

Complexity of monodic guarded fragments over linear and real

time

Ian Hodkinson∗

Department of Computing, Imperial College London

May 16, 2004

Abstract

We show that the satisfiability problem for the monodic guarded, loosely guarded, and
packed fragments of first-order temporal logic with equality is 2Exptime-complete for
structures with arbitrary first-order domains, over linear time, dense linear time, rational
numbers time, and some other classes of linear flows of time. We then show that for
structures with finite first-order domains, these fragments are also 2Exptime-complete
over real numbers time, and hence over most of the commonly-used linear flows of time,
including the natural numbers, integers, rationals, and any first-order definable class of
linear flows of time.

1 Introduction

Propositional temporal logic is now well established, both in its theory and its utility for
practical applications in computing. In contrast, predicate, or first-order, temporal logic has
been less studied. Unpublished results of Lindström and Scott in the 1960s showed that
even weak fragments of first-order temporal logic are highly undecidable, and these and later
similar results (see, e.g., [16]) may have suggested that other areas were more profitable to
work on.

Recently, however, some decidable fragments of first-order temporal logic have been found.
The so-called monodic fragments, originating in [16], have now been quite extensively investi-
gated. In these fragments, formulas beginning with a temporal operator are required to have
at most one free variable. Also, the ‘first-order part’ of formulas must lie in some decidable
fragment of first-order logic with very mild closure properties. Examples of suitable fragments
include the monadic fragment (with only unary relation symbols), the one- and two-variable
fragments, and the guarded, loosely guarded, and packed fragments. [16] showed that all
these fragments are decidable over a wide range of linear flows of time. (We use ‘flow of time’
synonymously with ‘strict partial order’.) A notable case left open in [16] is for real numbers

∗Research partially supported by U.K. EPSRC grant GR/S19905/01. I thank Mark Reynolds and the staff
of the School of Information Technology, Murdoch University, Western Australia, for helpful conversations and
kind hospitality during his visit in winter 2003, when much of this paper was written.

1

flow of time: while it was shown that decidability does hold for structures with finite first-
order domains, without this restriction it is an open problem whether any non-trivial monodic
fragment is decidable over (R, <). Results for branching time have also been established —
some positive, some negative — and axiomatisations and resolution and tableau procedures
have been developed. For some of this work see [2, 5, 6, 8, 13, 17, 18, 20, 29].

Even more recently, the examination of the computational complexity of monodic frag-
ments has begun. In [14], it was shown that the one-variable fragment of linear first-order
temporal logic, even with sole temporal operator ¤, is Expspace-hard over natural numbers
time, and consequently, so are the one-variable, two-variable and monadic monodic fragments
with the temporal connectives Until and Since. This Expspace lower bound actually applies
to any class of linear flows of time containing a flow that embeds the natural numbers, and
it holds both for structures with arbitrary first-order domains and for structures where the
domain is restricted to be finite.

Some upper bounds were also established in [14], again both for arbitrary and for fi-
nite first-order domains, but only for flow of time the natural numbers. Roughly speak-
ing, it was shown that the complexity of a monodic fragment over natural numbers time is
at most the maximum of Expspace and the complexity of the underlying first-order frag-
ment. In particular, it follows that over natural numbers time, the monodic packed fragment
(a generalised guarded fragment) has the same complexity as its pure first-order part —
2Exptime-complete. The proof is similar to the one in [28] giving a Pspace algorithm to
decide propositional temporal logic over (N, <).

For many, especially in computing, the only linear flow of time of importance is the
natural numbers, and [14] will be the start and end of the story. But other linear flows of
time have received attention, for example in modal logic and philosophy — see, for example,
Kamp’s expressive completeness results [19] and Burgess and Gurevich’s decision procedures
[3]. Recently, Reynolds established Pspace-completeness for propositional temporal logic
with Until and Since over arbitrary linear time and over the real numbers [26, 25]. The proofs
often require powerful methods and shed new light on the inner workings of the logics. It
therefore seems (to us) natural to investigate the complexity of monodic fragments over linear
flows of time other than the natural numbers.

Here, we contribute to this investigation by showing that the monodic packed fragment
with Until and Since is 2Exptime-complete over quite a wide range of linear flows of time.
For structures with arbitrary first-order domains, we prove in theorem 4.8 that satisfiability
for monodic packed sentences is 2Exptime-complete over the class of all linear flows of time,
dense flows, discrete flows, the rationals, and some others. With finite first-order domains,
we can do better: in theorem 5.14, we show that the monodic packed fragment is 2Exptime-
complete over the real numbers, and hence over the natural numbers (known from [14]),
integers, rationals, all linear flows, all dense flows, all discrete flows, and indeed any first-
order definable class of linear flows. The same results hold for the monodic guarded and
loosely guarded fragments: see remark 6.1.

We concentrate on the monodic packed fragment here for three reasons. First, it is a rather
attractive monodic fragment, because equality can be included; for other monodic fragments,
adding equality can result in loss of decidability. To include equality is desirable in any case,
but its presence also aids the handling of constants, and so makes the proofs simpler. Second,

2

it is a fragment for which the complexity of our algorithm is theoretically optimal, because
the first-order packed fragment is already 2Exptime-complete. Third, by the same token,
our results show that using the monodic packed fragment, a full-blown first-order temporal
logic, is computationally no more expensive at all than using the first-order packed fragment.
We find this very striking.

Our proofs start off by applying the ‘quasimodel’ technique of [16], but in the main they
are similar to, and parts of them are actually borrowed from, the recent mosaic-based work of
Reynolds on complexity of propositional temporal logic with Until and Since over linear and
real time [26, 25]. Reynolds established Pspace-completeness by a sophisticated argument
which we have not yet been able to generalise to the monodic case; our proof for arbitrary
domains follows the simpler proof of Exptime upper bounds given early in [26]. The proof
for finite domains, over the real numbers, extends the argument in [16, §7] and involves
ideas of [3, 21] — in particular, the second, ‘model-theoretic’ proof in [3] of decidability of
propositional temporal logic with Until and Since over the real numbers.

2Exptime is a very high complexity, and while the monodic packed fragment is 2Exptime-
complete, for many monodic fragments only Expspace lower complexity bounds are known.
We stress that because the methods in this paper only give 2Exptime upper bounds, they
are not entirely satisfactory. Generalising Reynolds’s more powerful arguments to monodic
fragments might be a way to obtain Expspace upper bounds; this would certainly improve
the results presented here.

Outline of paper In section 2, we define the monodic packed fragment formally. Section 3
establishes some results on quasimodels, mosaics, and bags of mosaics that will be needed in
both the main proofs. Section 4 contains the proof for arbitrary domains and section 5 the
proof for finite domains over the real numbers. In section 6 we conclude with some remarks
about possible extensions to our results.

Notation and conventions A linear order, or linear flow of time, is a pair (I, <), where
I is a non-empty set and < an irreflexive transitive relation on I satisfying trichotomy:
∀xy(x < y ∨ x = y ∨ y < x). We write x ≤ y to abbreviate x < y ∨ x = y, and x > y
means y < x. We usually identify (notationally) a linear order or other classical first-order
structure with its domain. We use standard notation for intervals of a linear order I: for
x, y ∈ I, we let (x, y) = {z ∈ I : x < z < y}, [x, y] = {z ∈ I : x ≤ z ≤ y}, and define [x, y)
and (x, y] similarly. We often let such an interval [x, y] also denote the induced linear order
([x, y], <∩ ([x, y]× [x, y])). A linear flow is dense if it has at least two elements1 and satisfies
∀xy(x < y → ∃z(x < z < y)).

For a structure M and a constant c of its signature, cM denotes the interpretation of c in
M . For a set I and sets Si (i ∈ I),

∏

i∈I Si denotes as usual the set of all maps a : I →
⋃

i∈I Si

such that a(i) ∈ Si for each i ∈ I. When I is finite, we sometimes write maps in
∏

i∈I Si as
the sequence of their values. For an equivalence relation ∼ on a set S, we write S/∼ for the
set of ∼-classes, and s/∼ for the ∼-class of an element s ∈ S.

1To avoid considering degenerate cases, in this paper we take ‘dense’ to imply that there are at least two
elements.

3

We use the term ‘mirror image’ in the usual way in temporal logic: the mirror image of a
condition is obtained by swapping past and future notions within it. For example, we would
exchange < with >, Until with Since, left with right, initial points with endpoints, start with
end, etc.

2 Monodic packed fragment

The guarded fragment was introduced by Andréka, van Benthem, and Németi in [1] as a
fragment of first-order logic with the ‘nice’ properties of modal logic (in particular, decidability
with reasonable complexity). All quantifiers in guarded formulas are relativised to an atomic
formula (the ‘guard’). The packed fragment, introduced by Marx in [22], extends the guarded
fragment by allowing weaker guards, and has the same complexity (2Exptime-complete [9,
10, 22]), so we will use the packed fragment here. The clique-guarded fragment defined in [9]
is a syntactic variant of it.

The following combines the definition of monodic formulas from [16] with a minor modi-
fication of Marx’s definition of the packed fragment from [22].

Definition 2.1 (monodic packed fragment) Let L be a signature with at most constants
and relation symbols (no function symbols). An L-formula γ is said to be a packing guard if
γ is a conjunction of atomic and existentially-quantified atomic formulas (i.e., of the form α
or ∃x̄α, where α is atomic, possibly an equality) such that for any two distinct free variables
of γ, there is a conjunct of γ in which they both occur free. The monodic packed fragment of
predicate temporal logic in signature L consists of the following formulas:

• Any atomic L-formula (which can be an equality, >, or ⊥) is monodic packed.

• Boolean combinations of monodic packed formulas are monodic packed.

• If x is a variable and ϕ, ψ are monodic packed formulas with free variable at most x,
then U(ϕ, ψ) and S(ϕ, ψ) (Until and Since, respectively) are monodic packed formulas.

• If γ is a packing guard, ϕ is a monodic packed formula, every free variable of ϕ is free
in γ, and x̄ is a tuple of variables, then ∃x̄(γ ∧ ϕ) is a monodic packed formula.

Any propositional temporal formula is monodic packed, since we allow nullary relation sym-
bols in L. So is any packed first-order formula — the first-order packed fragment is contained
in the monodic packed fragment.

Definition 2.2 For a formula ϕ, we let |ϕ| denote the length of (number of symbols in) ϕ.
Our complexity results will be stated in terms of |ϕ|. For formal complexity purposes, our
algorithms must encode ϕ, subformulas of ϕ, etc., using symbols from a fixed finite alphabet.
This has the consequence that relation symbols, constants, and variables are not stored as
single symbols but as strings, such as R0, c16, x141. So storing ϕ takes space O(|ϕ| log |ϕ|).
This increase is at most quadratic and is never a problem in practice, but it should be borne
in mind.

4

Definition 2.3 Let L be as above and let T = (T, <) be a linear flow of time. A temporal
L-structure with flow of time T is a triple M = (T, D, (Mt : t ∈ T)), where D is a non-empty
set (the domain of M), each Mt is an L-structure with domain D, and cMt = cMu for all
constants c ∈ L and all t, u ∈ T .

Given M, t ∈ T , and an assignment h of variables into D, we define the semantics of
monodic packed formulas written with variables from the domain of h as follows:

• For atomic α, we let M, t, h |= α iff Mt, h |= α.

• M, t, h |= ¬ϕ iff M, t, h 6|= ϕ, and M, t, h |= ϕ ∧ ψ iff M, t, h |= ϕ and M, t, h |= ψ.

• M, t, h |= ∃x̄ϕ iff M, t, g |= ϕ for some assignment g that agrees with h except perhaps
on the variables in x̄.

• M, t, h |= U(ϕ, ψ) iff there is u ∈ T with u > t, M, u, h |= ϕ, and M, v, h |= ψ for all
v ∈ T with t < v < u.

• M, t, h |= S(ϕ, ψ) iff there is u ∈ T with u < t, M, u, h |= ϕ, and M, v, h |= ψ for all
v ∈ T with u < v < t.

Occasionally, for a formula ϕ with free variable x, if h(x) = a, we write M, t |= ϕ(a) instead
of M, t, h |= ϕ. For a sentence ϕ, we drop the assignment h and just write M, t |= ϕ.

Note that our temporal structures have constant domains, and the interpretations of
constants and assignments to variables are rigid. Also, we use the ‘strict’ semantics of Until
(U) and Since (S) (u > t rather than u ≥ t, etc). They can express connectives such as the non-
strict and weak Until and Since, Tomorrow, etc. Indeed, [16] proves expressive completeness
results for monodic formulas written with them, over Dedekind complete linear flows of time.

