
A construction of many uncountable rings
using SFP domains

Ian Hodkinsonl

Saharon Shelah2

Ttx rl di{Êecenv ß.o^ fl" 1'Lllt}-e)
l - -unÅon M^tL .  Ç" ,

Abstract
The paper in in two parts. In Part I we describe a construction of a certain

kind of subdirect product of a family of rings. We endow the index set of the
family with the partial order structure of an SFP d.omain, as introduced by
Plotkin, and provide a commuting system of homomorphisms between those
rings whose indices are related in the ordering. We then take the subdirect
product consisting of those elements of the direct product having finite
supPort in the sense of this domain structure. We examine the properties of
rings obtainable in this way.

In Part II we prove an 'anti-structure theorem' by exhibiting 2Rr pairwise
non-embeddable rings of cardinality lt, with various higher-order properties.
The construction uses Aronszajn trees.

Introduction
This paper presents a blend of ideas from ring theory, set-theoretic combinatorics and

comPuter science. It is divided into two parts: part I will perhaps be of more interest to
algebraists, and part II to logicians.

In part I we develop a method of constructing a subdirect product of certain families of rings.
To do this we impose a partial order structure on the index set of the family. We will take this
poset structure to be that of an SFP domairç a notion introduced in [Pl and well known to domain
theorists in computer science. We will analyse the behaviour of the ideals of the resulting
subdirect product and show that inter ølia they carry information about the underþing poset
structure on the index set. We can then exert conhol over the subdirect product by purely partial
order-theoretic means.

We exploit this in part II. Using a variant of the construction of Aronszajn trees in set

theory we will construct, using ZFC only,2Nt SFP domains such thaÇ assuming that all
component rings are countable, any subdirect products obtained with them will be pairwise non-

"rynimposeconditionsonthecomponentringsthemselvestoobtain
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stronger results.

A typical product is:

THEOREM: Let S be ø countable Boolean ring. There øre 2Nt Læafequiaalent pøirwise

non-embeddable Boolean rings R¡ (i<28t¡ of cardinality tt, extend.ing S. Eøch R¡ is

existentially closed and rigid, and mch of its møximal ideals høs a countable set of
generators.

This suggests that there are too many such rings to classify fully. It is thus an ønti-structure
theorem in the spirit of, for example, the result of tShl that if T is a first order non-superstable

complete first order theory of cardinality rc then there are 2À pairwise non-elementarily
embeddable models of T of cardinality À for all regular À>rc.

The technique tends to produce rings with many orthogonal central idempotents, so is most
at home when constructing Boolean or von Neununn regular rings.

The work in this paper simplifies the construction of the doctoral thesis [Hk] of the first
author, which also uses the continuum hypothesis. The argument there is more complicated and
less general because SF? domains are not used. The motivation for [Hk] came from the paper of
Zieglet lzl. If I is a left ideal of a ring R, we say that I is densely decomposable if whenever A
is a left ideal properly extending I then there are teft ideals )Ç Y g A properly extending I but
with XnY = I (see Section 3 of Part I). If R is countable, commutative and von Neumann regular
then a ProPer ideal I of R is denseþ decomposable iff the ring R/I is atomless (has no principal
maximal ideals), iff the injective hull of the left R-module R/I has no indecomposable direct

summand. If R is additionally assumed to be countable and atomless then R has 2No (i.e. Zl Rl )
mafmal ideals; this was generalised to arbiüary countable rings in Izl (7.1(1),7.2, g.j). ow
initial objective was to show that the result fails for lR | = Nr. This is established by the
theorem quoted above. Every maximal ideal of each \ of the theorem is countably generated,

so they are at most 2Ro in number - this can be less than 2R, = 2 l&l . ffru construction in [BK]
gives an atomless Boolean ring of cardinatity X, also illustrating this, but ]ensen's ô (diamond)
is used. On the other hand, unlike the construction in [BK], an atomless Boolean algebra
constructed by the methods we give will generally have an uncountable set of pairwise
incomparable elements.

It would be interesting to prove an intrinsic characterisation theorem for rings arising by our
constructiory analogous to that for varieties and reduced products. Possibty the work of Smyth
[Sm] would be relevant.

The first author would like to thank his Ph.D. supervisor Wilfrid Hodges, to whom he
owes a great debt for many helpful conversations and much moral support both during and after
the Ph.D., and Dov Gabbay, who carefully read a draft of the paper and made many valuable
suggestions. The first author also thanks the U.K. Science and Engineering Research Council
and Kin$s College Cambridge for financial suppport without which the Ph.D. would not have
been completed. Thanks for useful suggestions are also due to Uri Avraham, Ulrich Felgner,
Rami Grossberg, |.C. Robson, S.]. Vickers and the referee of an earlier draft of this paper.
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Part I: SFP systems

This part of the paper contains the results of a more algebraic nature. We will define the
notion of an sFP system of rings, and study some of the properties of its limit.

Let us describe the approach in rather more detail than above. Let (R<) be a poset such
that for every p e P we have a ting 

S. 
Suppose further that for every p<q in p we have a

ring homomorphism ,pqtRp + RO. We require that the rpq (p*q in P) form a commuting

system in the usual sense.

Assume that P has a least element J-. Then the presence of the maps v allow us to embed
the ring R1 diagonally into the direct product II(R' , p c p), via r p (v1'(r) : p e p) for
r e R1. We would like to generalise this as follows. Let N ç P be finite. Can we embed the

finite direct product II(\ : n e N) diagonally into the full direct product?

So let re II(R.,:n e N). We need to define its image / in II(R':p e p). By analogy
with the case N = {I}, for each p e P we would like to define r,(p) to be vn'(r(n)), where n is
an appropriate element of N, depending on p. To force a unique choice of n we will assume
that N satisfies:forallp e Pthere is a uniquemaximal element of {ne N:n(p}. This
would hold if for example N is linearly ordered. We write this maximal element as p/ N. We
can now define / to be (up7 ¡r¡,O(r(P/ N)) : p € P). Then N is in effect a finite supporú of r, in
n { R R : p e P ) .

So we consider the set RÉ of all elements of II(Rp : p e P) having a finite support in this
sense. We require that R* be a subring of II(\ : p e P). To obtain closure under + and - we
will need any two finite supports to be contained in a third, and to avoid redundancy of any
RO we will formally require that (') any finite subset of P extends to a finite support N g p.

For example, if P is linearly ordered with a least element this is trivially true. So we could
take P to be (Qu{-co},<), each 

\ 
to be {0,1} and afl vO, to be the identity map. In this case R*

tums out to be the countable atomless Boolean ring (see Example 3.4). Howeve4 the condition
(*) holds in much more general cases and is closely related to the SFP domains of plotkin [p].
Any such P extends canonically to an SFP domain by adding where necessary a least upper
bound h for each directed subset D of P. These extra points h turn out to be very useful:
<R6, v66, : d<d'in D> forms a direct system and it is technically convenient to define R¡ to be

its direct limit, and extend v accordingly. Hence we will work with SFP domains throughout.
It is easy to show that if the 'component rings' Rp tp . P) have various properties then so

does R*. Examples of properties preseled in this way are: commutative; Boolean; von
Neumann regulaç existentially closed commutative. The cardinality of R* is also related to lpl
and the InnL we also show that the Loor-theory of R* is determined by the T.oor-theory of p

together with the Rn and the maps vOO.

So far the construction could be undertaken for any model-theoretic structure. We
consider rings because we can fruitfully study their ideals. (Generalisations to structures
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Part I: SFP svstems

such as lattices are probably possible here.) An important class of ideals arises as follows. If
I  is a ( lef t) ideal of  R, for some s e Pthen t '={r€ R*:r(s)e I}  is a lef t  ideal of  R*. Ideals
of this form are called full ideals:they are in a sense 'locally determined'. \Me can recover I
and s from I*, so the fulI ideals are closely related to the poset structure of P. They are a kind
of basis for the set of all ideals of R+. Using the extra elements h of P we can show that any
maximal, prime or irreducible ideal of R. must be full and every ideal of R* is the
intersection of the full ideals that contain it.

The layout of this part of paper is as follows. In Section 1 we discuss SFP domains and
formally lay out the subdirect product construction. In Section 2 we discuss ideals of R* and
use the results in the next section to enforce that R* has a property generalising'atomlessness,
in Boolean algebras. Finally, in Section 4 we discuss L*r-equivalence.

t SFP systems

In this section we give most of the definitions that we will need, plus some examples and
useful lemmas for illustration.

Algebrøic dcpos
Recall that a partially ordered set, or posef is a (usually non-empty) set equipped with a

reflexive transitive binary relation, written here as '<'. A poset (D,<) is directed if D is non-
empty and whenever d' d, € D, then there is d. e D with d3 > dr d2.

A non-empty poset P is said to be directed complete (a 'dcpo') if whenever D ç p is
directed then D has a least upper bound in P. We write this bound as lub(D), or more
explicitly tubp(D); it is necessarily unique.

An element p of a dcpo P is said to be finite if whenever D g P is directed and p < lub(D)
then p < d for some d e D. We write Po for the set of finite elements of P; Po is called the base
o f  P .  P i s s a i d t o b e a l g e b r a i c i f  f o r a l l p € P , t h e s e t p I = { q  e  p : q < p }  i s  s u c h  t h a t
pI n Po is directed and lub(pt n Po¡ = p. That is, p is the lub of the set of finite elements
beneath it, and we can usually replace p by this set. It follows that in this case P is
determined by its base (see below). Algebraic dcpos P with countable base are usually called
domains in the computer science literature.

Examples of algebraic dcpos are all finite (non-empty) posets and all successor ordinals.
If X is a non-empty set then 6a(X), ordered by inclusion, is an algebraic dcpo, and the finite
elements are just the finite subsets of X - hence the name. The half-open real interval (011

has no finite elements and shows that a dço need not be algebraic, as does the following dcpo:
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Part I: SFP svstems

Figure 7.7

Ideals

Let P be any poset. An ideal of P is a subset I of P that is closed downwards (i.e. if
x<y€ Ithen xe I) and directed. Clearlyif p e Pthen pJ is an idea! ideals of this form
are said to be principal. It is well known that if P is an arbitrary non-empty poset, the set
of ideals of P, ordered by inclusion, forms an algebraic dcpo whose finite elements are just the
principal ideals; these are in order-isomorphism with P. Hence any P can be 'completed,to an
algebraic dcpo by taking this 'ideat completion'. Moreover, any algebraic dcpo p is
isomorphic to the ideal completion of its base Po. We will often identify a poset p with the set of
finite elements of its ideal completion. A similar ideal completion can be undertaken for
preorders also.

.LocøIIy directed sets
Now let P be a poset. A subset N of P is said to be locally directed in P (written

N {  P)  i f  fo ra l l  p€P,pJnNis  d i rec ted .  Equ iva len t ly ,  N<Pi f f  NnI is  d i rec ted  fo ra l l
ideals I of P. For examplg if P is an algebraic dcpo then Po < P. If P contains a least element
1, then any linearly ordered subset N of P with l- e N is locally directed in P. N ç frx is
locally directed in (faX,c) iff N is closed under finite (including empty) unions. Since p < p

lot any P,locally directed does not imply directed. The converse also fails, as if J is the least
element of P then N < P +l_ e N.

It is easily seen that < is a reflexive and transitive relation on posets, and that if N < p

a n d N ç Q c P t h e n N < Q .

Now assumethat Pis a dcpo. I f  N < pandp € p,wewri tep/N for lubp(pl  n N) this

exists since P is a dcpo, and indeed if N is finite, or more generally a dcpo such that
lubp(D) = lubN(D) for all directed D ç N, then p/ N e N. we can view p/ N as N's best

approximation to p. we have p/N < p for all p; further, p is algebraic iff po < p and
p/ Po = p for all p € P. If N < P we can define an equivalence relation -N on p by x -¡¡ y

iff x/ N = y/ N. We will see in Section 2 that the equivalence classes are related to the well
known þatch'topology on P.

Yo&
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Part I: SFP systems

SFP domøins

We can now define the strain of poset of interest to us here. A poset P is said to be nice if
any finite subset X ç P can be extended to a finite locally directed subset of P. An SFP
domain is an algebraic dcpo P such that Po is nice. So the ideal completion of a nice poset is
an SFP domain, and all SFP domains arise in this way.

An equivalent definition uses the notion of MUB-closure (see Plotkin, tPD. If X e P define

MUB(X) = {p e P: p is a minimal upper bound of X}. Also define an increasing chain Un(X)
(n < q¡) by: uo(x) = x, un+l(x) = u{MUB(y): y ç un(x)}, uo(x) = un.oun(x). uo(x) is
called the MUB-closure of X. Then it is easily seen that P is SFP iff for all finite X Ç po,

( i )  fo r  a l l  pe  P w i th  Xe p l  there  is  yeMUB(X)  w i th  y<p
(ii) MUB(X) is finite

(iii) Uo(X) is finite.

In fact, in this case Uo(X) < Po. Domains satisfying (i) and (ü) are sometimes called 2/3-SFp.
Of course, (iii) implies (ii).

Examples of nice posets are any finite poset, any linear order with a least elemen! any
Boolean algebr4 and any tree with finitely many minimal elements. The restriction to
finitely many minimal elements is necessary. If P is a nice poset then take finite N =< P;
everyp e Plies above some element of N. Then M={m e N:-!ln e N(ncm)}is non-empty
and finitg and every p e P lies above an element of M.

