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Outline of talk

| aim to explain the context and proof of a recent
theorem of M. Otto—I.H. on extending partial isomor-
phisms of relational structures.

e Definitions

e History

e Applications

e Guarded fragments

e Proof of theorem of Otto—I.H.



Partial isomorphisms & automorphisms

Definition 1 Let L be a relational signature, and A
a L-structure.

1. A partial isomorphism of A is a partial 1-1 map
p . A — Asuch that for all n-ary R € L and all
ai,...,an € domnp,

A= R(a1,...,an) <« R(p(a1),...,p(an)).

2. An automorphism of A is a bijective partial iso-
morphism of A.

3. We write Aut A for the set (group) of automor-
phisms of A.



The problem

Given:
e a finite relational signature L,
e a finite L-structure A,

e some partial isomorphisms p1, ..., pn of A.

Questions:

1. Can we find a finite L-structure B O A such
that p1, ..., pn extend to automorphisms of B?

2. Can we find such a B with ‘nice properties’?

We will see some applications later.



History

0. For sets (L = ), this is easy.

1. J. Truss, 1992 Can extend a single partial iso-
morphism of a finite graph to an automorphism
of a larger finite graph.

2. E. Hrushovski, 1992 Can extend all partial iso-
morphisms of a finite graph to automorphisms
of a (single) larger finite graph.

3. B. Herwig, 1995 For any finite relational signa-
ture L and any finite L-structure A, there is a
finite L-structure B O A such that

1. any partial isomorphism of A extends to an
automorphism of B,

2. forany b € B, there is g € Aut B with
g(b) € A,

3. ifby,...,bn € B,and B = R(b1,...,bn)
for some n-ary R € L, then there is some
g € Aut B with g(b1),...,g9(bn) € A.



Gaifman graph

To explain a later result of Herwig, we need a defini-
tion.

Definition 2 Let L be a relational signature, and A
an L-structure. The Gaifman graph Gaif(A) of A
is the (undirected loop-free) graph defined by:

e its set of nodes is dom A,

e (x,vy) is an edge iff there are n-ary R € L and
ai,...,an € A with

A= R(ay, ... an),
z,y € {ay,...,an}.



Herwig’s 1998 theorem

4. B. Herwig, 1998 For any finite L-structure A, can
extend all partial isomorphisms of A to auto-
morphisms of a finite L-structure B O A such

that
1. the 1995 properties hold,

2. if S is an L-structure, Gaif(S) is a clique,
and there is a homomorphism A : S — B,
then there is a homomorphism g : S — A.

Corollaries

1. For any n > 3, can extend all partial isomor-
phisms of a finite K,-free graph to automor-
phisms of a larger finite K, -free graph.

2. For any class 7 of finite tournaments, can ex-
tend all partial isomorphisms of a finite digraph
omitting all 7" € 7 to automorphisms of a larger
finite digraph omitting all T € 7.



History ctd.

Hrushovski’s proof was group-theoretic/combinatorial.

Herwig’s papers greatly extended these methods.

5. Herwig—Lascar, 2000 — gave simpler and purely
combinatorial proofs of Hrushovski’'s 1992 and
Herwig’s 1995 results, connected them to equiv-
alent results in free groups, and extended the
results.

A purely combinatorial account of Herwig’s 1998 re-
sult was missing.

Also, even this result is still not strong enough for
some applications.



Applications

1. Small index property.

A countable structure M has this if any sub-
group of Aut M ofindex < 2“isopenin Aut M
(in the topology of pointwise convergence).

Hrushovski’s result - the ‘random graph’ has
the small index property.

Herwig - s.i.p. for universal homogeneous K-
free graphs, and for Henson digraphs.

2. Finite model theory: hierarchy theorems for fixed-
point logics (Grohe, 1996).
Other work of Grohe too.

3. Finite model property for guarded fragments of
first-order logic, and classes of ‘relativised’ al-
gebras in algebraic logic.

