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Abstract

The classical compactness theorem is a central theorem in first-order
model theory. It sometimes appears in other areas of logic, and in per-
haps surprising ways. In this paper, we survey one such appearance in
algebraic logic. We show how first-order compactness can be used to sim-
plify slightly the proof of Hodkinson and Venema (2005) that the variety
of representable relation algebras, although canonical, has no canonical
axiomatisation, and indeed every first-order axiomatisation of it has in-
finitely many non-canonical sentences.

1 Introduction

The compactness theorem is a fundamental result in first-order model theory. It
says that every first-order theory (set of first-order sentences) that is consistent,
in the sense that every finite subset of it has a model, has a model as a whole.
Equivalently, if T,U are first-order theories, T |= U (meaning that every model
of T is a model of U), and U is finite, then there is a finite subset T0 ⊆ T with
T0 |= U .

Though not nowadays the most sophisticated technique in model theory,
compactness is still very powerful and has a firm place in my affections — as
I believe it does in Mara’s, since she devoted an entire chapter of her Model
Theory book to it [26, chapter 5]. See [26, theorem 5.24] for the theorem itself.

This paper was intended to be a short and snappy survey of a couple of
applications of compactness in algebraic logic. To keep it short, it has turned
out in the end to cover only one application, but perhaps it still has some value.
The application may be at least a little surprising and entertaining, since at first
sight it doesn’t seem to have much to do with compactness. The proof, though
a minor variant of one in the literature, has not actually appeared before. And
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given Mara’s longstanding interest in teaching logic, she might be happy that
it uses work done by a student, Jannis Bulian, in his 3rd-year undergraduate
project [2], a Distinguished Project in my department in 2010–2011.1

And so to business. We are going to show, in §3, that every first-order
axiomatisation of the class of representable relation algebras contains infinitely
many non-canonical axioms (the technical terms here will of course be explained
later). This was originally proved in joint work with Yde Venema [14]. Bulian
used a similar but slightly simpler method to prove analogous results for cylin-
dric algebras in his project [2]. This work was then extended to polyadic and
other algebras and published in [3]. The proof that we will sketch in §3 applies
the method of [2, 3] to relation algebras.

Notation We will be using several kinds of first-order sentences, and we
recall their names here. An equation is a first-order sentence of the form
∀x1 . . . xn(t = u), where t and u are terms. A universal sentence is one of
the form ∀x1 . . . xnϕ, where ϕ has no quantifiers. Equations are examples
of universal sentences, as are quantifier-free sentences (take n = 0). An ∀∃-
sentence is one of the form ∀x1 . . . xn∃y1 . . . ymϕ, where ϕ has no quantifiers.
Every universal sentence is an ∀∃-sentence (take m = 0).

2 Algebras of relations

We begin with some background information on the part of algebraic logic
relevant to our application. It concerns relations. A relation on a set U is just
a subset of the cartesian power Un, for some natural number n ≥ 1 (the arity of
the relation). When n = 1, the relation is unary, when n = 2 it is binary, and
so on. Relations are important because they are ubiquitous in mathematics.
They are a basic notion in first-order logic, too, as developed in Mara’s book
[26]. (Many of the terms used below can be found in this book. To reduce
distraction, we will not cite all of them explicitly.)

We want to consider not just individual relations, but entire collections of
relations of fixed arity on a fixed (but arbitrary) set U . (Some approaches, not
taken here, allow multiple arities.) And we want to endow the collections with
operations on relations that are commonly used in practice. We can then try
to elucidate the laws governing these operations. Let’s see how we do it.

