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Abstract

We prove that every normal extension of the bi-modal system S52
is finitely axiomatizable and that every proper normal extension has
NP-complete satisfiability problem.

Recall that the language of S52 is the propositional language based on
a fixed countably infinite set of propositional variables and equipped with
the two modal operators [J; and [y. For a formula ¢ we let {;p abbreviate
-0~ for i = 1,2. We recall that S5* is the smallest set of formulas
containing all substitution instances of the following axiom schemas, for i =
1,2:

1) All tautologies of the classical propositional calculus;

2) Oi(p — q) — (Oip — Lig);
3) Oip — p;
4) Oip — O,0,p;

5) 0;0ip — p;
6)

and closed under the following rules of inference:

Modus Ponens (MP): from ¢ and ¢ — 9 infer v;
Necessitation (N);:  from ¢ infer [J;p.



Recall also that a set of formulas L is called a logic if it contains all
tautologies of the classical propositional calculus and is closed under the rule
of modus ponens. A modal logic is called normal if it contains axiom schema
2) (see above) and is closed under the rule of necessitation. A logic L; is an
extension of Lo if Lo C L.

It is well-known that S5% has the exponential size model property, and
that its satisfiability problem is NEXPTIME-complete [6]. In this paper,
by the complexity of a logic we will mean the complexity of its satisfiability
problem. It is shown in [3] that in contrast to S5%, every proper normal
extension L of S52 has the poly-size model property. That means that there
is a polynomial P(n) such that any L-consistent formula ¢ (that is, ¢ ¢ L)
has a model with at most P(|p|) points, where |¢| is the length of .

It was conjectured in [3] that every proper normal extension of S5? is
finitely axiomatizable and NP-complete. In this paper we prove this conjec-
ture. In fact, we show that for every proper normal extension L of S52, there
is a finite set M, of finite S52-frames such that an arbitrary finite S52-frame
is a frame for L iff it does not have any frame in M as a p-morphic image.
This condition yields a finite axiomatization of L. We also show that the
condition is decidable in deterministic polynomial time. This, together with
the poly-size model property, implies the NP-completeness of L.

We now explain some of these notions in detail. Recall that a triple
F = (W, By, Ey) is an S5%-frame if W is a non-empty set and E; and E, are
equivalence relations on W such that

F E (Yw,v,u)(wEw AvEsyu) — (32)(wEqz A zEju).

For i = 1,2 we call the E;-equivalence classes E;-clusters. The Ej;-cluster
containing w € W is denoted by FE;(w), and for X C W we let E;(X) denote
UxGX El(x)

For positive integers n and m let nxm denote the S52-frame with domain
nxm and with (1, z2) E;(y1, y2) iff x; = y;, for ¢ = 1,2. Then it is well known
that S5% is complete with respect to {n x n:n > 1} [9].

Given two S5°-frames F = (W, Ey, Ey) and G = (U, Sy, S3), a mapping
f:U — W is called a p-morphism from G to F if

(Vt € U)(Vw € W)(f(t)Exw < (Ju € U)(tSu A f(u) = w)).

We say that F is isomorphic to G if there is a one-one p-morphism from G
onto F. We call F a p-morphic image of G if there is a p-morphism from ¢
onto F. It is well known that p-morphic images preserve validity of formulas.
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We call F rooted if
F E (Vw,v)(Fu)(wEyu A uBsv).

Choose a set Fgg2 of representatives of isomorphism types of finite rooted
S52-frames. That is, for each finite rooted S5-frame, there is exactly one
frame in Fgy2 that is isomorphic to it.

Let L be a normal extension of S5%. An S5%-frame F is called an L-frame
if F validates all formulas in L. Let Fy be the set of all L-frames in Fggz.
Then L is complete with respect to F [1]. Thus, for our purposes it suffices
to consider only finite rooted S5%-frames. From now on, we will use the term
“frame” to mean this.

For F,G € Fgg2 we put

F < @G iff F is a p-morphic image of G.