Abbreviations ♦ψ abbreviates ψ ∨ U(ψ,>) ∨ S(ψ,>), and ¤ψ abbreviates ¬♦¬ψ. The
abbreviations ∨,→,∀ are defined as usual.

Definition 2.4 A monodic packed L-sentence ϕ is said to be satisfiable in a temporal L-
structure M with flow of time T if there is t ∈ T with M, t |= ϕ. In this case, we say that ϕ
is satisfiable in M, and that M is a model of ϕ.

We will be interested in satisfiability in temporal structures with arbitrary first-order
domains, as in the definition, and also in temporal structures whose first-order domains are
finite. These problems are different. The domain of any temporal structure in which the
monodic packed sentence ¤∃x(P (x) ∧ ¬S(P (x),>)) (given in [16]) is satisfiable is at least as
large as its flow of time. As we are mainly interested in infinite flows of time, this shows that
satisfiability for arbitrary domains does not imply satisfiability for finite domains.

The satisfiability problem for the packed fragment is 2Exptime-complete ([10] showed
that even the guarded fragment is 2Exptime-complete, and this fragment is contained in
the monodic packed fragment). Moreover, the packed fragment has the finite model property
[12, 15] — any satisfiable packed sentence has a finite model. So the satisfiability problem
for the packed fragment over finite structures is the same as the satisfiability problem over

5

arbitrary structures, and is also 2Exptime-complete. Since the first-order packed fragment
is a subfragment of the monodic packed fragment, we deduce:

Proposition 2.5 Any satisfiability problem for the monodic packed fragment, whether over
arbitrary temporal structures or over temporal structures with finite domains, is 2Exptime-
hard.

3 Preliminaries

There are two main proofs in this paper. This section develops some material needed in both
of them. The core idea in the proofs is to take a monodic packed sentence ϕ and condense
an arbitrary temporal L-structure M into some finite object, preserving enough information
to tell whether ϕ was satisfiable in M. First, we recall the technique of quasimodels from
[16]; a quasimodel is the result of condensing (essentially, by filtration) the first-order part
of a temporal structure but leaving the flow of time intact. Then we introduce the mosaics
(similar to those in [26, 25]) and the ‘bags of mosaics’ that we will use to collapse the temporal
part of a quasimodel into a finite object and so complete the condensation process.

For the rest of the paper, we fix a packed monodic sentence ϕ. By restricting the signature
L, we may assume that every symbol in L occurs in ϕ. We also fix a variable x not occurring
in ϕ.

3.1 Types and runs

Definition 3.1

1. Define subxϕ to be the finite set

{ψ(x/y), ¬ψ(x/y), x = c, x 6= c : ψ(y) a subformula of ϕ, c a constant in L}.

Here, ψ(y) denotes that ψ is a sentence or has a single free variable, y, and ψ(x/y)
denotes the result of substituting x for all free occurrences of y in ψ.

2. A type for ϕ is a maximal boolean consistent subset p ⊆ subxϕ. That is:

• for all ¬ψ ∈ subxϕ, we have ¬ψ ∈ p ⇐⇒ ψ /∈ p,

• for all ψ ∧ χ ∈ subxϕ, we have ψ ∧ χ ∈ p ⇐⇒ ψ ∈ p and χ ∈ p.

3. We let T (ϕ) denote the (finite) set of types for ϕ.

For example, let M = ((I, <), D, (Mt : t ∈ I)) be a temporal structure, and for t ∈ I and
a ∈ D write tpt(a) = {ψ ∈ subxϕ : M, t |= ψ(a)}. This is a type for ϕ.

Definition 3.2 Let I = (I, <) be a linear order. A map r : I → T (ϕ) is said to be a run
(over I) if

1. for each U(α, β) ∈ subxϕ and each t ∈ I, we have U(α, β) ∈ r(t) iff:

6

(a) there is u ∈ I with t < u, α ∈ r(u), and β ∈ r(v) for all v ∈ I with t < v < u, or

(b) I contains a maximal element y (say), U(α, β) ∈ r(y), and β ∈ r(v) for all v ∈ I
with v > t,

2. a mirror image condition for Since,

3. for each constant c ∈ L and each t, u ∈ I, we have x = c ∈ r(t) iff x = c ∈ r(u).

We say that r is a full run if the stronger forms of conditions 1 and 2 hold in which part (b)
is deleted, and condition 3 holds as well.

Continuing the example above, for any a ∈ D the map ra : t 7→ tpt(a) is a full run over I,
and its restriction to any closed interval J of I is a run over J .

3.2 State candidates

Definition 3.3

1. For each subformula ψ of ϕ of the form U(α, β) or S(α, β) with one (respectively zero)
free variable(s), we introduce a new unary (respectively, nullary) relation symbol Rψ.
The surrogate of ψ is Rψ(y) if ψ has free variable y, and Rψ if ψ is a sentence.

2. For any subformula ψ of ϕ, the formula ψ is obtained by replacing maximal subformulas
U(α, β) and S(α, β) of ψ by their surrogates. For p ⊆ subxϕ, we write p for {ψ : ψ ∈ p}.

Definition 3.4 A state candidate (for ϕ) is a non-empty set of types for ϕ. A realisable state
candidate (respectively, finitely realisable state candidate) is a state candidate Σ such that for
some (respectively, finite) structure M we have

M |=
∧

p∈Σ

∃x
∧

p ∧ ∀x
∨

p∈Σ

∧

p

︸ ︷︷ ︸

αΣ

.

Observe that the sentence αΣ here is (up to logical equivalence) in the packed fragment,
since we can guard the ∃x and ∀x by x = x. This has some consequences:

Lemma 3.5 A state candidate is realisable iff it is finitely realisable.

Proof. By [12, 15], the packed fragment has the finite model property. So Σ is a realisable
state candidate iff αΣ has a model, iff it has a finite model, iff Σ is a finitely realisable state
candidate. ¤

In spite of this lemma, we still wish to preserve the (effect-free) distinction between the
two notions, because our work may be applicable to other logics that do not have the finite
model property.

From the point of view of the current paper, the chief property of realisable state candi-
dates is:

7

Proposition 3.6 Let Σ be a set of types for ϕ. It is decidable in 2Exptime in |ϕ| (i.e., in

time at most 22p(|ϕ|)
, for some fixed polynomial p) whether Σ is a realisable state candidate.

Proof (sketch). By inspection of the proofs in [10, 9] that the satisfiability problem for the
clique-guarded fragment (even with fixed point operators) is in 2Exptime. We will outline
the argument.

One way to decide satisfiability of a packed sentence ϕ is by an alternating Expspace

game, played with ‘pieces’ of a potential model. A ‘piece’ is a finite set of points, together
with a set of ‘assertions’ that various subformulas of ϕ hold on various tuples of points (the
length of the tuple should match the number of free variables of the formula). The points of
each piece are asserted to satisfy a guard.

Player ∃ begins by playing a piece asserted to satisfy ϕ itself. Player ∀ then repeatedly
challenges the assertions about the current piece. In particular, if an assertion χ = ∃x̄(γ ∧ψ)
is challenged, ∃ must either assert γ and ψ on a suitable tuple in the current piece, or else
replace it with another piece agreeing with the current one on the assignments to the free
variables of χ, and satisfying γ and ψ. ∃ wins if she never gets stuck. If ϕ has a model, ∃
may simply follow the model and win the game. Conversely, if ∃ has a winning strategy in
the game, then a model of ϕ can be recovered from plays of the game in which she uses her
strategy. So ∃ has a winning strategy iff ϕ has a model. The size of pieces is bounded by
the number k of free variables in guards in ϕ, and each of the exponentially many k-tuples of
elements of a piece is labelled by the subformulas of ϕ that it is asserted to satisfy. Thus, the
game requires Expspace to play. (Only Pspace is required if we bound k in advance.) By
results from the theory of alternating Turing machines [4], this gives a 2Exptime algorithm
(Exptime for bounded k) to decide the packed fragment.

A simple modification of this game decides satisfiability of a given αΣ. To begin, ∀ chooses
a type p ∈ Σ, and ∃’s first piece must contain an element satisfying p. From then on, all
elements in her pieces must satisfy some type in Σ (or she loses). Again, if αΣ has a model
then ∃ may use it as a guide to winning. If she has a winning strategy, then for each p ∈ Σ,
a model Mp can be recovered that has an element of type p and all of whose elements have
types in Σ. The models Mp can now be amalgamated over the constants, to give a model of
αΣ. The space requirements are unchanged, so this gives a 2Exptime (in |ϕ|) algorithm to
decide if Σ is a realisable state candidate. ¤

3.3 Quasimodels and pre-quasimodels

Definition 3.7 Let I be a linear order. A pre-quasimodel (for ϕ over I) is a triple

Q = (I, (Σt : t ∈ I),R),

where each Σt is a realisable state candidate and R ⊆
∏

t∈I Σt is a set of runs such that
Σt = {r(t) : r ∈ R} for each t ∈ I. Q is said to be a quasimodel (for ϕ) if each r ∈ R is a
full run, and ϕ ∈ r(t) for some r ∈ R and t ∈ I. Q is said to be finitary if each Σt (t ∈ I) is
a finitely realisable state candidate, and R is finite.

8

Definition 3.8 If Q = (I, (Σt : t ∈ I),R) is a pre-quasimodel for ϕ, and x ≤ y in I, write
Q ¹ [x, y] for

(
[x, y], (Σt : t ∈ [x, y]), {r ¹ [x, y] : r ∈ R}

)
.

(Recall that we identify the interval [x, y] with the induced suborder on it.)

Lemma 3.9 Q ¹ [x, y] is a pre-quasimodel. If Q is finitary then so is Q ¹ [x, y].

Proof. Straightforward. ¤

The following result from [13] will be the starting point for our complexity results.

Fact 3.10 ([13, theorem 3]) Let I be any linear order. Then ϕ has a model with flow of
time I (and finite domain) iff there is a (respectively, finitary) quasimodel for ϕ over I.

The proof of ‘⇒’ is straightforward: each element a of the domain D of a model M of ϕ
with flow of time T gives rise to a full run ra given by ra(t) = {ψ ∈ subxϕ : M, t |= ψ(a)}, and
we let Σt = {ra(t) : a ∈ D}. To prove the converse, given a quasimodel Q = (I, (Σt : t ∈ I),R)
of ϕ, we first take a model Mt |= αΣt for each t ∈ T . We make a suitable number of copies
of runs in R, resulting in a multiset D, say; this is arranged to be finite if Q is finitary.
Then, in a ‘model-theoretic’ step which can be carried through for the packed fragment even
though equality is present, we manipulate the Mt so that they all have domain D, and for all
r ∈ D, t ∈ I, and ψ ∈ subxϕ, we have Mt |= ψ(r) iff ψ ∈ r(t). We then form the temporal
structure M = (I, D, (Mt : t ∈ I)), and show by induction on subformulas ψ of ϕ that for
any assignment h of the variables into D, and any t ∈ I, M, t, h |= ψ iff Mt, h |= ψ. It follows
that ϕ is satisfiable in M.

3.4 Mosaics

We will use mosaics to describe runs. The following definition is based on one in [25]. For
convenience, we have retained only the conditions we need here, and we have dualised the
notion of ‘cover’ from [25].

Definition 3.11 A mosaic (for ϕ) is a triple (A, B, C), where A and C are types for ϕ,
B ⊆ subxϕ, and:

1. For each formula U(α, β) ∈ subxϕ with ¬β /∈ B, we have

U(α, β) ∈ A ⇐⇒ (α ∈ B ∪ C or β,U(α, β) ∈ C).

Note that all formulas mentioned are in subxϕ.

2. A mirror image condition for Since.

3. For each constant c ∈ L, the conditions x = c ∈ A, x = c ∈ B, x 6= c /∈ B, and x = c ∈ C
are equivalent.

9

For a mosaic m = (A, B, C) we write st(m) = A, end(m) = C and cov(m) = B (these stand
for start, end, cover).

The motivation for this definition is that runs can be represented by mosaics.

Definition 3.12 Let I be a linear order with endpoints x < y and with at least 3 points,
and let r : I → T (ϕ). Define

mos(r) =
(

r(x),
⋃

z∈(x,y)

r(z), r(y)
)

.

Lemma 3.13 If r is a run over I, then m = mos(r) is a mosaic.

Proof. Let U(α, β) ∈ subxϕ, and assume that ¬β /∈ cov(m) =
⋃

z∈(x,y) r(z). As the r(z)
are types, β or ¬β is in each of them, so β ∈

⋂

z∈(x,y) r(z). Hence, as r is a run, we have
U(α, β) ∈ r(x) iff there is z ∈ I with z > x and α ∈ r(z), or β,U(α, β) ∈ r(y). This is iff
α ∈ cov(m) ∪ end(m) or β,U(α, β) ∈ end(m). The checks for Since are similar. The checks
for constants are easy and left to the reader. ¤

There is a partial converse to this:

Lemma 3.14 If r : I → T (ϕ) and mos(r) is a mosaic then r satisfies condition 3 of defini-
tion 3.2.

