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aim of talk

to show how the beautiful finite graphs constructed by Erdős (1959)
can be used to study canonicity of modal logics

part 1: crash course in modal logic

• syntax and Kripke semantics

• canonical modal logics

• Fine’s theorem: the modal logic of any elementary class of
Kripke frames is canonical.

part 2: converse of Fine’s theorem?

• Erdős graphs and applications
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part 1: crash course in modal logic

• Propositional logic with an extra unary connective 2.

• Formulas: p | ϕ ∧ ψ | ¬ϕ | 2ϕ (p taken from countable set)

• Intuitive meaning of 2ϕ:
ϕ is known/believed/provable/will always be true/. . .

• Prior to ∼1960, modal logics mainly given axiomatically:

1. all propositional tautologies

2. 2(ϕ → ψ) → (2ϕ → 2ψ) (‘normality’)

3. possibly more axioms: e.g., 2ϕ → ϕ, 2ϕ → 22ϕ, etc

4. rules: modus ponens, substitution, and ϕ/2ϕ.

• A modal logic is by definition a set of formulas containing 1, 2,
and closed under 4. E.g., the theorems of the system.
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Kripke semantics ∼1960

Idea: 2ϕ means ϕ is true in all possible worlds.

Which worlds are possible depends on the current world.

• Kripke frame (W, R), where R ⊆ W × W is the ‘accessibility
relation’ for 2.

• h : {atoms} → ℘(W ) truth assignment. Kripke model (W, R, h).

• (W, R, h), w |= p iff w ∈ h(p)

• (W, R, h), w |= 2ϕ iff (W, R, h), v |= ϕ for all v ∈ W with wRv.

Kripke semantics gave intuitive meaning to many existing modal
logics.

It has been of lasting significance.
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Kripke completeness

ϕ is valid in a Kripke frame (W, R) iff (W, R, h), w |= ϕ for all h, w.

Any class C of Kripke frames determines a modal logic, ‘the logic
of C’: namely, the modal formulas valid in all frames in C.

Such a modal logic is called (Kripke) complete.

• The basic modal logic is the logic of (the class of) all frames.

• With 2ϕ → ϕ, we get the logic of all reflexive frames.

• With 2ϕ → 22ϕ, we get the logic of all transitive frames.

• And so on.

Are all modal logics complete? How were these results proved?
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Sadly, not all modal logics are complete

Fine, Thomason, Blok (1970s)z z zzz
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So when is a modal logic complete?
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canonical frame/model — Lemmon–Scott, ∼1966.

Also (independently) Cresswell, Makinson; Jónsson–Tarski (1951).

A widely used technique to show completeness of a modal logic.

Build the so-called ‘canonical’ Kripke frame F = (W, R):

• W consists of all maximal consistent sets of the logic.

• ΓR∆ iff 2ϕ ∈ Γ ⇒ ϕ ∈ ∆ (for all ϕ).

Can add the canonical assignment: h(p) = {Γ : p ∈ Γ}.
This assignment invalidates all non-theorems of the logic.

So if all theorems of the logic are valid in F , we have a completeness
theorem: the canonical frame F determines the logic all by itself!

A logic is said to be canonical if its theorems are valid in its canonical
frame. All canonical logics are complete: we get a free completeness
theorem.
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complete ⇒ canonical?

Sadly, not all complete modal logics are canonical.
Examples found by Kripke (1967), Fine (1974), etc.
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So is canonicity useful at all?

Yes! Many logics are canonical!

• the basic modal logic is valid in all frames.

• 2ϕ → ϕ is valid in reflexive frames, and the canonical frame
turns out to be reflexive.

• 2ϕ → 22ϕ is valid in transitive frames, and the canonical frame
turns out to be transitive.

Many natural modal logics Λ are like this.
For some elementary class C of Kripke frames:

1. all axioms (and hence all theorems) of Λ are valid in C

2. the canonical frame of Λ is in C.

So Λ is the logic of C.
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canonicity and elementarity — Fine’s theorem

By 1975 (and later),

• every known canonical logic was the logic of some elementary
class of frames.

• every known non-canonical logic was not the logic of any
elementary class of frames.

What would you guess?

And in 1975 Fine proved that the logic of any elementary class of
frames is canonical.

Seminal result relating two conceptually different notions.
Proofs use saturation, algebraic methods, ‘forcing’.
Developed by van Benthem (1979), Goldblatt (1989–),
Gehrke–Harding–Venema (2006).
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story so far

many
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We call a modal logic ‘elementary’ if it is the set of formulas valid in
some elementary class of frames.
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part 2: converse of Fine’s theorem?

Is every canonical modal logic elementary?

We can use graphs constructed by Erdős to solve this problem.

graphs

Here, a graph is a structure G = (V, E) where V 6= ∅ (‘vertices’,
‘nodes’) and E ⊆ V × V (‘edges’).
A graph is the same thing as a Kripke frame.

Undirected loop-free graphs (E symmetric and irreflexive) will be
called standard.

cycles

For k ≥ 3, a cycle of length k in G is (here) a sequence v1, . . . , vk ∈ V

of distinct nodes with v1Ev2, v2Ev3, . . . , vk−1Evk, vkEv1.
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chromatic number

Let G = (V, E) be a graph.

A subset X ⊆ V is independent if E ∩ (X × X) = ∅.

For k < ω, a k-colouring of G is a partition of V into k independent
sets.
The chromatic number χ(G) of G is the least k < ω such that G has
a k-colouring, and ∞ if there is no such k.

facts

• If G has a reflexive node (xEx), then χ(G) = ∞.