Then it is routine to check that < is a partial order on Fgg2. We write
F<Gif F<Gand G £F. Then F < G implies |F| < |G| and we see that
there are no infinite descending chains in (Fgg2, <). Thus, for any non-empty
A C Fggz, the set min(A) of minimal elements of A is non-empty, and for
any G € A there is F € min(A) such that F < G.

Now we recall the Jankov-Fine formulas for S5 (see [4, §3.4] and [5,
§8.4 p.392]). Consider a frame F = (W, Ey, E,). For each point p € W
we introduce a propositional variable, denoted also by p, and consider the
formulas

a(F) = D1D2<\/(p/\_‘ \V )

peEW p'€W\{p}
AN =) A N 0w,
i=1,2 i=1,2
p,p' €W, pE;p’ p,p' €W, ~(pE;p’)
X(F) = —alF).

Lemma 1. For any frames F = (W, Ey1, Ey) and G = (U, S, S2) we have
that F is a p-morphic image of G iff G = x(F).

Proof. (Sketch) Suppose F is a p-morphic image of G. Define a valuation V'
on F by putting V' (p) = p for any p € W. Then F [~y x(F) by the definition
of x(F). Now if G = x(F), then since p-morphic images preserve validity
of formulas, we would also have F = x(F), a contradiction. Therefore,

g ¥ x(F).



For the converse, we use the argument of [5, Claim 8.36]. Suppose G =
X(F). Then there is a valuation V' on G and a point u € U such that
G,u fEy x(F). Therefore, G,u =y a(F). Define a map f : U — W by
putting f(t) = p < G,t v p, for every t € U and p € W. From G
being rooted and the truth of the first conjunct of a(F) it follows that f is
well defined. The truth of the first two conjuncts of a(F) together with F
being rooted implies that f is surjective. Finally, the truth of the second and
third conjuncts of a(F) guarantees that f is a p-morphism. Therefore, F is
a p-morphic image of G. O

If L is a proper normal extension of S52, then by completeness of S5 with
respect to Fggz, the set Fgg2 \ Fy is non-empty. Let M, = min(Fgg2 \ F).

Theorem 2. For any proper normal extension L of S5% and G € Fgg,
G € Fy iff no F € My is a p-morphic image of G.

Proof. Let G € Fp; then since p-morphisms preserve validity of formulas,
every p-morphic image of G belongs to F; and hence can not be in M.
Conversely, if G € Fgg2 \ F, then there is F € M, such that 7 < G — that
is, F is a p-morphic image of G. O

Theorem 3. Every proper normal extension L of S5% is axiomatizable by

the azioms of S5 plus {x(F) : F € Mp}.

Proof. Let G € Fgg2. Then by Theorem 2, G € F iff there is no F € My
with F < G, iff (by Lemma 1) there is no F € My with G £ x(F), iff
G E X(F) for all F € My. Thus, G = {x(F): Fe M.} iff G € Fy.

Let L' be the logic axiomatized by the axioms of S52 plus {x(F) : F €
M, }. From the above it is clear that Fr, = F. But L (L) is sound and
complete with respect to Fy, (Fp/, respectively). So, L' = L. O

It follows that L D S57 is finitely axiomatizable whenever M, is finite.
We now proceed to show that My, is indeed finite for every proper normal
extension L of S52.

Suppose G € Fgg2. For @ = 1,2, we say that the EF;-depth of G is n, and
write d;(G) = n, if the number of E;-clusters of G is n.

Fix a proper normal extension L of S5%. Since S5% is complete with
respect to {n X n : n > 1}, there is n > 1 such that n x n ¢ Fy. Let n(L)
be the least such.

Lemma 4. Let L be as above, and write n for n(L).
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1. If G € Fy, then d1(G) < n or dy(G) < n.
2. If G € My, then di(G) <n ordy(G) <n.

Proof. 1. If G € F and dy(G) > n and d3(G) > n, then by [3, Lemma 5],
n X n is a p morphic image of G. So, n x n € F, a contradiction.

2. If G € M}, and both depths of G are greater than n, then again n x n is
a p-morphic image of G. Therefore, nxn < G. However, G is a minimal

element of Fgg2 \ F, implying that n x n belongs to F, which is false.
O

Corollary 5. My is finite iff {F € My : d;(F) = k} is finite for every
k<n(L)andi=1,2.

