Finite model property for guarded fragments, and extending partial isomorphisms

Ian Hodkinson

Joint work with M Otto

Outline of talk

I aim to explain the context and proof of a recent theorem of M. Otto–I.H. on extending partial isomorphisms of relational structures.

- Definitions
- History
- Applications
- Guarded fragments
- Proof of theorem of Otto-I.H.

Partial isomorphisms & automorphisms

Definition 1 Let *L* be a relational signature, and *A* a *L*-structure.

1. A *partial isomorphism* of *A* is a partial 1–1 map $p: A \rightarrow A$ such that for all *n*-ary $R \in L$ and all $a_1, \ldots, a_n \in \text{dom } p$,

 $A \models R(a_1, \ldots, a_n) \leftrightarrow R(p(a_1), \ldots, p(a_n)).$

- 2. An *automorphism* of *A* is a bijective partial isomorphism of *A*.
- 3. We write Aut *A* for the set (group) of automorphisms of *A*.

The problem

Given:

- a finite relational signature *L*,
- a finite *L*-structure *A*,
- some partial isomorphisms p_1, \ldots, p_n of A.

Questions:

- 1. Can we find a *finite L*-structure $B \supseteq A$ such that p_1, \ldots, p_n extend to automorphisms of *B*?
- 2. Can we find such a *B* with 'nice properties'?

We will see some applications later.

History

- **0.** For sets $(L = \emptyset)$, this is easy.
- **1. J. Truss, 1992** Can extend a single partial isomorphism of a finite graph to an automorphism of a larger finite graph.
- 2. E. Hrushovski, 1992 Can extend all partial isomorphisms of a finite graph to automorphisms of a (single) larger finite graph.
- **3. B.** Herwig, 1995 For any finite relational signature *L* and any finite *L*-structure *A*, there is a finite *L*-structure $B \supseteq A$ such that
 - 1. any partial isomorphism of A extends to an automorphism of B,
 - 2. for any $b \in B$, there is $g \in Aut B$ with $g(b) \in A$,
 - 3. if $b_1, \ldots, b_n \in B$, and $B \models R(b_1, \ldots, b_n)$ for some *n*-ary $R \in L$, then there is some $g \in Aut B$ with $g(b_1), \ldots, g(b_n) \in A$.

Gaifman graph

To explain a later result of Herwig, we need a definition.

Definition 2 Let *L* be a relational signature, and *A* an *L*-structure. The *Gaifman graph* Gaif(A) of *A* is the (undirected loop-free) graph defined by:

- its set of nodes is dom *A*,
- (x, y) is an edge iff there are *n*-ary $R \in L$ and $a_1, \ldots, a_n \in A$ with $A \models R(a_1, \ldots, a_n),$ $x, y \in \{a_1, \ldots, a_n\}.$

Herwig's 1998 theorem

- **4. B. Herwig, 1998** For any finite *L*-structure *A*, can extend all partial isomorphisms of *A* to automorphisms of a finite *L*-structure $B \supseteq A$ such that
 - 1. the 1995 properties hold,
 - 2. if *S* is an *L*-structure, Gaif(S) is a clique, and there is a homomorphism $h : S \rightarrow B$, then there is a homomorphism $g : S \rightarrow A$.

Corollaries

- 1. For any $n \ge 3$, can extend all partial isomorphisms of a finite K_n -free graph to automorphisms of a larger finite K_n -free graph.
- 2. For any class \mathcal{T} of finite tournaments, can extend all partial isomorphisms of a finite digraph omitting all $T \in \mathcal{T}$ to automorphisms of a larger finite digraph omitting all $T \in \mathcal{T}$.

History ctd.

Hrushovski's proof was group-theoretic/combinatorial.

Herwig's papers greatly extended these methods.

5. Herwig–Lascar, 2000 — gave simpler and purely combinatorial proofs of Hrushovski's 1992 and Herwig's 1995 results, connected them to equivalent results in free groups, and extended the results.

A purely combinatorial account of Herwig's 1998 result was missing.

Also, even this result is still not strong enough for some applications.

Applications

1. Small index property.

A countable structure M has this if any subgroup of Aut M of index $< 2^{\omega}$ is open in Aut M(in the topology of pointwise convergence).

Hrushovski's result \vdash the 'random graph' has the small index property. Herwig \vdash s.i.p. for universal homogeneous K_n free graphs, and for Henson digraphs.

- Finite model theory: hierarchy theorems for fixedpoint logics (Grohe, 1996).
 Other work of Grohe too.
- Finite model property for *guarded fragments* of first-order logic, and classes of 'relativised' algebras in algebraic logic. Crs_n, WA, etc.: Andréka, I.H., Németi, 1999. Guarded fragment: Grädel, 1999. More if we can strengthen Herwig's theorem...

Guarded fragments: a rough guide

'Find out why modal logic is well-behaved (decidable etc), and generalise.'