The following are the three main kinds of non-nice poset. See [Sm].

Figure 7.2

On the left the two black elements have no minimal upper bound, violating condition (i) above.
In the centre poset they have infinitely many minimal upper bounds, violating (ii). The
right-hand one satisfies (i) and (ii) but now the black elements have infinite MUB-closure.

SFP domains were introduced in [P] as those arising as inverse limits of Sequences of
Finite Posets. They are of considerable interest in computer science, where they are used to
provide denotational semantics for programming languages. Any domain P can be equipped
wi tha topo logy( theScot t topo lo ry ) :OgPisopen i f f (ÐOisc losedupwardqand( i i ) i fDçP
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Part I: SFP svstems

is directed and lub(D) e O then DnO I ø. ft D and E are domains we write [D+E] for the poset
of Scott-continuous functions from D to E, ordered byf (gifffor all d e D,f(d)<g(d). In
{Sml Smyth showed amongst otherthings that if D is a domain with countable basg then tD+Dl
is also a domain with countable base iff D is SFP. In this case [D+D] is also SFP. The SFp
domains form the largest Cartesian closed full subcategory of the category of domains with
countable bases, the morphisms being the Scott-continuous maps.

SFP systems
we now give our main algebraic definition. An sFP system is a triple <p,pil>,where

(i) Pis an SFP domain.
(ii) p is a map from P into the class of rings with a 7 (l J 0). We will write Ro for p(p),

where p is understood.
(iii) v is a map defined on those pairs (p,q) e Pz with p < q. Each v(p,q) is a ring

homomorphism from Rp into RO. (All ring homomorphisms in this paper preserve 0

and 1.) We write v(p,q) uwpq. We require further that

(a) vpp is the identity ot'r 
b

(b) ,qr"rpq = vO, if p<q<r in P

(c) if D ç P is directed with least upper bound u e P, then \ is the direct limit of

the direct system <R6, v46, : d<d'in D>, and for all d e D, v6u is the canonical

- . ..ring homomorphism from R6 into \.

Remark 7.7

Let P be a nice poset. Suppose we have a triple (P,p,v) satisfying (ii) and (iüXa), (b).
Then we can canonically complete it to an SFP system by (a) embedding P canonically into its
ideal completion Q, þ) defining RO for q e Q\P to be limr<\/pp, ,p<p,in pnql¿ and (c)

defining u'r, for q < q' in Q to be the'limit' of the vOO, for p, p' € p with p < q, p, < q,.

Moreover, all SFP systems arise in this way. So an SFP system <P,py> is determined by its
'finite'paTt: on P", Rp and vOO, for p<p'in Po.

Limits of SFP systems
Let <P,p,v> be an SFP system, and let N < P. An element r e II<\ :p e p> is said to

have support N if for all p € P, r(p) = y(p/ 
N),p[r(p/ N)]. We define the limit of <p,p,v>, or

limcP,p,v¿ to be the subdirect product consisting of those elements of II\ that have a finite

support N ç P0. Since P is an SFP domain, any two finite locally directed subsets of Po are
contained in a third, and it follows that the limit of <P,py> is a subring of IIR'. Clearly it is

also identifiable with a subring of II<\ : p e Po¿ since Po supports any element of Rp.

We will generally write Rp for the limit of <P,pþ>. Obviously, for any po e P the

projection (r u r(po)) of Rp onto Rno is a surjective ring homomorphism.
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Part I: SFP svstems

As an example, if P = (Q,<) and all Rn are {01} then Rp is the unique countable atomless

Boolean ring. See Example 3.4 betow.

Subsystems
Let P be an SFP domain. If Q -. P, we write Q < P, and say that e is a subdomain of p,

11

- A is itself an SFP domain under the ordering induced from p
-  Q o ç P o
- O is a locally directed subset of P
- if D ç Q is directed then lubq(D)= tubp(D).

Note that these conditíons imply that Po n Q ç Qo, so that we have Po n Q = eo in fact. Clearly
( is reflexive and transitive, and if Nç Pis finite then N<p iff N< po.

Proposition 7.2

Suppose that we have an SFP system <p,pÞ>. Let e < p. Then <e,pleyler> is an SFp
system. Moreove4 its limit ring Rq is canonically isomorphic to the subring of Rp consisting

of those elements supported by Q.

Proof

-' , To shoruthat <Q,p[Qp[Q'>.is an SFP.system we only need to checkthat if D ç Q is directed
then

Rt.rUO{n) = limrcR6 : d e D>.

But this is clea4 since <P,pp> is an SFP system and lubç(D¡ = lubp(D).

Nowif re Rq there is finite N4 Q supportingr. Bytransitivity of qwe have N<p,so

r extends naturally to r'e Rp given by

- r ' (p) =,p| t , ¡ ,p[r(P/N)]  forp e P.

The map r p r' is a ring embedding from Rq into Rp and clearly its image is precisely the set

of elements of Rp supported by a finite locally directed subset of Q - i.e. those supported by Q.

tr

In future we identify Re with the subring (Rg)'of Rp, whenever e ç p.

Aspec ia lcase iswhereQ<Pis f in i te - i .e .Q=N,a f in i te loca l l yd i rec tedsubseto fpo .

Then clearly R¡.1 = IIcRn : n e N>, a finite direct product. If N ç N' are finite locally

directed subsets of Po, then N < N', and so (making the identification) R¡ is a subring of Rp,.

Since P is SFR the following is clean
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Part I: SFP svstems

Proposition 1.3
.RN ' N < Po is finite> is a direct system of rings under inclusion, and its direct limit is

naturally isomorphic to Rp.

So all limit rings of SFP systems arise as direct limits of some direct system of rings.

Corollary 7.4

Let <P,p,y> be an SFP system.
(i) If P has a least element I, say,then R1 is a subring of Rp.

(ii) The following classes of rings are closed under SFP systems, in the sense that if
RO e K for all p€ Po then Rp e K also:

(a) the class of commutative rings;
(b) the class of von Neumann regular rings (i.e. R þ Vx3y(4¡x = x))
(c) the class of Boolean rings;
(d) tne class of rings that are existentially closed in the class of commutative
rings ('commutative e.c.')
(e) the class of existentially closed rings in the class of Boolean rings.

Proof
( i ) '  "-  supposethat l  ePis such that l  <p foral l  p e p. c lear ly{a} < po. Theresult
follows from (1.3) now

(ii) By (1.3) it is enough to show that the classes cited are preserved under finite direct
products and direct limits - or at least direct limits in which the morphisms of the system are
injective. This is clear for (a), (b) and (c), where there is no use of injectivity. We prove (d).

Recall (e.g. from [CK]) that if L is a first order signature and I is a class of L-structures
that is closed under isomorphism, an L-structure M e ) is said to be existentially closed in
X (e.c. for short) if whenever M ç N e X and rp(*) is an existential formula of ! then

- for all ã e M, if N þ q(ã) then atready M F rp(ã).

Clearly the class of e.c. structures is closed under isomorphism. By considering disjunctive
normal forms we may assume that g(1) is of the form 3!r!(iy) where r! is a conjunction of
atomic and negated atomic formulas.

It is easy to see that if I is closed under direct limits of the form limr<Mi, vi¡ : i<j in I>

where the v¡¡ are injective, then a direct limit of e.c. structures is e.c.. The class of

commutative rings is closed under such limits, so to prove (d) it suffices to prove that if Au B
are commutative e.c. rings (i.e. they are e.c. in the class of commutative rings) then so is AxB.

suppose c = AxB is a commutative ring. Let e, = (1,0), e, = (e1) in AxB. Then since c is
commutative, e, is a central idempotent of C. It follows that the left ideal Ce, of C is a

tr
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Pa¡t I: SFP svstems

commutative ring in its own right, with identity er; it has a subring (AxB)e' which is
isomotphic to A via (aþ)erp a. Similarly, Ceris a commutative ring with a subring
(AxB¡e, = 3.

Now since êrê, = ! and er+e2 = 1, we have c = ce, x ce, via cr+ (ceÍcer). It follows
that:

($) if e(*) is an atomic formula of L and õ e Ç then c F cc(õ) iff ce, þ ø(õer) for

i=7,2. Similarly, if õ e AxB then AxB F a(õ) iff (AxB)ei l= a(õei) fori=1,2.

If a is an atomic formula define ø1to be a and ao to be -rc. Let ,Jr(it) above be

A¡<6ø¡(iy)nj, where the a, are atomic formulas of the signature {+, -, ., 01} of rings, and
n j=0  or  1 .  Suppose tha t  CFì ! (ã ,õ ) fo rãeAxB,õe C.  Then by  ($ ) , there  arep¡ ,g ¡  e  {0 ,1 }

with p¡q, = nj (jcm) such that C", F t 
ø¡(ãer,õe,)Pj and Ce, F A¡ a¡(ãer,õe.)9¡.

As (AxB)er = A we can identify them and regard A as a subring of Cer. Because A is e.c.
there is õr e A such that A þ t 

cc¡(ãer,õr)P¡; and_similarly we can find õ, e B with

analogous properties for B. Take d € AxB with de, = õr, de, = õi then O F Aj a¡(ãer,ãer)P¡

and B F A¡ a¡(ãer,ãer)9¡. Hence by (S) again, AxB F A, artã,ãln j.

Hence AxB is an existentially closed commutative ring as required.

(e) - the proof is the same as (d).

Note that for Boolean rings, eDcstentially closed is the same as atomless. See for example
lHg 6.3.9, Ex. ó.3.21. Since many of the SFP domains we use have a least element l-, SFp systems
can often be used to produce rings extending a given ring R = Rf (1.4(i)).

A slightly more general preservation result is: if all 
\ 

satisfy q = Vijg(A i.rc¡n) where
rq and r are equations, then also Rp satisfies rp. This includes (ü(a)-(c)) above; the proof is

the same.

There is an easy cardinality result that also follows from (1.3).

Proposition 1.5

Suppose that <P,p,ì/> is an SFP system in which each ring Rn is countable, and P is infinite.

Then lRpl= lPol+llo.

tr

tr
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Part I: SFP systems

2 Ring Ideals

Here we examine the relationship between (ring) ideals of the limit ring of an SFp system
<P,Pþ> and the underlying SFP domain of the system. The relationship is close and we will use
it extensively in later sections. We isolate a special class of ideals - the fuII ideals - and show
that they correspond closely to P. We also show that the ideals of the limit of the system are
determined by theirprojections onto the components 

þ 
(p e p).

unless otherwise stated, all ring ideals in this section will be left ideals.

Notation

Let P be an sFP domain, and fix an sFp system <p,py> with limit ring Rp. we will
generally use 'f'to denote an ideal of Rp, and 'I'for an ideal of a component ring Rp (p e p).

I f J i s a n i d e a l o f R p a n d q € Q < P , w e w i l l w r i t e l q f o r l n R e a n d J q ( q ) f o r t h e p r o j e c t i o n

{r(q) : r € Je} or Iq onto the qth component ring RO. we write simply J(9) for ¡r1q¡.

First a useful lemma.

Lemma 2.1

Let P be any finite poset and let <P,pþ> be an SFP system with limit ring Rp. Let J be an
i d e a l  o f  R p .  T h e n  J = { r e R p : r ( p ) e J ( p )  f o r  a l l  p e p } .

Proof
'Ç'is cleaç we prove'l'. For each p e p define a central idempotent ep e Rp by

f '  
t  i rx=n

"o(Ð = 
1
L 0 i f  xe P\{p}

If r(p)e J(p) for all pe P, then for each p there is so eJ with so(p)=r(p). Then
t= Ip.p (eO.sO) e J, as required.

This essentially says that for finite p, I = tI(J(p) : p e p). We will generalise it to
arbitrary P in (2.7) below.

Defini t ion

If  pe P and I  is aproperideal of  
\ , . "wri te 

I@p for {re Rp:r(p)e I} .  This is a
proper ideal of the limit ring Rp strictly it depends on P also, and we will sometimes write

"I@p in Rp".

tr
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Part I: SFP svstems

Nowif  p '€ Pand I ' is anidealof Rntthen I@p= l ,@p,impl ies thatp=p, and I= I , .  For
ff p I p', then as P is algebraig plnPo I p'l.npo. Assume without loss that there is
qe Pon(pl \p 'J).  As Pis an SFPdomainthereisf ini te N(P ( i .e.  N< Po) containing q.
Hence p/N*p'lN. We can find re RitJ such that r(p/N)= 0 and rþ,/N)= 1. Then
r e I@p \ I'@p', a contradiction. Hence p=p', and it easily follows that I= I'.

If J is a proper ideal of Rp we say that J is fult (in Rp) if I is of the form I@p for some p,
I. Clearly I will be a Proper ideal of 

þ. 
Since p and I are unique, we can define of = p (the

site of J), and AJ = I (the defect of J).

The theoretical'interest of fuIl ideals is in their relationship with R via their site. We will
use this to show that the limit ring Rp can carry ring-theoretic traces of the underlying poset
P, in a form of stone duality. The main result involved is Theorem 2.2.

Theorem 2.2

Let J Ç Rp be an ideal. Then the following are equivalent:

( i )  J is tul I in Rp

(ii) for each finite N < P, IN is tull in R¡

(iii) for each Q < P, Iq is tuil in Rq.

Moreover, if any of (i)-(üi) hold, and e < R we have
(iv) o(Je) = ol lQ

(v) a(Iq) = (voI 
lç,o¡)-1(aJ).