1Jannis was a student on the 3-year Mathematics and Computer Science course at Imperial
College. In June 2011 the Department of Computing held its annual open day, and about
eight students gave talks on their potentially prize-winning final-year projects. At the end of
the day, the audience was invited to take part in two votes, for Best Presentation and Best
Project. Given that the audience consisted largely of industrialists, it was one of the most
surprising (and nicest) moments of my working life when Jannis won the Best Project vote.
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2.1 Unary relations

Here we can take as our collection the full power set ℘(U) = {a : a ⊆ U} of all
unary relations on the set U . As operations, though other choices are possible,
we might choose union, intersection, and complement. We might as well include
the empty relation and U as distinguished elements, since it is useful to be able
to talk about them. This leads us to an algebra (℘(U),∪,∩,−, ∅, U) — a
standard first-order structure in the sense of the very first definition in [26]
(definition 1.1, page 6), but called an algebra because ironically, the operations
involve no relations but only functions [26, p.7]. (The distinguished elements
are just nullary functions.)

We want to study the class U , say, of all such algebras, taken over all sets
U , just as we might study the class of all symmetric groups consisting of all
permutations on an arbitrary set. Now, it is known by Cayley’s theorem that
every group embeds into a symmetric group. That is to say, the closure under
isomorphism and subgroups of the class of symmetric groups is the class of
all groups — a class with a nice simple definition by equations [26, definition
1.6]. Could we hope for an analogous result for U? After all, a subalgebra of
(℘(U),∪,∩,−, ∅, U) is a perfectly legitimate algebra of relations — it consists
of just some of the unary relations on U . So we ask:

(∗) can we characterise the closure of U under isomorphism and subalgebras?

It turns out, mainly by Stone’s theorem [29], that this closure is exactly
the class BA of boolean algebras. BA is an elementary class, defined by a few
straightforward equations expressing standard properties of the operations [26,
definition 1.23]. So these equations can be used for sound and complete reason-
ing about unary relations, for example in the way described in [26, chapter 3],
or by purely equational reasoning. We have answered our question (∗) very
satisfactorily.

We make a couple more remarks. Classes defined by equations are called
varieties, and BA is consequently a variety. By Birkhoff’s theorem [1], a class
of similar algebras is a variety iff it is closed under subalgebras, products, and
homomorphic images. These notions can be found in [26].

Stone’s theorem is relevant later, because it actually shows that every
boolean algebra B embeds into a boolean algebra Bσ called the canonical ex-
tension of B. It is of the form (℘(B+),∪,∩,−, ∅,B+), where B+ is the set of
ultrafilters of B (see [26, definition 5.77] for ultrafilters). Clearly, Bσ ∈ U , and
it follows that the closure of U under subalgebras and isomorphism contains
BA. The converse inclusion is easily checked. So BA is closed under taking
canonical extensions: if B ∈ BA then Bσ ∈ BA as well. A class of algebras
that is closed under canonical extensions is said to be canonical. So BA is a
canonical variety.
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2.2 Binary relations

Let us now try to do the same for binary relations. We take the set ℘(U × U)
of all binary relations on the set U , and make it an algebra by adding some
sensible operations. There is really quite a wide choice of operations here, but
a common one is to add the boolean operations ∪,∩,−, ∅, U × U , which still
make sense in this context, plus the following distinctively binary-relational
ones:

• IdU = {(u, u) : u ∈ U} (a distinguished element)

• the converse operation −−1, where a−1 = {(u, v) : (v, u) ∈ a} for a ⊆
U × U ,

• relational composition |, where, for a, b ⊆ U × U ,
a | b = {(u, v) : (u,w) ∈ a and (w, v) ∈ b for some w ∈ U}.

We obtain an algebra of binary relations:

Re(U) = (℘(U × U),∪,∩,−, ∅, U × U, IdU ,−−1, |).

Again, a subalgebra of Re(U) is a perfectly legitimate algebra of binary
relations, consisting of just some of the binary relations on U . But this time,
the closure of the class {Re(U) : U a set} under isomorphism and subalgebras is
not a variety, because (as is not so hard to see) it is not closed under products.
However, we can view a product