Proof. By Lemma 4, My, = Uyc,,)1F € My : di(F) = k} U U {F €
My : do(F) = k}. Thus, My, is finite if and only if {F € My : d;(F) = k} is
finite for every k < n(L) and i = 1,2. O

Since My, is a <-antichain in Fgg2, to show that {F € My : d;(F) = k}
is finite for every k < n(L) and i = 1,2, it is enough to prove that for any
k, the set {F € Fgy2 : d;(F) = k} does not contain an infinite <-antichain.
Without loss of generality we can consider the case when i = 2.

Fix k € w. For every n € w let M,, denote the set of all n x k matrices
(my;) with coefficients in w (i <n, j < k). Let M = J,,c,, Mn. Define < on
M by putting (m;;) < (my;) if we have (my;) € My, (mj;) € My, n <1/,
and there is a surjection f : n' — n such that my); < mj; for all i <n’ and
J < k. It is easy to see that (M, <) is a quasi-ordered set (i.e., < is reflexive
and transitive).

Let FL, = {F € Fgp : do(F) = k}. For each F € Fg,, we fix
enumerations Fy, ..., F,_1 of the Ej-clusters of F (where n = d;(F)) and
FO, .., F*" of the Ej-clusters of F. Define a map H : Ff_, — M by

putting H(F) = (my;) if |F; N F7| = my; for i < di(F) and j < k.

Lemma 6. H : (F’; <) — (M, X) is an order-reflecting injection.

527

Proof. Since Fgg2 consists of non-isomorphic frames, H is one-one. Now let
F =W, E,Ey), G = (U0S51,85), F,G € ngz, and (my), (m;;) € M be
such that H(F) = (my;), H(G) = (mj;), and (my;) < (mj;). We need to

show that F < G. Suppose (my;) € M, and (m;;) € M,,. Then there



is surjective f : n' — n such that myi); < mj; for i < n' and j < k.
Then |G; N GY| > |Fyu) N F| for any ¢ < n’ and j < k. Hence there exists
a surjection hg : GiNG! — Fypy N FI. Define h : U — W by putting
h(u) = hi(u), where i < n',j < k, and u € G; N GY. Tt is obvious that h is
well defined and onto.

Now we show that h is a p-morphism. If uS;v, then u,v € G; for some
i < n'. Therefore, h(u),h(v) € Fyu), and so h(u)E1h(v). Analogously, if
uSyv, then u,v € G7 for some j < k, h(u),h(v) € FJ, and so h(u)Exh(v).
Now suppose u € G; N G7 for some i < n’ and j < k. If h(u)Eyh(v), then
h(u),h(v) € F? and v € G/. As both u and v belong to GY it follows that
uSyv. Finally, if h(u)E1h(v), then h(u) € Fyu N F? and h(v) € Fypy N F7,
for some j < k. Therefore, there exists z € G; N G’ (since z € G; we have
uS1z) such that h(z) = h(v). Thus, h is an onto p-morphism, implying that
F < @G. Thus, H is order reflecting. O

Corollary 7. If A C F’;SQ is a <-antichain, then H(A) C M is a <-
antichain.

Proof. Immediate. ]

Now we will show that there are no infinite <-antichains in M. For this
we define a quasi-order C on M included in < and show that there are no
infinite C-antichains in M. To do so we first introduce two quasi-orders C;
and Cy on M and then define C as the intersection of these quasi-orders.
For (my;) € M,, and (mj;) € M,,, we say that:

e (my;) Ty (mj;) if there is a one-one order-preserving map ¢ : n — n'
(i.e., i < i’. < n implies ¢(i) < ¢(7')) such that my; < mj,,; for all
t<nandj<k;

o (m;;) Co (m;j) if there is a map v : n’ — n such that my); < m;; for
all i <n' and j < k.

Let C be the intersection of C; and Cs.

