GF the smallest set of T L-formulas such
that

• every atomic formula is in T GF ;

• if ϕ and ψ are in T GF , then so are ϕ ∧ ψ, ¬ϕ, ϕSψ, and ϕUψ;

• if x, y are tuples of variables, G(x, y) is atomic, ϕ(x, y) ∈ T GF , and every free variable
occurring in ϕ(x, y) occurs in G(x, y) as well, then ∀y(G(x, y) → ϕ(x, y)) is in T GF .

The set T GF is called the guarded fragment of the first-order temporal language. We write
GF for the guarded fragment L ∩ T GF of the first-order language L.

Note that unlike the guarded fragment GF of classical first-order logic, which is known to
be decidable (see [5]), the temporal guarded fragment interpreted in time structures 〈N, <〉
and 〈Z, <〉 turns out to be even not recursively enumerable.

Theorem 73. Let F be either 〈N, <〉 or 〈Z, <〉. Then TL(F)∩T L2 ∩T GF is not recursively
enumerable.

Proof The proof is similar to that of Theorem 2. We simply write down the required formula
ϕT for a given set of tiles T = {t0, . . . , tn}.

Let R be a binary predicate and P0, . . . , Pn, Q unary ones. Define ϕT to be the conjunction
of the following formulas:

∃x(Q(x) ∧23P0(x)),
∀x(Q(x) → ∃y(R(x, y) ∧Q(y))),
2+∀x(Q(x) →©Q(x)),
∀x, y(R(x, y) → 2R(x, y)),
2+∀x(Q(x) →

∨n
i=0 Pi(x) ∧

∧
i6=j(Pi(x) → ¬Pj(x))),

2+∀x(Pi(x) → ∀y(R(x, y) →
∨
up(ti)=down(tj)

Pj(y))),
2+∀x(Pi(x) →©

∨
right(ti)=left(tj)

Pj(x)).

Clearly, ϕT belongs to T L2 ∩ T GF . It is readily seen that ϕT is satisfiable in F iff there is a
recurrent tiling of N× N by T. 2

We may define the guarded fragment SGF of T S, as follows: every atomic formula is in
SGF , SGF is closed under the boolean connectives and temporal quantification ∀t, and if x, y
are tuples of variables, G(t, x, y) is atomic, ϕ(t, x, y) ∈ SGF , and every free domain variable
of ϕ occurs in G(t, x, y), then ∀y(G(t, x, y) → ϕ(t, x, y)) ∈ SGF .

Let T GF1 = T GF ∩ T L1, and SGF1 = SGF ∩ T S1.

Theorem 74. The fragments TL(F) ∩ T GF1, TLfin(F+) ∩ T GF1, TS(G) ∩ SGF1, and
TSfin(G+) ∩ SGF1 are decidable.

Proof By Theorems 15, 26, and 36, and Corollary 37, the result for the TL-classes in the
theorem may be established by showing that given ϕ ∈ T GF1, it is decidable whether a given
state candidate for ϕ is (finitely) realizable. It is evident from the proof of Theorem 65 that
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T GF1 is expressively complete for SGF1 over G,G+. So the result for the TS-classes in the
theorem follows from this and Corollary 67.

So let ϕ ∈ T GF1 and let C = 〈T, T con〉 be a state candidate for ϕ. By Lemma 8, to decide
whether C is (finitely) realizable it suffices to show that it is decidable whether the L-sentence

αC =
∧
t∈T

∃x t(x) ∧ ∀x
∨
t∈T

t(x) ∧
∧

〈t,c〉∈T con

t(c)

has a (finite) model.
The formulas t(x), t(c) are in GF , but αC is not. However, we can transform it into

a guarded sentence as follows. Let P be a new unary predicate. Observe that if ψ ∈ GF
then the relativization ψP of ψ to P is logically equivalent to a GF-formula. For atomic ψ,
ψP = ψ ∈ GF ; the boolean cases are trivial; and for guarded ψ(x, y) and atomic G(x, y),
((∃y1, . . . , yn(G(x, y)∧ψ))P is by definition ∃y1, . . . , yn(

∧
1≤i≤n P (yi)∧G(x, y)∧ψP ), which is

equivalent to ∃y1, . . . , yn(G(x, y)∧ (
∧

1≤i≤n P (yi)∧ψP )) and hence is (inductively) equivalent
to a guarded formula. Now,

(αC)P =
∧
t∈T

∃x(P (x) ∧ tP (x)) ∧ ∀x(P (x) →
∨
t∈T

t
P (x)) ∧

∧
〈t,c〉∈T con

t
P (c),

and we see that, up to logical equivalence, (αC)P ∈ GF .
By classical model theory, αC has a (finite) model iff (αC)P has a (respectively, finite)

model. Since (αC)P is logically equivalent to a GF-sentence, and by results of [5, 21], GF
is decidable and has the finite model property, we see that it is decidable whether αC has a
(finite) model, as required. 2

8.5 Temporal description logics

The notion of quasimodel used in this paper is actually a generalization of the quasimodels
introduced in [46] to prove the decidability of the satisfiability problems for the temporal
description logic CIQUS (i.e., the description logic CIQ of De Giacomo and Lenzerini [20]
extended with Since and Until) in models based on the time structures 〈N, <〉 and 〈Z, <〉.
However, the satisfiability problems in 〈Q, <〉 and arbitrary strict linear orders were left open
in that paper. Using the embedding technique of Section 4, one can show that these problems
are decidable too. Thus, we have:

Theorem 75. There are algorithms that are capable of deciding whether a given CIQUS-
formula is satisfiable in:

• 〈N, <〉,

• 〈Z, <〉,

• 〈Q, <〉,

• finite linear orders,

• arbitrary strict linear orders.
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Note, however, that CIQ (which is actually CPDL with qualified number restrictions or
counting modalities) does not have the finite model property, and it is not known whether the
finite model reasoning in it is decidable. So we cannot say whether the satisfiability problem
for CIQUS-formulas is decidable in models with finite domains. For more information on the
connection between multi-dimensional description logics and first-order modal logic, see [47].

9 Open questions

We end the paper with some problems arising from the work above.

1. Do our results extend to the flow of time 〈R, <〉 with arbitrary domains? Or with
countable domains? (The logic here is different—see Theorem 25.)

2. Can our results be extended to first-order temporal logic with equality?

3. Or to logics over non-linear flows of time, such as historical necessity logics, and CTL∗?

4. What is the computational complexity of satisfiability of an arbitrary monodic formula
ϕ over the flows of time considered earlier, given an oracle for determining if a state
candidate for ϕ is realizable?

5. Are there other natural decidable (and expressive) fragments of T L?
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