Proof. Let c be a constant in L, and let x, y ∈ I. Write m for mos(r). If x = c ∈ r(x),
then x = c ∈ st(m) ∪ cov(m) ∪ end(m). Now m is a mosaic, so this implies that x 6= c /∈
st(m) ∪ cov(m) ∪ end(m) ⊇ r(y); and this implies that x = c ∈ r(y). ¤

3.5 Bags of mosaics

Just as mosaics will be used to describe runs, so sets of mosaics, or ‘bags’, will be used to
describe pre-quasimodels, which are at heart sets of runs. As a bag is a finite object, this will
complete the ‘condensation’ process discussed at the start of the section.

Definition 3.15 A bag (respectively, finitary bag) (for ϕ) is a set µ of mosaics such that the
sets st(µ) = {st(m) : m ∈ µ} and end(µ) = {end(m) : m ∈ µ} are (respectively, finitely)
realisable state candidates.

Definition 3.16 Let I be a linear order with endpoints x < y and with at least 3 points.
Let Q = (I, (Σt : t ∈ I),R) be a pre-quasimodel over I. Define bag(Q) = {mos(r) : r ∈ R}.

Lemma 3.17 For I,Q as above, bag(Q) is a bag. If Q is finitary then bag(Q) is a finitary
bag.

Proof. Trivial, by lemma 3.13 and since st(bag(Q)) = {st(m) : m ∈ bag(Q)} = {st(mos(r)) :
r ∈ R} = {r(x) : r ∈ R} = Σx, a (finitely) realisable state candidate, and similarly for end,
with y. ¤

10

We now show how to tell from its bag whether a pre-quasimodel is a quasimodel.

Definition 3.18 A bag µ is said to be perfect if

1. there is no formula U(α, β) ∈ subxϕ with U(α, β) ∈
⋃

end(µ),

2. there is no formula S(α, β) ∈ subxϕ with S(α, β) ∈
⋃

st(µ),

3. ϕ ∈
⋃

m∈µ

(
st(m) ∪ cov(m) ∪ end(m)

)
.

Lemma 3.19 Let Q = (I, (Σt : t ∈ I),R) be a pre-quasimodel for ϕ, where I has endpoints
and at least three points. Then bag(Q) is perfect iff Q is a quasimodel for ϕ.

Proof. Suppose that the endpoints of I are x, y with x < y. We have end(bag(Q)) = {r(y) :
r ∈ R}. Assume first that bag(Q) is perfect. Let U(α, β) ∈ subxϕ. So U(α, β) /∈ r(y) for all
r ∈ R. As Q is a pre-quasimodel, if r ∈ R, t ∈ I and U(α, β) ∈ r(t), there must be u > t
in I with β ∈ r(u) and α ∈ r(v) for all v ∈ (t, u). The case of Since is similar. This shows
that each r ∈ R is a full run. Now take m ∈ bag(Q) with ϕ ∈ st(m) ∪ cov(m) ∪ end(m), and
r ∈ R with mos(r) = m. So ϕ ∈ r(t) for some t ∈ I. So Q is a quasimodel for ϕ.

Conversely, assume that Q is a quasimodel for ϕ, and suppose for contradiction that
there is some U(α, β) ∈

⋃
end(bag(Q)), so U(α, β) ∈ r(y) for some r ∈ R. As r is a full

run, there is u ∈ I with u > y, α ∈ r(u), etc., which is a contradiction. Similarly, we
can show that there is no formula S(α, β) ∈

⋃
st(bag(Q)). Moreover, as Q is a quasimodel

for ϕ, we have ϕ ∈ r(u) for some r ∈ R and u ∈ I. Let m = mos(r) ∈ bag(Q). Then
ϕ ∈

⋃

t∈I r(t) = st(m) ∪ end(m) ∪ cov(m). So bag(Q) is perfect. ¤

3.6 Numbers and sizes

We will need bounds on the number of types, mosaics, and bags, and the space they take up.
The following is clear:

Lemma 3.20 Assume that |ϕ| = k.

1. |subxϕ| ≤ 4k.

2. The number |T (ϕ)| of types for ϕ is at most \(ϕ) = 22k (since no type contains a formula
and its negation).

3. The number of mosaics is at most](ϕ) = 28k.

4. Any formula in subxϕ takes at most space k2 to write (see definition 2.2), and a mosaic
involves at most 8k such formulas. So any mosaic can be written in space 8k3.

5. Any bag can therefore be written in space 28k · 8k3.

6. The number of bags is at most [(ϕ) = 228k
(this bounds the number of sets of mosaics).

11

3.7 Sums

Both our proofs will work by decomposing pre-quasimodels into ‘sums’ of smaller ones. So
we have to introduce sums of mosaics and bags.

Definition 3.21 For mosaics m, ni for i ≤ k for some k < ω, we write m =
∑

i≤k ni if

1. st(m) = st(n0), and end(m) = end(nk),

2. st(ni+1) = end(ni) for each i < k,

3. cov(m) = cov(n0) ∪
⋃

1≤i<k(st(ni) ∪ cov(ni) ∪ end(ni)) ∪ cov(nk).

Note that m is unique (if it exists). So we can write
∑

i≤k ni for m, if condition 2 holds.

Definition 3.22 For bags µ, νi for i ≤ k for some k < ω, write µ ≡
∑

i≤k νi if

1. for all m ∈ µ there are ni ∈ νi (for each i ≤ k) with m =
∑

i≤k ni,

2. for all i ≤ k and ni ∈ νi, there are nj ∈ νj for each j ≤ k with j 6= i, and m ∈ µ, such
that m =

∑

j≤k nj .

We write ‘≡’ rather than ‘=’ because there can be several (or no) µ with µ ≡
∑

i≤k νi. Of
course, if k = 1 we write m = n0 + n1 and µ ≡ ν0 + ν1.

Lemma 3.23 Suppose that µ, ν0, . . . , νk are bags, and µ ≡
∑

i≤k νi. Then st(µ) = st(ν0),
end(µ) = end(νk), and end(νi) = st(νi+1) for each i < k.

Proof. Purely routine applications of the definitions. ¤

4 Complexity of monodic fragments over linear time

In this section, we show that the satisfiability problem for the packed monodic fragment
over dense linear time with endpoints is in 2Exptime. The method is an adaptation of [26,
theorem 3]. The rough idea is as follows. In any full run in a quasimodel, all Until-formulas
are ‘witnessed’. So a mosaic representing such a run should be decomposable into smaller
mosaics whose endpoints witness all Until (and Since) formulas, and all formulas in its cover.
Taking a run for each mosaic in the bag describing the quasimodel suggests that the bag
itself should also be decomposable into smaller ‘witnessing bags’ which in turn should be
decomposable. We will show that there is a quasimodel for ϕ iff there is a perfect bag that
can be repeatedly decomposed in this way. This criterion can be decided in 2Exptime.

Recall that ϕ is a fixed monodic packed sentence; all pre-quasimodels, types, mosaics,
bags, and so on, are for ϕ.

12

4.1 Defects and full decompositions

Definition 4.1 Let m = (A, B, C) be a mosaic. A defect in m is either

1. (cover defect) a formula in B,

2. (future defect) a formula U(α, β) ∈ A with either

(a) ¬β ∈ B, or

(b) α, β /∈ C, or

(c) α,U(α, β) /∈ C.

3. (past defect) the mirror image of condition 2.

Definition 4.2 Let k < ω.

1. For mosaics m, ni for i ≤ k, we write m
full
=

∑

i≤k ni (full decomposition) if m =
∑

i≤k ni

and

(a) for each cover defect β ∈ cov(m), there is i < k with β ∈ end(ni),

(b) for each future defect U(α, β) ∈ st(m), there is i < k with α ∈ end(ni) and
β ∈ end(nj) for all j < i and ¬β /∈ cov(nj) for all j ≤ i.

(c) a mirror image condition for past defects.

2. For bags µ, νi for i ≤ k, we write µ
full
≡

∑

i≤k νi, and say that 〈ν0, . . . , νk〉 is a full
decomposition of µ, if

(a) for all m ∈ µ there are ni ∈ νi (each i ≤ k) with m
full
=

∑

i≤k ni,

(b) for all i ≤ k and ni ∈ νi, there are nj ∈ νj for each j ≤ k with j 6= i, and m ∈ µ,

such that m =
∑

j≤k nj . (We do not require
full
= here.)

Obviously, if µ
full
≡

∑

i≤k νi then µ ≡
∑

i≤k νi.

4.2 Decomposition trees

By a tree, we will mean a non-empty partially-ordered set (T, <) such that for each ‘node’
t ∈ T , the set {u ∈ T : u < t} is well-ordered. We write ht(t) (the height of t) for the
order-type of this set; it is a unique ordinal. The height ht(T) of T is the least ordinal α such
that no node of T has height α. We will only consider rooted trees — those with a unique
node (the root) of height 0. We often write simply T for (T, <). A successor of a node t is
a node u > t; such a u is a child of t if ht(u) = ht(t) + 1. Two distinct nodes are siblings if
they are both children of the same node. A leaf is a node with no children. A tree is finitely
branching if every node has finitely many children.

We will consider trees T of height ω, endowed with a binary relation ≺ such that for any
t ∈ T , the restriction of ≺ to the children of t (if any) is a linear ordering. We extend ≺

13

‘lexicographically’ to the whole of T by: for any t, u ∈ T , let t ≺ u iff t < u or there are
siblings t′, u′ with t′ ≤ t, u′ ≤ u, and t′ ≺ u′. It can be checked that this defines a linear
order, called here an earlier-later ordering, on T .

Definition 4.3 Let µ0 be a bag. A decomposition tree for µ0 is a pair (T, µ), where T is
a finitely branching rooted tree of height ω such that each node has at least two children,
endowed with a earlier-later ordering ≺ as above, and µ is a map associating a bag µ(t) with
each node t ∈ T , satisfying

1. µ(t0) = µ0, where t0 is the root of T ,

2. for each t ∈ T , if the children of t are t0, . . . , tk with t0 ≺ · · · ≺ tk, then we have

µ(t)
full
≡

∑

i≤k µ(ti).

We often write T for (T, µ).

Lemma 4.4 Let Q = (I, (Σt : t ∈ I),R) be a pre-quasimodel for ϕ, where I is a dense
order with endpoints. Then bag(Q) has a decomposition tree, each node of which has at most
4|ϕ| · 28|ϕ| children.

Proof. Assume that the endpoints of I are x, y, with x < y. We build a decomposition tree
(T, µ) for bag(Q) by induction, so that condition 2 of definition 4.3 holds for each t ∈ T .

The nodes of T will be pairs of elements of I. We define the root of T to be 〈x, y〉, and
set µ(〈x, y〉) = bag(Q).

Suppose we have built the nodes of T of height ≤ n, for some n ≥ 0, and defined µ on
them to satisfy condition 2 of definition 4.3. Pick a node t of height n, and assume inductively
that t = 〈u, v〉, where u < v in I, and that µ(t) = bag(Q ¹ [u, v]). (By lemma 3.9, Q ¹ [u, v] is
a pre-quasimodel.) For each mosaic m ∈ µ(t), pick r ∈ R with mos(r ¹ [u, v]) = m. Then, for
each cover defect β ∈ cov(m) =

⋃

z∈(u,v) r(z), pick a single z ∈ (u, v) with β ∈ r(z). Similarly,
for each future defect U(α, β) of m, pick z ∈ (u, v) with α ∈ r(z) and β ∈

⋂

t∈(u,z) r(t). The
definitions of ‘run’ and ‘defect’ (definitions 3.2 and 4.1) allow us to do this. Pick similar
witnesses for past defects. Do this for all m ∈ µ(t).

Let the chosen points of (u, v) be d1, . . . , dk with u = d0 < d1 < · · · < dk+1 = v. As
I is dense, there are cover defects in each mos(r ¹ [u, v]), so k ≥ 1. To bound k above, we
observe that there are at most](ϕ) = 28|ϕ| mosaics in µ(t), and we added at most one point
di for each defect in each of them. Given a mosaic m, each formula in subxϕ could be a cover
defect of m, but for any constant c, x = c and x 6= c cannot both be cover defects. So there
are at most 3|ϕ| cover defects of m. Each formula of the form U(α, β) or S(α, β) in subxϕ
could additionally be a future or a past defect of m, respectively, and there are < |ϕ| of these.
Hence, the number of defects of m is < 4|ϕ|. So by lemma 3.20, k < 4|ϕ| · 28|ϕ|.