Lemma 8. For any (my;), (mj;) € M, if (m;) E (mj;), then (my;) < (mj;).
Proof. Suppose (m;;) € M, and (m;;) € M. If (my;) T (my;), then
(mij) E1 (my;) and (my;) So (mi;). By (my;) Ei (mj;) there is a one-one
order-preserving map ¢ : n — n' with m;; < m{ . for all i <n and j < k;
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and by (my;) Ca (my;) there is a map ¢ : n’ — n such that my); < mj; for
all i < n' and j < k. Let rng(p) = {¢(i) : i < n}. Define f : n" — n by
putting
Fi) = {SO_I(i)v if i€ rng(p),
(i),  otherwise.

Then f is a surjection. Moreover, for ¢ < n’ and j < k, if i € rng(p), then
My = Me-13); < my; by the definition of Cy; and if 7 ¢ rng(y), then
M)y = Mapli); < m;j by the definition of T,. Therefore, my(;); < m;j for all
i <n'and j < k. Thus, (m;) < (m};). O

Thus, it is left to show that there are no infinite C-antichains in M. For
this we use the theory of better-quasi-orderings (bgos). Our main source of
reference is Laver [7].

For any set X C w let [X]|¥ ={Y C X : |Y]| < w}, and for n < w let
[(X]* ={Y C X : |Y| =n}. Wesay that Y is an initial segment of X if there
isn €wsuch that Y ={x € X : 2 <n}.

Definition 9. Let X be an infinite subset of w. We say that B C [X]<¥ is a
barrier on X if 0 ¢ B and:

e for every infinite Y C X, there is an initial segment of Y in B;
e BB is an antichain with respect to C.

A barrier is a barrier on some infinite X C w.
Note that for any n > 1, [w]™ is a barrier on w.

Definition 10.

1. If s,t are finite subsets of w, we write s < t to mean that there are
ih < ... <idpand j (1 < j < k) such that s = {i1,...,i;} and t =
{ig, ... g}

2. Gwen a barrier B and a quasi-ordered set (Q, <), we say that a map
f B — Q is good if there are s,t € B such that s <t and f(s) < f(t).

Let (@, <) be a quasi-order. We call < a better-quasi-ordering (bgo) if for
every barrier B, every map f : B — @ is good.

Proposition 11. If (Q, <) is a bqo, then there are no infinite antichains in

Q.



Proof. Let (&,)new be an infinite sequence of distinct elements of Q). As we
pointed out, B = [w]! = {{n} : n < w} is a barrier. Define a map 6 : B — Q
by putting 6({n}) = &,. Since (Q, <) is a bqo, 0 is good. Therefore, there
are {n},{m} € B such that {n} < {m} (i.e., n < m) and &, < &,. So, no
infinite subset of () forms an antichain. O

Thus, it suffices to show that C is a bqo. It follows from [7, Lemma 1.7
that the intersection of two bqos is again a bqo. Hence, it is enough to prove
that both C; and C, are bqos. [7, Theorem 1.10] implies that (M, ;) is a
bqo.! Therefore, we only need to show that (M, Ey) is a bqo.

Let (@, <) be a quasi-ordered set and p(Q) be the power set of ). The
order < can be extended to p(Q) as follows: For I'); A € p(Q), we say that
I' < Aifforall§ € A thereisy € I" with v < 9. It can be shown by adapting
the proof of [7, Lemma 1.3] that if (Q, <) is a bqo, then (p(Q), <) is also a
bqo.?

Lemma 12. (M, C,) is a bgo.

Proof. For a matrix (m;;) € M, let m; = (mo, ..., miy_1) denote the i-th
row of (m;;). Note that each row of (m;;) is a 1 X k matrix, and so m; € M;
for any ¢ < n. We write row(m;;) for the set {m; : i < n}. Obviously,
row(m;;) € p(My) C p(M). Consider an arbitrary barrier B and a map
f B — M. We need to show that f is good with respect to C,. Define
g : B — p(M) by g(s) = row(f(s)). Since (M,;) is a bqo, (p(M), )
is also a bqo. Hence, there are s,t € B such that s < ¢ and g(s) T; g(?).
Therefore, for each § € g(t) there is v € g(s) with v C; 6.