Crsp, WA, etc.: Andréka, I.H., Németi, 1999.
Guarded fragment: Gradel, 1999.
More if we can strengthen Herwig’s theorem. ..
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Guarded fragments: a rough guide

‘Find out why modal logic is well-behaved (decid-
able etc), and generalise.

Guarded fragments (Andréka, van Benthem, Németi,
1998) are ‘modal’ fragments of first-order logic.

e Any atomic formula is guarded.

e Guarded formulas are closed under booleans.

o If ©(Z,y) is guarded, and ~(x,y) is a guard,
then Jy(~(z, y) N p(x,y)) is guarded.

In the basic guarded fragment, v must be atomic.

In the loosely guarded fragment [van Benthem 1997],
~ can be a conjunction of atomic formulas, if every
y in y and z in Ty co-occur in a single conjunct.

In the packed fragment [Marx, 2001], ~v can be a
conjunction of atomic and existentially-quantified atomic
formulas, if all distinct v, v in xy co-occur free in a
single conjunct.

The guard enforces that xy is a clique in the Gaif-
man graph. The clique-guarded fragment [Gradel,
1999] does this directly.



Finite model property for guarded fragments

Guarded fragments are well-behaved: decidable in
2EXPTIME, ‘back-and-forth’ characterisation, some
interpolation results, etc.

E. Gradel (1999) showed that the basic guarded
fragment has the finite model property: any guarded
sentence with a model has a finite model.

He used Herwig’s 1995 theorem. This gives finite
B D A such that whenever b ¢ B satisfies a guard
of the basic guarded fragment, there is g € Aut B
with g(b) € A.

But for LGF and PF/CGF, we need more.
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Strengthening Herwig’s 1998 theorem

6. M. Otto—Il.H., 2001 Let L be a relational signa-
ture, and A a finite L-structure. There exists a
finite L-structure C O A such that:

1. any partial isomorphism of A extends to an
automorphism of C,

2. if S C Cis aclique in Gaif(C), then there

iIs g € Aut C with
9(9) ¥ 1g(z) :z € 5} C A.

Consequences for finite model property

Whenever ¢ € C satisfies a packed fragment guard,
there is g € Aut C with g(¢) € A.

Hence can generalise Gradel’'s FMP proof to the
loosely guarded and packed fragments.

[Remark: I.H. 2001 proved these fragments have
FMP by unpleasant hack of Herwig’s prootf.]
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Proof

Take L, A as stated. By Herwig’s 1995 theorem,
there is a finite L-structure B O A such that

1. every partial isomorphism of A extends to an
automorphism of B,

2. any x € B is mapped into A by some g €
Aut B.

If B = A, we are done. Assume that B D A.

Definition 3 A set U C B is small if there is some
g € Aut B with g(U) C A, and /arge otherwise.

e B is large.
e If U islargethen |U| > 2.
e If Uislarge and g € Aut B then g(U) is large.

Write U for the set of large subsets of B.

Note: Y = {g(U) : U € U} forall g € Aut B.
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Domain of ('

Definition4 Letb € B. Amap x : U — w is said
to be a b-valuation if for all U € U:

e if b U then x(U) = 0,
e ifbc Uthenl < x(U) < |U|. (Note |U| > 2.)

View x as a notion [[b € U]] = x(U), for large U.

ValueisOifb ¢ U.
Value is positive (many-valued logic!) if b € U.

Definition 5 We let C have domain

{(b,x) : b € B, x ab-valuation}.

We'll define the L-structure of C' in a minute.

Definition 6 Also define the projection = : ' — B
by 7 (b, x) = b.
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Generic sets

Definition 7 A set S C C'is said to be generic if for
all distinct (b, x), (¢,) € S, we have

1. b #£ ¢,
2. x(U) =y U) forall U € U withb,c e U.

A set is generic iff each two-element subset is generic.

Lemma8 Let S C C be generic. Then w(S) is
small.

