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Abstract .

The paper in in two parts. In Part I we describe a construction of a certain
kind of subdirect product of a family of rings. We endow the index set of the
family with the partial order structure of an SFP domain, as introduced by
Plotkin, and provide a commuting system of homomorphisms between those
rings whose indices are related in the ordering. We then take the subdirect
product consisting of those elements of the direct product having finite
support in the sense of this domain structure. We examine the properties of
rings obtainable in this way.

In Part IT we prove an 'anti-structure theorem' by exhibiting 2R, pairwise
non-embeddable rings of cardinality R, with various higher-order properties.
The construction uses Aronszajn trees.

Introduction

This paper presents a blend of ideas from ring theory, set-theoretic combinatorics and
computer science. It is divided into two parts: part I will perhaps be of more interest to
algebraists, and part II to logicians.

In part I we develop a method of constructing a subdirect product of certain families of rings.
To do this we impose a partial order structure on the index set of the family. We will take this
poset structure to be that of an SFP domain, a notion introduced in [P] and well known to domain
theorists in computer science. We will analyse the behaviour of the ideals of the resulting
subdirect product and show that infer alia they carry information about the underlying poset
structure on the index set. We can then exert control over the subdirect product by purely partial
order-theoretic means.

We exploit this in part I. Using a variant of the construction of Aronszajn trees in set

theory we will construct, using ZFC only, 281 SFP domains such that, assuming that all
component rings are countable, any subdirect products obtained with them will be pairwise non-
embeddable rings. We can impose conditions on the component rings themselves to obtain
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stronger results.
A typical product is:
THEOREM:  Let S be a countable Boolean ring. There are 2% L cow-€quivalent pairwise

non-embeddable Boolean rings R; (i<2%1) of cardinality R, extending S. Each R; is
existentially closed and rigid, and each of its maximal ideals has a countable set of
generators.
This suggests that there are too many such rings to classify fully. It is thus an anti-structure
theorem in the spirit of, for example, the result of [Sh] that if T is a first order non-superstable

complete first order theory of cardinality  then there are 24 pairwise non-elementarily
embeddable models of T of cardinality A for all regular A>k.

The technique tends to produce rings with many orthogonal central idempotents, so is most
at home when constructing Boolean or von Neumann regular rings.

The work in this paper simplifies the construction of the doctoral thesis [Hk] of the first
author, which also uses the continuum hypothesis. The argument there is more complicated and
less general because SFP domains are not used. The motivation for [Hk] came from the paper of
Ziegler [Z]. If Iis a left ideal of a ring R, we say that I is densely decomposable if whenever A
is a left ideal properly extending I then there are left ideals X, Y € A properly extending I but
with XnY =1 (see Section 3 of Part I). If R is countable, commutative and von Neumann regular
then a proper ideal I of R is densely decomposable iff the ring R/ is atomless (has no principal
maximal ideals), iff the injective hull of the left R-module R/I has no indecomposable direct

summand. If R is additionally assumed to be countable and atomless then R has 280 (i.e. 2| Rl)
maximal ideals; this was generalised to arbitrary countable rings in [Z] (7.1(1), 7.2, 8.3). Our
initial objective was to show that the result fails for IR| = R,. This is established by the
theorem quoted above. Every maximal ideal of each R; of the theorem is countably generated,

so they are at most 280 in number - this can be less than 281 = 2/ Ri! | The construction in [BK]
gives an atomless Boolean ring of cardinality R, also illustrating this, but Jensen's ¢ (diamond)
is used. On the other hand, unlike the construction in [BK], an atomless Boolean algebra
constructed by the methods we give will generally have an uncountable set of pairwise
incomparable elements.

It would be interesting to prove an intrinsic characterisation theorem for rings arising by our
construction, analogous to that for varieties and reduced products. Possibly the work of Smyth
[Sm] would be relevant.

The first author would like to thank his Ph.D. supervisor Wilfrid Hodges, to whom he
owes a great debt for many helpful conversations and much moral support both during and after
the Ph.D., and Dov Gabbay, who carefully read a draft of the paper and made many valuable
suggestions. The first author also thanks the U.K. Science and Engineering Research Council
and King's College Cambridge for financial suppport without which the Ph.D. would not have
been completed. Thanks for useful suggestions are also due to Uri Avraham, Ulrich Felgner,
Rami Grossberg, J.C. Robson, S.J. Vickers and the referee of an earlier draft of this paper.
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Part I: SFP systems

This part of the paper contains the results of a more algebraic nature. We will define the
notion of an SFP system of rings, and study some of the properties of its limit.

Let us describe the approach in rather more detail than above. Let (P,<) be a poset such
that for every p € P we have a ring Rp Suppose further that for every p<q in P we have a
ring homomorphism Vpq: Rp - Rq. We require that the Vbq (p<q in P) form a commuting
system in the usual sense.

Assume that Phas aleast element L. Then the presence of the maps v allow us to embed
the ring R diagonally into the direct product H(Rp :peP), viarm (v _Lp(r) :p P for
re R). We would like to generalise this as follows. Let N € P be finite. Can we embed the
finite direct product II(R,, : n € N) diagonally into the full direct product?

SoletreII(R, :n € N). We need to define its image r’ in H(Rp :p € P). By analogy
with the case N = {1}, for each p € P we would like to define r'(p) to be vnp(r(n)), where n is
an appropriate element of N, depending on p. To force a unique choice of n we will assume
that N satisfies: for all p € P there is a unique maximal element of {n € N:n g p). This
would hold if for example N is linearly ordered. We write this maximal element as p/N. We
can now define 1’ to be (vp / N,p(r(P/ N)):p € P). Then N is in effect a finite support of r' in
H(Rp :p € P

So we consider the set R* of all elements of l'I(Rp :p € P) having a finite support in this
sense. We require that R* be a subring of II(Rp :p € P). To obtain closure under + and - we
will need any two finite supports to be contained in a third, and to avoid redundancy of any
Rp we will formally require that (*) any finite subset of P extends to a finite support N < P.
For example, if P is linearly ordered with a least element this is trivially true. So we could
take P to be (Qu{-00},<), each Rp to be {0,1} and all qu to be the identity map. In this case R*
turns out to be the countable atomless Boolean ring (see Example 3.4). However, the condition
(*) holds in much more general cases and is closely related to the SFP domains of Plotkin [P].
Any such P extends canonically to an SFP domain by adding where necessary a least upper
bound h for each directed subset D of P. These extra points h turn out to be very useful:
<Ry Vyq' : d<d’ in D> forms a direct system and it is technically convenient to define R tobe
its direct limit, and extend v accordingly. Hence we will work with SFP domains throughout.

It is easy to show that if the ‘component rings’ Rp (p € P) have various properties then so
does R*. Examples of properties preserved in this way are: commutative; Boolean; von
Neumann regular; existentially closed commutative. The cardinality of R* is also related to |P]
and the IRPI. We also show that the L, -theory of R* is determined by the Legy-theory of P

together with the Rp and the maps Voo

So far the construction could be undertaken for any model-theoretic structure. We
consider rings because we can fruitfully study their ideals. (Generalisations to structures
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Part I: SFP systems

such as lattices are probably possible here.) An important class of ideals arises as follows. If
Iis a (left) ideal of Ry for some s € P then I*={r € R*:r(s) € I} is a left ideal of R*. Ideals
of this form are called full ideals: they are in a sense 'locally determined’. We can recover I
and s from I* so the full ideals are closely related to the poset structure.of P. They are a kind
of basis for the set of all ideals of R*. Using the extra elements h of P we can show that any
maximal, prime or irreducible ideal of R* must be full, and every ideal of R* is the
intersection of the full ideals that contain it.

The layout of this part of paperis as follows. In Section 1 we discuss SFP domains and
formally lay out the subdirect product construction. In Section 2 we discuss ideals of R* and
use the results in the next section to enforce that R* has a property generalising ‘atomlessness’
in Boolean algebras. Finally, in Section 4 we discuss Loog-equivalence.

1 SFP systems

In this section we give most of the definitions that we will need, plus some examples and
useful lemmas for illustration.

Algebraic dcpos

Recall that a partially ordered set, or poset, is a (usually non-empty) set equipped with a
reflexive transitive binary relation, written here as '<’. A poset (D<) is directed if D is non-
empty and whenever d,, d, € D, then there is d, € D with d, > d, d,.

A non-empty poset P is said to be directed complete (a ‘dcpo’) if whenever D € Pis
directed then D has a least upper bound in P. We write this bound as lub(D), or more
explicitly Tubp(D); it is necessarily unique.

An element p of a dcpo P is said to be finite if whenever D ¢ P is directed and p <lub(D)
then p < d for some d € D. We write P° for the set of finite elements of P; P? is called the base
of P. Pis said to be algebraic if for all p € P, the set pl = {q € P:q <p} is such that
pl n P%is directed and lub(pl n P°) = p. That is, p is the lub of the set of finite elements
beneath it, and we can usually replace p by this set. It follows that in this case P is
determined by its base (see below). Algebraic dcpos P with countable base are usually called
domains in the computer science literature.

Examples of algebraic dcpos are all finite (non-empty) posets and all successor ordinals.
If X is a non-empty set then p(X), ordered by inclusion, is an algebraic dcpo, and the finite
elements are just the finite subsets of X - hence the name. The half-open real interval (0,1]
has no finite elements and shows that a dcpo need not be algebraic, as does the following dcpo:
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Part I SFP systems

@

Figure 1.1

Ideals

Let P be any poset. Anideal of Pis a subset I of P that is closed downwards (i.e. if
xgy e Ithen xe ) and directed. Clearly if p € P then pl is an ideal; ideals of this form
are said to be principal. It is well known that if P is an arbitrary non-empty poset, the set
of ideals of P, ordered by inclusion, forms an algebraic dcpo whose finite elements are just the
principal ideals; these are in order-isomorphism with P. Hence any P can be ‘completed’ to an
algebraic dcpo by taking this ideal completion’. Moreover, any algebraic dcpo Pis
isomorphic to the ideal completion of its base P°. We will often identify a poset P with the set of
finite elements of its ideal completion. A similar ideal completion can be undertaken for
preorders also.

“Locally directed sets

Now let P be a poset. A subset N of P is said to be locally directed in P (written
N ¢ P) if for all p € P, pl n N is directed. Equivalently, N < P iff N nI is directed for all
ideals I of P. For example, if P is an algebraic dcpo then P° ¢ P. If P contains a least element
1, then any linearly ordered subset N of P with L € N is locally directed in P. N c pXis
locally directed in (o X,<) iff N is closed under finite (including empty) unions. Since P q P
for any P, locally directed does not imply directed. The converse also fails, as if L is the least
element of Pthen N¢Ps L € N.

It is easily seen that < is a reflexive and transitive relation on posets, and thatif Nq P
and Nc Q¢ Pthen Ng Q.

Now assume that P is a dcpo. If N g P and p € P, we write p/ N for lubp(pl n N); this
exists since P is a dcpo, and indeed if N is finite, or more generally a depo such that
lubP(D) = lubN(D) for all directed D € N, then p/N € N. We can view p/N as N’s best
approximation to p. We have p/N < p for all p; further, P is algebraic iff P° ¢ P and
p/P°=pforallpeP. If N qP we can define an equivalence relation ~; on Pby x~y y
iff X/ N =y/N. We will see in Section 2 that the equivalence classes are related to the well

known ‘patch’ topology on P.

Wed, May 9, 1990 5




Part I: SFP systems

SFP domains

We can now define the strain of poset of interest to us here. A poset P is said to be nice if
any finite subset X ¢ P can be extended to a finite locally directed subset of P. An SFP
domain is an algebraic dcpo P such that P° is nice. So the ideal completion of a nice poset is
an SFP domain, and all SFP domains arise in this way.

An equivalent definition uses the notion of MUB-closure (see Plotkin, [P]). If X € P define
MUB(X) = {p € P:p is a minimal upper bound of X}. Also define an increasing chain U™(X)
(n<w) by: U =X, UM1(X)= UMUB(Y): Y € UNK), U¥(X) = Upco UNX). U¥(X) is
called the MUB-closure of X. Then it is easily seen that P is SFP iff for all finite X < P°,

(i) for all p € P with X ¢ pl there is y € MUB(X) with y<p

(ii) MUB(X) is finite

(iii)  U®(X) is finite.
In fact, in this case U®(X) ¢ P°. Domains satisfying (i) and (ii) are sometimes called 2/3-SFP.
Of course, (iii) implies (ii).

Examples of nice posets are any finite poset, any linear order with a least element, any
Boolean algebra, and any tree with finitely many minimal elements. The restriction to
finitely many minimal elements is necessary. If P is a nice poset then take finite N g P;
every p € P lies above some element of N. Then M = {m € N: ~3n € N(n<m)} is non-empty
and finite, and every p € P lies above an element of M.