Proo f

(i + ii):

Assumethat Jis tul l in Rp let  J= I@p (some p e p, Iç Rp).  Let N(pbef ini te and let

¡=p /N.  I f  re  R¡ ,  then r€ I  i f f  r (p )=vn ' [ r (n ) ]e  I  i f f  r (n ) . r r r ' -1 { I )  i f f

r e [vno-1(I)]@n in R¡¡. Hence J¡ = [vno-l(I)]@n in R¡. This proves (ii] and also (iv) and
(v) in the case where Q is finite.

(ii + iii):

Assume ( i i )  andtake Q<P.  I f  N<Qis f in i te then N<Rso I ¡ ¡ i s tu l l in  R¡  fo ra l l f in i te

N < Q .

Now if N, N'< Q and N g N', then N < N'. It follows from the proof of (i + ii) that
( f )  ø ( J ¡ ¡ ) = o ( J N , ) / N < ø ( J N , ) .

So as Qis SFRtheset D = {oIN:f ini te N< e} is directed. Let i ts lubin ebe q.

Wed, May 9,1990 12



Part I: SFP svstems

Claim 1 If N < Q is finitg then øJ¡¡ = q/ N.

Proof of Claim Clearly q > olN e N. Hence dlN < g/ N. For the converse inequality, note

that as q/N < q and 9/N is a finite element of Q, there is finite N'< e such that o|¡, > q/N.

By (Ê) we may assume that N'? N, and so oJ¡ = oIN,/N > q/N. This proves the claim.

Now let I = {r(q) : r e }q}. Clearly I is an ideal of RO.

C],atm2 Jq = I@qin Rq.

Proof of claim "Ç" is c1ea4 we pass to "?". Let r e Rç be such that r(q) e t. so there is

s € Je with s(q)=r(q).  Since Rr=l imrcRr,:q 'eqI n Qo> and Q is SFP, we can f ind f in i te

N< Q supportingr and s, and such that s(q/N)=r(q/N). But s e I¡,which by Claim 1isfull

with site q/N. Hence r e J¡¡ also. This proves the claim.

So by the claim Ig is tulIin Rç, which proves (üi).

(iii + i): is trivial.

It remains to prove (iv) and (v) for infinite Q < p. Let I e Rp be tull let oJ = p. Then fç
is tul[ let it be I@q.

If N< Q is finite, the¡ we may qpply (iv) to get el ¡=oJN. But also N < P, so similarly
oIN = p/N. Hence p/N = q/N for all finite N E Q. Since e is SFp, it follows that
pJ n Qo = qJ n Qo. Taking lubs, we obtain p/Q = q, proving (iv).

For (v) we must show that I=voo-l(¡J). Take ae Ro;there is finite Nç e and re Rq

supported by N, such that r(q) = a. By the above, p/ N = g/ N. so r(p) = voo(r(q)), and
hence

a e I  i f f  r € J  i f f  r ( p ) € ^ I  i f f  r ( q ) = a . ì , , 0 n - 1 { a l ) .

lVhilst R¡r can have many full ideals with the same site, this is not so if we restrict to the

elements of Rp that take values Q 1 only. These elements are central idempotents of Rp. They

form a Boolean algebra in the usual way by defining a <b to hold iff a:þ= a; anb is ab and
avb is a+b-ab (symmetric difference).

Definition

We write (Rp)* for the set {r e Rp : Vp e P (r(p) e {0,1}) }. If X ç Rp we write X.

for X n Rp*.

tr
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Part I: SFP systems

Proposition 2.3

tet I, I be tulI ideals of Rp. Then oI = ol ilf In = J*.

Proof

Assume that oI=oI.  Then i f  re(Rp)*,  re I  i f f r (ol)eÂI.  As AI is a properideal of

Ro¡, this holds iff r(ol) = 0. Since the same holds for J, we have r e I iff r e J, so I* = J*.
Conversely, suppose that oI I ol. Since P is SFP, we can find finite N < P such that

oIlN loJlN. Let re (Rp)* be supported by N, and given by: Vn e N, r(n)= 0 if n= oIlN,

and 1 otherwise. Then r e I* \ f* so that I* I I*.

In practical terms, full ideals include the maximal, prime and irreducible ideals of Rp. Let

us say that an ideal I of a ring R is whole if R\I conains no pair of orthogonal central
idempotent elements (i.e. there do not exist >ç y e R\I, commuting multiplicatively with every
element of R, and such that x2=X y"=y, )v=0).

The following is easy:

Proposition 2.4

If I is a maximal, prime, or irreducible left (or right) ideal of R" then I is whole. If I is a
maximal two-sided ideal of & then I is whole.

But now we have:

Proposition 2.5

If I is a proper whole ideal of Rp then I is full.

Proof

If I is not full, then by (2.2) there is finite N < P such that I¡ is not fulIin R¡. But clearly

I¡ is a proper ideal of RN. By (2.1) there are n I n' in N such that the projections I¡¡(n) and

I¡¡(n') are proper ideals of tqt, \, respectively. So we define er., e Rp by
- en is supported by N; and en(x)=1if  x=n, and 0 i f  xe N\{n},

and similarly define er.,,. Theh ên, ên, rt I. Clearly ên, en, are central idempotents of Rp and

ên.ên,= 0 e I. Hence I is not whole.

tr

tr

tr
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Part I: SFP systems

Remark

clearly, an ideal I is prime in Rn iff I@p is prime in Rp. If J is an ideal of Rp then

] = I@p iff | is full, oJ = p and ^I f I. Hence I@p is maximal, maximal two-sided or
irreducible in Rp iff I is so t" 

b.

Example 2.6

Suppose that <P,py> is such that Rp = {01} for all p € P. Hence each vOO, is the identity

map. Then by (7.4), Rp is a Boolean ring. Here, a full ideal is determined by its site alone, as

its defect must be 0. By the remarlç any full ideal of Rp is maximal. By (2.4'l and (2.5) the

converse holds also. So P is in canonical bijection with the set of maximal ideals of Rp.

Now the set of maximal ideals of Rp is a Stone space and carries a compact Hausdorff

totally disconnected topolory: the clopen sets are those arising as the set of ideals containing a
chosen point of the ring. Hence a homeomorphic topology is induced on P; it is in fact the

þatch'topology referred to in (e.g.) [Hc] whose construction bears some similarity to ours. We
can be explicit about the topology: if Q g P, define an equivalence relation -g on p by:

P -e P' iff p/ Q = p' I Q. Then a basis of open sets on P is the set C of equivalence classes of the
-*, for finite N < P:

C= U{p/-n¡ : N finite, N < p}.

Each class is clopen. This is a basis since any finite intersection of elements of C is a finite
' *:- 'llÍìiolì of elements of C. For any Q < P, any -g-class is closed in the topology. Hence (taking

Q = P) every singleton subset of P is closed: the topology is regular.

We now move from full ideals to arbitrary ideals. As before we let P be any SFP domain
and <P,p¡,'> an SFP system with limit fing Rp. Our first result generalises (2.1) to this situation.

Theorem 2.7
Let J be any 1eft ideal of Rp. Then for any r G Rp,

-  r € I  i f f  r ( p ) e J ( p )  f o r  a l l  p e p .
In  other  words,  I=O{ l (p)@p:peP}.

tr

Proof

Clearly if r e J then r(p) e I(p) for all p e
( * )  I= f ì { J ' : J ' a  f u l l  i dea l  o f  Rp ,  I , ? l } .
For assume that r(p) e J(p) for all p e P. Let

l(p) c L So r e I@p. Hence r e |' for alt tutl
required.

Wed, May 9,1990
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Part I: SFP systems

We only need to prove '=' of (*). Let a e Rp\j. We show that a q ng,: f, a full ideal of
R p ,  I ' 2  I ) .

Using Zom's lemma choose a left ideal J' of Rp that is maximal with respect to:
-  l ' 2 J ,  a d I ' .

We show that J'is a tuIl ideal of Rp.

If not, by (2.2) there is finite N < P such that J'¡ is not full in R¡. Since it is certainly

proper, by (2.1) there are orthogonal central idempotents e' e2 of R¡ such that è.dl',

er 4 I', ê1*ê, = l. By maximality of f' we have

" 
= ji * rre, for some jiel', r, e Rp (i = 1,2).

S o a  =  e r a + e 2 a  =  e r . ( j r + t 2 e 2 ) + e r . ( j r + r r e r )  =  è i z + e j r e J , .
This is a contradiction. Hence |'is a full ideal of Rp which completes the proof.

If Q < P and I is an ideal of Rp we can now e4press the projections ]q(q) (q e e) of Jq in

Rq in terms of the projections J(p) of J in Rp. The result generalises Theorem 2.2to arbltrary
ideals.

Theorem 2.8
Let Q ç P and let J be an ideal of Rp. Then for each q e e,

Iç(e)= n{vqp-1(I(p)) :  p € P, p/Q= q}.

Proof

Forq e Q define IO=fì{v'O-lt l tpl l  :p€ p, ple=q}. Let a€le(q)forsome q. Then
there is r€ Ie with r(q)=¿. Clearly r(p)=vqp(a) e I(p) for atl  pe p with p/e=q. So
a e I O .

Hence Jq(q) e IO for all q e Q. It is not immediate that we have equality; for examplg if
q, e Q\Qo and

f  n^  i rq=q '
l Y r

I =q l
t. 0 if q e Q\{q,}

then 0 is the only ideal I of Rq with I(q) s IO for all q.

We prove equality as follows. Suppose for contradiction that there is q e Q and
a e IO\Jq(q). Using Zom's Lemma as in the previous theorem take a left ideal J'= J of Rp

that is maximal with respect to: a { J'g(q).

tr
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Part I: SFP systems

Claim: I'q is tullin Rq and o(f'q)= q.

Proof of Claim: If not, there is finite N < Q such that f'¡ is not fullin R¡. As before, take

orthogonal idempotents el, e2 e R¡\f', central in Rp and such that êr*ê¿ = 1. By maximality

of J' there are ji e I', riê Rp such that

( * )  i i  +  r ¡ .e t  .  Re and ( j i  +  r i .e ¡Xq)=  a  ( i=7 ,2) .

Consider s = e1(j2 +rrer)+ ez(jr +rrer). Since el e, e Rç we have s e Rq. Also, s(q)
= e r ( q ) . a + e r ( q ) . a  = J ( e r + e r X e ) l . a = a .  B u t  a l s o  s = e j e  + e ) ,  e J ' .  S o  s e I , q  a n d  s ( q ) = a ,

a contradiction to the choice of J'. Hence J'q is fullin Rç, and clearly ol'e = q. This proves

the claim.

Now by the above, I'e(qJ = n{rqrp 1(J'(p)) : p/ e = gr} for ail q, e e. It follows from
the claim that f'(p) = 

\ 
for all p e P with ple+ o,.

Take reRq wi th  r (q)=a.  Then as aeI*  r (p)eJ(p)çI ' (p)  for  a [  pep wi th
pl Q= q. So by (2.7),t eJ', a contradiction.

tr

We can now determine the left ideal of Rp generated by a left ideal of Rq for Q < P. The
.',,, .:;r'following result also applies if we replace 'left'by'two-sided'throughout.

Corollary 2.9

Let Q < P and I be a left ideal of Rq. Then:

(i) the left ideal J of Rp generated by I is given by

( * ) for all p € P, Jþ) is the left ideal of Rp generated by vpl q,ptl(R/ Q)1.
( i i )  i f  I = I ' @ 9 i n  R q  ( f o r s o m e  q €  Q  a n d l e f t i d e a l  I ' o f  R r )  a n d f o r a l l p e  P w i t h p l q ,

pl Q= q, thê left ideal of 
\ Benerated by vOO(I') is improper; then I generates the left

ideal I'@q in Rp.

Proof
(i) For each p e P let Ip be the left ideal of Rn generated by ,p1e,p{t{p/ e)). Let

J= { r€ Rp:r (p)e IOfor  a l l  peP}.  Cer ta in ly  J  is  an ideal  o f  Rp,  and J(n)=Jp fora i l
pe P. Butif  J' l  I is aleft ideal of Rpthen f 'q I I ,  so by (2.8) for each p e p and q € e

with p/Q = q we have vro-lu,(p)l f J,Q(q) a I(q). Hence I(p) e ¡,1p¡ for all p, so that

J e J'. So I generates J in Rp.

(ii) This is a special case of (i); we will use it in Part II.

tr
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Corollary 2.70
Assume that Q < P and let the left ideal I of Rç generate the left ideal J of Rp. Then
(i) I(q) = I(q) for alt q € e
( i i )  JQ =  t .

Proof

(i) is a special case of corollary 2.9(i). Hence for each q € Q, I(q) c le(q) c I(q) = I(g)
so le(q) = I(qI Part (ii) now follows by (2.7).

3 Densely decomposable ideals

Here we develop away to obtain an atomless Boolean ring as the limit of an SFp system in
the case where all component rings are Boolean. As in lZlweuse densely decomposable ideals
to generalise the notion of atomless to arbitrary rings. Again, unless otherr,lrise stated all
ring ideals will be left ideals.
' Recall from the introduction the definition of densely decomposable:

Definition

Let R be any rin& and I a proper left ideal of R. I is said to be densely decomposable
if whenever J is a left ideal of R properly extending I, then there are left ideals X, y e ¡
properly extending I, with XnY= I.