Proof. If 7(S) = U € U, then by genericity,
e 7| Sis1-1,s0 |U| =|5],
e themapo: S — {1,2,...,|U| — 1} given by

0(b,x) = x(U)
Is 1—1.

This is impossible. H
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The structure of ('

Definition 9 Define C as an L-structure as follows.

If R € L is n-ary, and (b1,x1),...,(bn,xn) € C,
then let

C = R((b1,x1),---,(bn, xn)) iff

1. {(b1,x1),...,(bn, xn)} is generic,
2. Bl= R(by,...,bn).

4 N
R if generic
o * * C
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Embedding A into C

Lemma 10 A embeds into C.

Proof. Let U € U{. So there is no g € Aut B with
g(U) C A.

ThenU € A. So [UN A| < |U]|.

Enumerate U N A as {a¥,...,al}, with n < |U].
Do this for all U € U.

For a € A, define an a-valuation x, : 4 — w by

0, ifa & U,

the i such thata = o/, otherwise.

Xa(U) = {
Now definev : A — C by v(a) = (a, xa).

Note that v(A) = {v(a) : a € A} is generic. So
v . A— (C'isan L-embedding. H

We can therefore replace A by v(A) = A, and
prove the theorem for it.

This will be easy after a definition and a lemma.
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Compatible maps

Definition 11 Let p : C' — C be a 1-1 partial map,
and let g € Aut B. We say that p is g-compatible if

for all (b,x) € dom p we have

p(b,x) = (g(b),x’) for some x'.

(Thatis, mrop C gom.)
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Main lemma

Lemmai2 Letp : C — C be a 1-1 partial map
with generic domain and range. Let g € Aut B,
and suppose that p is g-compatible. Then p extends
fo some g-compatible p € Aut C.

Proof. As dom p is generic, can write its elements

as (b, xp)-
Suppose p(b, xp,) = (g(b), X,g(b))’ say. We need to

define p : (b, x) — (g(b),x’) for all (b,x) € C.

Fix a large set U € U. Then the set of pairs

{ 0 (U)s Xy (9(0))) = (b, xp) € dom p}
is a 1-1 partial map on |U| = {0, 1,...,|U| — 1},
fixing O if defined on it.

Extend it to a permutation 6;; of |U|, fixing O.
Do this for allU € U.

Define p(b, x) = (g(b), x"), where

X' (g(U)) = 0y (x(U)) for U € U.

Then p extends p, and p is g-compatible. Also, p €
Aut C' (because p is g-compatible and preserves
generic sets). H
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Checking that C' is as required

1. Certainly, C D v(A) and C is finite.

2. Let p be a partial isomorphism of v(A).
We need to extend itto p € Aut C.

Let p| = v~ Lopor be the corresponding partial
isomorphism of A. By Herwig’s theorem, we
can extend p| to some g € Aut B.

Clearly, p is g-compatible.
And dom p, rng p are generic (as C v(A)).

By lemma 12, p extends to some (g-compatible)
p € Aut C.
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Mapping cliques back into v(A)

3. Let S C C be a clique in Gaif(C). We want
g € Aut C with g(S) C v(A).

S is generic.
So by lemma 8, ©(.S) is small.
So there is g € Aut B with g(w(S)) C A.
The map
p:x—v(gln(x))) ev(A) (forxeS)

is 1-1, and has generic domain (S) and range
(C v(A)), and is g-compatible.

By lemma 12, p extends to p € Aut C, and
p(S) C v(A). o
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Conclusion

e The theorem strengthens Herwig’s 1998 results.

e Combined with the combinatorial proof of Her-
wig’s 1995 result by Herwig—Lascar, it gives a
purely combinatorial proof of them.

e New and simple proof of finite model property
for loosely guarded and packed (and clique-guarded)
fragments.
(Otto has a variant argument to give this, using
finite model property of the basic guarded frag-
ment.)
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