The following are the three main kinds of non-nice poset. See [Sm].

Figure 1.2

On the left the two black elements have no minimal upper bound, violating condition (i) above.
In the centre poset they have infinitely many minimal upper bounds, violating (). The
right-hand one satisfies (i) and (ii) but now the black elements have infinite MUB-closure.
SFP domains were introduced in [P] as those arising as inverse limits of Sequences of
Finite Posets. They are of considerable interest in computer science, where they are used to
provide denotational semantics for programming languages. Any domain P can be equipped
with a topology (the Scott topology): O € P is open iff (i) O is closed upwards, and (i) if D ¢ P
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Part I: SFP systems

is directed and lub(D) € O then DnO # @. If D and E are domains we write [D-E] for the poset
of Scott-continuous functions from D to E, ordered by f < g iff for all d € D, f(d) < g(d). In
{Sm] Smyth showed amongst other things that if D is a domain with countable base, then [D-D]
is also a domain with countable base iff D is SFP. In this case [D-D]is also SFP. The SFP
domains form the largest Cartesian closed full subcategory of the category of domains with
countable bases, the morphisms being the Scott-continuous maps.

SFP systems
We now give our main algebraic definition. An SFP system is a triple <P,p,u>, where
() Pis an SFP domain.
(ii)  pis a map from P into the class of rings with a 1 (14 0). We will write RP for p(p),
where p is understood.
(iii) v is a map defined on those pairs (p,q) € P? with p <q. Each v(p,q) is a ring
homomorphism from Rp into Rq. (All ring homomorphisms in this paper preseive 0

and 1) We write v(p,q) as v We require further that

Pq

(a)  vpp is the identity on Rp

(b) v qr'pq = Vpr if pgqgrin P

(¢}  if D g Pis directed with least upper bound u € P, then R, is the direct limit of
the direct system <Rd, Vyq’:d<d’in D>, and for all d € D, Vay is the canonical

-ring homomorphism from R 4 into R ;.

Remark 1.1

Let P be a nice poset. Suppose we have a triple (P,p,v) satisfying (i) and (iii)(a), (b).
Then we can canonically complete it to an SFP system by (a) embedding P canonically into its
ideal completion Q, (b) defining Rq for q € Q\P to be lim —><Rp'vpp’ :p<p’ in Pagl>, and (¢)
defining Vaq' for q <q’in Q to be the limit’ of the Vpp' forp,p’e Pwithp<q p'<q’
Moreover, all SFP systems arise in this way. So an SFP system <P,pu>is determined by its

‘finite’ part: on P°, Ry, and Vpp' for p<p’ in P°.

P

Limits of SFP systems

Let <P,p,u> be an SFP system, and let N ¢ P. An elementre H<Rp :p € P> is said to
have support N if for all p € P, r(p) = Vip/ N)’p[r(p/ N)I. We define the limit of <P,p,u>, or
lim<P,p,u>, to be the subdirect product consisting of those elements of HRP that have a finite

support N ¢ P°. Since Pis an SFP domain, any two finite locally directed subsets of P° are
contained in a third, and it follows that the limit of <P,p,u> is a subring of HRp. Clearly it is

also identifiable with a subring of II<RP :p € P, since P° supports any element of Rp.
We will generally write Rp for the limit of <P,p,u>. Obviously, for any p, € P the

projection (r 1(p,)) of Rp onto Rpo is a surjective ring homomorphism.
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Part I: SFP systems

As an example, if P= (Q,<) and all Rp are {0,1} then Rp is the unique countable atomless

Boolean ring. See Example 34 below.

Subsystems
Let P be an SFP domain. If Q ¢ P, we write Q < P, and say that Q is a subdomain of P,
if
- Qisitself an SFP domain under the ordering induced from P
_ Qo c p°
- Qisalocally directed subset of P
- if D g Q is directed then lubQ(D) = lubp(D).
Note that these conditions imply that P°n Q ¢ Q° so that we have P°n Q= Q° in fact. Clearly
g is reflexive and transitive, and if N € P is finite then N <P iff N g P°.

Proposition 1.2
Suppose that we have an SFP system <P,p,u>. Let Q £ P. Then <Q,plQ,v|Q%> is an SFP
system. Moreovet, its limit ring R@ is canonically isomorphic to the subring of Rp consisting

of those elements supported by Q.

Proof
~.; To showthat <Q,plQuIQ?>is an SFP system we only need to check that if D € Q is directed

then

RlubQ(D) =lim <R 4:d € D>.
But this is clear, since <P,p,v> is an SFP system and lubQ(D) = lubP(D).

Nowifre RQ there is finite N < Q supporting r. By transitivity of < we have N< P, so
r extends naturally to 1’ € Rp given by

- rp) = Vp/ N,p[r(P /N)] forpeP.
The map re 1’ is a ring embedding from RQ into Rp, and clearly its image is precisely the set
of elements of Rp supported by a finite locally directed subset of Q - i.e. those supported by Q.

O

In future we identify RQ with the subring (RQ)’ of Rp, whenever Q < P.

A special case is where Q < P is finite - i.e. Q= N, a finite locally directed subset of P°.
Then clearly Ry & II<R, :n € N>, a finite direct product. If N ¢ N’ are finite locally

directed subsets of P°, then N g N’, and so (making the identification) RN is a subring of RN"

Since P is SFP, the following is clear:
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Part I: SFP systems

Proposition 1.3
<Ry : N € P°is finite> is a direct system of rings under inclusion, and its direct limit is

naturally isomorphic to Rp.

So all limit rings of SFP systems arise as direct limits of some direct system of rings.

Corollary 1.4

Let <P,p,v> be an SFP system.

(i) If P has a least element, 1, say, then R | isa subring of RP.

(i) The following classes of rings are closed under SFP systems, in the sense that if
Rp€Kforalpe P? then Rp € K also:
(a) the class of commutative rings;
(b) the class of von Neumann regular rings (ie. R k VxJy(xyx = X));
(c) the class of Boolean rings;
(d) the class of rings that are existentially closed in the class of commutative
rings (‘commutative e.c’);
(e) the class of existentially closed rings in the class of Boolean rings.

Proof
(i) -« = Suppose that L € P is such that 1L <p for all p € P. Clearly {1} ¢ P°. The result
follows from (1.3) now.

(ii) By (13) it is enough to show that the classes cited are preserved under finite direct
products and direct limits - or at least direct limits in which the morphisms of the system are
injective. This is clear for (a), (b) and (c), where there is no use of injectivity. We prove (d).
Recall (e.g. from [CK]) that if L is a first order signhature and X is a class of L-structures
that is closed under isomorphism, an L-structure M € = is said to be existentially closed in
Z (e.c. for short) if whenever M ¢ N € 3 and ¢(X) is an existential formula of L, then
- for all a € M, if Nk ¢(3) then already M [ ¢(3).
Clearly the class of e.c. structures is closed under isomorphism. By considering disjunctive
normal forms we may assume that ¢(X) is of the form IF(Xy) where s is a conjunction of
atomic and negated atomic formulas.

It is easy to see that if = is closed under direct limits of the form lim <M, Vij :igjin I>
where the Vij are injective, then a direct limit of e.c. structures is e.c.. The class of

commutative rings is closed under such limits, so to prove (d) it suffices to prove that if A, B

are commutative e.c. rings (i.e. they are e.c. in the class of commutative rings) then so is AxB.
Suppose C2 AXB is a commutative ring. Let e,=(1,0), e, = (0,1) in AXB. Then since C is

commutative, e, is a central idempotent of C. It follows that the left ideal Ce, of Cis a
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Part I: SFP systems

commutative ring in its own right, with identity e;; it has a subring (AxB)e,, which is
isomorphic to A via (ab)e,» a. Similarly, Ce, is a commutative ring with a subring
(AxB)e, = B.

Now since e,e, =0 and e,+e,=1, we have C& Ce, x Ce, via ¢ (ce,ce,). It follows
that:

® if @(X) is an atomic formula of L and € € C, then C k «(3) iff Ce; E a(Cey) for

i=12. Similarly, if ¢ € AxB then AXB k () iff (AxB)ei = oc(c':ei) fori=1,2.

If o is an atomic formula, define ! to be o« and «® to be =, Let Y(X,y) above be
/\j <mocj(>'<,§7)nj, where the ocj are atomic formulas of the signature {+,-,., 0,1} of rings, and

ny = 0 or 1. Suppose that C  y(ac) for a € AxB, Se C. Then by ($), there are Py g € {0,1}

with pyq; = n; (j<m), such that Ce, N ccj(e'\e,,c':e,)pj and Ce, k /\; ocj(aez,c':ez)qj.

As (AxB)e, = A we can identify them and regard A as a subring of Ce,. Because A is e.c.
there is €, € A such that Ak /\j ocj(ée,,é,)Pj_; and similarly we can find ¢, € B with
analogous properties for B. Take d € AxB with de, =T, de,=C,; then Ak /\j ocj(éel,dei)pj
and Bk /\ ocj(éez,dez)qj. Hence by ($) again, AxB N ocj(a,d)“j.

Hence AxB is an existentially closed commutative ring, as required.

(e) - the proof is the same as (d).

Note that for Boolean rings, eixstentially closed is the same as atomless. See for example
[Hg 639, Ex. 63.2] Since many of the SFP domains we use have a least element ., SFP systems
can often be used to produce rings extending a given ring R= R 1 (1.4G).

A slightly more general preservation result is: if all Rp satisfy @ = VXIF(/\jm;»1) where
m; and 7 are equations, then also Rp satisfies g. This includes (ii(a)-(c)) above; the proof is

the same.
There is an easy cardinality result that also follows from (1.3).

Proposition 1.5
Suppose that <P,pv> is an SFP system in which each ring Rp is countable, and P is infinite.
Then |Rpl= [P°[+R,,
O
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Part I. SFP systems
2 RingIdeals

Here we examine the relationship between (ring) ideals of the limit rin g of an SFP system
<P,p,y> and the underlying SFP domain of the system. The relationship is close and we will use
it extensively in later sections. We isolate a special class of ideals - the full ideals - and show
that they correspond closely to P. We also show that the ideals of the limit of the system are
determined by their projections onto the components Rp (peh.

Unless otherwise stated, all ring ideals in this section will be left ideals.

Notation
Let P be an SFP domain, and fix an SFP system <P,p,v> with limit ring Rp. We will

generally use 'J' to denote an ideal of Rp, and 'T' for an ideal of a component ring Rp (peh.
If ] is an ideal of Rp and q € Q < P, we will write IQ for Jn RQ and ]Q(q) for the projection
{r(@:re ]Q} of IQ onto the q"h component ring Rq' We write simply J(q) for Jp(q).

First a useful lemma.

Lemma 2.1
Let P be any finite poset and let <P,p,> be an SFP system with limit ring Rp. Let J be an

ideal of Rp. Then J={re Rp:r(p) € J(p) for all p € P}.

Proof
'’ is clear; we prove '2". For each p € P define a central idempotent ep € Rp by

lifx=p
eyx) =
0if x € P\{p}
If r(p) € J(p) for all p € P, then for each p there is Sp € J with sp(p) =1(p). Then
T= Zp cP (ep.sp) €], as required.

This essentially says that for finite P, J= II(J(p): p € P). We will generalise it to
arbitrary P in (2.7) below.

Definition
If pe Pand I is a proper ideal of Rp, we write I@p for {re Rp:r(p) € I}. Thisis a
proper ideal of the limit ring Rp; strictly it depends on P also, and we will sometimes write

"l@p in Rp".
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Part I: SFP systems

Now if p’ € P and I' is an ideal of Rp., then I@p = I'@p’ implies that p=p’ and I=T'. For
if p # p’, then as P is algebraic, plnP° # p’lnP°. Assume without loss that there is
q € P°n(pl\p'l). As Pis an SFP domain there is finite N < P (ie. N g P®) containing q.
Hence p/N#p’/N. We can findr ¢ Ry such that r(p/N) =0 and r(p’/N) = 1. Then
r ¢ I@p \ I'@p’, a contradiction. Hence p =p’, and it easily follows that I= I,

If ] is a proper ideal of Rp, we say that J is full (in Rp) if ] is of the form 1@p for some p,
L. Clearly I will be a proper ideal of Rp Since p and I are unique, we can define o] = p (the
site of ]), and AJ =1 (the defect of ]).

The ‘theoretical interest of full ideals is in their relationship with P, via their site. We will
use this to show that the limit ring Rp can carry ring-theoretic traces of the underlying poset

P, in a form of Stone duality. The main result involved is Theorem 2.2.