Define νi = bag(Q ¹ [di, di+1]) for each i ≤ k. By lemma 3.9, Q ¹ [di, di+1] is a pre-

quasimodel, so by lemma 3.17, νi is a bag. We claim that µ(t)
full
≡

∑

i≤k νi. Let m ∈ µ(t).
Suppose r ∈ R was the run we chose with mos(r ¹ [u, v]) = m. For each i ≤ k let ni =
mos(r ¹ [di, di+1]) ∈ νi. Since we picked enough witnesses for r, we have

m = mos(r)
full
=

∑

i≤k

mos(r ¹ [di, di+1]) =
∑

i≤k

ni.

14

Conversely, for each i ≤ k and ni ∈ νi, there is r ∈ R with mos(r ¹ [di, di+1]) = ni. Let
nj = mos(r ¹ [dj , dj+1]) ∈ νj for each j ≤ k with j 6= i, and m = mos(r ¹ [u, v]) ∈ µ(t). Then

m =
∑

j≤k nj (we may not have
full
= here). Hence, µ(t)

full
≡

∑

i≤k νi, as claimed.
So we add to T the children t0 ≺ · · · ≺ tk of t with ti = 〈di, di+1〉 for each i ≤ k. This

is at least two and at most 4|ϕ| · 28|ϕ| children. We define µ(ti) = νi for each i. We have

µ(t)
full
≡

∑

i≤k µ(ti). Doing this for all nodes t of height n in T completes the induction. The
result is a decomposition tree T for bag(Q) with the required features. ¤

Lemma 4.5 Any bag with a decomposition tree is of the form bag(Q) for some pre-quasimodel
Q over a dense linear order with endpoints.

Proof. Let (T, µ) be a decomposition tree for the bag µ0. We use it to build a pre-quasimodel
Q = (I, (Σt : t ∈ I),R) with bag(Q) = µ0. First we define the linear order I. For each t ∈ T ,
we will associate rational numbers t− and t+, with t− < t+. With the root, we associate
0, 1. Inductively, if we have associated t−, t+ with t, and the children of t are t0, . . . , tk, say,
with t0 ≺ · · · ≺ tk, we choose rationals t− = q0 < q1 < · · · < qk+1 = t+ and set t−i = qi

and t+i = qi+1 for each i ≤ k. We let I be the suborder of (Q, <) consisting of all rationals
associated with nodes of T . Clearly, I is dense and has endpoints 0,1 — indeed, we could
easily arrange that I = [0, 1]∩Q. Notice above that t− = t−0 and t+ = t+k . Hence, each point
in I associated with a node t ∈ T is also associated with successors of t of all heights > ht(t).

For t ∈ T , we define Σt− = st(µ(t)) and Σt+ = end(µ(t)). Lemma 3.23 shows that this
determines a well-defined set Σx for each x ∈ I; it is a realisable state candidate since each
µ(t) is a bag.

It remains to define the set R of runs of Q.

Notation For l < ω let T (l) denote the (non-empty) set of nodes of T of height l, and
suppose that T (l) = {tl0, . . . , t

l
h(l)}, where tl0 ≺ · · · ≺ tl

h(l). For each i ≤ h(l), we suppose that

the children of tli in T are tl+1
i−

≺ · · · ≺ tl+1
i+

, where 0 ≤ i− < i+ ≤ h(l + 1).

A walk along T (l) is a sequence 〈m0, . . . , mh(l)〉 ∈
∏

i≤h(l) µ(tli) such that end(mi) =
st(mi+1) for all i < h(l), and

∑

i≤h(l) mi ∈ µ0. For each l < ω, we will define a set Wl of walks
along T (l) so that ‘every mosaic in every bag from T (l) is hit by a walk in Wl’ — formally,
that

{mi : 〈m0, . . . , mh(l)〉 ∈ Wl} = µ(tli) for every i ≤ h(l). (4.1)

We define W0 as simply the set {〈m〉 : m ∈ µ0}. Let l < ω and assume inductively that
Wl is defined, satisfying (4.1). We obtain Wl+1 as follows.

1. Fully decompose each walk in Wl. Let w = 〈m0, . . . , mh(l)〉 ∈ Wl. For each i ≤ h(l),

choose a mosaic nj ∈ µ(tl+1
j) for each j with i− ≤ j ≤ i+, so that mi

full
=

∑

j nj . This is

possible because T is a decomposition tree, so µ(tli)
full
≡

∑

j µ(tl+1
j). Then

∑

s≤h(l+1) ns =
∑

i≤h(l) mi ∈ µ0, so w′ = 〈n0, . . . , nh(l+1)〉 is a walk along T (l + 1). Such a w′ is called
a full decomposition of w. We put it into Wl+1. We do this for each w ∈ Wl.

15

2. Ensure that every mosaic in every bag from T (l + 1) is hit by a walk. Let j ≤ h(l + 1)
and let n be any mosaic in µ(tl+1

j). Assume that tl+1
j is a child of tli, say, so that

i− ≤ j ≤ i+. Since µ(tli)
full
≡

∑

i−≤s≤i+
µ(tl+1

s), we may choose mosaics ns ∈ µ(tl+1
s)

for each s with i− ≤ s ≤ i+, such that nj = n and m =
∑

i−≤s≤i+
ns ∈ µ(tli). By

the inductive hypothesis, there is 〈m0, . . . , mh(l)〉 ∈ Wl such that mi = m. As T is a

decomposition tree, for each k ≤ h(l) with k 6= i, we may choose mosaics ns ∈ µ(tl+1
s)

for each k− ≤ s ≤ k+ with mk =
∑

k−≤s≤k+
ns. Then

∑

s≤h(l+1) ns =
∑

s≤h(l) ms ∈ µ0,
so 〈n0, . . . , nh(l+1)〉 is a walk along T (l + 1). Put it into Wl+1. We have nj = n as
required. Doing this for each mosaic n ∈ µ(t) for each t ∈ T (l + 1) completes the
construction of Wl+1 and preserves (4.1).

So we have defined a set Wl of walks along T (l), for each l < ω. Let w = 〈m0, . . . , mh(l)〉 ∈

Wl. Suppose j ≤ h(l) and that the rationals x < y are associated with tlj . Then we define
w[x] = st(mj) ∈ Σx and w[y] = end(mj) ∈ Σy. If j < h(l) then end(mj) = st(mj+1), so this
is well-defined.

A run sequence is a sequence ρ = 〈wl, wl+1, . . .〉 for some l < ω, where for each i ≥ l,
wi ∈ Wi and wi+1 is a full decomposition of wi. For such a ρ, we define rρ ∈

∏

x∈I Σx by
letting rρ(x) = wi[x] for any i ≥ l such that x is associated with a node in T (i). Since x is
associated with a node of T (l) for all but finitely many l < ω, lemma 3.23 can be used to
check that rρ is thereby well-defined and total. It also follows that if ρ′ = 〈wl+1, wl+2, . . .〉
then rρ = rρ′ .

Claim. Let ρ = 〈wl0 , wl0+1, . . .〉 be a run sequence. Then rρ is a run on I.

Proof of claim. Because for each l ≥ l0, wl is fully decomposed by wl+1, it follows that if
wl = 〈m0, . . . , mh(l)〉 then for each i ≤ j ≤ h(l) we have

mos(rρ ¹ [(tli)
−, (tlj)

+]) =
∑

i≤k≤j

mk. (4.2)

To see this, note first that any formula in rρ(z) for (tli)
− < z < (tlj)

+ is in the cover of
∑

i≤k≤j mk. Conversely, any formula in this cover either is in the start or end of, or is a cover
defect of, some mk. In either case, it is in the start or end of a mosaic refining mk in the full
decomposition wl+1 of wl, and hence is in rρ(z) for some z ∈ ((tli)

−, (tlj)
+).

Now we prove the claim. We require that condition 1 of definition 3.2 holds: for each
x ∈ I and U(α, β) ∈ subxϕ, we have U(α, β) ∈ rρ(x) iff:

(a) there is v ∈ I with x < v, α ∈ rρ(v), and β ∈ rρ(z) for all z ∈ I with x < z < v, or

(b) U(α, β) ∈ rρ(1), and β ∈ rρ(z) for all z ∈ I with z > x.

Let x ∈ I. If x = 1, there is nothing to prove. Assume x < 1. We may choose tli ∈ T (l) for
some l ≥ l0 (where i ≤ h(l)) such that x is the smaller of the two points of I associated with
tli. Let wl = 〈m0, . . . , mh(l)〉. So rρ(x) = st(mi).

By (4.2), for any j ≤ h(l), if β ∈ cov(mj) then β ∈ rρ(z) for some z ∈ I lying strictly
between the points associated with tlj .

16

Assume that U(α, β) ∈ rρ(x). Take the greatest integer j with i ≤ j ≤ h(l) and such that
U(α, β) ∈ st(mj) and ¬β /∈ cov(mk) ∪ end(mk) for all i ≤ k < j. (Since i has this property,
the set of such j is non-empty.)

• If U(α, β) ∈ end(mj) and ¬β /∈ cov(mj) ∪ end(mj), then by maximality of j we must
have j = h(l), and it follows from (4.2) that ¬β /∈ cov(

∑

i≤k≤j mk) =
⋃

x<y<1 r(y),
so (b) above holds.

• If α ∈ end(mj) and ¬β /∈ cov(mj), then using (4.2), we see that (a) holds with ‘v’ as
(tlj)

+.

• Otherwise, U(α, β) is a future defect in mj . Now wl+1 fully decomposes wl. So if
wl+1 = 〈n0, . . . , nh(l+1)〉, then using the earlier notation, there is j− ≤ k < j+ with
α ∈ end(nk), β ∈ end(ns) for all j− ≤ s < k, and ¬β /∈ cov(ns) for all j− ≤ s ≤ k. Let
v be the greater point associated with tl+1

k . Then α ∈ rρ(v), and using (4.2) we see that
β ∈ rρ(z) for all z ∈ I with x < z < v, as required.

Conversely, if (a) or (b) holds, then by increasing l if need be, we may assume that the
‘v’ in (a), if applicable, is associated with a node in T (l) — say, v = (tlj)

+, and x = (tli)
−,

where i ≤ j ≤ h(l). If (b) holds, take v = 1, j = h(l), and again assume x = (tli)
−.

Let wl = 〈m0, . . . , mh(l)〉. By (4.2), ¬β /∈ cov(mj) and either α ∈ end(mj) (if (a) holds)
or β,U(α, β) ∈ end(mj) (if (b) holds). As mj is a mosaic, U(α, β) ∈ st(mj). If j > i
then U(α, β) ∈ end(mj−1), and by (4.2), β ∈ end(mj−1) and ¬β /∈ cov(mj−1); so as mj−1 is a
mosaic, U(α, β) ∈ st(mj−1). Continuing inductively in this way, we obtain U(α, β) ∈ st(mi) =
rρ(x), as required.

The check for Since is similar. Finally let c ∈ L be a constant. To show that x = c ∈ rρ(t)
iff x = c ∈ rρ(u) for all t, u ∈ I, it suffices to show that for each l ≥ l0, if wl = 〈m0, . . . , mh(l)〉,
then x = c ∈ st(mi) iff x = c ∈ end(mi) for each i ≤ h(l). But this is immediate since mi is a
mosaic. (Alternatively, we could apply (4.2) and lemma 3.14.) This proves the claim.

We set R = {rρ : ρ a run sequence}.

Claim. Q = (I, (Σx : x ∈ I),R) is a pre-quasimodel with bag(Q) = µ0.

Proof of claim. For arbitrary x ∈ I, it is required that Σx = {r(x) : r ∈ R}. Take
t ∈ T (l) (for some l < ω) such that x is associated with t, and take a type p ∈ Σx. We
have p = st(m) or p = end(m) for some m ∈ µ(t). Now m is hit by a walk in Wl: there
is w = 〈m0, . . . , mh(l)〉 ∈ Wl and i ≤ h(l) with mi = m. As each walk in each Wl′ is fully
decomposed in Wl′+1, there is a run sequence ρ = 〈wl, wl+1, . . .〉 with wl = w. Then rρ ∈ R
and rρ(x) = p. Since p was arbitrary, we obtain Σx ⊆ {r(x) : r ∈ R}, and the converse
inclusion is trivial.

