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introduction

Projective and affine planes — incidence systems of points and lines

• axiomatic abstractions of ‘real plane geometry’
• no quantitative information (distances)
• qualitative directional information (collinearity, parallelism)

Heavily studied in mathematics as a core part of geometry.

Studied in modal logic by Stebletsova, Venema, Balbiani, Goranko,
Vakarelov, . . . Spatial logic is currently of some interest.

• Venema (1999) proposed 2-sorted treatment, and axiomatised
projective planes.

• Balbiani–Goranko (2001) axiomatised ‘weak affine planes’.

• This talk: the true affine planes are not finitely axiomatisable!
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outline

• definitions, examples

• existing work (Bruck–Ryser, Venema, Balbiani–Goranko)

• proof of non-finite axiomatisability

• conclusion, problems
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definition — projective plane

A projective plane is a triple (P, L, E), where P, L are the sets of
points and lines (resp.), E ⊆ P × L, and

P1. any two distinct points lie on a unique line
∀x, y ∈ P (x 6= y → ∃ ! l ∈ L(x E l ∧ y E l))

P2. any two distinct lines meet in a unique point
∀l, m ∈ L(l 6= m → ∃ !x ∈ P (x E l ∧ x E m))

P3. there exist four points, no three of which are collinear
∃x0x1x2x3 ∈ P

∧

i<j<k<4

¬∃l ∈ L(xi E l ∧ xj E l ∧ xk E l)
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definition — affine plane

An affine plane is a triple (P, L, E, ||), where P, L are the sets of
points and lines (resp.), E ⊆ P × L, || ⊆ L × L, and

A0. two lines are parallel iff they are equal or disjoint
∀l, m ∈ L(l || m ↔ l = m ∨ ¬∃x ∈ P (x E l ∧ x E m))

A1. any two distinct points lie on a unique line
∀x, y ∈ P (x 6= y → ∃ ! l ∈ L(x E l ∧ y E l))

A2. there is a unique line through any point parallel to any given line
∀x ∈ P ∀l ∈ L ∃ !m ∈ L(x E m ∧ m || l)

A3. there exist three non-collinear points
∃x0x1x2 ∈ P ¬∃l ∈ L(x0 E l ∧ x1 E l ∧ x2 E l)

(equivalently: L 6= ∅, and for any l ∈ L, there is a point not on l)
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examples

The real plane R
2 naturally yields an affine plane.

Replace R by a finite field — you get a finite affine plane.
It can be completed to a finite projective plane.

completion: affine plane → projective plane
In an affine plane, || is an equivalence relation. Take its equivalence
classes to be the points of a new line (the ‘line at infinity’). This gives
a projective plane — the ‘completion’ of the affine plane.

projective plane → affine plane
Rip a line and its points out of a projective plane — get affine plane.
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order

The order of a projective plane is (the number of points on a line)− 1.
This is well-defined.

The order of an affine plane is the number of points on a line.
This is (the number of parallel classes) − 1.

Bruck–Ryser theorem, 1949: If a finite projective plane has order n,
and n ≡ 1 or 2 mod 4, then n is the sum of two squares.

Exercise: For all n ≥ 0, the number 2 · 32n+1 is ≡ 2 mod 4 and is not
the sum of two squares.

So there’s no projective (or affine) plane of order 2 · 32n+1, for any
n ≥ 0.
No affine plane has 2 · 32n+1 + 1 parallel classes, for any n ≥ 0.
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modal logic of projective planes

Yde Venema (1999) proposed treating projective plane (P, L, E) as
2-sorted Kripke frame (P, L, E, ∃), where ∃ is converse of E.

Modal formulas:

point formulas π ::= p0 | ¬π | π ∧ π | [01]λ

line formulas λ ::= p1 | ¬λ | λ ∧ λ | [10]π

The boxes [01], [10] have accessibility relations E, ∃ (resp.).

〈01〉, 〈10〉 are the corresponding diamonds (the usual abbreviations).

7



 

Venema’s axioms and rules

(Sahlqvist) axioms:
all propositional tautologies
normality of [01], [10]

[01] and [10] are mutually converse
〈01〉⊤, 〈10〉⊤

transitivity of 〈·〉 and 〈−〉, where 〈·〉π = 〈01〉〈10〉π, 〈−〉λ = 〈10〉〈01〉λ.
(In a projective plane, these are universal modalities for their sorts.)

Rules: modus ponens, generalisation for [01], [10], substitution.

This system is (strongly) sound and complete for projective planes.

Venema also proved that satisfiability for the logic of projective
planes is decidable and NEXPTIME-complete.
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what about affine planes?

Regard affine planes as 2-sorted Kripke frames (P, L, E, ∃, ||).

point formulas π ::= p0 | ¬π | π ∧ π | [01]λ

line formulas λ ::= p1 | ¬λ | λ ∧ λ | [10]π | [||]λ

Balbiani–Goranko (2002) proposed axioms for affine planes.
Completeness was left open (though it was proved for a wider class
of structures called ‘weak affine models’).