Theorem 2.2
Let J < Rp be an ideal. Then the following are equivalent:

(i) J is full in RP

(ii) for each finite N P, IN is full in RN

(iii) . foreach QP JQ is full in RQ.
Moreover, if any of (i)-(iii) hold, and Q < P, we have

(v)  o(g=0]/Q

V) AUQ)= ey HAD.

Proof
(i > ii):
Assume that J is full in Rp; let J=I@p (some p e P, I ¢ Rp). Let N < P be finite and let
n=p/N. If re Ry, then re] iff r(p)= vnp[r(n)] €l iff r(n) e vnp'i(l) iff
re [vnp"i(l)]@n in Ryy. Hence J; = [vnp'i(l)]@n in Ryy. This proves (ii), and also (iv) and

(v) in the case where Q is finite.

(ii = iii):
Assume (ii) and take Q < P. If N < Q is finite then N <P, so Jyyis fullin Ry for all finite
N<Q.
Now if N, N’ Q and N € N’, then N N'. It follows from the proof of (i » ii) that
(£) o(In) =0/ N < a(fyn.
So as Qis SFP, thesetD = {U]N :finite N < Q} is directed. Letits lubin Q be q.
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Claim 1 If N < Q is finite, then o]y = q/N.

Proof of Claim Clearly q > o]y € N. Hence o]y < q/N. For the converse inequality, note
that as q/N < q and /N is a finite element of Q, there is finite N’ < Q such that GIN’ zq/N.
By (£) we may assume that N’ 2 N, and so o]y = 0Jpp/N = q/N. This proves the claim.

NowletI = {r(q):re ]Q}. Clearly 1 is an ideal of Rq'

Claim 2 JQ = l@qin RQ

Proof of Claim "c" is clear; we pass to "2". Letre RQ be such that r(q) € I. So there is

S € ]Q with s(q)=r(q). Since Rq = lim _)<Rq: :q' €ql n Q% and Q is SFP, we can find finite
N < Q supporting r and s, and such that s(q/N)=r(q/N). Butse Jy» which by Claim 1 is full

with site q/N. Hencer € J)y also. This proves the claim.
So by the claim IQ is full in RQ, which proves (iii).
(iii » i): is trivial

It remains to prove (iv) and (v) for infinite QK P. Let J ¢ Rp be ful} let o] = p. Then JQ
is full; let it be 1@q.

If N < Q is finite, then we may apply (iv) to get q/N=0]Jp. But also N<P, so.similarly
dJN =p/N. Hence p/N=q/N for all finite N < Q. Since Q is SFP, it follows that
Pl n Q%= ql n Q°% Taking lubs, we obtain p/Q= q, proving (iv).

For (v), we must show that I= vqp'i(A]). Take a € Rq;
supported by N, such that r(q)= a. By the above, p/N=q/N. So r(p)= vqp(r(q)), and

there is finite N Qandre RQ

hence

ael iff re] iff rp)eA] iff r(q)=aevqp'1(A]).

Whilst Rp can have many full ideals with the same site, this is not so if we restrict to the
elements of Rp that take values 0, 1 only. These elements are central idempotents of Rp. They

form a Boolean algebra in the usual way by defining a <b to hold iff ab = a; aAb is ab and
avb is a+b-ab (symmetric difference).

Definition

We write (Rp)* for the set {re Rp:Vp e P (r(p) €{0,1)) }. If X € Rp we write X*
for Xn Rp*.
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Proposition 2.3
Let 1, J be full ideals of Rp. Then ol=g] iff I*= J*

Proof
Assume that ¢l=0]. Then if r € (Rp), re I iff r(6]) e AL As Al is a proper ideal of

R(TI' this holds iff r(cI)= 0. Since the same holds for J, we have re I iff r e ], so I*=J*
Conversely, suppose that I # o]. Since P is SFP, we can find finite N < P such that
ol/N#0]J/N. Letre (Rp)* be supported by N, and given by: Vne N, r(n)=0 if n=oI/N,

and 1 otherwise. Then r e I* \ J* so that I* #J*
a

In practical terms, full ideals include the maximal, prime and irreducible ideals of RP' Let

us say that an ideal I of a ring R is whole if R\I conains no pair of orthogonal central
idempotent elements (i.e. there do not exist x, y € R\], commuting multiplicatively with every
element of R, and such that x*=x, y*=y, xy = 0).

The following is easy:

Proposition 2.4
If I is a maximal, prime, or irreducible left (or right) ideal of R, then Iis whole. If I is a
maximal two-sided ideal of R, then I is whole.

But now we have:

Proposition 2.5
If Iis a proper whole ideal of Rp then I is full.

Proof
If Iis not full, then by (2.2) there is finite N < P such that Iy is not full in Ryy. But clearly

IN is a proper ideal of Ryy. By (2.1) there are n # n’ in N such that the projections In(n) and
In() are proper ideals of R, R, respectively. So we define e, € Rpby

- ep, is supported by N; and e, (x) =1 if x=n, and 0 if x € N\{n},
and similarly define ej,~. Then ey, e,; ¢ I Clearly e, e, are central idempotents of Rp and

enen = 0 € 1. Hence 1is not whole.
0
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Remark

Clearly, an ideal I is prime in Rp iff I@p is prime in Rp. If J is an ideal of Rp, then
J21@p iff J is full, oJ=p and AJ 2 I. Hence I@p is maximal, maximal two-sided or
irreducible in Rp iff I is so in RP

Example 2.6

Suppose that <P,p,u> is such that Rp =1{01} for all p € P. Hence each v.,._; is the identity

map. Then by (1.4), Rp is a Boolean ring. Here, a full ideal is determined b}If}?ts site alone, as
its defect must be 0. By the remark, any full ideal of Rp is maximal. By (24) and (2.5), the
converse holds also. So P is in canonical bijection with the set of maximal ideals of Rp.

Now the set of maximal ideals of Rpis a Stone space and carries a compact Hausdorff

totally disconnected topology: the clopen sets are those arising as the set of ideals containing a
chosen point of the ring. Hence a homeomorphic topology is induced on P; it is in fact the
‘patch’ topology referred to in (e.g) [Hc], whose construction bears some similarity to ours. We
can be explicit about the topology: if Q ¢ P, define an equivalence relation ~Q onPby:

P~q p'iffp/Q=p’/Q. Then a basis of open sets on P is the set C of equivalence classes of the
~N- for finite NP
C= U{P/~: N finite, N < P}.

Each class is clopen. This is a basis since any finite intersection of elements of C is a finite

--union of elements of C. For any Q < P, any ~Q-c1ass is closed in the topology. Hence (taking

Q = P) every singleton subset of P is closed: the topology is regular.
O

We now move from full ideals to arbitrary ideals. As before we let P be any SFP domain
and <P,p,u> an SFP system with limit ring RP Our first result generalises (2.1) to this situation.

Theorem 2.7

Let ] be any left ideal of Rp. Then for any r & Rp,
- re] iff r(p) € J(p) for all peP.
In other words, J=N{J(p)@p:p € P).

Proof

Clearly if r € J then r(p) € J(p) for all p € P. For the converse it suffices to prove:
(*) J=N{J:J a full ideal of Rp, J'2 ]}
For assume that 1(p) € J(p) for all p € P. Let I1@p be any full ideal containing J. Clearly
Ip)cl Sorel@p. Hencere] for all full ideals J'2 J. Given (*) we obtain re ] as
required.
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We only need to prove 2’ of (*). Letae RP\J. We show that a ¢ {J’': J’ a full ideal of
Rp, I'2 ]} '

Using Zorn’s lemma choose a left ideal J' of Rp that is maximal with respect to:

- I'2]), adJ.
We show that J' is a full ideal of Rp.

If not, by (2.2) there is finite N < P such that J'ny isnot full in Ryy. Since it is certainly
proper, by (2.1) there are orthogonal central idempotents e,, e, of Ry such that e, ¢ T,
e, 9], e,;+e,=1. By maximality of J' we have

a=ji+re forsomejel, ;€ Rp (i=1,2)
Soa = ea+ea = e, + r,e)+e,l, +1e) = ej,+e,j el
This is a contradiction. Hence J' is a full ideal of Rp, which compiletes the proof.

If Q< Pand Jis an ideal of Rp, we can now express the projections ]Q(q) (g€ Q)of IQ in
RQ in terms of the projections J(p) of ] in Rp. The result generalises Theorem 2.2 to arbitrary

ideals.

" Theorem 2.8
Let Q < P and let | be an ideal of RP' Then for each q € Q,

Jo(@ = Nvgp™Ue) :peP p/Q=q)

Proof

For q € Q define Iq = ﬁ{vqp'1 (JE» :pePp/Q=q). Letace Jo(@) for some q. Then
there is r € IQ with r(q)= a. Clearly r(p) = vqp(a) € J(p) for all p € P with p/Q=q. So
ael,.

q
Hence ]Q(q) c Iq forall q € Q. It is not immediate that we have equality; for example, if

q; € Q\Q°and
R, fa=a,
0 ifqe Q\May
then 0 is the only ideal I of RQ with I(q) ¢ Iq for all q.

We prove equality as follows. Suppose for contradiction that there is q € Q and
ae Iq\]Q(q). Using Zorn’s Lemma as in the previous theorem take a left ideal J' 2 J of Rp

that is maximal with respect to: a ¢ ]’Q(q).
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Claim: ]'Q is full in RQ and (T(]'Q) = (.
Proof of Claim: If not, there is finite N < Q such that JNisnotfullin RN As before, take
orthogonal idempotents e, e, € R\y\J', central in Rp and such that e,+e,=1. By maximality

of J' there are j; €], 1; € Rp such that

(*)  jj+rye€ RQ and (j; + rpe)@)=a (i=12).

£

i
Consider s = ¢,(j, + 1,¢,) + €,(j, + 1,e,). Since e, e, € RQ we have s € Rq. Also, s(q)

= ey(q)a + e,(q)a =[(e;+e,)(q)la=a. But also s=ej,+e,, €J. Sose¢ Vg and s(q)=a,
a contradiction to the choice of J'. Hence Fgisfullin Rq, and clearly (I]'Q = q. This proves

the claim.

Now by the above, ]’Q(q,) €My q;P-l(J'(P» :p/Q=q,} for all q, € Q. It follows from
the claim that J'(p)= Rp for all p e Pwith p/Q+#q.

Take r e RQ with r(q)=a. Then as ae€ Iq, r(p) € J(p) € J'(p) for all p € P with
p/Q=q. So by (27), r € J, a contradiction.

We can now determine the left ideal of RP generated by a left ideal of RQ for Q< P. The

== following result also applies if we replace ‘left’ by ‘two-sided’ throughout.

Corollary 2.9

Let Q < P and I be a left ideal of RQ. Then:
(i)  the left ideal J of Rp generated by I is given by
(*) forallp € P, J(p) is the left ideal of Rp generated by Vp/ Q,p[I(p Q)L
(ii) if I=I'@qin RQ {for some q € Q and left ideal I’ of Rq) and for all pe Pwithp#q,
p/Q = q, the left ideal of Rp generated by vqp(l') is improper, then I generates the left

ideal I'@q in Rp.

Proof
(i) Foreachp e Plet Ip be the left ideal of Rp generated by Vp/ le(I(p /1 Q). Let

J={reRp:rp) e Ip for all p € P}. Certainly ] is an ideal of Rp, and J(p)= Jp for all
peP. Butif J21is aleft ideal of Rp then ]'Q 21, so by (28), foreachpe P and qe Q
with p/Q=q we have vqp'ill’(p)] 2 J'o(@ 2 I(q). Hence J(p) € J'(p) for all p, so that
JeJ. So I generates J in Rp.

(i1) This is a special case of (i); we will use it in Part IL
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Corollary 2.10
Assume that Q < P and let the left ideal I of RQ generate the left ideal J of RP. Then
(i) J(@)=1Iq) for all q€Q
(i1) ]Q =L

Proof :
(i) is a special case of Corollary 2.9(). Hence for each q € Q, () R= ]Q(q) < I(q) = Kq),
50 Jo(q) = I(q). Part (ii) now follows by (2.7).
O

3 Densely decomposable ideals

Here we develop a way to obtain an atomless Boolean ring as the limit of an SFP system in
the case where all component rings are Boolean. As in [Z] we use densely decomposable ideals
to generalise the notion of atomless to arbitrary rings. Again, unless otherwise stated all
ring ideals will be left ideals.