∏
i∈I Re(Ui) as a quite sensible algebra of

binary relations on the disjoint union U =
⋃
·
i∈IUi of the Ui, by viewing an

element (ai : i ∈ I) of this product as the binary relation
⋃
·
i∈Iai on U . The

only price to pay is that the ⊆-largest element of
∏
i∈I Re(Ui) is not U × U ,

but rather the equivalence relation
⋃
·
i∈I(Ui × Ui) on U , and complement (−)

is taken relative to this.
Following Tarski, we choose to pay this price. We close {Re(U) : U a set}

under isomorphism, subalgebras, and also products. The class we obtain is
denoted RRA, standing for Representable Relation Algebras. In fact we get
the same class by closing first under products and then under subalgebras and
isomorphism, so each algebra in RRA is isomorphic to an algebra of genuine
binary relations. The price is worth paying because RRA turns out to be a
variety [31], so we can in principle apply equational reasoning to it, as we did
with boolean algebras. For discussion, see [30].

Before we compare RRA with what we arrived at in the unary case (BA), we
should probably explain the term ‘representable relation algebras’ used here.
But first, since the algebras in RRA are not necessarily concrete algebras of
binary relations, it’s inappropriate to use symbols such as | that have a concrete
meaning. So we introduce a special alphabet.2 For historical reasons, its non-
logical symbols are the binary function symbols +, ·, and ;, the unary function

2See [26, §2.1.1] for ‘alphabet’ — the non-logical part of it is sometimes called a signature,
similarity type, or vocabulary.
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symbols − and ,̆ and the distinguished elements 0, 1, and 1
,
. The binary

function symbols are written in infix form (a ; b, etc.), and ˘ is written in the
form ă or ă , as desired. We pronounce 1

,
, ,̆ and ; as identity, converse, and

composition, respectively.
Algebras in RRA are taken to be structures for this alphabet. In algebras

of the form Re(U), the symbols are interpreted as follows:

+ as ∪ · as ∩ − as −
0 as ∅ 1 as U × U
1
,

as IdU −̆ as −−1 ; as |

For example, (Re(U))(+) = ∪, (Re(U))(1) = U×U , and so on — here we follow
[26, p.46] and write M(s) for the interpretation of a symbol s in a structure M.
We will sometimes write an arbitrary algebra of this alphabet in the form
A = (A,+, ·,−, 0, 1, 1,

, ,̆ ;), abusing notation by identifying (notationally) the
function symbols above with their interpretation as functions in the algebra.

We can now explain the term ‘representable relation algebra’.
A plain relation algebra is an algebra A = (A,+, ·,−, 0, 1, 1,

, ,̆ ;) of the
above alphabet that satisfies a certain finite set of equations put forward in
[16]. The equations say in effect that the boolean reduct (A,+, ·,−, 0, 1) of
A is a boolean algebra, and some other things3 that we will not need here.
Introductory surveys on relation algebras can be found in [24, 25].

A representation of a relation algebra A is an embedding from A into an
algebra of the form

∏
i∈I Re(Ui). It represents each element a of A as a binary

relation h(a) on
⋃
·
i∈IUi. It is an isomorphism from A to a genuine algebra of

binary relations.
A relation algebra is said to be representable if it has a representation. This

holds iff the algebra is in RRA as defined above, so justifying the nomenclature.

Now let us compare RRA with BA. The equations from [16] defining relation
algebras are chosen to hold in RRA. They are quite powerful and it was hoped
for a while that they would in fact define RRA, or equivalently, that every
relation algebra was representable. This would have put the theory of binary
relations on a similar footing to that of unary ones, with relation algebras
playing the role of boolean algebras.

The hope turned out to be in vain: Lyndon [21] showed that not every rela-
tion algebra is representable. Actually, RRA is quite difficult to capture. Tarski
[31] proved it to be a variety by metamathematical means, not by pointing to
a known equational axiomatisation of it, as we did with BA. An equational
axiomatisation of RRA was given by Lyndon in [22], but it is infinite and com-
plicated. In fact, Monk proved in [28] (corollary 7 below) that RRA is not
finitely axiomatisable in first-order logic at all. Numerous facts along these
lines are now known. They are often regarded as ‘negative’ results, but I prefer

3Namely, (A, ; , 1
,
) is a monoid, and the conditions a · (b ; c) = 0, b · (a ; c̆) = 0, and

c · (b̆ ; a) = 0 are equivalent for every a, b, c ∈ A.
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to think of them as illustrating the richness and elusiveness of RRA. Binary
relations are very subtle.