Example 3.1

Let R be a Boolean ring. Then the ideal {0} is densely decomposable iff R is atomless: that
is,  i f  r l0 in Rthen there is s e Rwith r ls.r  = s 10. So foran ideal of  a Boolean r ing
being densely decomposable is the same as having atomless quotient, and is in a sense opposite
to being irreducible.

We wish to find conditions forideals of the limit ring of an SFP system to be densely
decomposable.

Def ini t ion

Let  Rbear ingand ISJ le f t idea ls  o f  R.  Wesaytha tJsp l i t s  over  I i f  there  are le f t
ideals x,  YgJ with xrI ,  Y=I,  xnY= L I f  s= I  is any subset of R, we say that s

tr
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strongly splits over I if for all left ideals J with IcJg s, J splits over L

Clearly I is a densely decomposable ideal of R iff any set S = I strongly splits over I.

Let (P,p,v) be an SFP system. An ideal of Rp can be densely decomposable for two
reasons: its projections onto the component rings 

S fp . P) might already make it densely
decomposablg or else it can be densely decomposable because of the SFP system structure of
Rp. We now separate the two causes. As in Sectionl,if Iis an ideal of Rp and n e N < p we
write I¡(n) for the projection {r(n): r e I¡¡} of I¡¡ (= InR¡) onto n '

Definition

Let I be a left ideal of Rp. We define I^ to be the set

{r e Rp :for any finite support N ( P of 4 there is at most one n e N with r(n) d I¡(n) }.

So Iç I^. If I is a properideal of Rp,then by (2.2) I is tulliff I^= Rp. If re Rp and Í e I^
then clearly i.r e I^. Hence I^ is the union of the left ideals contained Ín it.

Lemma 3.2

Let I be a left ideal of Rp. The following are equivalent:
(i ) I is a densely decomposable ideal of R¡,

(ii) I^ strongly splits over I in Rp.

Proof

We only need prove that (ii) implies (i). Let I r I be a left ideal of Rp; we must prove that

J splits over I. If J s tn this is clear by assumption. Assume not. There is r e J and a finite
support  N<Pof rsuch thatfordist incty,  ze N wehave r(y),r(z){ I¡¡ .  Def ineere R¡¡
by: et(Ð = 1 if x=Y, and 0 otherwise. Let Y be the left ideal of Rp generated by I and er.r.
Define e, and Z similarly. Then e, and e, are orthogonal central idempotents of Rp. We
clearly have I  cY, Z and y, ZçJ.

Claim YnZ = L

Proof of claim Let s e YnZ. so s=ir+rr(er.r) =ir+rr(ea.r) for some ir, i, € I and rt
r, e Rp. Multiplying by ez, we obtain êzir=erir+rr(er.r). Hence rr(e,r)= er(ir-ie) e I.
Hence s = i2 + tr(er.r) e I, proving the claim.

Hence whether I is densely decomposable depends only on I^. For examplg if p e p and I
is an ideal of Rn then I@p is densely decomposable iff I is densely decomposable in 

\.

tr
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Clearly the smaller I^\I is, the more likely I is to be densely decomposable. We describe one
way to force I^\I to be small. Suppose that P is an SFP domain such that for evety finite
N< P and n e N, there ís p e P\N with p/ N = n. This condition is equivalent to:
( f)  for every n€ N, {p e P:p/N=n} is inf ini te.

Examples are the ideal completion of any dense linear ordering with a least element, or of the

tree <@<r¡ (the set of finite sequences of natural numbers, ordered by 'initial segment').

Def ini t ion

Let I s Rp be a left ideal. We say that I is tocally generated if there is finite N q P

such that I¡ generates I in Rp.

For example, any finitely generated ideal of Rp is locally generated.

Proposition 3.3

Suppose that we have an SFP system <P,gil> (where P satisfies the condition (f) above) in
which eveWpq it a ring isomorphism. Let I be any proper locally generated left ideal of

Rp. Then I is densely decomposable.

Proof

By Lemma 3.2 it is enough to show that I^ = I. Without loss all Rn are the ring S and each

,pq ir the identity map. Let.r e Rp\I. Take finite N q P supporbing r and such that I¡¡

genera tes  I .  As  re  R¡ ¡  we haverd lN,so  by(2 .1) there  isne  Nwi th  r (n ) { I ¡ (n ) .  By(Ê)

we can choose finite M < P containing N and such that the set

n M  =  { m  e  M  : m  l n  a n d  m / N =  n l  + Ø .
By (2.10(ü)) the left ideal of R¡4 generated by I¡ is in fact I¡1. By (2.9) I¡4(m) = IN(m/ N) ç S

for all m e M. Now M also supports r. Take rrl . rrM. We have r(n) { I¡g(n), and

r(m) = r(n) d I¡(n) = IM(m). Hence r d I^ as required.

Remark

We can evidently weaken the assumption on the vOO in (3.3) to: if N < P is finite then for
eachneNthere ismePo\Nsuchthatm/N=nandur . , * isa(sur ject ive) isomorphism.

Example 3.4

In the case where ull Rp are isomorphic to a ring S and all ,pq 
"r" 

the identity, the limit

Rp is determined up to isomorphism by S and P. It follows from the proposition that letting P

be the ideal completion of <oco and S = {01}, the zero ideal of Rp is densely decomposable.

Hence by (7.4), (1.5) and the above, Rp is the countable atomless Boolean ring B (there is a

tr
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unique such ring up to isomorphism - see [CK]). Similarly, if Q is the ideal completion of the set
Q2g of non-negative rational numbers with the usual ordering then Rq = B. Here Rq is
essentially the Boolean algebra of half-open intelals of Q. (So P is homeomorphic to e in the
patch topology - as is any SFP domain X with countable base and satisfying (f).) Since p and
Q are not isomorphic posets, this shows that in general we cannot recover the poset structure
of an sFP domain P from a limit ring Rp. we will pursue this in part II.

4 L-r-equivalence of SFP systems and their limits

Here we define a canonical model-theoretic structure Mo from an SFP system q = <p,py>.

We prove that if oi = <Pi,p¡,v¡> (i=1,2) are SFP systems and Mo, and Mo. are Ï.coc,r-eguivalent

then so are the limit rings of o, and or. We will also provide a simple sufficient condition for
Mo, and Mo, to be L*r-equivalen! namely that (Pr)o and (Pr)o are T.ooc,r-eguivalent and the

oi are sufficiently similar SFP systems. In Sections 6 and 7 we will consfruct 2Xr SFp domains

Pi (i<2or) such that (P¡)o and (P¡)o are L*r-equivalent for all icj<2or, and yet the limit rings

of any SFP systems built on the Pt are pairwise non-embeddable. Hence these limits will

nonetheless be L*6"equiva1ent if the SFP systems are sufficientty similar. This means

crudely that though the limit rings are different, the differences are hard to detect.

Recall from e.g. [CK] the definition of T.oocr.r-eeuivalence. Let L be any signature; the
infinitary language Lro, is built from L by allowing formulas with finite strings of

quantifiers but conjunctions and disjunctions of arbitrary length. Ttwo L-structures M, N are
said to be L*r-equivalent (written M =*, N) if they satisfy the same sentences of L-r.

We can usefully characterise L*r-equivalence in terms of a game between two players,

V' and '3', played on two L-structures M and N. The game G(lvf,N) has or moves. At each move
in a play, player V chooses an element from one structure - M or N. Then 3 completes the
move by choosing an element from the other structure. After the play is ove4 the result is

two tuples rñ e M, ñ e N of length <rr, possibly with repetitions: the ith elements n\, ni of rñ, ñ

respectively consist of the elements chosen in the ith move of the game from M, N respectively.
(No record is kept of which player chose which element.) So rñ and ñ define a relation
0= {(mi,n1):i<t¡}g MxN. 3 wins the play of the game iff0 is a partial isomorphism - i.e. ê is

a partial function from M to N, and for all quantifier-free first order fomulas rp(*) of L and all
ã e dom(O), M F rp(ã) iff N F q(0(ã)).
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Fact 4.1
M and N are L-r-equivalent iff 3 has a winning strategy in the game G(M,N). See IHgl

or [K] for details.

Definition

Let d= <P,p)t> be an sFP system. Define a structure Mo= (po,(\:p€ po)) in the

signature {(,p?*,**,-*,0+,1.}. The domain of Mo is the disjoint union of po and the Rp

(p e fo¡. The binary relation symbol < is interpreted as the partial ordering on Po: Mo F p<q

if fp,  qePo and p<q. pnis abinaryrelat ion symbol,  and Mo þp*(pr) i f f  pe po, re Ro.

v* is a binary relation symbol corresponding to y: we define Mo F v*(r,s) iff r e Rn, s e RO

for some P, g c Po (necessarily unique) with p<q, v'r(r) = s. The ternary relation symbols

+*, -* are defined on each Rn in the obvious way: Mo F +*(r,s,t) iff 4 s, r a Rp for some

p c Po and r+s=t, and similarly for -'. 0* and 1+ are unary relation symbols and
Mo F 0*(r) iff r= 0 e RO for some p € Po (and similarly for 1*).

We say that SFP systems olr62are L-r-equivalent if Mo.l =cor., Mor.

We use this to prove the following theorem.

Theorem 4.2

Let oi = <P¡,p¡ui> be L*r-equivalent SFP systems with limit rings \ (i=1,2). Then

R, =oor,¡ R, in the signature {+,-,01} of rings.

Proof

By hypothesis and Fact 4.1 we may take a winning strategy for !l in the game
G(Mor,Mor). We will describe a winning stratery for 3 in the game G(RüR2). We use a play of

G(R1R2) to generate a play of G(Mor,Mor). 3's strategy in this game will then suggest moves

for her in the main game G(R'R2). The method is well known,

More fulþ let V begin by choosing (without loss) r, e R* V's choice gives rise to the
following finite sequence of elements of Mor: those in an arbitrary finite support N, < Pro for

r' listed in some arbitrary order, together with the sequence rr(nr) of elements of the \,
(n, e Nr). 3 treats them as successive moves of v in a play of G(Mor,Mør) and uses her

winning stratery in this game to choose coresponding elements of Mor. This correspondence

gives a partial isomorphism from Mor,o Mor. Moreovel as the stratery is winning the

elements chosen corresponding to the n, form a locally directed subset N, of Pro. Hence the
elements corresponding to the rr(nr) give rise to an element r. of Rr: r, is supported by N, and
for each corresponding pair lì1, n2, rr(nr) corresponds to rr(n.I 3's reply in the main game
G(R',R2) is this element r*
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In each subsequent move V's choice generates a further finite sequence of elements of a
structure Mo, {i = 1 or 2). We can assume that the set of all elements so far chosen in each

Pio Ç Mo, $=7,2) form a locally directed subset. On each occasion 3 continues fith her'  - 1

stratery to obtain corresponding elements of the other structure. 
'Note 

that at each stage, all
elements so far chosen 'n Mor are in partial isomorphism with the coresponding ones in Mor.

After o moves, tuples of qr elements ã, e Moí ãra Mo, will have been generated. The
map ã, r+ ã, is a partial isomorphism from Mor to Mo2. It is now easy to see that the
corresponding elements of the \ (i=1,2) are also in partial isomorphism. Hence the strategr
described is winning for 3. The result follows by (4.1).

Corollary 4.3

Let P, and P, be sFP domains with Pro =*, P.o. Let R' R. be l.oor-equivalent rings and
define SFP systems o¡ = <Pi,pi)li> (i=7,2)by:

- Pi(P) = Ri for all p e Pt

YlP,9) = id*. for all p<q in Pr.

Then the limit rings Rp, and Rp, are Loor-equivalent.

Proof

It is evident that o, and o, are L-r-equivalent SFP systems. The result follows by Ø.2).

tr

This shows that with restrictions on the rings and morphisms of the SFp systems o, and o'
to get the limit rings to be L*r-equivalent it suffices to begin with SFP domains having L-r-
equivalent bases. We will apply this in Section 4 of part II.

tr
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We briefly sketch the 'anti-structure theorem' that will occupy this part of the paper. Our
description here is not accurate in detail. The technique is well known. To simplify matters,
assume that we have two SFP domains R Pt that are in fact a certain kind of tree of height <,r'
that all Rp tp e PuPr) are the trivial ring {01}, and that all uOO are isomorphisms. We can

express P as a union Ui.rrPi where Pi is the subtree of P consisting of the elements of height

<i. The P¡ are an increasing chain of sFP subdomains of p. Thus we have R* = Ui..rrRi.
where each \* is the set of elements of R" supported by a subset of P¡. Take a full ideal I of

R*; I={re R:r(s)=0} for some se P. I t  turns out that InR¡*is ful l  foral l ictrrr .  Sofor

e a c h i c c o r t h e r e i s s i e P ¡ s u c h t h a t l n \ * = { r e R i * : r ( s ¡ ) = 0 } , a n d s i ( s j ( s i f i < j < o l

The same holds for Rr*, defined similarly using pl.

Assume now that 0 : R* + Rr* is a ring isomorphism. Then the set
c = {i<or :O(Ri*) = Rti*} is a club (a large set) in orr. Moreover, for each i e Ç ê(In\*) is

a full ideal of Rrr* (here, 'fulf is the same as 'maximal'). so there are sl, € p¡i (i e c) such

that O(In\*)= {r .  Rt i* :r(sr i )=0}.  Thus 0 induces a part ial  map @ from plcto pl lcby:

st e sri, where PIC= {p e P: p has height in C} (and similarly for Pr). By considering ail tulI

ideals l, @ extends to a bijection from PIC to PllÇ and it is order preserving. Thus the existence
of an isomorphism from R* to Rr* forces the underlying SFP domains to be closely related:
there is a club C Ç c,r, such that PIC = pllc.