" Recall from the introduction the definition of densely decomposable:

Definition

Let R be any ring, and I a proper left ideal of R. Iis said to be densely decomposable
if whenever J is a left ideal of R properly extending I, then there are left ideals X, Y € J
properly extending I, with XnY =L

Example 3.1

Let R be a Boolean ring. Then the ideal {0} is densely decomposable iff R is atomless: that
is,if r#0 in R then there is s € R with r#sr = s # 0. So for an ideal of a Boolean ring,
being densely decomposable is the same as having atomless quotient, and is in a sense opposite

to being irreducible.

We wish to find conditions for ideals of the limit ring of an SFP system to be densely
decomposable.

Definition

Let R be a ring and I ¢ J left ideals of R. We say that J splits over I if there are left
ideals X, Y€ J with X2, Y21 XaY=L IfS21is any subset of R, we say that S

Wed, May 9, 1990 18




Part I: SFP systems

strongly splits over I if for all left ideals ] with IcJ ¢S, ] splits over I
Clearly I is a densely decomposable ideal of R iff any set S 2 I strongly splits over L

Let (P,p,v) be an SFP system. An ideal of Rp can be densely decomposable for two
reasons: its projections onto the component rings Rp (p € P) might already make it densely

decomposable, or else it can be densely decomposable because of the SFP system structure of
Rp. We now separate the two causes. As in Section 2, if I is an ideal of Rpandne NgPwe

write Ipy(n) for the projection {r(n):re In} of Iy (= InRpy) onto R,

Definition
Let I'be aleft ideal of Rp. We define IA to be the set
{r € Rp : for any finite support N < P of 1, there is at most one n € N with r(n) CRIN{H) S

So IcIN If Iis a proper ideal of Rp, then by (22) I is full iff I\ = Rp. IfreRp andieIr

then clearly ir € I*. Hence I/ is the union of the left ideals contained in it.

Lemma 3.2
Let I be a left ideal of Rp. The following are equivalent:

(i) lis a densely decomposable ideal of Rp
~(ii) IA strongly splits over Iin Rp.

Proof
We only need prove that (i) implies (i). Let J> I be a left ideal of Rp; we must prove that

J splits over L. If J ¢ I” this is clear by assumption. Assume not. There is r € J and a finite
support N < P of r such that for distinct ¥, Z € N we have r(y), r(z) ¢ IN. Define ey € RN
by: ey(x) =1 if x=y, and 0 otherwise. Let Y be the left ideal of Rp generated by I and eyt
Define e, and Z similarly. Then ey and e, are orthogonal central idempotents of Rp. We

clearly have I<Y, Zand Y, Z < J.

Claim YnZ =1
Proof of Claim Let se YnZ. So s= i,+r1(ey.r) =1, + (e, 1) for some i, i, el and r,,

r, € Rp. Multiplying by ez, we obtain e,i, = e,i, + r,(e,1). Hence r(e, 1) =e,(i;-i,) € L

Hence s=1i, +r,(e,1) € I, proving the claim.

Hence whether I is densely decomposable depends only on IA. For example,if p € Pand I
is anideal of Rp then I@p is densely decomposable iff I is densely decomposable in Rp
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Clearly the smaller '\ 1 s, the more likely I is to be densely decomposable. We describe one

way to force I"\Ito be small. Suppose that P is an SFP domain such that for every finite
"N<Pandn e N, there is p € PAN with p/N=n. This condition is equivalent to:

(£) for every ne N, {p € P:p/N=n} is infinite.

Examples are the ideal completion of any dense linear ordering with a least element, or of the

tree “Yw (the set of finite sequences of natural numbers, ordered by ‘initial segment’).

Definition

Let 1< Rp be aleft ideal. We say that I is locally generated if there is finite N < P
such that Iy generates I in Rp.

For example, any finitely generated ideal of Rp is locally generated.

Proposition 3.3
Suppose that we have an SFP system <P,pu> (Where P satisfies the condition (£) above) in
which every Vpq is a ring isomorphism. Let I be any proper locally generated left ideal of

Rp. Then Iis densely decomposable.

Proof
By Lemma 3.2 it is enough to show that I* = [. Without loss all Rp are the ring S and each

Vbq is the identity map. Let r € Rp\L Take finite N g P supporting r and such that In
generates I. As re Ry we have r ¢ Iy, so by (2.1) there is n € N with r(n) ¢ InM). By (£)
we can choose finite M < P containing N and such that the set

aM =fmeM:m#n and m/N=n}#g.
By (2.10(ii) the left ideal of Ry, generated by Iy is in fact In- By (29) Ipg(m) = IN(m/N) € S
for allm € M. Now M also supports r. Takem € M, We have r(n) ¢ I 4(n), and |
rm)=r{n) ¢ IN(n) = IM(m). Hence r ¢ I as required.

Remark
We can evidently weaken the assumption on the Vpq in (3.3) to: if N < P is finite then for

each n € N there is m € P°\N such that m/N=n and Vnm IS @ (surjective) isomorphism.

Example 3.4
In the case where all Rp are isomorphic to a ring S and all Vpq are the identity, the limit

Rp is determined up to isomorphism by S and P. It follows from the proposition that letting P

be the ideal completion of Wy and S = {0,1}, the zero ideal of RP is densely decomposable.

Hence by (1.4), (1.5) and the above, Rp is the countable atomless Boolean ring B (there is a
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unique such ring up to isomorphism - see [CK]). Similarly, if Q is the ideal completion of the set
Qg of non-negative rational numbers with the usual ordering, then RQ 2 B. Here, RQ is

essentially the Boolean algebra of half-open intervals of Q. (So P is homeomorphicto Q in the
patch topology - as is any SFP domain X with countable base and satisfying (£)) Since P and
Q are not isomorphic posets, this shows that in general we cannot recover the poset structure
of an SFP domain P from a limit ring Rp. We will pursue this in Part IL

4 Lggy-equivalence of SFP systems and their limits

Here we define a canonical model-theoretic structure Ma from an SFP system o = <P,p,u>.
We prove that if 0= <P1-, P> (i=1,2) are SFP systems and M(rl and Mcrz are Loow-equlvalent
then so are the limit rings of 0, and ¢, We will also provide a simple sufficient condition for
MU: and MUz to be Ly, -equivalent; namely that (P,)° and (P,)° are Logw-equivalent and the
0; are sufficiently similar SFP systems. In Sections 6 and 7 we will construct 281 SFP domains
P; (i<2%1) such that (P,)° and (Pj)° are L, -equivalent for all i<j<2%1, and yet the limit rings
of any SFP systems built on the P, are pairwise non-embeddable. Hence these limits will
nonetheless be L ~equivalent if the SFP systems are sufficiently similar. This means

crudely that though the limit rings are different, the differences are hard to detect.

Recall from e.g. [CK] the definition of L, -equivalence. Let L be any signature; the
infinitary language L, is built from L by allowing formulas with finite strings of
quantifiers but conjunctions and disjunctions of arbitrary length. Two L-structures M, N are
said to be Ly,-equivalent (written M =oow V) if they satisfy the same sentences of Loow:

We can usefully characterise Loow-equivalence in terms of a game between two players,

'V’ and ‘T, played on two L-structures M and N. The game G(M,N) has w moves. At each move
in a play, player V chooses an element from one structure - M or N. Then 3 completes the
move by choosing an element from the other structure. After the play is over, the result is

two tuplesm € M, fi € N of length w, possibly with repetitions: the ith elements my, n; of m,
respectively consist of the elements chosen in the ith move of the game from M, N respectively.
(No record is kept of which player chose which element) So i and fi define a relation

8 = {(myn;) :i<w} € MxN. 3 wins the play of the game iff 6 is a partial isomorphism - i.e. 6 is
a partial function from M to N, and for all quantifier-free first order fomulas ¢(X) of L and all
a € dom(®), M E ¢(@) iff N k 0(B(a)).
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Fact 4.1
Mand N are L, -equivalent iff 3 has a winning strategy in the game G(M,N). See [Hg]

or [K] for details.

Definition

Let o = <P,py> be an SFP system. Define a structure M = (P°,(Rp :p € P9) in the
signature {,p**+*-*0%1*}. The domain of M(r is the disjoint union of P° and the Rp
(p € P°). The binary relation symbol < is interpreted as the partial ordering on P M, E pgq
iff p, q € P° and p<q. p* is a binary relation symbol, and My Ep*(pn) iff pe P% re Rp.
V* is a binary relation symbol corresponding to v: we define Mg Evirs)iffre Rp, SE RCl
for some p, q € P° (necessarily unique) with p<q, qu(r) =s. The ternary relation symbols
+* -* are defined on each Rp in the obvious way: M(r E+¥rst)iffr, s, te Rp for some
p € P° and r+s=t, and similarly for -*. 0* and 1* are unary relation symbols and
Mg EOr) iff r=0¢ Rp for some p € P° (and similarly for 1%).

We say that SFP systems o, 0, are L, -equivalent if M(ri = 0w Mg .-
2

We use this to prove the following theorem.

Theorem 4.2
Let o;= <Py pyv;> be Logw-equivalent SFP systems with limit rings R; (i=1,2). Then

R, =g R: in the signature {+,-0,1} of rings.

Proof

By hypothesis and Fact 4.1 we may take a winning strategy for 3 in the game
G(Mc,'Maz)' We will describe a winning strategy for 3 in the game G(R,R,). We use a play of
G(R,R,) to generate a play of G(M(r,'M(rz)' I’s strategy in this game will then suggest moves
for her in the main game G(R,,R,). The method is well known.

More fully, let V begin by choosing (without 1oss) 1, € R,. V's choice gives rise to the
following finite sequence of elements of Mc,: those in an arbitrary finite support N, < P,° for

1, listed in some arbitrary order, together with the sequence r,(n,) of elements of the Rn1
(n, € N,). 3 treats them as successive moves of V in a play of G(MG,'MUZ) and uses her
winning strategy in this game to choose corresponding elements of MUz' This correspondence
gives a partial isomorphism from M(I1 to M"z' Moreover, as the strategy is winning the
elements chosen corresponding to the n, form a locally directed subset N, of P,°. Hence the
elements corresponding to the ry(n,) give rise to an element r, of R, 1, is supported by N, and
for each corresponding pair n,, n,, ry(n,) corresponds to r,(n,). I's reply in the main game
G(R,R,) is this element r,.
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In each subsequent move V's choice generates a further finite sequence of elements of a
structure M (i=1 or 2). We can assume that the set of all elements so far chosen in each
i

Pl-° € M. (i=1,2) form a locally directed subset. On each occasion 3 continues with her
i

strategy to obtain corresponding elements of the other structure. Note that at each stage, all
elements so far chosen in M, _are in partial isomorphism with the corresponding ones in M .
1 2

After w moves, tuples of w elements 3, € MU{ a,e M(rz will have been generated. The
map &, » @, is a partial isomorphism from M(Il to M;; . It is now easy to see that the
2
corresponding elements of the R, (i=1,2) are also in partial isomorphism. Hence the strategy

described is winning for 3. The result follows by (4.1).

Corollary 4.3

Let P, and P, be SFP domains with P,°=_,  P,°. Let R, R, be Lo -equivalent rings and
define SFP systems 0= <Pi'pi'vi> (i=1,2) by:

- pi(p) = R; for all p € P

- vi(p,q) = idRi for all p<q in P,

Then the limit rings RP1 and RP2 are L, ~equivalent.

Proof
It is evident that ¢, and o, are Loog-equivalent SFP systems. The result follows by (4.2).

a
This shows that with restrictions on the rings and morphisms of the SFP systems g, and g,

to get the limit rings to be Logw-equivalent it suffices to begin with SFP domains having L -

equivalent bases. We will apply this in Section 4 of Part IL
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We briefly sketch the ‘anti-structure theorem’ that will occupy this part of the paper. Our
description here is not accurate in detail. The technique is well known. To simplify matters,
assume that we have two SFP domains P, P! that are in fact a certain kind of tree of height w,,
that all Rp (p € PuP") are the trivial ring {0,1}, and that all Vpq are isomorphisms. We can
express P as a union Ui<w,Pi' where P; is the subtree of P consisting of the elements of height
<i. The P; are an increasing chain of SFP subdomains of P. Thus we have R*= Ui<w1Ri*
where each Rj* is the set of elements of R* supported by a subset of P;. Take a full ideal I of
R%; I={re R:r(s)= 0} for some s € P. It turns out that InR;* is full for all i<w,. So for
each i<w, there is s; € P; such that InR* = re Ri*:1(s;) =0}, and s; < Sj<s if i<j<w,.
The same holds for R*, defined similatly using P,

Assume now that 8 : R*> R™ is a ring isomorphism. Then the set
C={i<w,:6(R;*) = R'*} is a club (a large set) in w,, Moreover, for each i & C, 8(InR;*) is
a full ideal of R‘i* (here, 'full’ is the same as ‘maximal’). So there are s’i € P‘i (i € C) such
that 6(InRy*) = {r € R'j*: 1(s';)= 0}. Thus 6 induces a partial map © from P|C to P'C by:
;P S’i, where P|C= {p € P:p has height in C} (and similarly for P!). By considering all full
ideals 1, @ extends to a bijection from P|C to PY|C, and it is order preserving. Thus the existence
of an isomorphism from R* to R™ forces the underlying SFP domains to be closely related:
there is a club C ¢ w, such that PIC = P'|C.