A similar argument shows that for each m ∈ µ0, there is a run sequence ρ = 〈w0, w1, . . .〉
with w0 = 〈m〉. By (4.2), mos(rρ) = m. Conversely, if ρ = 〈wl, wl+1, . . .〉 is a run sequence
with wl = 〈m0, . . . , mh(l)〉, say, then (4.2) and the definition of ‘walk’ yields mos(rρ) =
∑

i≤h(l) mi ∈ µ0. It is now plain that bag(Q) = µ0. ¤

17

Corollary 4.6 The following are equivalent:

1. ϕ has a model whose flow of time is linear, dense, and with endpoints,

2. there is a set B of bags such that:

(a) some bag µ0 ∈ B is perfect,

(b) for each µ ∈ B there are k ≤ 4|ϕ| · 28|ϕ| and ν0, . . . , νk ∈ B with µ
full
≡

∑

i≤k νi.

Proof. By fact 3.10, ϕ has a model with flow of time a dense linear order I with endpoints,
iff there is a quasimodel for ϕ over I. By lemma 3.19, this is iff there is a pre-quasimodel Q
over I with bag(Q) perfect. By lemmas 4.4 and 4.5, this is iff there are a perfect bag µ0, and
a decomposition tree T for µ0 with each node having at most 4|ϕ| · 28|ϕ| children.

If there are such T and µ0, then B = {µ(t) : t ∈ T} satisfies the conditions of part 2 of the
corollary. But given B, µ0 satisfying these conditions, we may easily construct a decomposition
tree for µ0 with the stated bound on numbers of children by induction on heights of nodes,
using bags from B to label nodes. ¤

Theorem 4.7 The problem of whether a monodic packed sentence is satisfiable in some tem-
poral structure (with arbitrary first-order domain and) with a dense linear flow of time with
endpoints is 2Exptime-complete.

Proof. By proposition 2.5, the problem is 2Exptime-hard. So it remains only to determine
in 2Exptime whether ϕ is satisfiable over dense linear time with endpoints. To do this, we
will specify an algorithm that checks the criterion provided by corollary 4.6, using an approach
originating in [23].

The algorithm first constructs the set B0 of all bags, by enumerating all sets of mosaics and
placing each one in B0 iff its start and end are realisable state candidates; by proposition 3.6,
whether a set of types for ϕ is a realisable state candidate can be tested in 2Exptime in |ϕ|.
There are at most [(ϕ) bags, so the construction of B0 takes 2Exptime.

Now the algorithm loops to construct a chain B0 ⊇ B1 ⊇ · · · . Let n ≥ 0 and assume that
Bn has been constructed. For each µ ∈ Bn the algorithm searches for bags ν0, . . . , νk ∈ Bn for

some k ≤ 4|ϕ|·28|ϕ|, with µ
full
≡

∑

i≤k νi. If such bags can be found, the algorithm includes µ in
Bn+1; otherwise, µ is not included. There are at most double-exponentially many sequences
ν0, . . . , νk to check, for each of at most double-exponentially many bags µ in Bn; and given

ν0, . . . , νk, whether or not µ
full
≡

∑

i≤k νi can easily be determined in 2Exptime. So the
construction of Bn+1 from Bn takes 2Exptime.

Once Bn+1 is constructed, the algorithm checks (in 2Exptime) whether there is a perfect
bag in Bn+1. If not, the algorithm terminates with result ‘ϕ is unsatisfiable’.

If Bn+1 = Bn, the algorithm terminates with result ‘ϕ is satisfiable’. Otherwise, the
next iteration begins. The number of iterations is therefore bounded by |B0|, and so is at
most double exponential. This algorithm therefore terminates in 2Exptime.

If the algorithm claims that ϕ is satisfiable, then clearly the final Bn it constructed satisfies
the conditions of corollary 4.6. Conversely, if there is a set B of bags as in the corollary, then

18

a simple induction shows that B ⊆ Bn for all n. The algorithm can therefore never claim that
ϕ is unsatisfiable, and hence it will eventually state that ϕ is satisfiable. So the algorithm is
correct. ¤

4.3 Corollaries

We can easily use theorem 4.7 to obtain complexity results over additional classes of flows of
time.

Theorem 4.8 The satisfiability problem for monodic packed sentences in temporal structures
with arbitrary first-order domains, over each of the following (classes of) flows of time, is
2Exptime-complete.

1. All linear flows.

2. Discrete linear flows — those satisfying ∀x(∃y(x < y) → ∃z(x < z ∧ ¬∃t(x < t < z)))
and its mirror image obtained by replacing ‘<’ by ‘>’.

3. Dense linear flows.

4. More generally, any class C such that for some propositional temporal formula ξ written
with Until and Since, C is the class of linear flows in which ξ is satisfiable.

5. The rationals, (Q, <).

Proof. By proposition 2.5, we already have 2Exptime-hardness, so we only need prove that
the above problems are in 2Exptime. First, we show that all the problems reduce to problems
of type 1. Let ϕ be a monodic packed sentence. Clearly, ϕ is satisfiable in discrete time iff
ϕ∧¤((U(>,>) → U(>,⊥))∧(S(>,>) → S(>,⊥))) is satisfiable in linear time, and satisfiable
in dense time iff ϕ ∧ ¤(U(>,>) → ¬U(>,⊥)) is satisfiable in linear time. We next reduce
each type 4 problem to linear satisfiability. Suppose that ξ is a propositional formula and
that C is the class of all linear flows of time in which ξ is satisfiable. Given ϕ, we may rename
its non-logical symbols so that none of them occur in ξ. It is now clear that ϕ is satisfiable
over a flow of time in C iff ϕ ∧ ♦ξ is satisfiable over linear time.

It remains to deal with case 5: (Q, <). It is not hard to see that ϕ is satisfiable over Q iff
it is satisfiable in a dense linear flow of time without endpoints. This can be shown using the
downward Löwenheim–Skolem theorem (see, e.g., [11]); similar results for monodic fragments
were shown in [16, theorem 15] and [13, theorem 1]. But ϕ is satisfiable over such a flow iff
ϕ ∧ ¤(U(>,>) ∧ S(>,>) ∧ ¬U(>,⊥)) is satisfiable over linear time.

So all the problems reduce (in logarithmic space) to case 1. The theorem is therefore
established if we show that satisfiability over linear time is decidable in 2Exptime. Let ϕ
be a monodic packed sentence, and let q be a propositional atom not occurring in ϕ. Define
the temporal relativisation ϕq of ϕ to q by induction on ϕ. If ϕ is atomic we let ϕq = ϕ.
We let (ϕ ∧ ψ)q = ϕq ∧ ψq, (¬ϕ)q = ¬ϕq, and (∃x̄(γ ∧ ϕ))q = ∃x̄(γ ∧ ϕq); the main cases are
U(ϕ, ψ)q = U(q ∧ ϕq, q → ψq), and S(ϕ, ψ)q = S(q ∧ ϕq, q → ψq). It should be clear that for

19

any temporal structure M = ((T, <), D, (Mt : t ∈ T)), if (I, <) is the suborder of (T, <) with
I = {t ∈ T : Mt |= q}, then for any u ∈ I,

M, u |= ϕq ⇐⇒ ((I, <), D, (Mt : t ∈ I)), u |= ϕ. (4.3)

Finally we let

ϕδ = (q ∧ ϕq) ∧ U(>,>)
︸ ︷︷ ︸

≥2 elements

∧¤¬U(>,⊥)
︸ ︷︷ ︸

dense

∧♦¬U(>,>) ∧ ♦¬S(>,>)
︸ ︷︷ ︸

with endpoints

.

Clearly, ϕδ is in the monodic packed fragment and is constructible in logarithmic space in the
size of ϕ. It is routine to check, using (4.3), that a sentence ϕ is satisfiable over linear time iff
ϕδ has a model with dense flow of time with distinct endpoints. So by theorem 4.7, we may
decide in 2Exptime whether ϕ is satisfiable over linear time. ¤

We are unable to handle classes defined by arbitrary first-order sentences, as Until and
Since are not expressively complete over linear time (see [7] for background on this notion).
This could perhaps be remedied by adding the so-called Stavi connectives; we conjecture that
the methods described here generalise to handle these. When we come to the real numbers,
next, there will be no such limitation, as Until and Since are expressively complete over this
flow. We are unable to provide any complexity results for temporal structures with flow of
time (R, <) and with arbitrary domains — in this context, it is an open problem whether any
non-trivial monodic fragment is even decidable.

5 Complexity with finite domains over real numbers

Now we show that the satisfiability problem for the monodic packed fragment over (R, <) with
finite first-order domains is also 2Exptime-complete. We can then show by reduction that
satisfiability with finite first-order domains over a wide range of linear flows of time has the
same complexity. We adapt the decision procedure for monodic sentences over R with finite
domains given in [16] (the 3-theories and characters of that paper are replaced by mosaics
and bags here). In §4, we decomposed a quasimodel or perfect bag; now, we will build up a
perfect bag from simpler bags. We will use three kinds of building operation: taking a sum
of two bags, summing ω copies of a single bag, either forwards or backwards, and ‘shuffling’
finitely many bags densely together, with some realisable state candidates mixed in (this is
how the construction must start off). Our aim is to show that all and only the bags of pre-
quasimodels of ϕ can be built in this way. We prove by induction on the construction that
any bag constructed like this is the bag associated with a pre-quasimodel. Conversely, we use
some Ramsey theory and properties of R in a way familiar from [3, 21] to show that the bag
of any pre-quasimodel is constructible. It is then easy to lay down a 2Exptime algorithm to
test whether there exists a perfect constructible bag, and hence a quasimodel of ϕ.

In this section, all bags, realisable state candidates, pre-quasimodels, etc., are implicitly
finitary, though sometimes we say ‘finitary’ explicitly, for emphasis. We do not use full
decompositions here. All intervals (e.g., [0,1]) are intervals in (R, <); recall that we also write
[0, 1] for the linear order ([0, 1], <).

20

Definition 5.1 A bag µ is said to be realisable if there is a finitary pre-quasimodel Q for ϕ
over [0, 1] with bag(Q) = µ.

5.1 Sums of bags

Recall from definition 3.22 the notion of µ ≡ ν0 + ν1, for bags µ, ν0, ν1.

Lemma 5.2 Suppose that µ, ν0, ν1 are bags with µ ≡ ν0 +ν1. If ν0 and ν1 are realisable, then
so is µ.

Proof. For each i, let Qi = ([0, 1], (Σi
t : t ∈ [0, 1]),Ri) be a pre-quasimodel with bag(Qi) = νi.

We define Q = ([0, 1], (Σt : t ∈ [0, 1]),R) as follows. We let

Σt =

{

Σ0
2t, if t ∈ [0, 1/2],

Σ1
2t−1, if t ∈ [1/2, 1].

This is well-defined when t = 1/2, by lemma 3.23. For ri ∈ Ri (i = 0, 1) such that r0(1) =
r1(0), define r0 + r1 by

(r0 + r1)(t) =

{

r0(2t), if t ∈ [0, 1/2],

r1(2t − 1), if t ∈ [1/2, 1].

It is easily checked that r0 + r1 is a well-defined run in
∏

t∈[0,1] Σt and mos(r0 + r1) =
mos(r0) + mos(r1). Now we define R.

1. Let m ∈ µ. There are n0 ∈ ν0 and n1 ∈ ν1 with m = n0 + n1. Pick ri ∈ Ri with
mos(ri) = ni (i = 0, 1), and put r0 + r1 into R. Note that mos(r0 + r1) = m. Do this
for each m ∈ µ.

2. Let i < 2 and ri ∈ Ri. Let ni = mos(ri) ∈ νi. There is n1−i ∈ ν1−i with n0 + n1 ∈ µ.
Pick r1−i ∈ R1−i with mos(r1−i) = n1−i, and put r0+r1 into R. Again, mos(r0+r1) ∈ µ.
Do this for each i < 2 and each of the finitely many ri ∈ Ri (recall that Qi is finitary).

Clearly, R is finite. We check that Q is a finitary pre-quasimodel. Clearly, r(t) ∈ Σt for all
r ∈ R and t ∈ [0, 1]. Let t ∈ [0, 1] and p ∈ Σt. We require p = r(t) for some r ∈ R. Suppose
that t ∈ [0, 1/2]; the other case is similar. As p ∈ Σ0

2t and Q0 is a pre-quasimodel, there is
r0 ∈ R0 with r0(2t) = p. By the second clause defining R, there is r1 ∈ R1 with r0 + r1 ∈ R;
then (r0 + r1)(t) = r0(2t) = p as required.

Now we check that bag(Q) = µ. It is clear by construction that mos(r) ∈ µ for every
r ∈ R. Conversely, let m ∈ µ. By the first clause defining R, there are n0 ∈ ν0, n1 ∈ ν1

with m = n0 + n1, and ri ∈ Ri (i = 0, 1) with mos(ri) = ni and r0 + r1 ∈ R. Clearly,
mos(r) = m. ¤

21

5.2 Iteration

Now we consider sums of ω copies of a fixed mosaic and bag.