In summary, then, binary relations are more complex than unary ones. The
closure under isomorphism and subalgebras of the class U of §2.1 is the finitely
axiomatisable variety BA. The closure of {Re(U) : U a set} under these oper-
ations is not a variety, so we close under products as well. The resulting class,
RRA, is a variety, but is dissimilar to BA in other respects: for example, it is
not finitely axiomatisable. The class of relation algebras is a finitely axiomati-
sable variety and is in many ways a better analogue of BA, but infinitely many
further axioms are needed to capture RRA.

3 RRA is barely canonical

In spite of the many ‘negative’ results about it, RRA does have two striking
similarities to BA. First, as we said, it is a variety. Second, it is canonical,
under an extended definition of canonical extension due to Jónsson and Tarski
[17]. In this immensely influential paper, the canonical extension Aσ of a
relation algebra A (and many other kinds of algebra) was defined abstractly
— up to isomorphism — but nowadays it is often given a concrete definition
based again on ℘(A+), the power set of the set A+ of ultrafilters of A. The
notion of an ultrafilter of A makes sense because the boolean reduct of A is a
boolean algebra. The non-boolean operations 1

,
, ,̆ and ; are defined on ℘(A+)

in a special way.
Suppose that A ∈ RRA. By [18, theorem 4.21], Aσ is a relation algebra,

but it is ‘made of’ unary relations on A+, not binary ones, and we cannot
immediately conclude that Aσ is representable and so in RRA. Nevertheless,
it does turn out that Aσ ∈ RRA. This was proved by Monk and reported in
[27, p.66]; the first published proof is in [23]. It can also be proved by model-
theoretic saturation [12, §3.4.4] (see also [7, 9, 8]), illustrating the value of
another part of model theory in algebraic logic!

Hence, as we said, RRA is canonical.

At this point, let us interject a quick definition. A first-order sentence ϕ
(for example, an equation) is said to be canonical if it is preserved by taking
canonical extensions. That is, for any algebra B of the alphabet of ϕ and having
a canonical extension Bσ, if B |= ϕ then Bσ |= ϕ. The study of canonical
equations is extensive — see, e.g., [17, 5, 15].

Now since RRA is a canonical class, and, being a variety, is defined by
equations, one might jump to the conclusion that it can be defined by canonical
equations — that it has a canonical equational axiomatisation.

That would be most unwise. The true position is strikingly different. Not
only does RRA have no canonical equational axiomatisation, but in fact, ev-
ery first-order axiomatisation of RRA contains infinitely many non-canonical
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sentences [14]. This applies to equational axiomatisations as a special case.4

The canonicity of RRA is elusive: it does not reside in the individual axioms
defining RRA, but seems to have a quite different source, and emerges only in
the limit when all axioms are taken together. So RRA is only ‘barely’ canonical,
where we call a class barely canonical if it is canonical and elementary but every
first-order axiomatisation of it involves infinitely many non-canonical sentences.
I still find it remarkable that such classes exist.

The original proof in [14] that RRA is barely canonical used, among other
things, first-order compactness. In the rest of this section, we will sketch a
slightly simpler proof using the method in [2, 3]. The simplification is achieved
by replacing the finite combinatorics in [14, propositions 6.4 & 6.6] by even
more compactness! We will leave out some details from the presentation, for
brevity.

3.1 Relation algebras from graphs

The proof uses graphs. According to [26, definition 5.37], a graph is a structure
G = (G,E), where E is an irreflexive and symmetric binary ‘edge’ relation on
G. We will need the notion of an independent subset of G, which is a set X ⊆ G
such that for no x, y ∈ X do we have G |= E(x, y). In plain words, there are
no edges in X.