IH–Hussain (2005): the 2-sorted modal logic of affine planes is not
finitely axiomatisable.

So B–G’s axioms are not complete.
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proof of non-finite axiomatisability

Idea: construct finite affine-like frames Cn (n < ω) such that:

1. each Cn is not the bounded morphic image of any affine plane,

2. their ‘limit’ C∞ (e.g., an ultraproduct) is a bounded morphic
image of an affine plane.

If the logic of affine planes were axiomatisable by a finite set Σ of
formulas, then

1. each Cn would satisfy at least one of {¬σ : σ ∈ Σ},

2. C∞ would validate Σ.

With suitable construction of ‘limit’, this is impossible!
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details — configurations (affine-like frames)

Let κ ≥ 1 be a cardinal.

A κ-configuration is a frame C = (P, L, E, ∃, ||) such that

C0. two lines are parallel iff they are equal or disjoint

C1. For all x, y ∈ P , there are at least κ lines l ∈ L with x, y E l.

C2. there is a unique line through any point parallel to any given line

C3. L 6= ∅, and for any l ∈ L, there is a point not on l.

C0, C2, C3 are equivalent to affine axioms A0, A2, A3.
C1 is different from A1 (‘any two distinct points lie on a unique line’).

Any affine plane is a 1-configuration.
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making the Cn

Lemma 1. For every finite k ≥ 1, there is a finite k-configuration Ck

with exactly c parallel classes, where c = 2 · 32n+1 + 1 for some n.

Proof. Pick c, d, n with k ≤ 2d−2, 4kd2 ≤ 2 · 32n+1 + 1 = c, c ≤ 2d−1.
Take any set P with |P | = 2d. Put S := {l ⊆ P : |l| = d}.
Choose L ⊆ S with
• l ∈ L ⇒ P \ l ∈ L

• ∀x, y ∈ P ∃≥kl ∈ L(x, y ∈ l)

Possible since |{l ∈ S : x, y ∈ l}| ≥
(

2d−2

d−2

)

≥ 2d−2 ≥ k.
Need to pick total of ≤ (2d)2k sets l (plus their complements).

• |L|/2 = c.
So far, |L|/2 ≤ 4kd2 ≤ c. Just add more l ∈ S to L until |L|/2 = c.
Possible since |S| =

(

2d

d

)

≥ 2d so |S|/2 ≥ 2d−1 ≥ c.

Check Ck = (P, L,∈,∋, ||) (where || is defined by C0) is as required.
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configurations and affine planes

Lemma 2. Let C be a κ-configuration, A an affine plane, and
f : A → C a surjective homomorphism. Then A and C have the
same number of ||-classes.

Proof. Show f induces a bijection on ||-classes. Take lines l, m of A.
l || m ⇒ f(l) || f(m) — trivial.
Assume ¬(l || m) but f(l) || f(m), and get contradiction:

x u
u

f(x)
u'

&

$

%

'

&

$

%
   

    ``````̀ ���
������
���

���
���((((

(((

l

m

f(l)

f(m)

n′n

-f

A

C

By Bruck–Ryser theorem, no Ck from Lemma 1 is the bounded
morphic image of an affine plane.
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limit

Let C∞ be a ‘limit’ (e.g., non-principal ultraproduct) of the Ck.
It is a |C∞|-configuration.

Lemma 3. C∞ is the bounded morphic image of an affine plane.

Proof. Build affine plane A and surjective bounded morphism
f : A → C∞ by a step-by-step construction similar to Venema (1999).
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coherence (soundness) conditions and defects

S1. |Nk| < |C∞| for each k

S2. each fk is a homomorphism

S3. l || m ⇐⇒ fk(l) || fk(m), for all lines l, m of Nk

S4. any two distinct points have at most one line through them

S5. no two distinct parallel lines intersect

S6. there exist three non-collinear points

D1. ‘back-defects’ for fk for each of 〈01〉, 〈10〉, 〈||〉.

D2. two points with no line joining them

D3. parallel-axiom defects

D4. non-parallel lines with no point of intersection
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D2 defects (the main case)
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need to add a line l through x, y
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. . . but x, y already mapped by fk. . .
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. . . so need to define the fk+1-image of l carefully
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danger. . .
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escape
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summary

• Each Ck is not the bounded morphic image of an affine plane

• The limit C∞ is the bounded morphic image of an affine plane

So the modal logic of affine planes is not finitely axiomatisable.

This is a surprising contrast with projective planes.

Can view as a positive result — explicit axioms may have interesting
‘geometrical’ content.
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complexity of satisfiability problem
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modal affine

hybrid affinehybrid projective

modal projective (NEXPTIME-complete)
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open questions

1. decidability, complexity of modal logic of affine planes (etc)?

2. find explicit axioms for modal logic of affine planes

3. what if we use hybrid logic?

4. what if we use strict (irreflexive) parallelism?

Balbiani–Goranko (2002) axiomatised affine planes using
non-standard ‘irreflexivity’ rules.

decidability and complexity — open
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