Guarded fragments (Andréka, van Benthem, Németi, 1998) are 'modal' fragments of first-order logic.

- Any atomic formula is guarded.
- Guarded formulas are closed under booleans.
- If $\varphi(\bar{x}, \bar{y})$ is guarded, and $\gamma(\bar{x}, \bar{y})$ is a guard, then $\exists \bar{y}(\gamma(\bar{x}, \bar{y}) \land \varphi(\bar{x}, \bar{y}))$ is guarded.

In the basic *guarded fragment*, γ must be atomic.

In the *loosely guarded fragment [van Benthem 1997]*, γ can be a conjunction of atomic formulas, if every y in \overline{y} and z in $\overline{x}\overline{y}$ co-occur in a single conjunct.

In the *packed fragment [Marx, 2001],* γ can be a conjunction of atomic and existentially-quantified atomic formulas, if all distinct u, v in $\overline{x}\overline{y}$ co-occur free in a single conjunct.

The guard enforces that $\overline{x}\overline{y}$ is a clique in the Gaifman graph. The *clique-guarded fragment* [*Grädel*, 1999] does this directly.

Finite model property for guarded fragments

Guarded fragments are well-behaved: decidable in 2EXPTIME, 'back-and-forth' characterisation, some interpolation results, etc.

E. Grädel (1999) showed that the *basic guarded fragment* has the *finite model property:* any guarded sentence with a model has a finite model.

He used Herwig's 1995 theorem. This gives finite $B \supseteq A$ such that whenever $\overline{b} \in B$ satisfies a guard of the basic guarded fragment, there is $g \in Aut B$ with $g(\overline{b}) \in A$.

But for LGF and PF/CGF, we need more.

Strengthening Herwig's 1998 theorem

- 6. M. Otto–I.H., 2001 Let L be a relational signature, and A a finite L-structure. There exists a finite L-structure $C \supseteq A$ such that:
 - 1. any partial isomorphism of A extends to an automorphism of C,
 - 2. if $S \subseteq C$ is a clique in Gaif(C), then there is $g \in Aut \ C$ with

$$g(S) \stackrel{\mathsf{def}}{=} \{g(x) : x \in S\} \subseteq A.$$

Consequences for finite model property

Whenever $\overline{c} \in C$ satisfies a packed fragment guard, there is $g \in Aut \ C$ with $g(\overline{c}) \in A$.

Hence can generalise Grädel's FMP proof to the *loosely guarded and packed fragments.*

[Remark: I.H. 2001 proved these fragments have FMP by unpleasant hack of Herwig's proof.]

Proof

Take L, A as stated. By Herwig's 1995 theorem, there is a finite *L*-structure $B \supseteq A$ such that

- 1. every partial isomorphism of A extends to an automorphism of B,
- 2. any $x \in B$ is mapped into A by some $g \in Aut B$.
- If B = A, we are done. Assume that $B \supset A$.

Definition 3 A set $U \subseteq B$ is *small* if there is some $g \in Aut B$ with $g(U) \subseteq A$, and *large* otherwise.

- *B* is large.
- If U is large then $|U| \ge 2$.
- If U is large and $g \in Aut B$ then g(U) is large.

Write \mathcal{U} for the set of large subsets of B.

Note: $\mathcal{U} = \{g(U) : U \in \mathcal{U}\}$ for all $g \in Aut B$.

Domain of C

Definition 4 Let $b \in B$. A map $\chi : \mathcal{U} \to \omega$ is said to be a *b*-valuation if for all $U \in \mathcal{U}$:

- if $b \notin U$ then $\chi(U) = 0$,
- if $b \in U$ then $1 \leq \chi(U) < |U|$. (Note $|U| \geq 2$.)

View χ as a notion $[b \in U] = \chi(U)$, for large U.

Value is 0 if $b \notin U$. Value is positive (many-valued logic!) if $b \in U$.

Definition 5 We let *C* have domain

 $\{(b, \chi) : b \in B, \chi \text{ a } b\text{-valuation}\}.$

We'll define the *L*-structure of C in a minute.

Definition 6 Also define the projection $\pi : C \to B$ by $\pi(b, \chi) = b$.

Generic sets

Definition 7 A set $S \subseteq C$ is said to be *generic* if for all distinct $(b, \chi), (c, \psi) \in S$, we have

1. $b \neq c$, 2. $\chi(U) \neq \psi(U)$ for all $U \in \mathcal{U}$ with $b, c \in U$.

A set is generic iff each two-element subset is generic.

Lemma 8 Let $S \subseteq C$ be generic. Then $\pi(S)$ is small.

Proof. If $\pi(S) = U \in \mathcal{U}$, then by genericity,

- $\pi \upharpoonright S$ is 1–1, so |U| = |S|,
- the map $\theta:S \to \{1,2,\ldots,|U|-1\}$ given by $\theta(b,\chi)=\chi(U)$

is 1–1.

This is impossible.

The structure of C

Definition 9 Define *C* as an *L*-structure as follows.