• A standard graph has a 2-colouring iff it has no cycles of odd
length.
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Erdős graphs

In spite of above, chromatic number is a ‘global’ property of graphs:

Theorem 1 (Erd ős, 1959) For every n < ω, there is a finite
standard graph Gn with

• χ(Gn) > n

• Gn has no cycles of length ≤ n.

So all subgraphs of Gn of size ≤ n are 2-colourable.

Proof was radical: probabilistic. Lovász (1968): explicit construction.

We will fix Erdős graphs Gn (n < ω) with wlog. |G0| < |G1| < · · ·

Very suggestive to logicians. . . take G to be a ‘limit’ (by compactness
or ultraproducts) of the Gn. What would χ(G) be?
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chromatic number via modal logic

Blackburn–de Rijke–Venema 2001: Modal languages are simple yet
expressive languages for talking about relational structures (graphs).

Can we talk about chromatic number with modal logic?

Yes (Hughes, 1990).

We will need global expressivity. So we add a universal modality A

(a second box). Put E = ¬A¬.

Frames have the form F = (W, R2, RA), and usually, RA = W × W .

Semantics (usually): F, h, w |= Aϕ iff F, h, v |= ϕ for all worlds v of F .

Extra axioms: Aϕ → 2ϕ, Aϕ → ϕ, Eϕ → AEϕ.
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axiomatising chromatic number

We can regard a graph G = (W, R) as a frame (W, R, W ×W ), which
we also denote by G.

Conversely: any frame (W, R2, RA) has a graph part, (W, R2).

The chromatic number χ(F ) of a frame F = (W, R2, RA) is defined
to be χ(W, R2).

For m < ω let ηm = E
∧

i<m

(2qi → qi).

Lemma 2 ηm is valid in a frame F iff χ(F ) > m.

So we can construct modal logics Λ whose frames have large
chromatic number, by including many ηm as axioms.
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faint idea?

The Erdős graphs Gn have

• large chromatic number (> n)

• a ‘limit’ G with chromatic number 2.

Try to find a modal logic Λ whose frames have large chromatic
number. Hopes:

1. the Gn will validate Λ

2. their limit G won’t

3. ‘so’ Λ is not elementary

4. Λ will be canonical(!)

— a tall order!
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some attempts

A. Just let Λ include η2.
A frame validates Λ iff it has chromatic number > 2.

So Gn validates Λ (all n ≥ 2).
But G doesn’t.

But Λ isn’t canonical. Can be shown using generalised Erdős graphs.

B. Add all ηm (m < ω) to Λ.
Now a frame validates Λ iff it has chromatic number ∞.

Λ is now canonical (Hughes 1990. Idea: canonical frame has a
reflexive point x — with R2(x, x). So its chromatic number is ∞.)

But the Gn do not validate Λ.
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trick

Try to find Λ such that the chromatic number of frames validating Λ

increases with the size of the frame.

• infinite frames validating Λ should have chromatic number ∞

• large finite frames validating Λ should have large chromatic
number

• canonicity provable by Hughes’s argument

• The Gn will validate Λ if we set Λ up right

• G (limit) won’t: it’s infinite but χ(G) = 2.
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details

For n < ω let σn =
∧

i<n

E
(

pi ∧
∧

j<i

¬pj

)

.

For a frame F = (W, R2, RA), write |F | for |W |.

Lemma 3 σn is satisfiable over a frame F iff |F | ≥ n.

Corollary 4 For n, m < ω, the formula σn → ηm is valid in a frame F

iff (|F | ≥ n ⇒ χ(F ) > m).

Definition 5 Let E be the logic axiomatised by

{σ|Gm| → ηm : m < ω},

where Gm is the mth Erdős graph.

A frame F validates E if for all m, if |F | ≥ |Gm| then χ(F ) > m.
So every Gn validates E .
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canonicity

Lemma 6 E is canonical.

Proof. In the canonical frame F for E , RA is an equivalence relation.
(This uses the extra axioms Aϕ → 2ϕ, Aϕ → ϕ, Eϕ → AEϕ.)

F breaks up into subframes based on the equivalence classes of RA.

Let F be any such subframe. Fact: it’s enough to show F validates E .

1. If F is finite, it will validate E on general modal principles.

2. If F is infinite, Hughes’s argument shows that it contains a
reflexive point.

So χ(F ) = ∞.

So F validates ηm, so it certainly validates σn → ηm, for any n, m.
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non-elementarity

Lemma 7 E is not elementary.

Proof. Assume for contradiction that E is the logic of some
elementary class C of frames.

Fact (van Benthem, Goldblatt): can assume wlog. that
every finite frame of the form (W, R2, W × W ) validating E is in C.

Regarded as a frame, the nth Erdős graph Gn is a finite frame
validating E .
So Gn ∈ C (for all n).

Now consider G, the ‘limit’ of the Gn.
• G ∈ C, as G is a limit of frames in C, and C is elementary,
• G /∈ C, as G does not validate E (because G is infinite but

χ(G) = 2).

Contradiction.

21

  

summary
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Can eliminate use of A in E by a coding argument of Thomason.
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conclusion

• The converse of Fine’s theorem is false in general: not every
canonical modal logic is the logic of an elementary class of
frames.

• Can refine the example in various ways.

• A later example (with transitive R2) was constructed directly,
avoiding Erdős graphs and the A box. But probabilistic
constructions still seem needed elsewhere in canonicity.

problems

1. Characterise canonical and elementary logics in some
independent way, to clarify differences between them.

2. (van Benthem): Elementary = canonical + ?
Canonical = elementary – ??
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