Until the end of §3.3, we fix a graph G = (G,E). We will write G × 3 for
the set G × {0, 1, 2}, and G × 3 for the graph (G × 3, E′), where for a, b ∈ G
and i, j ∈ {0, 1, 2} we define E′((a, i), (b, j)) iff E(a, b) or i 6= j. In simple
words, G × 3 consists of three disjoint copies of G, with all possible edges
added between the copies.

It is possible to construct a certain relation algebra on top of G × 3. This
algebra was introduced in joint work with Robin Hirsch [13, §4] and has the
form

A(G) =
(
℘
(
(G× 3) ∪ {e}

)
,+, ·,−, 0, 1, 1,

, ,̆ ;
)
.

Here, e is a new ‘identity’ element not in G× 3. The boolean operations +, ·,
−, 0, and 1 are interpreted as usual in power sets; we interpret 1

,
as {e}; and

we set ă = a for all a.
The interpretation of ; in A(G) takes a little longer to describe, but the

reader may like to see it because it is where the graph structure of G×3 comes
in. Let us say that a triple (x, y, z) of elements of (G× 3)∪ {e} is consistent if

• one of x, y, z is e and the other two are equal, or

• e /∈ {x, y, z} and {x, y, z} is not an independent subset of G× 3.

Then, for X,Y ⊆ (G× 3) ∪ {e}, we define

X ;Y = {z ∈ (G× 3) ∪ {e} : (x, y, z) is consistent for some x ∈ X, y ∈ Y }.
4A harbinger of this result, that RRA has no Sahlqvist axiomatisation, is in [32].
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This definition has the following useful consequence:

Lemma 1 Let X ⊆ G × 3. Then X is an independent subset of G × 3 iff
(X ;X) ·X = 0 in A(G).

Proof. We use that e /∈ X without explicit mention.
If X is not independent, pick x, y ∈ X with G× 3 |= E′(x, y). As {x, y} is

not independent, (x, y, y) is consistent, so y ∈ X ;X. Hence, (X ;X) ·X 6= 0.
Conversely, if (X ;X) ·X 6= 0, pick z ∈ (X ;X)∩X. By definition of ;, there

are x, y ∈ X such that (x, y, z) is consistent. So {x, y, z} is not an independent
subset of G× 3. So X cannot be independent either, since {x, y, z} ⊆ X. �

It turns out that A(G) is indeed a relation algebra [14, lemma 6.2]. The
number 3 and the extra edges added between the three copies of G are to ensure
that ; is associative and to establish (†) in §3.3 below.

3.2 Graph colourings seen in A(G)

For a positive integer m, we say that that G can be coloured with m colours
if G is the union of m (possibly empty) independent sets. This is equivalent
to the standard definition, as in [26, definition 5.38]. We say that G can be
finitely coloured if it can be coloured with m colours for some finite m.

We are going to see (in lemma 3) that colourings of G are visible in A(G).
First, we need some definitions. The sets G × {l} (the domains of our three
copies of G) are of course in A(G), for each l = 0, 1, 2, and it is convenient
to consider them as additional distinguished elements bl of A(G), thereby
expanding the alphabet of relation algebras a little. We have, for example,
A(G) |= b0 + b1 + b2 + 1

,
= 1.

Definition 2 Using this expanded alphabet, we define the following.

1. For each integer m ≥ 1 and l = 0, 1, 2, define the following universal
first-order sentence:

θlm = ∀x1, . . . , xm
(

(x1 + · · ·+ xm = bl)→
m∨
i=1

[(xi ;xi) · xi 6= 0]
)
.

Here, x1 + · · · + xm is defined as ((· · · (x1 + x2) + x3) + · · ·) + xm, but
actually we will use it only when + is associative.

2. We will write θ0m simply as θm.

3. Let Θ be the universal first-order theory {θm : m ≥ 1}.

Lemma 3 1. Let m ≥ 1 and 0 ≤ l ≤ 2. Then A(G) |= θlm iff G cannot be
coloured with m colours.
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2. A(G) |= Θ iff G cannot be finitely coloured.