Now we show that f(s) Ty f(t). Write (my;) for f(s) and (mj;) for f(t).
Suppose that (m;;) € M,, and (mj;) € M,,. We define 1) : n’ — n as follows.
Let i < n'. Then m} € g(t). By the above, we may choose 9 (i) < n such that
myy E1 m;. This defines ¢, and we have my); < mgj for any ¢ < n’ and
j < k. Thus, f(s) Ty f(¢), f is a good map, and so (M, Cs) is a bqo. [

It follows that (M,C) is a bqo. Therefore, there are no infinite C-
antichains in M. Thus, by Lemma 8 there are no infinite <-antichains in
M.

Now we are in a position to prove the main theorem of this paper.

1To apply this theorem, we needed to require in the definition of £; on M that ¢ is
order preserving. This is the only time this assumption is used.

2This last statement fails for well-quasi-orders. An example of Rado [8] can be used to
show this.



Theorem 13. Every normal extension of S5% is finitely axiomatizable.

Proof. Clearly, S5? is finitely axiomatizable. Suppose L is a proper normal
extension of S52. Then by Theorem 3 L is axiomatizable by the S5% axioms
plus {x(F) : F € M_p}. Since there are no infinite <-antichains in M, by
Corollary 7 there are no infinite antichains in F’§52, for each k € w. Therefore,
{F € My, : d;(F) = k} is finite for every k < n(L) and i = 1,2. Thus, M/,
is finite by Corollary 5. It follows that L is finitely axiomatizable. O

Corollary 14. The lattice of normal extensions of S5% is countable.

Proof. Immediately follows from Theorem 13 since there are only countably
many finitely axiomatizable normal extensions of S52. O

Remark 15. In algebraic terminology, Corollary 14 says that the lattice
of subvarieties of the variety Df; of two-dimensional diagonal-free cylindric
algebras is countable. This is in contrast with the variety CA, of two-
dimensional cylindric algebras (with diagonals), since, as was shown in [2],
the cardinality of the lattice of subvarieties of CA, is that of continuum.

Note that Theorem 13, and the fact that every normal extension L of
S52 is complete with respect to a class of finite frames (F) for which (up
to isomorphism) membership is decidable, imply that L is decidable. The
final part of the paper will be devoted to showing that if L is a proper
normal extension, then it is NP-complete. Fix such an L. We will see in
Corollary 18 below that NP-completeness of L follows from the poly-size
model property if we can decide in time polynomial in |W| whether a finite
structure A = (W, Ry, Ry) is in F, (up to isomorphism). It suffices to decide
in polynomial time (1) whether A is a (rooted S52-) frame; (2) whether a
given frame is in Fy. The first is easy. We concentrate on the second.

By Lemma 4(1), there is n(L) € w such that for each frame G = (U, Sy, Ss)
in Fy, we have di(G) < n(L) or d2(G) < n(L). So, if both depths of a given
frame G are greater than or equal to n(L) (which obviously can be checked in
polynomial time in the size of G), then G ¢ F . So, without loss of generality
we can assume that d;(G) < n(L).

By Theorem 2, G is in F, iff it has no p-morphic image in M. Because
M, is a fixed finite set, it suffices to provide, for an arbitrary fixed frame
F = (W, Ey, Ey), an algorithm that decides in time polynomial in the size
of G whether there is a p-morphism from G onto F. If we considered every
map f : U — W and checked whether it is a p-morphism, it would take
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exponential time in the size of G (since there are |W |Vl different maps from
U to W). Now we will give a different algorithm to check in polynomial
time in |U| whether the fixed frame F is a p-morphic image of a given frame
Q = (U, Sl, SQ) with dl(g) < n(L)

Recall that a map f : U — W is a p-morphism iff the f-image of every
S;-cluster of G is an FE;-cluster of F, for i =1, 2.

Lemma 16. F is a p-morphic image of G iff there is a partial surjective
map g : U — W with the following properties:

1. For each uw € U, there is v € dom(g) such that uSyv.

2. For each v € dom(g), the restriction g | (dom(g) N S1(v)) is one-one
and has range E1(g(v)).

3. For each u € U there is w € W such that

(a) g(v)Eyw for all v € dom(g) N Sy(u),
(b) for each w' € W,

(Eaw) N Bafw)) \ (g [ Sa(w))| <

[(S2w) N Sa(g™ (Ex(w) \ dom(g)].