= 80-in order to produce many non-isomorphic rings R* it suffices to find many trees P such
that no two are isomorphic on any club. In [AS] this is done for Aronszajn trees, using the
hypothesis of 280 < 284 (weak diamond). Our construction here is in some ways similar, but a
weaker result suffices and we do not need any set-theoretic hypotheses beyond ZFC. The trees
we construct are not strictly Aronszajn trees: in fact it is consistent with MA + 280 > R, that
any two Aronszajn trees are isomorphic on some club [AS]. However, our construction is made
complicated by our consideting ring embeddings 8 (and not just isomorphisms) and arbitrary
rings RP (not just {0,1}). In this setting ©® becomes a relation between the restricted trees.

The layout of Part Il is as follows. In §1 the appropriate form of tree is defined and the
relation @ discussed. In §2 we construct many different trees using a Aronszajn-style
argument, and use them to produce many different rings. Finally we establish some higher-
order properties of the rings. We show that each of their full ideals can be made countably
generated (§3), and that the rings themselves can be made pairwise Loogy -equivalent (§4) and

to some degree rigid (85).
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1 Conformal relations

Here we investigate the effect of the SFP domain of an SFP system on its limit ring. We
want in particular to find a way of changing the underlying domain that necessarily
changes (the isomorphism type of) the ring. Our approach is to ask how much of the domain
structure gets to be encoded in the limit ring, in such a way that we can recover it purely
ring-theoretically. For if we use two different domains, and they are recoverable
intrinsically from the two limit rings in sufficient detail to reveal their differences, then the
rings must be different as rings.

Now however we may alter the domain in a system, there is no guarantee of getting
different rings as limits in the countable situation - when the base of the domain and also each
component ring is countable. Suppose for instance that we build atomless Boolean rings (as in
Example 13.4). Up to isomorphism there is a unique countable such ring. Hence the domain
structure here cannot exert any effect.

However, things are different if we allow the base of the domain to be uncountable, as we
will see.

The chief hope of recovering the domain structure lies with the full ideals of the limit
rings: in §1.2 we used the notion of site to relate these ideals to the underlying domain. Now if
the base is of cardinality R,, we can here express the whole SFP domain as a union of an
uncountable chain of SFP subdomains with countable bases. Each subdomain incduces a
subsystem, and its limit is a countable subting of the main limit rin g Hence the original ring
of cardinality R,, can be written as the union of a chain of countable subrings, built around
the subdomains.

In this situation we can take a full ideal of the main ring and look at its intersections with
the subrings. They will also be full, and their sites will form a linearly ordered subset of the
main domain. By considering the ‘forking behaviour’ of the sets that arise in this way, we can
build up a picture of the original domain. This picture turns out to be substantially
independent of the choice of subdomains, and has sufficient detail to distinguish different
‘main’ domains, which is what we wanted.

To get this idea to work we restrict our attention to domains having a certain kind of tree
structure. We can construct 281 different such trees, each with base set of cardinality R,, such
that if P, P’ are two such, and we take any two SFP systems on P, P, with countable
component rings and having limits R, R’, say, then there is no ring embedding from R into R’.
Moreover, by choosing the component rings and connecting maps of the systems more
carefully, we can make R and R’ L, -equivalent. In a similar way we can also ensure that
R (and R’) have various higher order properties, such as some rigidity: they have few
automorphisms.

The actual construction of the trees is done in §2; here, we are concerned mainly with the
ring theory. However, we do need to quote some combinatorics.
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Trees

The following are generally known definitions and we include them for convenience. A
tree is a non-empty poset (T,<) such that the sett={ue T:u <t} of predecessors of any
t € T is well-ordered (hence linearly ordered). We will refer to the elements of a tree as
nodes. The height of anodete T, htp(t) or ht(t), is the order type oft. If i is an ordinal,

we write T(i) for the set of nodes of T of height i: the it level of T.

More generally, if S ¢ T is closed downwards, we write S(@i) for Sn T(), and htT(S) for
the least ordinal i such that S@i) = @. If X is a set of ordinals, we define S|X to be
{s € S:hty(s) € X}. So for example, if i is an ordinal then Sli is th& set of elements of S of
height <i. (Since S if non-empty is a tree in its own right, the notations S(i) etc. would be
ambiguous if S were not closed downwards in T.)

Ift,t' e T, t'is an immediate successor of t if t’ >t and ht(t') = ht(t)+1. Then also t is
an immediate predecessor of t. A terminal node is one without any successors in T; a
branching node is a node with at least two immediate successors. A nodet ¢ T is said to be
green in T if T contains a branching node b > t.

A tree T is called normal if whenever t, t' € T have equal limit height and u<t iff u<t’ for
allue T, thent=t. Our convention is that every ordinal is exactly one of: 0, successor, limit.

A branch of a tree T is a maximal linearly ordered subset of T. A branch B is said
(unusually) to be cofinal in T if every node of B is green in T. If T is normal this means
that the branching nodes are ‘cofinal’ in : if i < ht() then there is a branching node b €
of height at leastiin T.

Remark
Let T be a tree with a least element L. Then any S < T with 1 € Sis locally directed in T.
If T is a depo then Tis an SFP domain, the finite elements being those not of limit height.

Spruce trees
We can now define the type of tree that interests us here. A spruce tree is a normal tree
T satisfying:

() every branch of T has height w,

(ii) each node of T has exactly one non-branching immediate successor

(iii) T has no cofinal branches

(iv) for all i < j <w, and every branching node b of height i in T, there are exactly

R, branching nodes of T of height j above b
(v) T(0) has just one node 'L’, which is a branching node; each higher level of T has
exactly R, branching nodes.

An example of a spruce tree is an Aronszajn tree (cf. [J2] and below) but with each
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branch and node extended individually by new non-branching nodes up to height w,. In §2
the existence of many spruce trees is established.

Let T be a spruce tree. A node of Tis said to be basic if it is a branching node and it is
finite in the sense of §L.1 - that is, its height is not a limit ordinal. We write B(T) for the set of
basicnodes of T.

Let D be a directed set of basic nodes in T. Then D is linearly ordered, and since T has no
cofinal branches, D is countable. Now although T is not a dcpo, it is normal and every branch
has height w,, so D has a unique least upper bound in T. It follows that the ideal completion of
the set of basic nodes embeds canonically into T. So let us call a node of T a limit node if it is
in the image of this embedding. We write L(T) for the set of limit nodes; so B(T) ¢ L(T).
Clearly L(T) is a depo, and since it is a tree with a single least element, it is in fact an SFP
domain. Notice that B(T) ¢ L(T) ¢« T.

We will use the SFP domain L(T) to build SFP systems. The remainder of T is used to keep
track of what is going on. To do this we need to deal with the subtrees of T of countable
height.

« ..Recall that if A is a limit ordinal and X1 (i<2) are arbitrary sets, the X; are said to form
a continuous chain if X, ¢ Xj for each i <j<A, and for each limit ordinal j <2,
Xj = U{X;:i<j}. The union of the chain is defined to be UX;:i< A}
If i <w, we define L(T); to be the set of elements of L(T) with height at mostiin T. Then
L(T)i £ L(T). Similarly define B(T)i = B(T) n Tli+1. B(T) has no nodes of limit height, so the
B(T); (i <w,) form a continuous chain with union B(T). For each i<w, L(T); < L(T).

Moreover, since I(T) € T and T is spruce we have L(T)= U, <w1L(T)i'

Spruce trees and SFP systems
Now take an SFP system <L(T),p,v> such that each Rt (t € B(T)) is countable. Let its limit

ringbe R. Writing R, for RL(T)i' we see that the R, form a continuous chain of countable

subrings of R, with union R,

We define for each i <w, a projection m,: R - Ry, giVen as follows. If r € R, then by
definition r is a function from L(T) into U{R; :t € L(T)}. Then 7;(r) is just the restriction
r|L(T); of r to the set L(T);.

We must show that m;(r) € R;. Let N < L(T) be a finite support of rin R and define
N’= N n L(T); Then since L(T), is closed downwards in L(T), L € N’ and so N’ L(T);.
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Clearly if x € L(T); then x/N = x/N’. It follows that N’ supports ni(r) in Ry. So my(r) € Ry, as

required.
Each & is a surjective ring homomorphism and is the identity on R;

Full ideals

The notion of full ideals becomes alittle more complicated in this setting, since now we
have X, different rings and we can no longer tell from its site which ring a full ideal lies in.
So we refine the notion of site, using the part of the tree T that lies outside L(T).

Recall that each t € T has a unique non-branching immediate successor - t* say. Hence
if ht(t) = i, we can define a node 4! for each igj<w,, by induction on j:

- il ¢

- i+ ¢ljl+

- if j is a limit ordinal, tJ! is the unique node of height j with tlil > ! for all i<k<;;

this is well defined as T is spruce.

Note that although certainly tllis not a branching node if j>i is a successor ordinal, it may be
a branching node if j is limit. If j>i we have 01 ¢ L(T).

In the light of this we can define a map §: T- T by: {(t) is the lowest node t' <t such
that t= MM we clearly have:

-Proposition 1.1
&(T)= L(T) and £3(t) = {(t) for all t € . For all i< w, the restriction

CIT() : TG) » L(T); is a bijection, whose inverse is given by t e th

Now if i < w, then the set of possible sites for full ideals of R; is L(T);, and this is in
bijection with T(i) via {. So if I is a full ideal of R1 with site s € L(T)i, we define the tree site

of I, 11, to be slil e T().
Tree sites behave well with respect to subrings. We have:

Proposition 1.2 ,

(i) Hi<j<w, and J is a full ideal in R, then Jn R; is full in R and ©(Jn Ry < 1].
Since it has height i, (] n R,) is determined by this inequality.

(ii) fi<j<w, and Iis a full ideal of R;, then the ideal Tti_1(l) n R]- is full in Rj, and
t(ni'1(1) n Rj) = (tI)[j]. We write 111 for this ideal.

Proof
(i) Let o]J=p e L(T)j. Since L(T); < L(T);, by (12.2) we see that Jn R, is full in R; with site
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q=p/LT); We must show that p[j] > qﬁ].

If ht(p) <i then p € L(T); and q = p, so the result is clear. So suppose that ht(p) >i. We
show that p > q[k] for ht(q) <k <i, by induction on k.

If k=ht(q) or k is a limit ordinal then this is trivial. Assume that k+1 <i and Pz q[k].
Kp# q[k+1] then there is b < p, ht(b) = k+1, with b # q[k"'ﬂ. As the immediate predecessor
ofbis q[k], b must be a branching node in T. Hence b € L(T); and so q =p/L(T) > b. As

b > q, this is a contradiction. Sop > q[k+1], completing the induction.

(ii) Let ni'1(I) n Rj =]. Then for all r ¢ Rj, re] iff rIL(T)i €I iff ricl) € AL. So
J= Al@cl in Rj. Hence I and | have the same site and defect, though they lie in different

rings. We have 1] = (oDl = (@niillil . (xplil

Clubs
Let Ccw, Cissaid to be a club (in w,) if it is closed and unbounded in w,. That is:
(cD) if C, € Cis countable, then UC, € C. (UG, is of course the least ordinal i such
that i > ¢ for each ce C,,)
(ub) . .. for each i <w, there is ¢>i with ce C.

Exampiles of clubs are w, itself, and the set of countable limit ordinals. We can go further.
If Cis any subset of w, we write 3C for the set of limit points of C: 3C is the set of all ordinals of
the form U{c; :i < w}, for some strictly increasing sequence ¢ (i<w)in C. So (cl) above

just says that 3C ¢ C. We then have:
FACT If Cis a club then sois aC.

Note that (ub) implies that C is uncountable. We can think of clubs as ‘large’ subsets of w,.
We have:

FACT[J187 A countable intersection of clubs is a club.
We remark that if T is a spruce tree and C a club in w,, then T|C is normal and satisfies all
conditions except possibly (ii) and the first part of (v) of the definition of 'spruce’. A node of

TIC is greeen in TIC iff it is green in T.

We will also use the following lemma on clubs.
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FACT [Hg 5.22]
Let f:w,»w, be a map. Then {i<w,:Vj<i (fG)<i)} is a club in W,

The proofs of these facts are not hard.