Definition 5.3

1. Let m, n be mosaics. We write m ≡ n · ω if st(m) = st(n) = end(n), cov(m) =
st(n) ∪ cov(n), and for each formula S(α, β) ∈ end(m), we have ¬β /∈ cov(m).

We write m ≡ n · ω∗ if the mirror image of this holds.

2. Let µ, ν be bags. We write µ ≡ ν · ω if

(a) for each m ∈ µ there is n ∈ ν with m ≡ n · ω,

(b) for each n ∈ ν there is m ∈ µ with m ≡ n · ω.

We define µ ≡ ν · ω∗ similarly.

Observe that if µ ≡ ν · ω or µ ≡ ν · ω∗ then st(ν) = end(ν).

Lemma 5.4 Let µ, ν be bags with µ ≡ ν · ω. If ν is realisable then so is µ. The same holds
when µ ≡ ν · ω∗.

Proof. Let Q = ([0, 1], (Σt : t ∈ [0, 1]),R) be a pre-quasimodel with bag(Q) = ν. We will
define a pre-quasimodel Q∗ = ([0, 1], (Σ∗

t : t ∈ [0, 1]),R∗) with bag(Q∗) = µ. Pick real
numbers 0 = x0 < x1 < · · · < 1 with sup{xi : i < ω} = 1, and an order-isomorphism
θi : [xi, xi+1] → [0, 1] for each i < ω. For t ∈ [0, 1], define

Σ∗
t =

{

Σθi(t), if i < ω and t ∈ [xi, xi+1],

end(µ), if t = 1.

This is well-defined, since st(ν) = end(ν) and so Σ0 = Σ1; it is a realisable state candidate
since Q is a pre-quasimodel and µ a bag. For each m ∈ µ and n ∈ ν with m ≡ n · ω, and
r ∈ R with mos(r) = n, define rm ∈

∏

t∈[0,1] Σ
∗
t by

rm(t) =

{

r(θi(t)), if i < ω and t ∈ [xi, xi+1],

end(m), if t = 1.

Since m ≡ n · ω, r(0) = st(m) = end(m) = r(1), so this is well-defined.

Claim. rm is a run and mos(rm) = m.

Proof of claim. We have rm(0) = r(0) = st(n) = st(m), and rm(1) = end(m). Also,
⋃

t∈(0,1) rm(t) =
⋃

t∈[0,1] r(t) = st(n) ∪ end(n) ∪ cov(n) = cov(m). Hence, mos(rm) = m.

Now we check that rm is a run. As m is a mosaic, we know by lemma 3.14 that for each
constant c ∈ L and each t, u ∈ [0, 1], x = c ∈ rm(t) iff x = c ∈ rm(u). Now let t ∈ [0, 1); let
i < ω be such that t ∈ [xi, xi+1). Let U(α, β) ∈ subxϕ.

First assume that U(α, β) ∈ rm(t) and that there is no u ∈ (t, 1] with α ∈ rm(u) and
β ∈ rm(v) for all v ∈ (t, u). So U(α, β) ∈ r(θi(t)), and there is no u ∈ (θi(t), 1] with α ∈ r(u)

22

and β ∈ r(v) for all v ∈ (t, u). As r is a run, we obtain U(α, β) ∈ r(1) = end(n) = st(n) =
r(0) = st(m), and β ∈

⋂

v∈(θi(t),1] r(v). So U(α, β) ∈ rm(xi+1). Now if there is u ∈ (xi+1, xi+2]
with α ∈ rm(u) and β ∈ rm(v) for all v ∈ (xi+1, u), then β ∈ rm(v) for all v ∈ (t, u) and we
contradict our assumption on rm. So there is no u ∈ (0, 1] with α ∈ r(u) and β ∈ r(v) for
all v ∈ (0, u). As U(α, β) ∈ r(0) and r is a run, we deduce that β,¬α ∈

⋂

v∈(0,1] r(v). As the
r(v) are types, we obtain α,¬β /∈

⋃

v∈(0,1] r(v) = cov(n) ∪ end(n) = cov(m).
Now m is a mosaic and U(α, β) ∈ st(m): so α ∈ cov(m)∪ end(m) or β,U(α, β) ∈ end(m).

Since α /∈ cov(m), we get α ∈ end(m) = rm(1) or β,U(α, β) ∈ end(m) = rm(1), and we
already have β ∈ rm(u) for all u ∈ (t, 1). We are done.

Next, suppose that there is u ∈ (t, 1) with α ∈ rm(u) and β ∈ rm(v) for all v ∈ (t, u).
Let i ≤ j < ω with u ∈ (xj , xj+1]. If j = i we obtain U(α, β) ∈ rm(t) since r is a run.
If j > i, we obtain U(α, β) ∈ rm(xj) = r(1) and β ∈ r(v) for all v ∈ (θi(t), 1], so again
U(α, β) ∈ r(θi(t)) = rm(t) since r is a run.

Now assume that α ∈ rm(1) or β,U(α, β) ∈ rm(1), and β ∈ rm(v) for all v ∈ (t, 1). Then
¬β /∈ cov(n) ∪ end(n) = cov(m). As rm(1) = end(m) and m is a mosaic, U(α, β) ∈ st(m) =
r(0). Hence also, U(α, β) ∈ st(m) = end(n) = r(1). As clearly β ∈

⋂

v∈(0,1] r(v), and r is a
run, we obtain U(α, β) ∈

⋂

v∈(0,1) r(v). It follows that U(α, β) ∈ rm(t).

Now let t ∈ (0, 1] and S(α, β) ∈ subxϕ. Most checks are similar to the Until case, except
when t = 1. We consider only this case. Assume that S(α, β) ∈ rm(1) = end(m). Because
m ≡ n · ω, we have ¬β /∈ cov(m). As m is a mosaic, α ∈ st(m) ∪ cov(m) = st(n) ∪ cov(n),
or β,S(α, β) ∈ st(m) = st(n). We know from ¬β /∈ cov(m) that β ∈ rm(t) for all t < 1.
So (∗) α ∈ rm(t) for some t ∈ [0, 1) with β ∈ rm(u) for all u ∈ (t, 1), or S(α, β) ∈ rm(0)
and β ∈ rm(u) for all u ∈ [0, 1), as required. Conversely, if (∗) holds, then we easily obtain
¬β /∈ cov(m) and, because r is a run, β,S(α, β) ∈ r(1) = st(m). So S(α, β) ∈ end(m) as m is
a mosaic. This proves the claim.

Now we define R∗.

1. For each m ∈ µ, pick n ∈ ν with m ≡ n · ω, and r ∈ R with mos(r) = n, and put rm

into R∗.

2. For each r ∈ R, let n = mos(r) ∈ ν, pick m ∈ µ with m ≡ n · ω, and put rm into R∗.

Clearly, R∗ is finite (since R is). It can be checked that Q∗ = ([0, 1], (Σ∗
t : t ∈ [0, 1]),R∗) is a

finitary pre-quasimodel with bag(Q∗) = µ. The proof when µ ≡ ν ·ω∗ is the mirror image. ¤

5.3 Shuffles

This is the most interesting step. We ‘shuffle’ finitely many mosaics and types, and finitely
many bags and realisable state candidates, densely together.

Definition 5.5 Let β be a set of mosaics, let τ be a non-empty set of types for ϕ, and let m
be a mosaic. We write m ≡ sh(β, τ) (‘shuffle’) if

1. cov(m) =
⋃

τ ∪
⋃

n∈β

(
st(n) ∪ cov(n) ∪ end(n)

)
,

23

2. for each formula U(α, β) ∈ subxϕ, the following are equivalent:

(a) U(α, β) ∈ st(m),

(b) ¬β /∈ cov(m) and ¬U(α, β) /∈ cov(m),

(c) U(α, β) ∈
⋃

τ ∪
⋃

n∈β end(n).

3. a mirror image condition for Since-formulas.

For example, imagine that we replace every rational q in (0, 1) by a copy Iq of [0, 1]
(this process is formalised in the proof of proposition 5.8 below). The resulting flow of time
remains isomorphic to [0, 1]. Imagine a run r over it, whose restriction rq to each Iq satisfies
mos(rq) ∈ β, and each mosaic in β is equal to mos(rq) for a dense set of rationals q; and
similarly, each r(i) for irrational i ∈ (0, 1) is in τ , and each type in τ is the value of r(i) for a
dense set of i. Then we will have mos(r) ≡ sh(β, τ).

Definition 5.6 Let B be a set of bags and C a non-empty set of realisable state candidates.
Let µ be a bag. We write µ ≡ sh(B, C) if

1. for each m ∈ µ, there are β ⊆
⋃

B with β ∩ ν 6= ∅ for all ν ∈ B, and τ ⊆
⋃

C with
τ ∩ Σ 6= ∅ for all Σ ∈ C, such that m ≡ sh(β, τ),

2. for each X ∈
⋃

B ∪
⋃

C, there are m ∈ µ, β ⊆
⋃

B with β ∩ ν 6= ∅ for all ν ∈ B, and
τ ⊆

⋃
C with τ ∩ Σ 6= ∅ for all Σ ∈ C, such that X ∈ β ∪ τ and m ≡ sh(β, τ).

Though there is no prior restriction on the sizes of B, C in shuffles, we can easily obtain
one:

Lemma 5.7 Let B be a set of bags, C a non-empty set of realisable state candidates, and
µ a bag. Suppose that µ ≡ sh(B, C). Then there are B0 ⊆ B and non-empty C0 ⊆ C with
|B0| ≤](ϕ) and |C0| ≤ \(ϕ), and with µ ≡ sh(B0, C0). (Here,], \ are as in lemma 3.20.)

Proof.
⋃

B is a set of mosaics, so |
⋃

B| is bounded by the number of mosaics for ϕ, which is
at most](ϕ) (see lemma 3.20). So we can choose B0 ⊆ B with |B0| ≤](ϕ) and

⋃
B0 =

⋃
B.

Similarly, we may choose C0 ⊆ C with |C0| ≤ \(ϕ) and
⋃

C0 =
⋃

C. It is plain that C0 6= ∅ and
µ ≡ sh(B0, C0). ¤

The conditions in definition 5.6 above are what is needed to ensure that — roughly
speaking — if µ ≡ sh(B, C) then a pre-quasimodel with bag µ can be obtained by replacing
each rational in [0, 1] by a pre-quasimodel with bag in B, and replacing each irrational in [0, 1]
with a realisable state candidate from C, all to be done densely and bringing in the whole of
B and C. This is the content of the next proposition.

Proposition 5.8 Let B be a (possibly empty) set of realisable bags and C a non-empty set of
realisable state candidates. Let µ be a bag with µ ≡ sh(B, C). Then µ is realisable.

24

Proof. For each ν ∈ B, let

Qν = ([0, 1], (Σν
t : t ∈ [0, 1]),Rν)

be a pre-quasimodel such that bag(Qν) = ν. Choose a map ξ : (0, 1) → B ∪ C such that
ξ−1(X) = {t ∈ (0, 1) : ξ(t) = X} is dense in (0, 1) for each X ∈ B ∪ C and countable for each
X ∈ B; we can do this because C 6= ∅. Let

S = {t ∈ (0, 1) : ξ(t) ∈ B}.

S is either empty or a countable dense subset of [0, 1]. Define a linear order It for each
t ∈ [0, 1], by

It =

{

[0, 1], if t ∈ S,

[0, 0], otherwise.

Define I to be the linear order
∑

t∈[0,1] It; formally this is

I =
⋃ {

It × {t} : t ∈ [0, 1]
}
,

endowed with the lexicographic ordering 〈x, t〉 < 〈y, u〉 iff t < u or (t = u and x < y). I has
endpoints and is dense, Dedekind complete, and separable; so (see, e.g., [27, theorem 2.30])
it is isomorphic to [0, 1]. So it suffices to provide a finitary pre-quasimodel Q = (I, (Σi : i ∈
I),R) over I with bag(Q) = µ.

First we define the realisable state candidates Σ〈x,t〉 for 〈x, t〉 ∈ I:

Σ〈x,t〉 =







st(µ), if t = 0,

end(µ), if t = 1,

Σ
ξ(t)
x , if t ∈ S,

ξ(t), if t ∈ (0, 1) \ S.

We now attempt to define R. This will take some time. First, choose an equivalence
relation ∼ on (0, 1) refining ker(ξ) (i.e., with t ∼ u ⇒ ξ(t) = ξ(u)), such that each ∼-class is
dense in (0, 1), and with |ξ−1(X)/∼| = |X| for each X ∈ B ∪ C. Note that there are finitely
many ∼-classes. Let Z be the set of all maps ζ defined on (0, 1) and such that

ζ(t) = ζ(u) for all t, u ∈ (0, 1) with t ∼ u,
ζ(t) ∈ Rξ(t) if t ∈ S,

ζ(t) ∈ ξ(t) if t ∈ (0, 1) \ S.