Proof. First, G is plainly isomorphic to the induced subgraph of G × 3 with
domain G×{l}— one of our three copies of G. The isomorphism is (x 7→ (x, l)).
So G can be coloured with m colours iff this subgraph can be. By lemma 1,
the latter holds iff there are X1, . . . , Xm in A(G) with X1 + · · ·+Xm = bl and
(Xi ;Xi) ·Xi = 0 for each i = 1, . . . ,m. This is plainly iff A(G) |= ¬θlm. That
proves (1), and (2) follows from (1) and the definition of Θ. �

3.3 Graph colourings and representability of A(G)

Colourings of G are relevant because they are connected to representability of
A(G). We have:

(†) G cannot be finitely coloured iff A(G) is infinite and representable.

For the ‘⇒’ direction, if G cannot be finitely coloured then obviously G and
hence A(G) are infinite; representability of A(G) can be proved by actually
building a representation of it, for example using games. The ‘⇐’ direction can
be proved using lemma 1 and Ramsey’s theorem. For details, see [12, theorems
14.12–14.13].

Those who see representability as ‘good’ and non-finite colourability as ‘bad’
may find (†) surprising, but it is not really counter-intuitive. Representability
is defined by universal sentences (since RRA is a variety); and by lemma 3,
G cannot be finitely coloured iff A(G) |= Θ, and Θ also consists of universal
sentences. On both sides, the sentences express the absence of certain (bad or
good) elements in the algebra.

3.4 Extending (†) to an elementary class of algebras

The algebras A(G) do not form an elementary class. To see this, we could
observe that no algebra A(G) is countably infinite (because all power sets are
finite or uncountable), whereas by the downward Löwenheim–Skolem theorem,
every elementary class with countable alphabet and containing infinite struc-
tures must contain some countably infinite ones.

To apply compactness, we need to extend (†) above to an elementary class
of relation algebras.

Definition 4 Let U be the first-order theory comprising:

1. the ∀-theory of the class {A(G) : G a graph} — that is, the set of all
universal sentences of our expanded alphabet that are true in every algebra
A(G),

2. all sentences θlm → θl
′

m′ , for 1 ≤ m′ ≤ m and 0 ≤ l, l′ ≤ 2 (see defini-
tion 2).
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Each sentence in definition 4(2) is equivalent to an ∀∃ sentence, so overall we
can take U to be an ∀∃ theory.

Our desired elementary class will be the class of models of U .5 We will need
that this class does indeed include all algebras A(G):

Lemma 5 A(G) |= U for every graph G.

Proof. The sentences of definition 4(1) are obviously true in A(G). So consider
an arbitrary sentence θlm → θl

′

m′ as in definition 4(2), and suppose that A(G) |=
θlm. By lemma 3, G cannot be coloured with m colours. But m′ ≤ m, so G
cannot be coloured with m′ colours either. By lemma 3 again, A(G) |= θl

′

m′ .

We conclude that A(G) |= θlm → θl
′

m′ . Hence, A(G) |= U as required. �

Using lemma 3 and methods in [3, theorems 7.3 & 7.8], (†) can be extended
to models of U . For every A |= U , we have:

U1. A is a relation algebra (because the equations defining relation algebras
are universal sentences true in every A(G), and so are in U),

U2. if A |= Θ then A is representable (and infinite, but we will not need this),

U3. if A is infinite and representable, then A |= Θ.

U1 ensures that U2 and U3 make sense, and they are proved in much the same
way as (†), because the main facts needed to prove (†) are included in U .

3.5 Sketch proof that RRA is barely canonical

Now we can present our main theorem. Its statement may seem unrelated to
compactness, but the proof uses compactness heavily.

Theorem 6 Every first-order axiomatisation of RRA has infinitely many non-
canonical sentences.