* . So in order to produce many non-isomorphic rings R* it suffices to find many trees P such
that no two are isomorphic on any club. In tASl this is done for Aronszajn trees, using the

h¡rothesis of 2Ro a 2Rr lweak diamond). Our construction here is in some ways similaq, but a
weaker result suffices and we do not need any set-theoretic hypotheses beyond ZFC. The trees

we construct are not strictly Aronszajn trees: in fact it is consistent with MA + 2Xo > Rr that
any two Aronszajn trees are isomorphic on some club [AS]. Howeve4 our construction is made
complicated by our considering ring embeddings ê (and not just isomorphisms) and artritrary
rings Rn (not just {01}). In this setting @ becomes a relation between the restricted trees.

The layout of Part II is as follows. In $1 the appropriate form of tree is defined and the
relation @ discussed. In 52 we construct many different trees using a Aronszajn-style
argument, and use them to produce many different rings. Finally we establish some higher-
order properties of the rings. We show that each of theirfull ideals can be made countably
generated (S3) and that the rings themselves can be made pairwise L-r-equivalent (S4) and

to some degree rigid (S5).
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1 Conformal relations

Here we investigate the effect of the SFP domain of an SFP system on its limit ring. We
want in particular to find a way of changing the underlying domain that necessarily
changes (the isomorphism type of) the ring. Our approach is to ask how much of the domain
structure gets to be encoded in the limit ring in such a way that we can recover it purely
ring-theoretically. For if we use two different domains, and they are recoverable
intrinsically from the two limit rings in sufficient detail to reveal their differences, then the
rings must be different as rings.

Now howeverwe may alter the domain in a system, there is no guarantee of getting
different rings as limits in the countable situation - when the base of the domain and also each
component ring is countable. Suppose for instance that we build atomless Boolean rings (as in
Example I.3.4). UP to isomorphism there is a unique countable such ring. Hence the domain
structure here cannot exert any effect.

Howeve4 things are different if we allow the base of the domain to be uncountablg as we
will see.

The chief hope of recovering the domain structure lies with the fulI ideals of the limit
rings: in $I.2 we used the notion of sifeto relate these ideals to the underlying domain. Now if
the base is of cardinality R' we can here express the whole SFP domain as a union of an
uncountable chain of SFP subdomains with countable bases. Each subdomain induces a
sgþsysterr¡ and its limit is a countable subring of the main limit ring. Hence the original ring
of cardinality X1can be written as the union of a chain of countable subrings, built around
the subdomains.

In this situation we can take a full ideal of the main ring and look at its intersections with
the subrings. They will also be ful| and their sites will form a linearly ordered subset of the
main domain. By considering the Torking behaviour' of the sets that arise in this way, we can
build up a picture of the original domain. This picture turns out to be substantially
independent of the choice of subdomains, and has sufficient detail to distinguish different
'main'domains, which is what we wanted.

To get this idea to work we restrict our attention to domains having a certain kind of tree

structure. We can constmct 2Rr different such trees, each with base set of cardinality Nr, such
that if P, P'are two such, and we take any two sFp systems on p, p', with countable
component rings and having limits R, R', say, then there is no ring embedding from R into R'.
Moreovel, by choosing the component rings and connecting maps of the systems more
carefully, we can make R and R' I oor-equivalent. In a similar way we can also ensure that

R (and R') have various higher order propertieq such as some rigidity: they have few
automorphisms.

The actual construction of the trees is done in $2; here, we are concerned mainly with the
ring theory. Howeve4 we do need to quote some combinatorics.

Wed, May 9,1990 25



Part II: Anti-structure theorems

Trees
The following are generally known definitions and we include them for convenÍence. A

tree is a non-empty poset (T,<) suctr that the set 1= {u e T: u < t} of predecessors of any
t e T is well-ordered (hence linearly ordered). We will refer to the elements of a tree as
nodes. The height of a node t € T, htT(t) or ht(t), is the order type of 1. If i is an ordinal,

we write T(i) for the set of nodes of T of height i: the ith level of T.
More genetally, iî S ç T is closed downwards, we write S(i) for S n T(i) and ht,¡(S) for

the least ordinal i such that s(i) = ø. H x is a set of ordinals, we define Slx to be
{s e S: htT(s) e X}. So for examplg if i is an ordinal then Sli is thú set of elements of S of

height <i. (Since S if non-empty is a tree in its own righf the notations S(i) etc. would be
ambiguous if S were not closed downwards in T.)

If t,t '€ T, t' is an immediate successor of t if t,>t and ht(t,)=ht(t)+l. Then also t is
an immediate predecessor of t'. A terminal node is one without any successors in T; a
branching node is a node with at least two immediate successors. A node t € T is said to be
green in T if T contains a branching node b > t.

A tree T is called normal if whenever t,t' e T have equal limit height and uct iff u<t, for
all u e T, then t = t'. Our convention is that every ordinal is exactly one of: Q successor, limit.

A branch of a tree T is a maximal linearly ordered subset of T. A branch p is said
(unusually) to be cofinal in T if every node of p is green in T. If T is normal this means
that the branching nodes are 'cofinaf in p: if i < ht(P) then there is a branching node b e p
of height at least i in T.

Remark

Let Tbeatreewith aleastelement J-.  Then any S€ Twith 1e Sislocal lydirectedin T.
If T is a dcpo then T is an SFP domain, the finite elements being those not of limit height.

:
Spruce trees

We can now define the type of tree that interests us here. A spmce tree is a normal tree
T satisfying:

(i) every branch of T has height trr,
(ii) each node of T has exactly one non-branching immediate successor
(iii) T has no cofinal branches
(iv) for all i < j < q¡, and every branching node b of height i in T, there are exactly

Xo branching nodes of T of height j above b
(v) T(0) has just one node 'l-', which is a branching node; each higher level of T has

exactly Ro branching nodes.

An example of a spruce tree is an Aronszajn tree (cf.I[zl and below) but with each
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branch and node extended individually by new non-branching nodes up to height crr* In $2
the existence of many spruce trees is established.

Let T be a spruce tree. A node of T is said to be basic if it is a branching node and it is
finite in the sense of $I.1 - that is, its height is not a limit ordinal. We write B(T) for the set of
basicnodes of T.

Let D be a directed set of basic nodes in T. Then D is linearly ordered, and since T has no
cofinal branches, D is countable. Now although T is not a dcpo, it is normal and every branch
has height t,ll, so D has a unique least upper bound in T. It follows that the ideal completion of
the set of basic nodes embeds canonically into T. So let us call a node of T a limit node if it is
in the image of this embedding. We write l(T) for the set of limit nodes; so B(T) ç L(T).
Clearly L(T) is a dcpo, and since it is a tree with a single least element, it is in fact an SFp
domain. Notice that B(T) < t(T) < T.

We will use the SFP domain L(T) to build SFP systems. The remainder of T is used to keep
track of what is going on. To do this we need to deal with the subtrees of T of countable
height.

". ' Recall that if À is a limit ordinal and \ (i < À) are arbitrary sets, the \ are said to form

a continuous chain if \ ç x, for each i < j < À, and for each limit ordinal j < À,

X¡=  U{X i : i c j } .  The un ion  o f  the  cha in  i s  de f ined to  be  U{ \ : i<À} .

If i < ttrr we define L(T)t to be the set of elements of L(T) with height at most i in T. Then

L(T)i < L(T) Similarly define B(T)i = B(T) n Tli+1. B(T) has no nodes of limit height, so the

B(T)i (i < trrr) form a continuous chain with union B(T). For each i < o' L(T\ < t(T).

Moreover, since L(T) ç T and T is spruce we have L(T) = Uiccr¡rl(T)i.

Spruce trees and SFP systems
Now take an SFP system <L(T),p,1.¡> such that each \ (t e B(T)) is countable. Let its limit

ring be R. Writing \ fot Rt{.¡)r, we see that the \ form a continuous chain of countable

subrings of R, with union R.

We define for each i < o.r, a projection ri : R + \, grr"rl as follows.

definition r is a tunction from L(T) into U{\ : t € L(T)}. Ttren ni(r) is just

rll(T)r of r to the set L(T)i.

We must show that rri(r) € Ri. Let N < L(T) be a finite support of r in

N'= N n L(T)t. Then since t(T)i is closed downwards in L(T) J e N' and

I f r e & t h e n b y

the restriction

R and define

so N'E L(Q.
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Clearly if x e L(T), then x/ N = x/ N'. It follows that N' supports rlt) it, \. So q(r) e \, as

required.

Each q is a su{ective ring homomorphism and is the identity on \.

EUII ideøIs
The notion of full ideals becomes a little more complicated in this settin& since now we

have lt, different rings and we can no longer tell from its site which ring a fullideallies in.
So we refine the notion of site, using the part of the tree T that lies outside L(T).

Recall that each t c T has a unique non-branching immediate successor - t+ say. Hence

if ht(t) = i, we can define a node t[j] tor each i<jcort by induction on j:

-  1 [ i l =  1

t l j+11-  * [ j ]+

- if j is a limit ordinal, t[j] is ttre unique node of height j with 1[jl ¡ 1[kl for all i<kcj;
this is well defined as T is spruce.

Note that although certainly t[i] is not a branching node if j>i is a successor ordinal, it may be

a branching node if j is limit. If j>i we trave t[j] I L(T).

In the light of this we can define a map Ç, : T+T by: Ç(t) is the lowest node t' < t such

that t = 1'[ht(t)J. We clearly have:

Proposition 7.7

Ç(T) = L(T) and Ç2(t) = ç(t) for all t e T. For all i < or, the restriction

ÇlT(i) : T(i) + L(T)i is a bijection, whose inverse is given by t l+ tlil.

tr

Now if i < ur, then the set of possible sites for fuIlideals of \ is L(T)i, and this is in

bijection with T(i) via Ç. So if I is a full ideal of $ with site s € L(T)i, we define the tree site

of l,rI, to be s[i] e T(i).

Tree sites behave well with respect to subrings. We have:

Proposition 7.2
( i )  I f  i < j c t o ,  a n d  J i s  a  t u l l  i d e a l  i n  R ¡ ,  t h e n  f  n \ i s t u l l  i n  \  a n d  r ( f  n R r ) < r J .

Since it has height i, r(l n \) is determined by this inequality.

( i i )  I f  ic j<o, and I  is atul l  ideal of  \ , then the ideat 4-1tI ln R¡ istul t in R¡,  and

rlrr-l{t) n R¡) = (rI)til. We write Ilj l for this ideat.

Proof

(i) Let ol = p e L(T)i. Since L(T), < L(T)j, by (L2.2) we see that J n \ is tuil in \ with site
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9 = P/ L(T)i. We must show tfrat pljl2 t[il.
If ht(p)<i then p e L(T)l and q=p, so theresult is clear. So suppose that ht(p)>i. We

show that p > qtkl for ht(q) < k < i by induction on k.

If k=ht(Q) ork is a limit ordinal then this is trivial. Assume that k+1 <i and p>qlkl.
If p; qlk+l]th"rl there is b<p, ht(b)=k+1, with b +qlk+t¡. As the immediate predecessor

of b is qtkl u must be a branching node in T. Hence b e t(T), and so q = pl L(T)i > b. As

b > q, this is a contradiction. So p > t[k+11 completing the induction.

( i i )  Let r i - l ( I )  n Rr=¡.  Then for al l  re R, re J i f f  r lL(T),  € I  i f f  r (ol)  e ¿I.  So

I = ÁI@oI in R . Hence I and I have the same site and defect, though they lie in different

rings. We have tI = (ot)[j] = (q¡¡tiJtjJ = 111¡[jl.

CIubs
Let C Ç o¡ C is said to be a club (in orr) if it is closed and unbounded in orr. That is:
(c1) if Co ç C is countablg then UCo e C. (UCo is of course the least ordinal i such

t h a t i > c l o r e a c h c e C o . )
( .ub) -  - .  for each i<o, there is c>i  with ce C.

Examples of clubs are or itself, and the set of countable limit ordinals. We can go further.
If C is any subset of al, we write ðC for the set of limit points of C: òC is the set of all ordinals of
the form [J{ci : i < trr}, for some strictly increasing sequence q (i < to) in C. So (c1) above
just says that ðC S C. We then have:

FACT If C is a club then so is ðC.

Note that (ub) implies that C is uncountable. We can think of clubs as 'large' subsets of (..)r.
Wehave:

F,\CT tJ1 Sn A countable intersection of clubs is a club.

We remark that if T is a spruce tree and C a club in o' then TIC is normal and satisfies all
conditions except possibly (ii) and the first part of (v) of the definition of 'spruce'. A node of
TIC is greeen in TIC iff it is green in T.

We will also use the following lemma on clubs.

tr
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FACT IHgs.2.2l

Le t  f  ;o1rûr r  be  a  map.  Then { i<@r:V j< i  ( f ( j )< i ) }  i s  a  c lub  in  o r r .

The proofs of these facts are not hard.

Ring embeddings ønd onformøl reløtions
Now suppose that u is another spruce tree. Take an sFp system <L(lJ),g,p'>,and write su

for p'(u) (u e L(U)) and S for its limit. Suppose that each S' is countable. We have a

continuous chain s = U{Si : i < o1}, as for R. We abuse notation by using the symbol ( to

referto the maps on T and on U; we distinguish them by context. But n always refers to R.