Note that Z is finite. Each ζ ∈ Z picks a type or a run for each ∼-class. It induces a choice
of type for each interior point of I, and we will extend this to a run over I. For each ζ ∈ Z,
let

βζ = {mos(ζ(t)) : t ∈ S} ⊆
⋃

B,

τζ = {ζ(t) : t ∈ (0, 1) \ S} ⊆
⋃

C.

Note that τζ 6= ∅.

25

Lemma 5.9 Suppose that β ⊆
⋃

B with β ∩ ν 6= ∅ for all ν ∈ B, and τ ⊆
⋃

C with τ ∩Σ 6= ∅
for all Σ ∈ C.

1. Let t0 ∈ S and s ∈ Rξ(t0) be such that mos(s) ∈ β. Then there is ζ ∈ Z with ζ(t0) = s,
βζ = β, and τζ = τ .

2. Let t1 ∈ (0, 1) \ S and p ∈ ξ(t1) ∩ τ . Then there is ζ ∈ Z with ζ(t1) = p, βζ = β, and
τζ = τ .

Proof. For each ν ∈ B, we have |ξ−1(ν)/∼| = |ν| ≥ |β ∩ ν| > 0, so since ν = bag(Qν) =
{mos(r) : r ∈ Rν}, we may choose a map θν : ξ−1(ν)/∼ → Rν such that

{
mos(θν(t/∼)) : t ∈ ξ−1(ν)

}
= β ∩ ν. (5.1)

In part 1 of the lemma, we may assume that θξ(t0)(t0/∼) = s. Similarly, for each Σ ∈ C, we
have |ξ−1(Σ)/∼| = |Σ| ≥ |τ ∩ Σ| > 0, so we may choose a surjection θΣ : ξ−1(Σ)/∼ → τ ∩ Σ.
In part 2 of the lemma, we may assume that θξ(t1)(t1/∼) = p.

Now define ζ(t) = θξ(t)(t/∼), for each t ∈ (0, 1). Clearly, ζ ∈ Z. In part 1 of the lemma,
we have ζ(t0) = s, and in part 2 we have ζ(t1) = p. By (5.1), for each ν ∈ B we have
{mos(ζ(t)) : t ∈ (0, 1), ξ(t) = ν} = β ∩ ν. It follows that

βζ = {mos(ζ(t)) : t ∈ S} =
⋃

ν∈B

(β ∩ ν) = β.

Similarly, τζ = τ . ¤

Now, for each ζ ∈ Z and m ∈ µ with m ≡ sh(βζ , τζ), define r = rm
ζ ∈

∏

i∈I Σi by

r(x, t) =







st(m), if t = 0,

end(m), if t = 1,

(ζ(t))(x), if t ∈ S,

ζ(t), if t ∈ (0, 1) \ S.

(Here and below, we write r(x, t) instead of r(〈x, t〉).)

Lemma 5.10 Let m ∈ µ, ζ ∈ Z, and suppose that m ≡ sh(βζ , τζ). Then r = rm
ζ is a run

over I, and mos(r) = m.

Proof. That mos(r) = m is easily seen. We have r(0, 0) = st(m), r(0, 1) = end(m), and

⋃

〈x,t〉∈I,t∈(0,1)

r(x, t) =

(
⋃

t∈(0,1)\S

ζ(t)

)

∪

(
⋃

t∈S,x∈[0,1]

ζ(t)(x)

)

=
⋃

τζ ∪
⋃

t∈S

(
st(mos(ζ(t))) ∪ cov(mos(ζ(t))) ∪ end(mos(ζ(t)))

)

=
⋃

τζ ∪
⋃

n∈βζ

(
st(n) ∪ cov(n) ∪ end(n)

)

= cov(m).

26

Now we check that r is a run. As mos(r) is a mosaic, for any constant c in L, and any
〈x, t〉, 〈y, u〉 ∈ I, if x = c ∈ r(x, t) then by lemma 3.14, x = c ∈ r(y, u). Next, let U(α, β) ∈
subxϕ and 〈x, t〉 ∈ I with t < 1.

1. Assume that U(α, β) ∈ r(x, t), and that there is no ‘witness’ 〈y, u〉 > 〈x, t〉 in I with
u < 1, α ∈ r(y, u), and β ∈ r(z, v) for all 〈z, v〉 ∈ (〈x, t〉, 〈y, u〉). We show first that
U(α, β) ∈ st(m).

(a) If t = 0, then obviously U(α, β) ∈ r(0, 0) = st(m).

(b) Assume now that t ∈ S. We have U(α, β) ∈ ζ(t)(x), and there is no witness to
it in ζ(t). As ζ(t) is a run, we must have U(α, β) ∈ ζ(t)(1) = end(mos(ζ(t))) ⊆
⋃

n∈βζ
end(n). As m ≡ sh(βζ , τζ), we obtain U(α, β) ∈ st(m).

(c) If t ∈ (0, 1) \ S, then U(α, β) ∈ r(x, t) = ζ(t) ⊆
⋃

τζ , so by the shuffle conditions
we again obtain U(α, β) ∈ st(m).

Since m ≡ sh(βζ , τζ), it now follows from the shuffle conditions that ¬β /∈ cov(m). So
β ∈ r(z, v) for all 〈z, v〉 ∈ (〈x, t〉, 〈1, 0〉). By density and lack of a witness, we also
have α /∈ cov(m). As m is a mosaic, either α ∈ end(m) = r(0, 1), or else β,U(α, β) ∈
end(m) = r(0, 1), as required.

2. Next suppose that there is 〈y, u〉 > 〈x, t〉 in I with α ∈ r(y, u) and β ∈ r(z, v) for all
〈z, v〉 ∈ (〈x, t〉, 〈y, u〉). We require that U(α, β) ∈ r(x, t).

(a) If t = u, then t ∈ S, so α ∈ ζ(t)(y) and β ∈ ζ(t)(z) for all z ∈ It with x < z < y.
As ζ(t) ∈ Rξ(t) is a run, we obtain U(α, β) ∈ ζ(t)(x) = r(x, t).

(b) Assume then that t < u. So by density, ¬β /∈ cov(m), and also α ∈ cov(m) ∪
end(m). As m is a mosaic, we have U(α, β) ∈ st(m). By shuffle conditions, this
implies that ¬U(α, β) /∈ st(m) ∪ cov(m) ⊇ r(x, t), so that U(α, β) ∈ r(x, t).

3. Finally suppose that U(α, β) ∈ r(0, 1) = end(m) and β ∈ r(z, v) for all 〈z, v〉 > 〈x, t〉.
Again we obtain ¬β /∈ cov(m) by density conditions, and clearly, β ∈ end(m). As
m is a mosaic, U(α, β) ∈ st(m). So by shuffle conditions, ¬U(α, β) /∈ cov(m). As
r(x, t) ⊆ st(m) ∪ cov(m), it follows that U(α, β) ∈ r(x, t) as before.

The proof for Since is a mirror image argument. ¤

We now define
R =

{
rm
ζ : ζ ∈ Z, m ∈ µ, m ≡ sh(βζ , τζ)

}
.

By lemma 5.10, R is a finite set of runs.

Claim 1. {mos(r) : r ∈ R} = µ.

Proof of claim. If r = rm
ζ ∈ R then by lemma 5.10, mos(r) = m ∈ µ. Conversely, let

m ∈ µ. Since µ ≡ sh(B, C), we have m ≡ sh(β, τ) for some β ⊆
⋃

B with β ∩ ν 6= ∅ for all
ν ∈ B, and some τ ⊆

⋃
C with τ ∩ Σ 6= ∅ for all Σ ∈ C. By lemma 5.9, there is ζ ∈ Z with

βζ = β and τζ = τ . So m ≡ sh(βζ , τζ), so rm
ζ ∈ R, and by lemma 5.10, mos(rm

ζ) = m. This
proves the claim.

27

Claim 2. Σi = {r(i) : r ∈ R} for each i ∈ I.

Proof of claim. It follows from the definitions that r(x, t) ∈ Σ〈x,t〉 for all 〈x, t〉 ∈ I and
rm
ζ ∈ R. For the converse, take 〈x, t〉 ∈ I and a type p ∈ Σ〈x,t〉. We have to produce r ∈ R

with r(x, t) = p. There are three cases.

1. If t ∈ {0, 1}, then p = st(m) or p = end(m) for some m ∈ µ. By claim 1, there is r ∈ R
with mos(r) = m, and it follows that r(x, t) = p.

2. If t ∈ S, let ν = ξ(t). Then p ∈ Σν
x, so as Qν is a pre-quasimodel, there is s ∈ Rν

with s(x) = p. Let mos(s) = n ∈ ν. Since µ ≡ sh(B, C), there are β ⊆
⋃

B, τ ⊆
⋃

C,
and m ∈ µ, with n ∈ β, β ∩ ν ′ 6= ∅ for each ν ′ ∈ B, τ ∩ Σ 6= ∅ for each Σ ∈ C, and
m ≡ sh(β, τ). By lemma 5.9, there is ζ ∈ Z with ζ(t) = s, βζ = β, and τζ = τ . So
rm
ζ ∈ R and rm

ζ (x, t) = ζ(t)(x) = s(x) = p.

3. Now assume that t ∈ (0, 1) \ S. As µ ≡ sh(B, C), there are m ∈ µ, β ⊆
⋃

B with
β ∩ ν 6= ∅ for all ν ∈ B, and τ ⊆

⋃
C with τ ∩ Σ 6= ∅ for all Σ ∈ C, such that p ∈ τ and

m ≡ sh(β, τ). By lemma 5.9, there is ζ ∈ Z with ζ(t) = p, βζ = β, and τζ = τ . Then
rm
ζ ∈ R and rm

ζ (x, t) = ζ(t) = p.

This proves the claim. We can now see that Q = (I, (Σi : i ∈ I),R) is a finitary pre-
quasimodel with bag(Q) = m. ¤

5.4 Soundness and completeness

We now show that our syntactic constructions of bags exactly match pre-quasimodels. We
repeat that all bags, pre-quasimodels, realisable state candidates, etc., are implicitly assumed
to be finitary.

Definition 5.11 Define sets Sn (n < ω) of bags by induction as follows. Let S0 = ∅. Given
S3n for n < ω, define:

• S3n+1 is the union of S3n and the set of all bags µ such that µ ≡ sh(B, C) for some
B ⊆ Sn and some non-empty set C of realisable state candidates,

• S3n+2 is the union of S3n+1 and the set of all bags µ such that there are bags ν0, ν1 ∈
S3n+1 with µ ≡ ν0 + ν1,

• S3n+3 is the union of S3n+2 and the set of all bags µ such that µ ≡ ν · ω or µ ≡ ν · ω∗

for some ν ∈ S3n+2.

A bag µ is said to be constructible if µ ∈
⋃

n<ω Sn. That is, µ is obtainable from realisable
state candidates by finitely many applications of shuffle, ·ω, ·ω∗, and + (see definitions 5.3,
5.6, and 3.22).

Proposition 5.12 A bag is constructible iff it is realisable.

28

Proof. A simple induction on n, using lemmas 5.2 and 5.4 and proposition 5.8, shows that
every bag in Sn is realisable.

The converse is similar to proofs in [16, 3, 21], so we will be brief. Take a finitary pre-
quasimodel Q = ([0, 1], (Σt : t ∈ [0, 1]),R). We wish to show that bag(Q) is constructible.
Define a binary relation ∼ on [0, 1], by x ∼ y iff x = y, or x < y and for all x ≤ z < t ≤ y,
bag(Q ¹ [z, t]) is constructible, or x > y and for all y ≤ z < t ≤ x, bag(Q ¹ [z, t]) is
constructible. It is easily checked that if x < y < z in [0, 1] then

bag(Q ¹ [x, z]) ≡ bag(Q ¹ [x, y]) + bag(Q ¹ [y, z]). (5.2)

It follows that ∼ is transitive, and hence an equivalence relation. Clearly, each ∼-class E is
convex. We claim it is a closed interval in R. Suppose for example that y = sup(E). We
show that y ∈ E. Of course, y ∈ [0, 1], so it suffices to check that for each x ∈ E with x < y,
bag(Q ¹ [x, y]) is constructible. Choose x < x0 < x1 < · · · in E with sup{xi : i < ω} = y.
For a non-singleton closed interval I ⊆ [0, 1], let

χ(I) = 〈mos(r ¹ I) : r ∈ R〉.