Ring embeddings and anformal relations

Now suppose that U is another spruce tree. Take an SFP system <L(U),p’v’>, and write Su
for p'(u) (u € L(U)) and S for its limit. Suppose that each S,; is countable. We have a
continuous chain S = U{S;:i<wy}, as for R. We abuse notation by using the symbol ¢ to

refer to the maps on T and on U; we distinguish them by context. But 1t always refers to R.

Recall that if X S, X*={s € X:s(u)-€ {0,1} for each u e L(U)}. Clearly the S;*

(i <w,) form a continuous chain with union S*.

Proposition 1.3
Suppose that 8: S » R is a ring embedding. There is a club C of limit ordinals in w, such
that for eachie C,
(i) 8(5)=R;n 6(S)
and  (ii) if j<i then nje(S*)= an(Si‘).

Proof

If j<w, let f(j) be the least k <w, such that

- G(Sj) < Ry

- Ryn6(S) € 8(Sy)

- nje(s*) = nje(Sk*);
k exists since the left hand side of each of these is countable. Then by the fact above, C'=
fi<w,;:Vj<i (f(j) <i)} is a club in w, We can take C=C’'n dw,.

Now let 8 and C satisfy the conditions of the proposition. Define a binary relation
© < Tx U as follows. If t, u have equal height i in T, U respectively, and i € C, then:
tOu iff there is a full left ideal I of R, such that:

- tl=t
- J=0"lan6(sy) is a full ideal of S, and 1 =u.
We say that the ideal I represents the pair (t,u). Notice that by definition of C, J = 6'1-(1).
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Definition
Let'T, U be arbitrary trees. A relation < Tx U is said to be height preserving if
whenever t®u then htp(t) = ht{;(u). A height preserving relation @ is said to be

homomorphic if whenever tbu, t' <t, u’ <u and t’ and v’ have equatl heights, then t'du’.

Clearly, © is height preserving

Proposition 1.4
© is ahomomorphic relation € TICXU|C. Moreover, in the notation above, if i <jin Cand
] is a left ideal of Rj representing (t,u), then Jn R1 represents (t',u’).

Proof
Suppose i<jin C and t € T(j), u € U(j) are related by ©. Take ] representing (tu). J is

full in Rj, and has (tree) site t. By (1.2), ] n R, is full in R; and has site t'. Similarly,
6-1(1) n s, is full in S; with ste w. But as i € C we have 6°1(J)n 5;=6-1( n R). Hence

tou. -

Definition

Let T and U be trees of height w,. A height preserving relation ® < T x U is said to be
- -surjective if whenever i <w, and u € U(), then there is t € T({) such that tbu. We then
write that ®:T- U is a surjective relation.

Proposition 1.5
©: T|C» U|C is a surjective relation.

Proof
Let u e U(i) forie C; let {(u)=z Let I be full in 5; with site z, defect 0 (ie. = 0@z in 5)).

Claim: 6(I) generates a proper left ideal of R;.
Proof of claim: If not, there are n, <w and a, €L r, € R; (n <n,) such that

- Zn<no 6@, = 1

Now for each n we have a,(z)= 0. We can take finite N < L(U); such that each a,, is
supported by N, and an(z’) =0, where z'=z/N.

Define d € S; by: d is supported by N; d(x)=1if xe N, x# 2z, and d(z')=0. Then d#1,
but a,.d = a, for each n<n,

Now let e=8(d) € R;. Since 0 is an embedding, e # 1. But we have

- e = [Erp8ay)le = Zr,(6(a,d) = Zr,8(a,) = 1,

a contradiction. This proves the claim.
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By Zorn’s Lemma there is a maximal left ideal J of R; extending 6(I). By (1.2.4) and (1.2.5),
Jisfullin R;. Then 6'1-(]) is a proper left ideal of S; and extends [; so it is full with site z. So if

t=1], we have tOu, the pair (t,u) being represented by J.
O

Definition

Let T and U be spruce trees and C a club in w,. A homomorphic relation &: TIC » U|C is
said to be continuous if for alli <j in C and all u € U(i) there is a node ul®j] 2 1, of height
jin U, such that

- for all t € T(i) with tdu and {(t) <t, if there exists w’ € U(j) such that w’>u

and tllaw then v’ = ul®d],
We do not require that ul®@dl < ylil

Essentially this says that a small change in nodes in TIC (viz. going from thlto t'[j], where t
and t’ are related via @ to the same node u € U|C) results in only a small change (no change)

in their &-relatives above u in U:if i1 and t'[j] are related to any node above y, then they are
related to only one, and the same one. Hence the name ‘continuity’.

Proposition 1.6
© :TIC » U|C is continuous.

Proof
Suppose that i<jin C, u € U(i), and let t, t, € T(}) be such that tou, Gty <ty t=1,2)

Suppose that u; € U(j) with u; > u are such that tt[j]G)ut for{=1,2. We must show that
u, = u,.

For 1 =1, 2 there is a full left ideal Jt of R] representing the pair (tt[j],ut). Then
o]y =8ty =Lty <t;. Asiis alimit ordinal there is k <i such that o], € Tk. Set
Kg=Jgn Ry By (12), J = m UK n Ry,

Assume for contradiction that u, # u,. By (1.2.3), [6'1(],)]* # [6'1(12)]*, so without loss
there is s € Sj* with 6(s) € J; \ J,, Hence m6(s) € K, \ K,. By definition of C (cf. 1.3(ii)),

there is s’ € 5;* with m8(s’) = m8(s). Hence 8(s') € JinR; \ J,nR;. Hence [6'1(J,nRi)]* #
-1 nRp1.
But since u; > u € U(), by (1.4) we see that 6‘1(]tn Ri) is full in Si with tree site u, for

each 1. By (1.2.3) again, [6'1(11)]* = [6’1(12)]*. This is a contradiction. So u,=u,, as
required.
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We now adapt surjectivity to green nodes. &:T- U is said to be surjective on green
nodes if whenever u € U is green then there is a green node t ¢ T with tdu.

Proposition 1.7
Suppose that ®: T~ U is a homomorphic, surjective and continuous relation, where T
and U are spruce trees. Then @ is surjective on green nodes.

Proof

Let ht(u)=1i As uis green, using property (iv) of spruceness we may first choose a
branching node u’>u of height j in U, and then an ordinal k> j and u" € U(k) with
u" # u’[q"k].

Now as @ is surjective there is t* € T(k) related to u" via ®. Let t, t be the predecessors of
t" of heights j, i in T respectively. As ® is homomorphic, t®u’ and tdu.

If t is not green in T, then () <t <t and also t*= tIKl So by continuity the only node

related to t*is l®Kl Thisis a contradiction, proving the proposition.

- Definition
A relation @: T~ U on spruce trees is said to be conformal if it is homomorphic,
surjective on green nodes, and continuous.

Examples
Any tree isomorphism is conformal. The results above show that @ : TIC » U|C is

conformal.

Conformal relations preserve sufficient tree structure for us to prove our anti-structure
results. We will see this in the next two sections.

2 Aronszajn trees
See [J1] or [J2] for the classical Aronszajn tree construction to build a tree of height w,

with countable levels but no uncountable branches. We modify it slightly to obtain a large
family of ‘pseudo-Aronszajn’ trees such that there is no conformal relation defined on any
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club between any pair of the family. Hence by the results of §IL1, the limits of any SFP
systems built on the trees will be pairwise non-embeddable. We also show how to make the
trees fairly rigid with respect to conformal relations. In §5 we will use this to produce rings
that are also fairly rigid.

The trees we build are spruce and so not strictly Aronszajn, but they retain enough
‘Aronszajn-ness’ to ensure that rings built on them have the Aronszajn-like property that
every maximal ideal (more generally, every full ideal) is countably generated.

To make the trees different we will use the devices of ‘grids’ and ‘nests’. We will define nests
later; first to grids.

Definition

A grid is a pair I' = <G,y>, where G € ddw, is a set of limit limit ordinals, and
v : GXw » 9w, is a map that provides for each j € G a strictly increasing sequence of
countable limit ordinals y(jn)=j, (h <w) with U{j, :n<w}=j.

It will also be useful to define a node a of limit height i in a spruce tree A to be cofinal if
a is a cofinal branch of Ali (i.e. there are branching nodes of unbounded height in 3).

Our main construction now follows. The statement of the theorem contains some terms that
will be defined below.

. Theorem 2.1
Let I' = (Gy) be a grid. Then there is a spruce tree A= A(T') (A’ is for 'Aronszajn’) with

the properties:

() if i<j<w, and € A() is a sequence node with sup) < q € Q, then there is a
sequence node n € A(j) with { <n and sup(n) <q.

() if i <w,, A(i) contains at most X, sequence nodes.

(v) for all i € dw, the number of distinct cofinal green nodes a € A() is:
- Klaw, fiec
- Klal+ R, figG

So for example if i € G\im(y) then there are no cofinal green nodes in A().

Proof
Unlike in the classical Aronszajn construction the nodes of A will be of two kinds:

- sequence nodes These are certain elements of <®1Q = {n : Ji<w,(n:i»> Q)}. So
<91 is the set of countable sequences of rationals. If n € <¥1Q we write len(n) for
dom(n) and sup(n) for sup{n(i):i<len(n)} € Ru {co-00}. Each sequence node n will
be a bounded increasing sequence: ie. sup(n) < oo and n() > sup(n}) for all
i<len(n). The letters n, § will denote sequence nodes.

- blank nodes These are ‘filler nodes. We can increase the height of a sequence node
in the tree by inserting blank nodes beneath it.
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Each node of A will be either sequence or blank - not both. The sequence nodes will be
precisely the branching nodes. It will be clear that if I = (¢,9) then deleting the blank nodes
from A(T') gives a classical Aronszajn tree.

We will construct A by induction on levels. We must specify which elements of A are
related in the tree ordering. As in the standard Aronszajn tree, if§, n € A are sequence nodes
then g<n in the tree iff  is a proper initial segment of n. However, blank nodes are not
sequences and we will specify explicitly how the tree ordering relates them. Since blank
nodes may occur beneath sequence nodes we will have hi(n) > len(n) for every sequence
node n € A, whereas in the classical case we have equality.

We now begin the construction of A. We define A(0), the gth level of A, to be {<>}, where <>
is the empty sequence, a sequence node with supremum -co. If A(i) has been defined, we

construct A(i+1) as follows. First, for every node a € A()) we put a single blank node atinto
A(i+1) above a. This gives property (i) of the definition of 'spruce’. Then for each sequence
node n € A() and every q € Q with ¢ > sup(n), we put the sequence node nq (the sequence
n followed by q) into A(i+1). This adds countably many sequence nodes above n. Clearly (o)
and (k) are preserved.

Now assume that j <w, is a limit ordinal and we have built A() for all i<j. There are two
cases.

Lasel.jd G

In this case we follow the classical construction. So for each sequence node n € Alj and
each rational q > sup(n), we choose a rational q’ with q>q’ > sup(n) and a strictly
increasing sequence of ordinals i, (n <w) with i, = ht(n) and Ufi, :n<w}=j. We then
define sequence nodes n, € Ali,) (n <w) by induction onn. Weset ng=n. If n;, has been
defined, we use (c) to find a sequence node Nn+1 € Aliy,q) with Ny+1 > Ny and
sup(N;,,1) <q". Then the union n, of the sequences n, is an increasing sequence of

rationals with supremum < q' < q. We put n, into A(j) above the branch of Alj defined by
the n,.

Remark
In fact, () clearly ensures that there is more than one choice for N4 at each stage.

Hence there are 280 possible choices of n,.
We then add a single blank node above each remaining branch of Alj. This gives amongst

other things property (i) of the definition of ‘spruce’.
Clearly () and () are preserved by the construction.
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Case IL.ije G

Our aim is to make level j of A 'special’ by using the fact that j € G, whilst all the time
preserving (x). Write j, for v(jm) (m <w). Let n € Alj be a sequence node with
sup(n) < q € Q, and let m <w be least such that jm > ht(n). Since j,,, is a limit ordinal, we
can use the argument of Case I to choose an increasing series of sequence nodes N, (h<w)
in Aljm with n,=n, U{ht(nn) in<w} = j.. and sup(n,,) < q, where n, is the union of the

sequences ny,.

Now by the Remark above there are 2R possible choices of n, so by property (k) we
can choose one such that n, ¢ Alj. It follows that the branch of Alj,,, determined by the Ny
has only blank nodes above it in Alj, so it determines a branch B of Alj. We then put the
sequence node n,, into A(j) above B. We do this for all n € Alj. This preserves (x) and (k).