Reca l l  tha t  i f  xç  s ,  X"={seX:s (u)e{0 ,1}  fo r  each u€  L(U) } .  C lear ly  the  Srú
(i < oJ form a continuous chain with union S*.

Proposition 1.3

Supposethat0:S+Ris aringembedding. Thereis a club Cof limit ordinals in o, such
that for each i e Ç

( i )  O(S i )  =  R i  n  0 (S)

and (ii) if j <i then æro(s*) = æro(si*).

Proof

If j < or, let f(j) be the least k < trr, such that
-  e(sj)  s Rn

R r n 0 ( S ) s o ( S t )

t t j0(S*) = ær0(S¡*);

k exists since the left hand side of each of these is countable. Then by the fact abovg C, =

{ i < o ¡ : V j c i  ( f ( j ) < i ) }  i s  a  c l u b  i n  o r r . W e  c a n  t a k e  C = C , n à o r .

Now let 0 and C satisfy the conditions of the proposition. Define a binary relation
@çTx u as fol lows. I f  t ,u have equalheight i in T, urespect ively,  andi e Çthen:

t@u iff there is a tull left ideal I of \ such that:

-  t I  =  t

-  |  = g-11¡ n 0(Si))  is a tul I  ideal of  Si ,  and xI=u.

We say that the ideal I represents the pair (t,u). Notice that by definition of Ç J = 0-1(l).

tr
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Defini t ion

Let T, U be arbitrary trees. A relation tÞ ç T x U is said to be height preserving if
whenever tÕu then htT(t) = htu(u). A height presering relation iÞ is said to be

homomorphic if whenever tiÞu, t' ç t, u, < u and t, and u, have equal heightq then t,Õu,.

Clearly, @ is height preserving.

Proposition 7.4

@ is a homomorphic relation g TlCx UlC. Moreover, in the notation abovg if i < j in C and
J is a Ieft ideal of R, representing (t,u), then I n \ represents (t,,u,).

Proof

Suppose ic j  in Cand teT(j) ,ue U(j)  are retatedby@. Take Jrepresent ing ( t ,u).  I  is
tull in R , and has (tree) site t. By (1.2¡, ¡ n \ is full in \ and has site t,. Similarly,
g - l t I ln  s r i s tu l l in  s ,  w i th  s i teu ' .  Bu t  as  ie  cwet rave0-11¡ ¡n  s r=e-11¡n  q¡ .  Hence
t'@u'.

Definition

Let Tand Ubetrees of heightor.  Aheightpreseff ingrelat ion Õç Tx Uis saidtobe
surjective if whenever i < or, and u e U(i), then there is t e T(i) such that tiÞu. We then
write that Õ :T+ U is a surjective relation.

Proposition 1.5

@ : TIC + UIC is a surjective relation.

Proof

L e t u e U ( i ) f o r i e Ç l e t Ç ( u ) = 2 .  L e t l b e t u l l i n S r w i t h s i t e z , d e f e c t 0 ( i . e .  I = O @ z i n S i ) .

Claim: 0(I) generates a proper left ideal of \.
Proof of claim: If not, there are ho < o and an e I, rn e \ (n < no) such that

- )..¡o r¡.0(ar.,) = 1.

Now for each n we have an(z)= 0. We can take finite N < L(U)i such that each an is

supported by w, and an(z') = Q where z' = zlN.

Define d e St by: d is supported by l,t; d(x) = 1 if x e N, x * z', and, d(2,) = 0. Then d I 1,

but an.d = ân for each n < no.

Now let e = 0(d) e \. since 0 is an embedding e I 1. But we have

tr

- e = [Irr.,.0(arr)].e = Irr.,.(0(ar.,.d)) = Irr.,.O(an)=1,

a contradiction. This proves the claim.
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By Zorn's Lemma there is a maximal left ideal J of \ extending 0(I). By (I.2.4) and (I.2.5),

I is fullin \. Then 0-1(D it a proper left ideal of Si and extends I; so it is tull with site z. So if
t = rI we have t@u, the pair (t¡) being represented by J.

E

Definition

Let T and U be spruce trees and C a club in or. A homomorphic relation Õ: TIC+ UIC is
s a i d t o b e c o n t i n u o u s i f f o r a l l i < j i n C a n d a l l u e U ( i ) t h e r e i s a n o d e u [ Õ i ] > u , o f h e i g h t

jin U, such that
- for all t e T(i) with tÕu and ç(t) < t, if there exists u, € U(j) such that u,> u

and t[j]iÞu' then u'= u[Õj].

We do not require 1¡¿1 u[Õjl = qlil.

Essentially this says that a small change in nodes in TIC (viz. going from t[j] to t'Ul where t
and t'are related via Õ to the same node u € UIC) results in only a small change (no change)
in their Õ-relatives above u in U: if tljl and t'[j] are related to any node above u, then they are
related to only ong and the same one. Hence the name 'continuity,.

Proposition 7.6

@ : TIC + UIC is continuous.

Proof

Suppose that i< j  in Ç u e U(i) ,  and let  t '  t r€T(i)  ¡e such that t lOu, Çt1<tt  ( t  =7,2).

Suppose that u, e U(j) with u¿ > u are such that tljlOrt for t = 1,2. Wemust show that

u t  =  ü ¿ '

For I = 1, 2 there is a tuIl left ideal Jf of 
\ 

representing the pair ltrljl,ur). Then

olt= Çtlt= Çtl <tt. As i is a limit ordinal there is kci such that oJ, e Tlk. Set

Kt = I t  n Rk. By (7.2),  I r= nk-7(K1) n Rr.

Assume for contradiction that ur lur. By (1.2.3),10-1(J1)ln I [O-1(I2)]*, so without loss
there is seSr* with 0(s)€Ir \Jr.  Hence t¡O(s)€Kl\K2. By def ini t ion of C (cf .  1.3( i i ) ) ,

there is s'e Sit with n¡O(s') = ¡kO(s). Hence 0(s') e JrnRi \ JrnRi. Hence [g-l(LnRi)]* I

lo -1 { ¡ rn  R, ) l * .

But since ut )u e U(i), by (1.a) we see that o-l(frnRl is tulIin S, with tree site u, for

each L By (L2.3) again, [o-1(Ir)]*= [o-1(Ir)]*. This is a contradiction. so ur=uz, as
required.

tr
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We now adapt surjectivity to green nodes. iD: T+ U is said to be surjective on green
nodes if whenever u e u is green then there is a green node t e T with ttDu.

Proposition 7.7

Suppose that iÞ: T+ U is a homomorphic, surjective and continuous relation, where T
and U are spruce trees. Then Õ is surjective on green nodes.

Proof

Let ht(u) = i. As u is green, using property (iv) of spruceness we may first choose a
branching node u'>u of height j in U, and then an ordinal k > j and u" e Uß) with

u,,  ¡  u, [(Þ,k1.

Now as Õ is surjective there is t" e T(k) related to u" via Õ. Let t', t be the predecessors of
t" of heights j, i in T respectively. As Õ is homomorphig t'Õu' and tÕu.

If t is not green in T, then ((t') < t < t' and also t" = 1[kl. 5o by continuity the only node

related to t" is uto,kl. This is a contradiction, proving the proposition.

Definition

A relation Õ : T + U on spntce trees is said to be conformal if it is homomorphic,
su{ective on green nodeq and continuous.

Examples

Any tree isomorphism is conformal. The results above show that @ : TIC+ UIC is
conformal.

Conformal relations preserve sufficient tree structure for us to prove our anti-structure
results. We will see this in the next two sections.

2 Aronszajn trees

See [I1] or IJ2l for the classical Aronszajn tree construction to build a tree of height crr,
with countable levels but no uncountable branches. We modify it slightly to obtain a large
famtly of 'pseudo-Aronszajn'trees such that there is no conformal relation defined on any

tr
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club between any pair of the family. Hence by the results of $II.1, the limits of any SFp
systems built on the trees willbe pairwise non-embeddable. We also show how to make the
trees fairly rigid with respect to conformal relations. In $5 we will use this to produce rings
that are also fairly rigid.

The trees we build are spruce and so not strictly Aronszajn, but they retain enough
'Aronszajn-ness'to ensure that rings built on them have the Aronszajn-like property that
every maximal ideal (more generally, every fulIideal) is countably generated.

To make the trees different we will use the devices of 'grids' and 'nests'. We will define nests
lateç first to grids.

Definition

A grid is a pair f = <G,Tì where G ç ððtrlr is a set of limit limit ordinalg and

1: Gxo + ôor, is a map that provides for each j € G a strictly increasing sequence of
countable limit ordinals 1(j,n) = ¡r, (n < o) with U{j¡ : n < tr.r} = j.

It will also be useful to define a node a of limit height i in a spruce tree A to be cofinal if
â is a cofinal branch of Ali (i.e. there are branching nodes of unbounded height in â).

Our main construction now follows. The statement of the theorem contains some terms that
will be defined below.

. Theorem 2.1

Let I = (G,f) be a grid. Then there is a spruce tree A = A(f) ('A' is for 'Aronszajn') with
the properties:

(oc) if icjctrrr and [ € A(Ð is a sequence node with sup(E) < q € Q, then there is a
sequence node r¡ e A(j) with E < q and sup(n) < q.

(rc) if i < or A(i) contains at most Ro sequence nodes.
(v) for all i e ðo, the number of distinct cofinal green nodes a € A(i) is:

- lr-l(il l.Ro if i e G

l r - l ( i ) l  + R o  i f  i { G .

So for example if i e G\im(1) then there are no cofinal green nodes in A(i).

Proof

Unlike in the classical Aronszajn construction the nodes of A will be of two kinds:
- sequence nodes These are certain elements of <@,Q = {4 :3i<<rrr(e : i + Q)}. So

<tÙrQ is the set of countable sequences of rationals. If n e <orQ we write len(n) for
dom(n) and sup(n) for sup{n(i):i<len(n)} e lR u {co,-oo}. Each sequence node q wil
be a bounded increasing sequence; i.e. sup(n) < oo and r'¡(i) > sup(r1li) for all
i < len(4). The letters q, I will denote sequence nodes.

- blank nodes These are'fille/ nodes. We can increase the height of a sequence node
in the tree by inserting blank nodes beneath it.
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Each node of A wilt be either sequence or blank - not both. The sequence nodes will be
precisely the branching nodes. It will be clear that if T = (Ø,Ø) then deleting the blank nodes
from A(f) gives a classical Aronszajn tree.

We will construct A by induction on levels. We must specify which elements of A are
related in the tree ordering. As in the standard Aronszajn tree, if E, n e n are sequence nodes
then [<r¡ in the tree iff [ is a proper initial segment of q. However; blank nodes are not
sequences and we will specify explicitly how the tree ordering relates them. Since blank
nodes may occur beneath sequence nodes we will have ht(rì) > len(n) for every sequence
node 4 e A, whereas in the classical case we have equality.

We now begin the construction of A. We define A(0), the Oth levet of An to be {+}, where <>
is the empty sequence, a sequence node with supremum -oo. If A(i) has been defined, we

construct A(i+l) as follows. First, for every node a e A(i) we put a single blank node a+ into
A(i+t) above a. This gives property (ii) of the definition of 'spruce'. Then for each sequence
node q e A(i) and every q e Q with q >sup(e) we put the sequence node l^q (the sequence
q followed by q) into A(i+l). This adds countably many sequence nodes above n. Clearly (a)
and (rc) are preserved.

Now assume that j < trr, is a limit ordinal and we have built A(i) for alt i<j. There are two
cases.

C a s e I : j d G

In this case we follow the classical construction. So for each sequence node r¡ e Alj and
each rational q > sup(n), we choose a rational q' with q > q, > sup(n) and a strictly
increasing sequence of ordinals in (n < o) with io = ht(n) and U{in : n < trr} = j. we then
define sequence nodes nn € A(in) (n < <,r) by induction on n. We set eo = rl. If r1r., has been
defined, we use (a) to find a sequence node qr.,*1 e A(in*1) with 4n*1 > er., and
sup(nr.,*1) < q'. Then the union e, of the sequences nn is an increasing sequence of

rationals with supremum < q'< q. we put eo into A(j) above the branch of Alj defined by
the qr.,.

Remark

In fact, (or) clearly ensures that there is more than one choice for qr.,*1 at each stage.

Hence there are 2Ro possible choices of eo.

We then add a single blank node above each remaining branch of Alj. This gives amongst
other things property (i) of the definition of 'sptuce,.

Clearly (ø) and (rc) are preseled by the construction.
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Case II: j e G

Our aim is to make level j of A 'special'by using the fact that j e Ç whilst all the time
preserving (a). Write i¡., for f(im) (m < o). Let q e Alj be a sequence node with

sup(n) <q e Q, and tet m <o be least such that l¡¡ >ht(r1¡. Since j* is a limit ordinaf we

can use the argument of Case I to choose an increasing series of sequence nodes nn (n < o)

in Alj* with 4o = r¡, U{ht(n¡): nct.r} = ¡* and sup(no) < e, where ee is the union of the

sequences nn.

Now by the Remark above there are 2Ro possÍble choices of eo, so by property (rc) we

can choose one such that q, g Alj. It follows that the branch of Alj* determined by the q'

has only blank nodes above it in Alj, so it determines a branch p of Alj. We then put the
sequence node q, into A(j) above I. We do this for all n € Alj. This presewes (&) and (rc).