Since R is finite, χ is finitely-valued. So we may suppose by Ramsey’s theorem [24] that
χ([xi, xj]) is constant for all i < j < ω. It can now be checked that bag(Q ¹ [x0, y]) ≡
bag(Q ¹ [x0, x1]) · ω. As x0 ∼ x1, bag(Q ¹ [x0, x1]) is constructible, so bag(Q ¹ [x0, y]) is
constructible too. It follows by (5.2) that bag(Q ¹ [x, y]) is constructible as required. The
case of y = inf(E) is similar, using · ω∗.

Hence, bag(Q ¹ E) is constructible for each ∼-class E with |E| > 1. So it suffices to show
that [0, 1] is a ∼-class.

Assume for contradiction that there are at least two ∼-classes. Since ∼-classes are closed
intervals, the condensation ordering [0, 1]/∼ is dense. Extend the aforementioned map χ to
singleton intervals by

χ([t, t]) = 〈r(t) : r ∈ R〉.

Choose a non-empty open interval O ⊆ [0, 1]/∼ such that |{χ(E) : E ∈ O}| is least possible.
So each value that χ takes on O is its value on a dense set of elements of O. Standard
arguments using separability of R show that there is a dense set of singleton ∼-classes in O.
So C = {Σt : [t, t] ∈ O} 6= ∅. Let B = {bag(Q ¹ E) : E ∈ O, |E| > 1}. Each ν ∈ B is
constructible.

Now take any x, y ∈
⋃

O with x < y. We claim that bag(Q ¹ [x, y]) is constructible.

1. If x ∼ y, this is clear.

2. Assume that x 6∼ y and suppose that x is maximal and y minimal in their respective
∼-classes. It can be checked that for any r ∈ R we have

mos(r ¹ [x, y]) ≡ sh
(
{mos(r ¹ E) : E ∈ O, |E| > 1}, {r(t) : [t, t] ∈ O}

)
.

Hence, bag(Q ¹ [x, y]) ≡ sh(B, C), so is constructible.

29

3. Assume that x 6∼ y and suppose that x is maximal in its ∼-class but y > y− = inf(y/∼).
Then y ∼ y−, so bag(Q ¹ [y−, y]) is constructible. As above, bag(Q ¹ [x, y−]) is
constructible. Then by (5.2), bag(Q ¹ [x, y]) is constructible.

4. The other two cases are proved by combinations of similar arguments.

This proves the claim. It follows that x ∼ y for any x, y ∈
⋃

O, contradicting that O contains
more than one ∼-class. ¤

5.5 The algorithm

Theorem 5.13 The problem of whether a monodic packed sentence is satisfiable in a temporal
structure with finite first-order domain and flow of time [0, 1] is 2Exptime-complete.

Proof. The problem is certainly 2Exptime-hard, by proposition 2.5. We turn to finding an
2Exptime algorithm for satisfiability. Take a monodic packed sentence ϕ. The following are
equivalent:

1. ϕ is satisfiable over [0, 1],

2. there exists a finitary quasimodel for ϕ over [0, 1] (by fact 3.10),

3. there exists a perfect realisable finitary bag (by lemma 3.19),

4. there exists a perfect constructible finitary bag (by proposition 5.12).

But the latter condition is easy to decide by a 2Exptime algorithm. We simply construct
the sets Sn of definition 5.11 by induction, stopping when either a perfect bag is found in Sn,
or when Sn = Sn+1 and no perfect bag has been found. We note that S3n+1 is constructible
from S3n in 2Exptime, since by lemma 5.7, S3n+1 is the union of S3n and the set of all bags
µ such that µ ≡ sh(B, C) for some B ⊆ Sn with |B| ≤](ϕ), and some non-empty set C of
realisable state candidates with |C| ≤ \(ϕ). These bounds are exponential (see lemma 3.20);
and since S3n is a set of bags and so is at most double-exponential in size, there are at most
double exponentially many sets B ⊆ S3n and sets C of realisable state candidates to consider.
So, much as in theorem 4.7, it is easily seen that the chain of Sn can be constructed in
2Exptime. ¤

5.6 Corollaries

The following is easily obtainable by the techniques of proposition 4.8 and the expressive
completeness of Until and Since over R ([19]; other proofs are given in [7]). Similar reductions
were given in [16, corollary 37]. The case of (N, <) was first proved in [14].

Theorem 5.14 The satisfiability problem for monodic packed sentences in temporal struc-
tures with finite first-order domains, and with flow of time (in) any of the following, is
2Exptime-complete:

1. (R, <)

30

2. (N, <)

3. (Z, <)

4. the class of all finite linear flows of time

5. the class of all linear flows of time

6. (Q, <)

7. any given first-order-definable class of linear flows of time.

Proof. By proposition 2.5, we only have to show that the satisfiability problems are solvable
in 2Exptime. Consider the case of (R, <). For any monodic packed L-sentence ϕ, let

ϕρ = (q ∧ ϕq) ∧ ♦
(
¬q ∧ ¬S(>,>) ∧ U(¬q ∧ ¬U(>,>), q)

)
,

where the relativisation ϕq is as in theorem 4.8. If this formula is true at some time in a
temporal structure M = ([0, 1], D, (Mt : t ∈ [0, 1])) with finite domain D, then q is true in
M at just the points in (0, 1), and ϕ is true at some time point in the restricted structure
((0, 1), D, (Mt : t ∈ (0, 1))). The flow of time of this structure is isomorphic to (R, <).
Conversely, if ϕ is satisfiable in a temporal structure with flow of time R and finite domain,
then it is true at some time u in a temporal structure of the form ((0, 1), D, (Mt : t ∈ (0, 1)))
with finite D, since ((0, 1), <) ∼= (R, <). Let Nt be an expansion of Mt making q true (for each
t ∈ (0, 1)), and let N0, N1 be arbitrary L-structures with domain D and making q false. Then
([0, 1], D, (Nt : t ∈ [0, 1])), u |= ϕρ. We conclude that ϕ has a model with flow of time (R, <)
iff ϕρ has a model with flow of time [0, 1]. So part 1 follows by reduction from theorem 5.13.
The remaining cases are covered by reductions given in [16, corollary 37]. ¤

6 Concluding remarks

We have established 2Exptime-completeness of the satisfiability problem for the monodic
packed fragment over temporal structures with arbitrary and with finite first-order domains,
over a range of (classes of) linear flows of time.

Remark 6.1 Theorems 4.8 and 5.14 also hold for the monodic guarded and monodic loosely
guarded fragments, since the first-order guarded and loosely guarded fragments are 2Exptime-
complete subfragments of the packed fragment, and have the finite model property.

Various issues remain outstanding:

1. It may be of interest to extend the results of section 4 to classes of linear flows of time
defined by arbitrary first-order sentences.

2. Though modifications would be needed because equality may have to be omitted, our
algorithms may work for other monodic fragments for which the problem of decid-
ing whether a state candidate is realisable is 2Exptime-hard. If this problem is, say,

31

2Expspace-complete, then we would expect a 2Expspace algorithm for the monodic
fragment. We would also expect our methods to provide 2Exptime algorithms to decide
the monadic and 2-variable monodic fragments over the same flows of time, but this
may not be best possible as in these cases only Expspace-hardness is known. Further
work is needed here.

3. As we said earlier, it would be highly desirable to give an Expspace algorithm to decide
monodic fragments of which the first-order part is decidable in Expspace, over the flows
of time considered here.

4. Among other important open problems, chief is whether any non-trivial monodic frag-
ment is even decidable with arbitrary first-order domains over the real numbers.

5. It may be of interest to devise tableau-style algorithms to decide the problems addressed
in this paper. Complexity results for monodic fragments over branching time also need
to be established.

References

[1] H. Andréka, J. van Benthem, and I. Németi, Modal logics and bounded fragments of
predicate logic, J. Philosophical Logic 27 (1998), 217–274.

[2] S. Bauer, I. Hodkinson, F. Wolter, and M. Zakharyaschev, On non-local propositional
and local one-variable quantified CTL∗, Proc. 9th Internat. symposium on temporal rep-
resentation and reasoning (TIME-2002) (Manchester, UK) (M. Fisher and A. Artale,
eds.), IEEE Inc, July 2002, Available at http://www.dcs.kcl.ac.uk/staff/mz, pp. 2–9.

[3] J. P. Burgess and Y. Gurevich, The decision problem for linear temporal logic, Notre
Dame J. Formal Logic 26 (1985), no. 2, 115–128.

[4] A. Chandra, D. Kozen, and L. Stockmeyer, Alternation, J. ACM 28 (1981), 114–133.

[5] A. Degtyarev, M. Fisher, and B. Konev, Monodic temporal resolution, Proceedings of
CADE’19: International Conference on Automated Deduction (Berlin) (F. Baader, ed.),
Lecture Notes in Computer Science, Springer-Verlag, 2003.

[6] A. Degtyarev, M. Fisher, and A. Lisitsa, Equality and monodic first-order temporal logic,
Studia Logica 72 (2002), 147–156.

[7] D. Gabbay, I. Hodkinson, and M. Reynolds, Temporal logic: mathematical foundations
and computational aspects, vol. 1, Clarendon Press, Oxford, 1994.

[8] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev, Many-dimensional modal
logics: theory and applications, Studies in Logic, vol. 148, North-Holland, Amsterdam,
2003.

32

[9] E. Grädel, Decision procedures for guarded logics, Automated Deduction - CADE16,
LNCS, vol. 1632, Springer-Verlag, 1999, Proceedings of 16th International Conference
on Automated Deduction, Trento, 1999, pp. 31–51.

[10] , On the restraining power of guards, J. Symbolic Logic 64 (1999), 1719–1742.

[11] W. Hodges, Model theory, Encyclopedia of mathematics and its applications, vol. 42,
Cambridge University Press, 1993.

[12] I. Hodkinson, Loosely guarded fragment of first-order logic has the finite model property,
Studia Logica 70 (2002), 205–240.

[13] , Monodic packed fragment with equality is decidable, Studia Logica 72 (2002),
185–197.

[14] I. Hodkinson, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev, On the com-
putational complexity of decidable fragments of first-order linear temporal logics, Proc.
TIME-ICTL (M. Reynolds and A. Sattar, eds.), IEEE, 2003, pp. 91–98.

[15] I. Hodkinson and M. Otto, Finite conformal hypergraph covers and Gaifman cliques in
finite structures, Bull. Symbolic Logic 9 (2003), 387–405.

[16] I. Hodkinson, F. Wolter, and M. Zakharyaschev, Decidable fragments of first-order tem-
poral logics, Ann. Pure Appl. Logic 106 (2000), 85–134.

[17] , Monodic fragments of first-order temporal logics: 2000–2001 A.D., Logic for
Programming, Artificial Intelligence and Reasoning (R. Nieuwenhuis and A. Voronkov,
eds.), LNAI, vol. 2250, Springer-Verlag, 2001, pp. 1–23.

[18] , Decidable and undecidable fragments of first-order branching temporal logics,
Proc. 17th IEEE Symposium on Logic in Computer Science (LICS), IEEE Inc., 2002,
pp. 393–402.

[19] H. Kamp, Tense logic and the theory of linear order, Ph.D. thesis, University of Califor-
nia, Los Angeles, 1968.

[20] B. Konev, A. Degtyarev, and M. Fisher, Handling equality in monodic temporal resolu-
tion, Logic for Programming and Automated Reasoning (LPAR 2003) (Berlin) (M. Vardi
and A. Voronkov, eds.), Lecture Notes in Artificial Intelligence, vol. 2850, Springer-
Verlag, 2003.

[21] H. Läuchli and J. Leonard, On the elementary theory of linear order, Fundamenta Math-
ematicae 59 (1966), 109–116.

[22] M. Marx, Tolerance logic, J. Logic, Language and Information 10 (2001), 353–373.

[23] V. R. Pratt, Models of program logics, Proc. 20th IEEE Symposium on Foundations of
Computer Science, San Juan, 1979, pp. 115–122.

33

[24] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–286.

[25] M. Reynolds, The complexity of temporal logic over the reals, (2001), Preprint.

[26] , The complexity of the temporal logic with “until” over general linear time, J.
Comput. Systems Sci. 66 (2003), 393–426.

[27] J. G. Rosenstein, Linear orderings, Academic Press, New York, 1982.

[28] A. P. Sistla and E. M. Clarke, The complexity of propositional linear temporal logics, J.
ACM 32 (1985), 733–749.

[29] F. Wolter and M. Zakharyaschev, Axiomatizing the monodic fragment of first-order tem-
poral logic, Ann. Pure. Appl. Logic 118 (2002), 133–145.

34