We complete the construction by adding a single blank node above each remaining
branch of AlJj, as in Case L (), (k) remain undisturbed.

Let A be the resulting tree of height w,. We must check that it is spruce. All clauses of the
definition except perhaps (jii) are obvious. Clause (iii) follows as in the classical Aronszajn
construction, for a cofinal branch of A would give rise to an uncountable strictly increasing
sequence of rationals, which is impossible as Q is countable.

We finally check that A satisfies (V). Letie dw,. Green nodes of A(i) can only arise in

--twio ways. Firstly, if i ¢ G then Case I of the construction puts X, cofinal sequence nodes n
into A(i). If i € G then by Case II, A(i) contains no cofinal sequence nodes.

Secondly, if i = v(jn) for some (jn) € Gxw then Case Il puts X, sequence nodes n into A(j).
For each such n, if a <n has height i then a is cofinal. All nodes a’ > a of height <j are
blank nodes. So n gives rise to a single cofinal green node a in A@). Hence the construction
of A(j) for each (jn) € Y"l(i) effectively changes X, cofinal non-green nodes of A() into
green nodes.

Totting up, the number of cofinal green nodes a € A() is h"1 OIR,, plus an extra R, if
i ¢ G. This proves (v) and completes the proof of Theorem 2.1.

We will use (v) to show that if I' and I'” are sufficiently different grids then there is no
conformal relation defined on any club between A(I') and A(T™).

Suppose that Cis a club and & : A(I)|C » A(I")|C is a conformal relation. We would hope
that if i € C then the ith levels of A’) and A(I") are 'similar’. For comparison we want to use
the cofinal green nodes, because we can control them using (V) of (2.1). Suppose that
b e A(I") is a cofinal green node of height i. As @ is surjective on green nodes, A(T") will
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contain a green node a of height i with a®db, but as & is a relation it does not follow that a is
cofinal. However, we can show that if i € 3C and A(I'’) contains uncountably many cofinal
green nodes b of height 1, then A(T') contains at least one cofinal green node a of height i
with a®b for some such b. To do this we use our second device, the nest.

Definition
Let Tbe atree. Anestin Tis a set N of green nodes of T such that
- N ¢ T(i) for some i <ht(T)
- N is uncountable
- {teT:Ine N (n>t)} is countable.

The relationship of cofinal green nodes to nests is given by the following proposition.

Proposition 2.2
Let T be a spruce tree. Leti<w, and suppose that N g T(). Then N contains a hestin T
iff
(@) iis a limit ordinal,
and (b) there are uncountably many cofinal green nodes in N.

Proof
.-~ To prove (a) and (b) we can assume that N is already a nest. Since T is spruce, every
node of T has countably many immediate successors. It follows that (a) holds. Moreover, (b)
holds; for if not, uncountably many nodes n € N would be such that {(n) <n (cf. (1.1)). Since
by (1.1) all the {(n) are distinct, there are uncountably many nodes lying below nodes in N,
contradicting the assumption that N is a nest.

Conversely, if (a) and (b) hold then take an uncountable set N’ of cofinal green nodes in N.

As Tli contains only countably many branching nodes, it is easily seen that N’ is a nest.
O

We now relate this to our construction.

Definition
A grid T" = (G;y) is said to be fine if
(i) 1) is uncountable for all i € im(y)
(ii)  y:GXw-dw,\G is surjective.
It is easy to see that if (Gy) is fine then G must be uncountable, and for any uncountable
G < 90w, we can find a v such that (Gy) is a fine grid.
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We will usually work with fine grids from now on.

Corollary 2.3
Let I' = (G;y) be a fine grid and write A for A(T'). Leti<w, be a limit ordinal. Then A()
contains a nest iff i ¢ G.

Proof
A is spruce and I is fine, so by (2.2) and (V) of (2.1) a limit level A(i) of A contains a nest
iff ieim(y) iff id G
O

Now we can prove the preservation lemma. Note that if T is a spruce tree, C is a club in
w, and i € 9C, then a set N ¢ T(i) is a nest in T iff N is a nest in T|C.

Lemma 24

Let T, U be spruce trees, let C be a club in w, and suppose that ®: T|C - U|C is a
conformal relation. Let i € C be such that there is a nest N ¢ U(). Then T(i) contains a
cofinal green node m with m®n for somen € N.

Proof

The argument is similar to that of (1.6). Let N € U() be a nest. Since there are only
countably many nodes in U lying below the elements of N, the set
N*={n € N: Vn'<n(n # n'[®ih} is also a nest.

Take n € N*. By surjectivity for green nodes there is green m € T(i) with m&n. Suppose
for contradiction that m is not cofinal in T. Thus {(m) <m. Asie dC we may choose m’ € T|C
such that {(m)<m’<m. Then {(m’)= {(m) <m’, and mlil = m.,

As @ is homomorphic we have m’®n’ for some n’ € U(htp(m) with n’<n. But {(m’) <m’,
so by continuity of ® we must have n= 12l ¢ N*. This is a contradiction, proving the
lemma.

Corollary 2.5

Let A= A(l'), A’= A(I"") be spruce trees, where T = (Gy), I'"=(G'y') are fine grids.
Suppose that Cis a club in w, and & : A|C» A’[C is a conformal relation. Then
GnoCec G naC
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Proof

Pickie GnaC. AsT is fine, i §im(y). So by () of (21) there are no cofinal green
nodes in A@i). Hence by (2.4) there is no nest in A’t). As I is also fine, by (2.3) we obtain
ie G

Recall e.g. from [J1] that a stationary subset of w, is a set that has non-empty
intersection with every club in w,. We quote:

Fact 2.6 [J1, Theorem 85]
There exist R, pairwise disjoint stationary subsets of w,.

This is usually attributed "essentially" to Ulam, since the easiest proof uses an Ulam
matrix. The theorem was later strengthened by Solovay. Clearly the intersection of a club
and a stationary set is stationary. Hence we can find pairwise disjoint stationary subsets Sk

(k<w,) of dow,.

Now it is easy to find subsets X li< 2%1) of w, such that if i # j then Xi\Xj is non-empty.
Define (for each i< 2%1) Gj=U{S :k € X;}. We see that each G c dow,, and if i #j then
G\ Gj Is stationary. For each G; choose v; such that I'; = (Gyy) is a fine grid, and set A, to be
A(T'). Write LA for L(A,).

Theorem 2.7
Suppose that for each i < 2%, <LA;pjVv;> is an SFP system with each pj(a) a countable
ting, and with limit rings R;. Suppose thati#j (i, j <w,). Then there is no ring embedding

0:R;~» Rj' Hence the rings R, (i< 2%1) are pairwise non-embeddable.

Proof
By the results of §I.1 such a & would give rise to a conformal relation © :AjIC > AjlC for

some club Ccw,. Since Gj\ G; is stationary we may find k € (G]-\ G naoC. By (23)thereisa
nest in Aj(k). By (2.4) there must be a nest in Aj(k), so by (2.3) again we must have k ¢ Gj.

This is a contradiction.

We will now modify (2.1) to produce a spruce tree A such that if C € 3w, is a club and
®: AIC» AIC is a conformal relation then ada for all green a € A|C. (That is, A is
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‘conformally rigid’ - but note that there may also be b # a with adb or bda). This is enough
to produce rigid rings - see §5.

First take pairwise disjoint stationary sets 5 (i<w,) with S; ¢ 90w, (all i), and set
G=U(S;:i<wy}. A isbuilt by induction on levels. As each sequence node { is introduced a
new set 5; is assigned to §. This is possible as Ali contains only countably many sequence
nodes for any i<w,. We can then write this 5;as SE' By deleting elements of SE we can
assume that j>ht o €) for all j € SE'

When SE has been defined we also choose two grids VE = (SE'VE) and WE = (SE,WE). We
require:

- im(vE) nddw, = SE
- vz'i(i) is uncountable for all i € SE
- im(wz) € ow,\00w,.

These conditions are easy to arrange.

The construction of A at non-limit levels is as in (2.1). We build the limit level j of A as
follows. If j ¢ G we apply ‘Case I' of (2.1) - this is the classical Aronszajn case. Suppose then
thatje G. Thenje SE for some sequence node § € Alj. For each sequence node n € Alj and

rational g>sup(n) we want to include a sequence node n’ in A(j) with n’>n and sup(n’)<q. We
apply Case II of (2.1), but using the grid VE ifn>E and WE otherwise.

Let A be the result of the construction. We have:;

Lemma 2.8
Letie SE for some sequence node € A. Then:

(i) thereis a nest in A(i) above
(ii) if a € A() is a cofinal green node then a>§.

Proof
(i) Asie SE' ie im(vE). Hence there are uncountably many j € SE and nj<w with
Vg(j,nj) =i Take such a j, and choose a sequence node n =¥ in Ali with ht(n) > VE(j,m) for
allmc< nj. By construction there is a cofinal branch B of Ali with n € B, such that the
sequence hode

UB =4et. Uin': N’ a sequence node, n’ € B}
is in A(j) above B. Thus if 3 < UB has height i, 3 is cofinal and green and aj> t. Since
moreover every node a < UP of height »i is a blank node, the 3 Ge SE) are all distinct.

Hence by the proof of (2.2), {aj ‘je Sﬁ} is a nest above t in A().
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(ii) Let a € A()) be a cofinal green node. Since i € G, Case II was used to construct
Al). Hence no cofinal green nodes were introduced. So a must have been made green at some
later stage. That is, there are a sequence node n € A, y € {vn, Wfl}' je Sﬂ and n <w, such
that v(jn) =1 and the sequence node Ua was put into A(j) above a.

Now i€ SE € ddw,. As im(wn) n ddw, = ¥ we have v = Vi Hence by construction,
a>n. But nowiecoddw,n im(vn) = Sfl' As the Sn, are pairwise disjoint, n=t. Sof<a as
required.

O

Corollary 2.9
Let @ : A|C > AIC be a conformal relation, for some club C € dw,. Let t € A|C be a green
node. Then tdt.

Proof
Choose asequencenoden>tin Aandie Srl n dC. By Lemma 2.8(i) there is anest N
above n in A(). By (24) there is a cofinal green node m € A() with m®n for some n € N.

Hence m > n >t by Lemma 238(i). Because & is homomorphic we obtain t®t as required.
| O

By taking U{S',1 in € Al = Gi' where G.i is as defined after (2.6), we can combine (2.9)

with (2.7) to produce 28, ‘conformally different’ rigid trees. The method is standard and we
will not describe it further.

3 Countable generation of full ideals

In the last three sections we study in more detail the limit rings of SFP systems built on the
SFP domains LA, for A as in §1. Already by (1.3.4), if each map v of the system is an
isomorphism then each of the locally generated ideals of the limit is densely decomposable. In
§4 below we will show that they can all be made L, -equivalent, and in §5 we build in some
rigidity (the rings will have few endomorphisms). For the present we show that every full
ideal can be made countably generated.

Let A be a spruce tree as built in (2.1), and let <LA,pu> be an SFP system such that p(a) is
countable for all a € LA (or equivalently for all finite elements a € LA). Let the SFP system
have limit ring R, and let R; be the limit of the system restricted to LA; (alli <w,). By (11.5)

R is uncountable, of cardinality X,. Nonetheless we will now use Corollary 1.2.9(i) to show
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that every full ideal (either left or two-sided) of R has a countable set of generators. By
(1.24) and (1.2.5) the full ideals include the maximal, prime and irreducible left ideals and also
the maximal two-sided ideals of R.

First we need a technical lemma.

Lemma 31
Let T be a spruce tree. Then every node of L(T) is either terminal in L(T) or branching
with R, immediate successors in L(T).

Proof

Assume that t € I(T) is not terminal in L(T). If t € B(T) then clearly t has >R, immediate
successors in L(T). Assume that t € L(T)\B(T). There is b € L(T) with b>t. We can assume
thati= htT(b) is least possible, so b € B(T). Since iis a successor ordinal, b has an immediate
predecessorb’in T.

By choice of b, if X is an immediate successor of b’ in T and x € L(T) then x is an
immediate successor of t in L(T). By (ii) and (iv) of ‘spruce’ the immediate predecessor of a
branching node in T is also branching and has X, immediate successors in T. Hence t has 2N,
immediate successors in L(T).

It remains to prove that no t € L(T) has >R, immediate successors in L(T). Assume for
contradiction that t € L(T) is a counterexample. Let htp(t)=i. As T is spruce, there are
arbitrarily large j < w, with j>i such that there is an immediate successor b of t of height jin
T. Clearly j=j'+1 for some j’. Let b'<b have height j’ in T. There is no x € L(T) with t<xgb'.
Hence b’/L(T)=t. It follows that b’ = ti] As above, b’ is a branching node of T. As this holds
for arbitrarily large j', it follows that the branch of T determined by ¢! :i<j<w,} is cofinal
in T. This contradicts the spruceness of T.