We complete the construction by adding a single blank node above each remaining
branch of Alj, as in Case I. (a), (rc) remain undisturbed.

Let A be the resulting tree of height ror. We must check that it is spruce. All clauses of the
definition except perhaps (iii) are obvious. Clause (üi) follows as in the classical Aronszajn
construction, for a cofinal branch of A would give rise to an uncountable strictly increasing
sequence of rationals, which is impossible as Q is countable.

We finally check that A satisfies (v). Let i € ðor. Green nodes of A(i) can only arise in
tw-o ways. Firstly, if i g G then Case I of the construction puts lto cofinal sequence nodes 4
into A(i). If i e G then by Case IL A(i) contains no cofinal sequence nodes.

Secondly, il i = 1(jA) for some (j,n) e Gxt¡ then Case II puts Ro sequence nodes q into A(j).
For each such q, if a < 4 has height i then a is cofinal. All nodes ¿'2 a oÍ height <j are
blank nodes. So 4 gives rise to a single cofinal green node a in A(i) . Hence the construction

of A(j) for each (j¡) € T-l(i) effectively changes Ro cofinal non-green nodes of A(i) into
green nodes.

Totting up, the number of cofinal green nodes a € A(i) is lr-l(Ðl.xo, plus an extra Ro if
i d G. This proves (v) and completes the proof of Theorem 2.1.

We will use (v) to show that if I and f'are sufficiently different grids then there is no
conformal relation defined on any club between A(f) and A(f ').

Suppose that C is a club and Õ : A(f)lC + A(I')|C is a conformal relation. We would hope

that if i e C then the ith levels of A(f) and A(I') are 'similar'. For comparison we want to use
the cofinal Sreen nodes, because we can control them using (v) of (2.1). Suppose that
b e A(f') is a cofinal green node of height i. As Õ is surjective on green nodes, A(f) wiU

tr
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contain a Sreen node a of height i with aÕb but as Õ is a relation it does not follow that a is
cofinal. However, we can show that if i e ðC and A(f') contains uncountably many cofinal
green nodes b of height i, then A(I) contains at least one cofinal green node a of height i
with aÕb for some such b. To do this we use our second device, the nest.

Definition

Let Tbe atree. Anest in Tis a set N of green nodes of Tsuch that
-  NçT( i )  fo r  some i<h t (T)
- N is uncountable
- { t  e T:3n € N (n > t)}  is countable.

The relationship of cofinal green nodes to nests is given by the following proposition.

Proposition 2.2
Let Tbe a sprucetree. Leticor, and supposethat Nç T(Ð. Then N contains anestin T

i f f

(a) i is a limit ordinal,

and (b) there are uncountably many cofinal green nodes in N.

Proof

-. , '' To prove (a) and (b) we can assume that N is already a nest. Since T is spruce, every
node of Thas countablymanyimmediate successors. It follows that (a) holds. Moreover, (b)
holds; for if nog uncountably many nodes n e N would be such that (,(n) < n (cf. (1.1)). Since
by (1.1) all the ((n) are distinct, there are uncountably many nodes lying below nodes in N
contradicting the assumption that N is a nest.

Conversely, if (a) and (b) hold then take an uncountable set N'of cofinal green nodes in N.
As Tli contains only countably many branching nodes, it is easily seen that N'is a nest.

tr

We now relate this to ouf construction.

Definition

A gnd f = (Gf) is said to be fine if

(i) f-l(i) is uncountable for all i e im(1)
(ii) 1 : Gxrrr + òrlrr\G is surjective.

It is easy to see that if (Gf) is fine then G must be uncountable, and for any uncountable
G ç ððor we can find a 1 such that (G,f) is a fine grid.
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We filIusually work with fine grids from now on.

Corollary 2.3

Let I=(G,f)be afine grid and write AforA(I). Let i<orbe a limit ordinal. Then A(i)
c o n t a i n s a n e s t i f f i 4 G .

Proof

A is spruce and I is fine, so by (2.2) and (v) of (2.1) a limit level A(i) of A contains a nest
i f f  i € i m ( 1 )  i f f  i d c .

Now we can prove the preservation lemma. Note that if T is a spruce tree, C is a club in
ur, and i € ðC, then a set N S T(i) is a nest in Tiff N is a nest in TlC.

Lemma 2.4

Let T, u be spruce trees, let c be a club in or, and suppose that (Þ : Tlc + ulc is a
conformal relation. Let i € ðC be such that there is a nest N ç U(i). Then T(i) contains a
cofinal green node m with mÕn for some n e N.

Proof

The argument is similar to that of (1.6). Let N ç U(i) be a nest. Since there are only
countably many nodes in U lying below the elements of N, the set

N* = {n € N : Vn'<n(n * n'[Õ,i]r] is also a nest.

Take n e N*. By suqectivity for green nodes there is green m e T(Ð with mÕn Suppose
for contradiction that m is not cofinal in T. Thus Ç(m) < m. As i e ðC we may choose m' e TIC

such that Ç(m¡ ç m' < m. Then Ç(m') = Ç(m) < m', and m,[i] = m.
As Õ is homomorphic we have m'(Þn'for some n'e u(htT(m')) with n'<n. But Ç(m,) <m,,

so by continuity of Õ we must have n = n'[(Þ,i] { N.. This is a contradiction, proving the
lemma.

Corollary 2.5
Let A = A(r), A'= A(l') be spruce trees, wher" ¡ = (G,1) f '= (G',T') are fine grids.

suppose that c is a club in or, and Õ: Alc+ A'lc is a conformal relation. Then
G n ð C S G , n ò C .

tr
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Proof

Picki e GnðC. As I is fineidim(t). Soby (v) oÍ(2.7) there are no cofinal green
nodes in A(i). Hence by Q.Ð there is no nest in A,(i). As f,is also fine, by (2.3)we obtain
i € G ' .

Recall e.g. from [J1] that a stationary subset of <rr, is a set that has non-empty
intersection with every club in <,rr. We quote:

Fact 2.6 [J1, Theorem 85]

There exist X, painnrise disjoint stationary subsets of orr.

This is usually attributed "essentially" to Ulam, since the easiest proof uses an Ulam
matrix. The theorem was later stren$hened by Solovay. Clearly the intersection of a club
and a stationary set is stationary. Hence we can find pairwise disjoint stationary subsets S¡
(k < or) of ððrr.rr.

Now it is easy to find subsets & (i . 2@Ð of to, such that if i I j then \\Xj is non_empty.

Define (for each i < 2@r) Gi = U{sk : k e x¡}. we see that each G, Ç òðo' and if i I j then
Gt\G, is stationary. For each G, choose Ti such that f, = (Gi,Ti) is a fine grid, and set ,\ to be
A(fi). Write tA¡ for L(,\).

Theorem 2.7

suppose that for each i < 2or, <L.\,pi/¡> is an sFp system with each pi(a) a countable
ring and with limit rings \. Suppose that i I j (r, j < r,rr). Then there is no ring embedding

0 : R¡ + Rr' Hence the rings q (i.2{Dr) are pairwise non-embeddable.

Proof

By the results of SILI. such a 0 would give rise to a conformal relation o : A¡lC + A,'lC for
some club C Ç trrr. Since Gj\Gi is stationary we may find k e (G¡\Gi) n ðC. By (2.3) there is a
nest in .\(k). By (2.4) there must be a nest in Aj(k), so by (2.3) again we must have k d G,.
This is a contradiction.

We will now modify (2.1) to produce a spn¡ce tree A such that if C g ð<rlr is a club and
(D : Alc -> Alc is a conformal relation then aÕa for all green a e Alc. (That is, A is

tr

tr

Wed, May 9,1990 39



Part II: Anti-struchrre theorems

'conformally rigld' - but note that there may also be b I a with aÕb or bÕa). This is enough
to produce rigid rings - see 95.

First take pairwise disjoint stationary sets Si (iccrrr) with Si g àðor (all i), and set

G = U{Si : i<urr}. A is built by induction on levels. As each sequence node I is introduced a

new set St is assigned to [. This is possible as Ali contains only countably many sequence

nodes for any i<crrr. We can then write this Si as SE. By deleting elements of Sq we can

assume that j>ht4Q) for all i € St.

When SE has been defined we also choose two grids Vq = (SqXE) and Wq = (S¡,wE). We

require:
- im(vE) n ôòo, = S,

- 1 , . -  .- tq-'(i) is uncountable for all i e Sq
- im(wE) e ðor\aac,rr .

These conditions are easy to arrange.

The construction of A at non-limit levels is as in (2.1). We build the limit level j of A as
follows. If i d C we apply'Case I' of Q.7) - this is the classical Aronszajn case. Suppose then
that j e G. Then j c SEforsomesequencenodeE e nlj. Foreach sequencenode r.¡ e Alj and

rational q>sup(Q) we want to include a sequence node q'in A(j) with r¡'>r¡ and sup(n)<q. We
- apply Case II of (2.7), but using the grid VE if n > [ and Wq otherwise.

Let Abe the result of the construction. We have:

Lemma 2.8

Let i € SE for some sequence node I e A. Then:

(i) there is a nest in A(i) above I
(ii) if a e A(i) is a cofinal green node then a > f.

Proof

( i )  As  ie  Sq, ie im(vE) .  Hencethere  areuncountab lymany jeSq andn i  <or  w i th

vq(l,n¡)=i. Take such a j, and choose a sequence node q >E in Ali with ht(n))v¡(j,m) for

all m < tj. By construction there is a cofinal branch Þ of Ali with r¡ e B, such that the

sequencenode

UP =def. U{q': q' a sequence node, n' e p}

is in A(j) above p. Thus if a¡ < UP has height i, a, is cofinal and green and a¡ > [. since

moreover every node a < UÞ of height )i is a blank node, the 
I 

(j e SE) are all distinct.

Hence by the proof of (2.2), {a¡ : j e SE} is a nest above E in A(i).
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Let a e A(i) be a cofinal green node. since i e G case II was used to construct
A(i). Hence no cofinal green nodes were introduced. So a must have been made green at some
laterstage. That is,  there are a sequence node q €4,T6{vî, .n},  j  e sn and n<t, l ,  such

that 1(j,n) = i and the sequence node Uâ was put into A(j) above a.
Now i e Sq e ððcrrr. As im(wn) n ððor, = þ we have 1= vn. Hence by construction,

a>n. But now ie òðcornim(vn)= Srl .  Asthe Sn, are pairwise disjoint ,  n=8. So f  <a as

required.

tr

Corollary 2.9

Let lD:AlC+AlCOe a conformal relation,forsome club Cg ðo1. Lett e AlCbe a green
node. ThentÕt.

Proof

Choose a sequencenode 4 >tin Aand i e Sn n ðC. By Lemma 2.8(i)thereis anest N

above n in A(Ð. By Q.Ð there is a cofinal green node m € A(i) with miÞn for some n e N.
Hence m > n >tby Lemma 2.8(ü). Because Õ is homomorphic we obtain tÕt as required.

tr

By taking U{Sn ,n € A} = Gi, where G¡ is as defined after (2.6), we can combine (2.9)

with Q.nto produce 2Rr 'conformally different'rigid trees. The method is standard and we
will not describe it further.

3 Countable generation of full ideals

In the last three sections we study in more detait the limit rings of SFP systems built on the
sFP domains LA, for A as in $1. Already by (I.3.4) if each map v of the system is an
isomorphism then each of the locally generated ideals of the limit is densely decomposable. In
$4 below we will show that they can all be made L*r-equivalent, and in $5 we build in some

rigidity (the rings will have few endomorphisms). For the present we show that every fuIl
ideal can be made countably generated.

Let A be a spruce tree as built in (2.1), and let <LA"py> be an SFP system such that p(a) is
countable for all a e LA (or equivalently for all finite elements a e LA). Let the SFP system
have limit ring R, and let \ be the limit of the system restricted to L.\ (a11i < rur). By (I.1.5)

R is uncountable, of cardinality Rr. Nonetheless we will now use Corollary 1.2.9(ä) to show
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that every full ideal (either left or two-sided) of R has a countable set of generators. By
(I.2.4) and (L2.5) the tulIideals include the maximal, prime and irreducible left ideals and also
the maximal two-sided ideals of R.

First we need a technical lemma.

Lemma 3.1

Let T be a spruce tree. Then every node of L(T) is either terminal in L(T) or branching
with Ro immediate successors in L(T).

Proof

Assume that t e t(T) is not terminal in L(T). If t e B(T) then clearly t has >lto immediate
successors in L(T). Assume that t € L(T)\B(T). There is b e L(T) with b>t. We can assume
that i=htTþ)is leastpossible,sob e B(T).  Sincei is a successorordinal,bhas animmediate

predecessor b'in T.

By choice of b, if x is an immediate successor of b'in T and x c L(T) then x is an
immediate successor of t in L(T). By (ü) and (iv) of 'spruce'the immediate predecessor of a
branching node in T is also branching and has )to immediate successors in T. Hence t has >lto
immediate successors in t(T)

It remains to prove that no t e L(T) has >Ro immediate successors in t(T). Assume for
contradiction that t e L(T) is a counterexample. Let ht'¡(t) = i. As T is sprucg there are

arbitrarily large j < o, with j>i such that there is an immediate successor b of t of height j in
T. clearly i= ¡'+7 for some j'. Let b'<b have height j'in T. There is no x € L(T) with t<x<b,.