Proof (sketch). Let Θ and U be as in definitions 2 and 4, and let Φ be a
first-order theory stating that its models are infinite (see [26, example 5.5]).
Suppose for contradiction that RRA is defined by a first-order theory

T = TC ∪ TNC ,

where TC is a set of canonical sentences and TNC is finite. We do not require
that T consists of equations. We now have the following facts:

F1. U ∪Θ |= T (by U2)

F2. U ∪ Φ ∪ T |= Θ (by U3)

5Actually, these models are not too different from the A(G). Up to isomorphism, they
are the subalgebras of algebras A(G) that satisfy the sentences of definition 4(2).
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F3. U ∪ {θn} |= {θ1, . . . , θn} for each n ≥ 1 (since θn → θm ∈ U whenever
m ≤ n).

From them, we can make the following successive deductions:

D1. By F1, F3, and compactness, there is l ≥ 1 such that U ∪ {θl} |= TNC .

D2. By F2 and compactness, there is a finite subset S ⊆ TC such that
U ∪ Φ ∪ S ∪ TNC |= θl+1.

D3. By F1, F3, and compactness, there is k ≥ l with U ∪ {θk} |= S.

Now an adaptation given in [14, lemma 4.1] of a famous probabilistic graph
construction by Erdős [6] yields an inverse system

G0 ← G1 ← G2 ← · · ·

of finite graphs Gn that cannot be coloured with k colours, and surjective p-
morphisms6 connecting them, whose inverse limit is an infinite graph G (say)
that can be coloured with l + 1 but not with l colours.7

From this inverse system, duality results of Goldblatt [10, §§1.10–1.11] give
us a direct system

A(G0)→ A(G1)→ A(G2)→ · · ·

of finite relation algebras and embeddings, whose direct limit A (say) wonder-
fully satisfies

Aσ ∼= A(G). (1)

Here, ∼= denotes isomorphism of algebras. See [14, §6.4] for details.
Let’s see what we can get from this. Since the Gn cannot be coloured with

k colours, lemmas 5 and 3 give A(Gn) |= U ∪ {θk} for each n. This theory
is ∀∃, so preserved by direct limits (well known and an easy exercise). Hence,
A |= U ∪ {θk} as well. By D3, we obtain A |= S.

Crucially, the sentences in S are canonical, so Aσ |= S. By (1), we obtain
A(G) |= S.

Now G cannot be coloured with l colours, so by lemmas 5 and 3 again,
A(G) |= U ∪ {θl}. So by D1, A(G) |= TNC . Also, G is infinite, so A(G) |= Φ.
We have arrived at A(G) |= U ∪ Φ ∪ S ∪ TNC . Now, D2 yields A(G) |=
θl+1, which contradicts lemma 3 since G can be coloured with l + 1 colours.
This contradiction shows that our assumption is false, and that RRA cannot
be defined by a first-order theory containing only finitely many non-canonical
sentences. �

6These are like homomorphisms but a bit stronger: see, e.g., [4, p.30].
7This is the ‘combinatorial heart’ of the proof, but unfortunately we cannot say more

about it here. A proof can also be developed from [11]. For direct and inverse systems and
their limits, see [10, §1.11] or standard algebra texts.
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Although the proof goes by contradiction, for any given k, l the relation algebras
A(Gn), A, and A(G) are real, and strikingly, it can be arranged that none of
them are representable.

The following is immediate.

Corollary 7 (Monk, [28]) RRA is not finitely axiomatisable in first-order
logic.

In [2, 3], analogous results were proved for other kinds of algebras of n-
dimensional relations for n ≥ 3, including cylindric algebras, diagonal-free
cylindric algebras, polyadic algebras, and polyadic equality algebras. The
proofs are similar to the above, but more technical because of the intricacies
of higher-arity relations.

One final, ‘political’ comment. I have been accused of dancing on Tarski’s
grave by proving (with co-authors) things like theorem 6. In fact, this theorem
is charting the limits of the very popular concept of canonicity, and RRA is
an excellent tool for that. Moreover, the ideas have spread: bare canonicity
plays a role in the very striking dichotomy for modal logics developed by Kikot
and Zolin [19, 20]. In [19, p.1066], Kikot remarks that ‘what was thought
pathological [bare canonicity] can now be seen to be the norm’.
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