If $R \in L$ is *n*-ary, and $(b_1, \chi_1), \ldots, (b_n, \chi_n) \in C$, then let $C \models R((b_1, \chi_1), \ldots, (b_n, \chi_n))$ iff

1. $\{(b_1, \chi_1), \dots, (b_n, \chi_n)\}$ is generic,

2.
$$B \models R(b_1, ..., b_n).$$

Embedding A into C

Lemma 10 *A embeds into C*.

Proof. Let $U \in \mathcal{U}$. So there is no $g \in Aut B$ with $g(U) \subseteq A$.

Then $U \not\subseteq A$. So $|U \cap A| < |U|$.

Enumerate $U \cap A$ as $\{a_1^U, \ldots, a_n^U\}$, with n < |U|. Do this for all $U \in \mathcal{U}$.

For $a \in A$, define an *a*-valuation $\chi_a : \mathcal{U} \to \omega$ by $\chi_a(U) = \begin{cases} 0, & \text{if } a \notin U, \\ \text{the } i \text{ such that } a = a_i^U, & \text{otherwise.} \end{cases}$

Now define $\nu : A \to C$ by $\nu(a) = (a, \chi_a)$.

Note that $\nu(A) = \{\nu(a) : a \in A\}$ is generic. So $\nu : A \to C$ is an *L*-embedding.

We can therefore *replace* A by $\nu(A) \cong A$, and prove the theorem for it.

This will be easy after a definition and a lemma.

Compatible maps

Definition 11 Let $p : C \to C$ be a 1–1 partial map, and let $g \in Aut B$. We say that p is *g*-compatible if for all $(b, \chi) \in dom p$ we have

 $p(b,\chi) = (g(b),\chi')$ for some χ' .

(That is, $\pi \circ p \subseteq g \circ \pi$.)

Main lemma

Lemma 12 Let $p : C \to C$ be a 1–1 partial map with generic domain and range. Let $g \in Aut B$, and suppose that p is g-compatible. Then p extends to some g-compatible $\hat{p} \in Aut C$.

Proof. As dom p is generic, can write its elements as (b, χ_b) . Suppose $p(b, \chi_b) = (g(b), \chi'_{g(b)})$, say. We need to define $\hat{p} : (b, \chi) \mapsto (g(b), \chi')$ for all $(b, \chi) \in C$.

Fix a large set $U \in \mathcal{U}$. Then the set of pairs

 $\{ \langle \chi_b(U), \chi'_{g(b)}(g(U)) \rangle : (b, \chi_b) \in \text{dom } p \}$ is a 1–1 partial map on $|U| = \{0, 1, \dots, |U| - 1\}$, fixing 0 if defined on it.

Extend it to a permutation θ_U of |U|, fixing 0. Do this for all $U \in \mathcal{U}$.

Define $\hat{p}(b,\chi) = (g(b),\chi')$, where

 $\chi'(g(U)) = \theta_U(\chi(U))$ for $U \in \mathcal{U}$.

Then \hat{p} extends p, and \hat{p} is g-compatible. Also, $\hat{p} \in$ Aut C (because \hat{p} is g-compatible and preserves generic sets).

Checking that C is as required

- 1. Certainly, $C \supseteq \nu(A)$ and C is finite.
- 2. Let p be a partial isomorphism of $\nu(A)$. We need to extend it to $\hat{p} \in \text{Aut } C$.

Let $p \downarrow = \nu^{-1} \circ p \circ \nu$ be the corresponding partial isomorphism of *A*. By Herwig's theorem, we can extend $p \downarrow$ to some $g \in \text{Aut } B$.

Clearly, *p* is *g*-compatible. And dom *p*, rng *p* are generic (as $\subseteq \nu(A)$).

By lemma 12, p extends to some (g-compatible) $\hat{p} \in Aut C$.

Mapping cliques back into $\nu(A)$

3. Let $S \subseteq C$ be a clique in Gaif(C). We want $g \in Aut \ C$ with $g(S) \subseteq \nu(A)$.

S is generic.

So by lemma 8, $\pi(S)$ is small.

So there is $g \in Aut B$ with $g(\pi(S)) \subseteq A$.

The map

 $p: x \mapsto \nu(g(\pi(x))) \in \nu(A) \quad (\text{for } x \in S)$

is 1–1, and has generic domain (S) and range $(\subseteq \nu(A))$, and is *g*-compatible.

By lemma 12, p extends to $\hat{p} \in \text{Aut } C$, and $\hat{p}(S) \subseteq \nu(A)$.

Conclusion

- The theorem strengthens Herwig's 1998 results.
- Combined with the combinatorial proof of Herwig's 1995 result by Herwig–Lascar, it gives a purely combinatorial proof of them.
- New and simple proof of finite model property for loosely guarded and packed (and clique-guarded) fragments.
 (Otto has a variant argument to give this, using finite model property of the basic guarded frag-

finite model property of the basic guarded fragment.)