Hence b'/ L(T) = t. It follows that b'= 1[j'J. 4, above, b' is a branching node of T. As this holds

for arbitrarily large j', it follows that the branch of T determined by 1t[jl : icjcr,rr] is cofinal
in T. This contradicts the spmceness of T.

Wenowget:

Theorem 3.2
Let J be a fullleft ideal of R. Then I is countably generated.

Proof
Suppose that J = I@a in R, for some a e LA and some ideal I Ç Ru. Recall from gII.1 that

LAi =def. LA n Ali+1 (a11 i < orr), and that LA = Ui.turlAi. So there is i < c,r, such that
a e LAr.

By Lemma 3.1 every node of LA is either terminal in LA or is branching with Ro
immediate successors in LA. So we can choose i so that all of the immediate successors of a in

tr
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LA (if any) are already in L,\. It follows that:
-  L A i < L A

-  {a '  e  LA :  a ' lLA i=  ¿}  =  {a } .

By (1.2.2) JLAi = I@a in Ri By (1.2.9) ILA. generates I in R. The result follows by (I.1.5)

as \ is countable.

4 L*r'equivalence

Here we prove that if two grids ll, 12 are'sparse' enough then BA(rr) and BA(f2) are
L-r-equivalent trees (recall from $1 above that BA= (LA)o). Since the rings of (2.2) are the

limits of SFP systems of the form <LA(Ilp¡.r>, this will allow us to strength en (2.2) so that under

the conditions of (I.4.3) say, the rings \ (i. 2at) ol the conclusion are all l.cccu-eguivalent.

We mentioned L*r-equivalence in $I.4. There is another characterisation of L-r-

equivalence in terms of back-and-forth systems. A back-and-forth system between
M and N is a set @ of partial isomorphisms from M to N zuch that:

-  Ø e ø
-  i f  0 e O  a n d  a € M t h e n t h e r e i s  b e N  s u c h t h a t ê u { ( a , b ) } e @
-  i f  0 e @  a n d  b e N t h e n  t h e r e  i s  a e M  s u c h  t h a t  0 u { ( a , b ) } e @ .

Fact 4.1 (Karp's theorem, [K])
M and N are L*r-equivalent iff there is a back-and-forth system @ between M and N.

We will show that LA(I-) and LA(I2) are L*r-equivalent for sparse ft, Uy finding a

back-and-forth system between them. It will then follow that BA(fr) =-, BA(I2). Though

LA is definable in A by a first order formula, A(f 1) and A(f 2) witt not in general be L-r-

equivalent. (If they were, then for all i < o' if A(f lxi) contains a green node a with â a
cofinal branch of A(f)li then so does A(I2Xi).) So we must work direcfly with the LAu
remembering that if t e LA then maybe ht¡6(t) < ht4(t), and t may be a branching node of

LA without being branching in A (though it will be green in A).
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Definition

An uncountable set cÇrrr, is said to be sparse if for each i e Ç min{j e c:j>i} >i+i
(= i.2).

Clearly an uncountable subset of a sparse set is also sparse. If we define an o¡-sequence
z¡ ( j<ør) induct ively by: zo=<t),  z i+1= zj .Z+7, z5= U{zr:¡<8} for l imit  ô <ro'  then

Z = lzj: jctDl) is a sparse club. Hence if S ç or is stationary then SnZ is sparse and

stationary. It follows that in (2.6) we can assume that the S, are subsets of Z, so that the Gi

defined prior to (2.7) are sparse.

Sparseness is used in the following lemma.

Lemma 4.2

Let G be a sParse subset of ðòto' and let f = (G,f) be a fine grid. Write A for A(I). Let b
be a branching node of LA with ht¡4(b) = i. Then for all ordinals j with i<j<or and all q € Q,
there is a branching node c>b of LA with htlA(c)=¡ and sup{sup(n) : n a sequence

n o d e , n < c ) > q .

Proof

Since b is a branching node of LA" b is green in A. Let r¡ be the lowest sequence node in A
with q >b. By construction we may take a sequence node q' e A such that q'is an
immediate successor of 11 in A and sup(n') > q. Then q' e LA and ht14(e') = i+1. This

proves the lemma in case j = i+1.

Assume that j>i+1. With r'¡' as abovg any sequence node >q' already has supremum >q.
So replacing b by q', it is enough to find a sequence node above b and of height >j in LA.

Let g be the least element of G such that g > j, g> htAþ). By (a) of (2.1) we can find a

sequence node I e A(8) with [>b. We will not have I e LA. If ht¡6fnlA) > j ttren choose

[' e LA so that E' < E, htLRG') = j. Clearly f is not a terminal node of LA so by (3.1) it is a

branching node, and we are done.

Suppose on the other hand that htlA([nLA) - k < j. Let k' . tl¡, be such that k+k,= j,

and set ¡'= g+k. Using (ø) choose a sequence node f' € A(j') with ['> [. Now k, < j < g. As
G is sparsg there is no g' c G with g < g' < j'. By construction it follows that every node t of
A with E<t<f is a sequencenode, so t  e LAforal l  such t .  Hence ht¡6(E')=htLA(E)+k'=

j, and we can take c to be f'.

Corollary 4.3
Under the assumptions of (4.2),Íor all limit ordinals j with icjctrr, there is a terminal node t

of LA with t>b, ht¡6(t) = j.

tr

Wed, May 9,1990 44



Part [I: Anti-structure theorems

Proof

Take a strictly increasing sequence of successor ordinals i¡ (ncc^r¡ with jo > i and

Ur.,., jn = i. As each j' is a successor ordinal we may use (4.2) to define sequence nodes

Er., e La by induction, with htLA(En) = jn, Eo > b, En+1 t En and sup(En) > n (all n<o).

Let t=1ub¡4{E¡:n<o}. Then ht¡¡(t)= j. Further; sup{sup(n):n a sequence

node, Q <tÌ= co. Hence there can be no sequence node q >t in Au so t must be aterminal
nodeofLA

For the rest of this section let Gl, G2 be sparse stationary subsets of r,l' and let Il = (Cf,ft)
be fine Srids (f = 1,2). Consider the trees A1= A(fr), A2 = A(I2) constructed in Theorem 2.1.

By (3.1) every node of tÑ (=t,Z) is either a branching node (with infinitely many
immediate successors) or is terminal.

Wewillprove:

Theorem 4.4
(i) LAr and LA2 are L*r-equivalent in the signature L = {=,<}.
(ii) BAr and BA2 are also L*r-equivalent.

Part (i) of the theorem will follow immediately from (4.S) below. part (ii) follows from
part (i) here, since there is a first order L-formula rp(x) such that for any A as in (2.1),

{a e LA: LA F 9(a)} = BA. I simply says that x does not have limit height in LA. Part (ii) is
what is required for I.cor,l-eguivalence of the limit rings.

We begin the proof of the theorem with a definition.

Definition

Let Tbe anytree. I f  UgT Uis saidtobe aful l  subtree of Ti f  Uisnon-emptyand
closed downwards in T. If S ç T, we write <S> for the full subtree {t e T: t < s for some
s e S) of T generated by S. T is said to be finitely generated if T = <S> for some finite
s ç T. Note that no branch of a finitely generated tree can have limit height.

If Ul is a full subtree of Tt (I=7,2), a map 0 : Ur + U2 is said to be a strong
isomorphism if 0 is bijective and preserwes <, and each u e Ur is a branching node of T1iff
0(u) is a branching node of T2.

For example, writing l- for the unique least element of T¡ and T2, {l-} is a finitely

tr

Wed, May 9,7990 45



Part II: Anti-structure theorems

generated full subtree of each Tt, and {(I,l)) is a strongisomorphism. Hence the set @ of
subsets of strong isomorphisms between finitely generated full subtrees of LAl, LAz is non-
empty. The next lemma shows that @ is a back-and-forth system between LAt and LA2, and so
proves Theorem 4.4.

Lemma 4.5

Let Tl be finitely generated full subtrees of LAI (l=7,2), and suppose that 0 : T1+ T2 is a
strong isomorphism from Tl to T2.
(i) Let tr e LAl. Then there is t2 e LAz such that ou{(tr,tz)} extends to a strong

isomorphism from <Tru{tl}> to <T2u{t2}>.
(ii) Similarly, exchanging the indices '1' and '2'in (i).

Proo f

we will only prove (i) (ii) is similar. so let T',T',ê be given, and let tr e LAr. we can
assume that tl d Tt - the result is trivial otherwise. Now T1 has no branches of limit height.
So if Tr # Ø thereis a unique largest node v e Tr with vctr; in fact we have Tr < LAt and
v=t|lTr in the notation of $I.1. Let 0(v)=w€ T2 and let htlOr(tl)=h <or. It suffices to

prove the following:

Claim There is t2 e LAz with tz lTz = w, ht¡62(t2) = h, and such that tr is a terminal node
' of LAl iff t2 is a terminal node of LAz.

Given the claim, we can finish as follows. Let Tl'be the fulIsubtree of LAt generated by

tfu{tf} (l=7,2). Since ht(tz) = h we can extend 0 canonically to an order-preserving bijection

0': T1'+ T2'. Since by (3.1) every node of each LAt is either branching or terminal, e' will
be a strong isomorphism.

Proof of Claim Since tl d Tt, v is not terminal, so v is a branching node of LAl. As 0 is
strong w is also branching in L.\z, with infinitely many immediate successors. As T2 is
finitely generated we can take an immediate successor w' of w in LA2 with w' d T2. It suffices
to find t2 >w'in LAz with the required properties.

If tl is a branching node of LAt then by @.2) there is a branching node t2 of LA2 above w'
and of height h in LA2. If tl is terminal in LAr then h must be a limit ordinal, so we can use
(4.3) to choose a terminal node t2 € LA2 above w'of height h. This proves the claim and with
it the lemma.

Theorem 4.4 is proved.

tr

Wed, May 9,'1,990 46



Part II: Anti-sbucture theorems

s Rigidity

By imposing restrictions on the homomorphisms vOO in the SFP systems and using (2.9), the

2Rr limit rings of (2.7) canbe made somewhat rigid. To conclude our survey we will prove a
sample result for Boolean rings. We will define an SFP system with Boolean limit ring R
having no non-trivial injective endomorphisms. The example will also illustrate the use of SFp
systems in which not all vpq are isomorphisms.

There are further cases in [Hk]. For examplg we may set up an SFP system with limit
ring R so that any injective endomorphism 0: R+ R satisfies e-l(I)= I for every maximal
two-sided ideal I of R. If R is Boolean this implies that 0 = idR.

Take any countable Boolean ring S, and fix a countable set E of maximal ideals of S such
that any proper finitely generated ideal I of s is contained in some K e E.

Suppose that A is a 'conformally rigid'tree considered in (2.8). We build an SFp system o
on LA as follows. First we partition Q into sets Qç (K e e) such that each Q¡q is dense in Q.
Foreach sequencenodeq e BAwedefine Rn tobe S. Foreach q € Qwith q>sup(r¡)we

define kut(r,,ì,n^q) = K where g e Qr. since s/ K = {01} this defines vrì,n^q completely.

Hence if a e LA\BA we will have Ra = lim+(Re,urì,n,: n < n, in BAnâ) = {01},
and if b > a then uu6 must be the unique embedding of {01} into R6. We have now defined o
completely.

Let R = lim(o). Then R is an uncountabre Boorean ring. If i < trr, write \ for
limclAi,p',u'> as usual, where p' and v' are the appropriate restrictions. Let 0 : R -r R be a
ring embedding. As in (1.3) we can find a club C ç ðt,lr so that 0 induces a conformal relation
o :  A IC- ¡  A lC.

We claim that 0=idR. Supposenot.  Thereisre R such that0(r)=r, l r .  Thereisi  e C
such that 4 f € q. As \ is Boolean it is easily seen that at least one of the sets lr,7-t'¡,

l7-t,t'J generates a proper ideal of \ containing just one ot r, r'. Assume without loss that

{r,7-r'l has this property. Take a finite support N < B{ for {r,1-r'}. The ideal of R¡¡
generated by {11-r'} is proper; so there is 4 e N and a proper finitely generated ideal H of
Rn = S with r(n), 1-r'(n) e H. (Note that q is a finite element of LA and hence a sequence

nodein A.) Thereis KeEcontaining H. Chooseq €QAwith q>sup(î)  and r¡^qÇN, and

then choose a green node (say a sequencenode) ae A(i)such that a>e^9, a/N= r.¡. write
z for Ça e LA. Then r(z) = vnr(r(n)) = vnnq,z.ve,nn'(r(n)) = 0. Similarly, 1-r,(z)= g.

Now by (2.9) we have a@a. Hence by definition of @ there are proper ideals I, I of R"

such that in q, 0-11tO z) = !@2. Hence O(I@z) Ç I@2.

Since r(z)= Q re l@zn \. Hence t' eI@2. But r,(z)= 1, contradictingthe assumption
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that I is proper. Hence ê = idR as claimed.

So any injective endomorphism of R is the identity map. We also have all the standard
properties: every maximal ideal of R is countably generated (3.2) and by the argument of
(I.3.3) R is easily seen to be atomless and hence existentially closed. The atomless property
can equally be obtained by taking S to be atomless, orwe can include the zero ideal 0 in E,
require thut ,q,n^q = ids whenever q e Q¡, and use the Remark following (I.3.3). We can

combine the construction of A with the techniques of (2.1) and $4 to produce 2Rt pairwise
non-embeddable L*r-equivalent such R
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