Wenow get:

Theorem 3.2
Let ] be a full left ideal of R. Then ] is countably generated.

Proof
Suppose that ] = I@a in R, for some a € LA and some ideal I € R,. Recall from §IL1 that

LA =4ef. LAn Ali+1 (all i <w,), and that LA = U, <w,LAi' So there is i <w, such that
a € LA;.

By Lemma 3.1 every node of LA is either terminal in LA or is branching with X,
immediate successors in LA. So we can choose i so that all of the immediate successors of ain
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LA (if any) are already in LA;. It follows that:
- LA; < LA
- {a’ € LA : a'/LAi= a} = {a}.
By (122) Ji. A= I@a in Ri' By (12.9) J;, Ay generates J in R. The result follows by (1.1.5),

as R1 is countable.
O

4 Lggg-equivalence

Here we prove that if two grids I'’, I'? are 'sparse’ enough then BA(T'?) and BAI?) are
Log-€quivalent trees (recall from §1 above that BA = (LA)°). Since the rings of (2.7) are the

limits of SFP systems of the form <LA(T),p,v>, this will allow us to strengthen (2.7) so that under

the conditions of (14.3) say, the rings Rj(i< 2%1) of the conclusion are all Looy-€quivalent.

We mentioned L, -equivalence in §1.4. There is another characterisation of Loow-

equivalence in terms of back-and-forth systems. A back-and-forth system between
M and N is a set © of partial isomorphisms from M to N such that:

- Beo

- if 6 € ® and a € M then there is b € N such that 8 u {(a,b)} € ©

- if 0 € @ and b € N then there is a € M such that 8 u {(a,)b)} € ©.

Fact 4.1 (Karp’s theorem, [K])
Mand N are L, -equivalent iff there is a back-and-forth system © between M and N.

We will show that LAI™) and LA(T"®) are L -equivalent for sparse I, by finding a
back-and-forth system between them. It will then follow that BA(I'?) =0 BAT?). Though
LA is definable in A by a first order formula, A(I'!) and A(T'?) will not in general be Loow™

equivalent. (If they were, then for all i <w,, if A(T'*)(i) contains a green node a with & a
cofinal branch of A(I")li then so does A(I'®)(]).) So we must work directly with the LA,
remembering that if t € LA then maybe hty A (t) <htx (t), and t may be a branching node of

LA without being branching in A (though it will be green in A).
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Definition
An uncountable set C ¢ w, is said to be sparse if for each i € C, min{j € C:j>i} > i+i
(=12).

Clearly an uncountable subset of a sparse set is also sparse. If we define an w-sequence
Zj (j<w,) inductively by: z,=w, Zj41 = zj.2 +1, zg = U{zj :j<8} for limit & < w,, then
Z= {zj :j<w,} is a sparse club. Hence if S € w, is stationary then SnZ is sparse and
stationary. It follows that in (2.6) we can assume that the S; are subsets of Z, so that the G;
defined prior to (2.7) are sparse.

Sparseness is used in the following lemma.

Lemma 4.2

Let G be a sparse subset of ddw,, and let I' = (G;y) be a fine grid. Write A for A(T'). Letb
be a branching node of LA with ht; 5 (b)=1i. Then for all ordinals j with i<j<w, and all q € Q,
there is a branching node ¢ >b of LA with hty A (c)=j and sup{sup(n): n a sequence

node, n < ¢} > q.

Proof

Since b is a branching node of LA, bis green in A. Let n be the lowest sequence node in A
with n > b. By construction we may take a sequence node n’ € A such that n’ is an
immediate successor of n in A and sup(n’) > q. Then n’ € LA and hty A(n’)=i+1. This
proves the lemma in case j=i+1.

Assume that j>i+1. With n’ as above, any sequence node >n’ already has supremum >q.
So replacing b by ', it is enough to find a sequence node above b and of height >j in LA.

Let g be the least element of G such that g>j, g>ht AD). By (x) of (21) we can find a

sequence node § € A(g) with £>b. We will not have £ € LA. If htp A(gnLA) 2 j then choose
¢ e LA so that §' <&, hty ,€)=j. Clearly £’ is not a terminal node of LA, so by 3.1) it is a
branching node, and we are done.

Suppose on the other hand that ht; A(EnLA) =k<j. Let X <w, be such that k+k’=j,
and set j'= g+k'. Using () choose a sequence node {' € A(j) with¥'>E. Now k' <j<g As
G is sparse, there is no g’ € G with g < g’ <j’. By construction it follows that every node t of
A with § <t <¥’ is a sequence node, so t € LA for all such t. Hence ht; A€) =ht; A\€) +K' =

jand we can take cto be t’.
|

Corollary 4.3
Under the assumptions of (4.2), for all limit ordinals j with i<j<w, there is a terminal node t

of LA with t>b, hty A (t) =],
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Proof
Take a strictly increasing sequence of successor ordinals in (n<w) with j, >i and

Uph<w in =J- As each jn s @ successor ordinal we may use (4.2) to define sequence nodes

E€n € LA by induction, with hty o €)= j,, £, > b, En+1 > &, and sup€) > n (all n<w).
Let t=1uby A {£, :n<w}. Then hty A =j. Further, sup{sup(n):n a sequence

node, n <t} = co. Hence there can be no sequence node n >t in A, so t must be a terminal

nodeof LA,

For the rest of this section let G, G? be sparse stationary subsets of w,, and let T'* = (Gl
be fine grids (1=1,2). Consider the trees A'= A(l'Y), A2= A3 constructed in Theorem 2.41.
By (3.1) every node of LAY (t=1,2) is either a branching node (with infinitely many
immediate successors) oris terminal.

We will prove:

Theorem 4.4
(i) LA'and LA? are L, -equivalent in the signature L= {=.<}.

(ii) BA!and BA?are also L, -equivalent.

Part (i) of the theorem will follow immediately from (4.5) below. Part (i) follows from
part (i) here, since there is a first order L-formula ¢(x) such that for any A as in (2.1),
{ae LA:LA E ¢(a)} = BA. ¢ simply says that x does not have limit height in LA. Part (ii) is
what is required for L, -equivalence of the limit rings.

We begin the proof of the theorem with a definition.

Definition

Let T be any tree. If U< T, U is said to be a full subtree of T if U is non-empty and
closed downwards in T. If § € T, we write <S> for the full subtree {t € T:t < s for some
s € S} of T generated by S. T is said to be finitely generated if T = <S> for some finite
S T. Note that no branch of a finitely generated tree can have limit height.

It Ut is a full subtree of T (t=12), a map 6 : U'-» U?is said to be a strong
isomorphism if 8 is bijective and preserves <, and each u € U’ is a branching node of T! iff
6(u) is a branching node of T2,

For exampile, writing L for the unique least element of T' and T? {1} is a finitely
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generated full subtree of each T, and {(L,L)} is a strong isomorphism. Hence the set ® of
subsets of strong isomorphisms between finitely generated full subtrees of LA?, LA?is non-
empty. The nextlemma shows that @ is a back-and-forth system between LA and LAZ? and so
proves Theorem 44.

Lemma 4.5
Let T! be finitely generated full subtrees of LAt (1=1,2), and suppose that 6 : T' > T? is a
strong isomorphism from T* to T2
(i) Let t' € LAY Then there is t* € LA? such that 8u{(t't?)} extends to a strong
isomorphism from <T'u{t'}> to <T?u{t%)>.
(ii) Similarly, exchanging the indices "1’ and ‘2’ in (i).

Proof

We will only prove (i); (i) is similar. So let T, T? 6 be given, and let t* € LA We can
assume that t' ¢ T! - the result is trivial otherwise. Now T! has no branches of limit height.
So if T'# @ there is a unique largest node v € T* with v <t} in fact we have T* g LA? and
v=1t/T! in the notation of §[.1. Let 8(v)=w € T? and let htp A1(t") =h <w,. It suffices to

prove the following:

Claim There is t? € LA® with t?/T?=w, hty Az(tz) = h, and such that t! is a terminal node
- ~of LA iff t? is a terminal node of LAZ

Given the claim, we can finish as follows. Let TV be the full subtree of LAt generated by
Tluith (t=1,2). Since ht(t?) = h we can extend 6 canonically to an order-preserving bijection
6’: T » T?. Since by (3.1) every node of each LAl is either branching or terminal, 6’ will
be a strong isomorphism.

Proof of Claim Since t* ¢ T, v is not terminal, so v is a branching node of LA%. As 6 is
strong, w is also branching in LA?, with infinitely many immediate successors. As T?is
finitely generated we can take an immediate successor w’ of w in LA? with w’ ¢ T2 It suffices
to find t? > w’ in LA? with the required properties.

If t' is a branching node of LA! then by (4.2) there is a branching node t* of LA? above w’
and of height hin LA If t'is terminal in LA! then h must be a limit ordinal, so we can use
(4.3) to choose a terminal node t* € LA? above w’ of height h. This proves the claim and with

it the lemma.
O

Theorem 4.4 is proved.
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5 Rigidity

By imposing restrictions on the homomorphisms Vpq in the SFP systems and using (2.9), the

281 limit tings of (2.7) can be made somewhat rigid. To conclude our survey we will prove a
sample result for Boolean rings. We will define an SFP system with Boolean limit ring R
having no non-trivial injective endomorphisms. The example will also illustrate the use of SFP
systems in which not all Vpq are isomorphisms.

There are further cases in [Hk]l. For example, we may set up an SFP system with limit

ring R so that any injective endomorphism 6 : R » R satisfies o 1Dy = 1 for every maximal
two-sided ideal I of R. If R is Boolean this implies that 6 = idg.

Take any countable Boolean ring S, and fix a countable set = of maximal ideals of S such
that any proper finitely generated ideal I of S is contained in some K ¢ =.

Suppose that A is a ‘conformally rigid’ tree considered in (2.8). We build an SFP system o
on LA as follows. First we partition Q into sets Qg (K € E) such that each Qg is dense in Q.
For each sequence node n € BA we define Rq to be S. For each q € Q with q > sup(n) we

define ker(vrl q’\q) = K where q € Qg. Since S/K = {0,1} this defines v completely.

nnq

Hence if a € LA\BA we will have Ra = lim_)(Rq, V. ~:n<n’in BAnd) = {01},

nn
and if b > a then v, must be the unique embedding of {0,1} into Ry We have now defined o

completely.

Let R=1im(s). Then R is an uncountable Boolean ring. Ifi< w, write R, for
im<LA;p’V"> as usual, where p’ and V' are the appropriate restrictions. Let 6: R R be a

ring embedding. As in (1.3) we can find a club C € dw, so that 6 induces a conformal relation
@ : AlC- AlC. ' '

We claim that 6 = idg. Suppose not. There is r € R such that 8(t) =1’ #1. Thereisie C
suchthatr, ' e Rj. As R; is Boolean it is easily seen that at least one of the sets {r,1-r"},
{1-1,r'} generates a proper ideal of R; containing just one of r, r. Assume without loss that
{r,1-r'} has this property. Take a finite support N BA, for {r,1-r'}. The ideal of Ry
generated by {r,1-r'} is proper, so there is n € N and a proper finitely generated ideal H of
Rn = § with 1{n), 1-r'(n) € H. (Note that n is a finite element of LA and hence a sequence

node in A) There is K € E containing H. Choose q € Qg with q > sup(n) and n*q ¢ N, and
then choose a green node (say a sequence node) a € A(i) such that a > n*q, a/N=n. Write
z for Lae LA. Then r(z) = qu(r(n)) = vn,\q'z.vn'q ,\q(r(n)) =0. Similarly, 1-r'(z) = 0.

Now by (2.9) we have a®a. Hence by definition of @ there are proper ideals I, ] of R,
such that in R, 6‘1(1@2) = J@z. Hence 6(J@z) c l@z.

Since r(z)=0, r € J@z in R;. Hence r’ € I@z. But r'(z) = 1, contradicting the assumption
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that I'is proper. Hence 6 =idp as claimed.

So any injective endomorphism of R is the identity map. We also have all the standard

properties: every maximal ideal of R is countably generated (3.2), and by the argument of
(133) R is easily seen to be atomless and hence existentially closed. The atomless property

can equally be obtained by taking S to be atomless, or we can include the zero ideal 0 in E,

require that Vaniq = idg whenever q € @, and use the Remark following (13.3). We can

combine the construction of A with the techniques of (2.1) and §4 to produce 284 pairwise

non-embeddable L, -equivalent such R.
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