Proof. Suppose there is a surjective p-morphism f : U — W. Then for each
Si-cluster C' C U, the map f [ C is a surjection from C onto E;(f(u)) for
any u € C, so we may choose C’ C C' such that f [ C' is a bijection from C’
onto Fy(f(u)). Let U' = |J{C": C is an Si-cluster of G}. Then it is easy to
check that ¢ = f [ U’ satisfies conditions 1-3 of the lemma.

Conversely, let g be as stated. We will extend g to a surjective p-morphism
f:U— W. Since U is a disjoint union of Sy-clusters, it is enough to define
f on an arbitrary Sp-cluster of G. Pick uw € U. We will extend g | So(u)
to the whole of Sy(u). Pick w € W according to condition 3 of the lemma.
By condition 3(a), rng(g [ Sa(u)) € Es(w). Now we extend g to f such
that rng(f [ Sa(u)) = Ex(w) and f(x)E;g(v) whenever v € dom(g) and
x € Sa(u) N Si(v).

Pick any w' € W and consider X, = Sa(u) N S1(g~*(F1(w')). By con-
ditions 1 and 2, Sy(u) = (J{Xw : v’ € W} and X,y N X» = () whenever
—(w' Eyw”). We take the restriction of g to X, (this restriction may be
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empty), and extend it to a surjection from X, onto Fj(w’) N Ey(w). By
condition 3, we have | X,/ \ dom(g)| > |Ey(w') N Ey(w) \ rng(g [ Sa(u))|. So,
there exists a surjection fx , : Xow — E1(w')NEy(w) extending g. Repeating
this for a representative w’ of each Ej-cluster in turn yields an extension of
g to Sy(u). Repeating for a representative u of each Sp-cluster in turn yields
an extension of g to U as required.

It is left to show that f is a p-morphism. But it follows immediately from
the construction of f that f | S;(u) : S;(u) — E;(f(u)) is surjective for each
u € U and each i = 1,2. As we pointed out above this implies that f is a
p-morphism. O

Corollary 17. It is decidable in polynomial time in the size of G, whether
F is a p-morphic image of G.

Proof. By Lemma 16 it is enough to check whether there exists a partial
map g : U — W satisfying conditions 1-3 of the lemma. There are at most
n(L) Ej-clusters in G, and the restriction of g to each Ej-cluster is one-one;
hence, d = |dom(g)| < n(L) - [W|, and this is independent of G. There are
at most d!"'I maps from a set of size at most d onto W. Obviously, there are
(‘g') < |U|% subsets of U of size d. Hence there are at most d"!|U|? partial
maps which may satisfy conditions 1 and 2 of the lemma. Our algorithm
enumerates all partial maps from U to W with domain of size at most d,
and for each one, checks whether it satisfies conditions 1-3 or not. It is not
hard to see that this check can be done in p-time; indeed, it is clear that
conditions 1 and 2 can be checked in time polynomial in |U| and there is
a first-order sentence ox such that G |= o iff G satisfies condition 3. The
algorithm states that F is a p-morphic image of G if and only if it finds a
map satisfying the conditions. Therefore, this is a p-time algorithm checking
whether F is a p-morphic image of G. O

Corollary 18. Let L be a proper normal extension of S52.

1. It can be checked in polynomial time in |U| whether a finite S52-frame
G = (U, S, 52) is an L-frame.

2. L is NP-complete.

Proof. 1. Follows directly from Theorem 2, Corollary 17, and the fact that
M is finite.
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2. It is a well-known result of modal logic (see, e.g., [4, Lemma 6.35])
that if L is a consistent normal modal logic having the poly-size model
property, and the problem of whether a finite structure A is an L-frame
is decidable in time polynomial in the size of A, then the satisfiability
problem of L is NP-complete. The poly-size model property of every
L D S5 is proven in [3, Corollary 9]. (1) implies that the problem
G € F can be decided in polynomial time in the size of G. The result
follows.

O
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