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Abstract

We prove that every normal extension of the bi-modal system S5
2

is finitely axiomatizable and that every proper normal extension has
NP-complete satisfiability problem.

Recall that the language of S52 is the propositional language based on
a fixed countably infinite set of propositional variables and equipped with
the two modal operators ¤1 and ¤2. For a formula ϕ we let ♦iϕ abbreviate
¬¤i¬ϕ for i = 1, 2. We recall that S52 is the smallest set of formulas
containing all substitution instances of the following axiom schemas, for i =
1, 2:

1) All tautologies of the classical propositional calculus;
2) ¤i(p → q) → (¤ip → ¤iq);
3) ¤ip → p;
4) ¤ip → ¤i¤ip;
5) ♦i¤ip → p;
6) ¤1¤2p ↔ ¤2¤1p;

and closed under the following rules of inference:

Modus Ponens (MP): from ϕ and ϕ → ψ infer ψ;
Necessitation (N)i: from ϕ infer ¤iϕ.
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Recall also that a set of formulas L is called a logic if it contains all
tautologies of the classical propositional calculus and is closed under the rule
of modus ponens. A modal logic is called normal if it contains axiom schema
2) (see above) and is closed under the rule of necessitation. A logic L1 is an
extension of L2 if L2 ⊆ L1.

It is well-known that S52 has the exponential size model property, and
that its satisfiability problem is NEXPTIME-complete [6]. In this paper,
by the complexity of a logic we will mean the complexity of its satisfiability
problem. It is shown in [3] that in contrast to S52, every proper normal
extension L of S52 has the poly-size model property. That means that there
is a polynomial P (n) such that any L-consistent formula ϕ (that is, ¬ϕ /∈ L)
has a model with at most P (|ϕ|) points, where |ϕ| is the length of ϕ.

It was conjectured in [3] that every proper normal extension of S52 is
finitely axiomatizable and NP-complete. In this paper we prove this conjec-
ture. In fact, we show that for every proper normal extension L of S52, there
is a finite set ML of finite S52-frames such that an arbitrary finite S52-frame
is a frame for L iff it does not have any frame in ML as a p-morphic image.
This condition yields a finite axiomatization of L. We also show that the
condition is decidable in deterministic polynomial time. This, together with
the poly-size model property, implies the NP-completeness of L.

We now explain some of these notions in detail. Recall that a triple
F = (W, E1, E2) is an S52-frame if W is a non-empty set and E1 and E2 are
equivalence relations on W such that

F |= (∀w, v, u)(wE1v ∧ vE2u) → (∃z)(wE2z ∧ zE1u).

For i = 1, 2 we call the Ei-equivalence classes Ei-clusters. The Ei-cluster
containing w ∈ W is denoted by Ei(w), and for X ⊆ W we let Ei(X) denote
⋃

x∈X Ei(x).
For positive integers n and m let n×m denote the S52-frame with domain

n×m and with (x1, x2)Ei(y1, y2) iff xi = yi, for i = 1, 2. Then it is well known
that S52 is complete with respect to {n × n : n ≥ 1} [9].

Given two S52-frames F = (W, E1, E2) and G = (U, S1, S2), a mapping
f : U → W is called a p-morphism from G to F if

(∀t ∈ U)(∀w ∈ W )(f(t)Eiw ↔ (∃u ∈ U)(tSiu ∧ f(u) = w)).

We say that F is isomorphic to G if there is a one-one p-morphism from G
onto F . We call F a p-morphic image of G if there is a p-morphism from G
onto F . It is well known that p-morphic images preserve validity of formulas.
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We call F rooted if

F |= (∀w, v)(∃u)(wE1u ∧ uE2v).

Choose a set FS5
2 of representatives of isomorphism types of finite rooted

S52-frames. That is, for each finite rooted S52-frame, there is exactly one
frame in FS5

2 that is isomorphic to it.
Let L be a normal extension of S52. An S52-frame F is called an L-frame

if F validates all formulas in L. Let FL be the set of all L-frames in FS5
2 .

Then L is complete with respect to FL [1]. Thus, for our purposes it suffices
to consider only finite rooted S52-frames. From now on, we will use the term
“frame” to mean this.

For F ,G ∈ FS5
2 we put

F ≤ G iff F is a p-morphic image of G.

Then it is routine to check that ≤ is a partial order on FS5
2 . We write

F < G if F ≤ G and G 6≤ F . Then F < G implies |F| < |G| and we see that
there are no infinite descending chains in (FS5

2 , <). Thus, for any non-empty
A ⊆ FS5

2 , the set min(A) of minimal elements of A is non-empty, and for
any G ∈ A there is F ∈ min(A) such that F ≤ G.

Now we recall the Jankov-Fine formulas for S52 (see [4, §3.4] and [5,
§8.4 p.392]). Consider a frame F = (W, E1, E2). For each point p ∈ W
we introduce a propositional variable, denoted also by p, and consider the
formulas

α(F) = ¤1¤2

(

∨

p∈W

(p ∧ ¬
∨

p′∈W\{p}

p′)

∧
∧

i=1,2
p,p′∈W,pEip′

(p → ♦ip
′) ∧

∧

i=1,2
p,p′∈W,¬(pEip′)

(p → ¬♦ip
′)
)

,

χ(F) = ¬α(F).

Lemma 1. For any frames F = (W, E1, E2) and G = (U, S1, S2) we have
that F is a p-morphic image of G iff G 6|= χ(F).

Proof. (Sketch) Suppose F is a p-morphic image of G. Define a valuation V
on F by putting V (p) = p for any p ∈ W . Then F 6|=V χ(F) by the definition
of χ(F). Now if G |= χ(F), then since p-morphic images preserve validity
of formulas, we would also have F |= χ(F), a contradiction. Therefore,
G 6|= χ(F).
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For the converse, we use the argument of [5, Claim 8.36]. Suppose G 6|=
χ(F). Then there is a valuation V ′ on G and a point u ∈ U such that
G, u 6|=V ′ χ(F). Therefore, G, u |=V ′ α(F). Define a map f : U → W by
putting f(t) = p ⇐⇒ G, t |=V ′ p, for every t ∈ U and p ∈ W . From G
being rooted and the truth of the first conjunct of α(F) it follows that f is
well defined. The truth of the first two conjuncts of α(F) together with F
being rooted implies that f is surjective. Finally, the truth of the second and
third conjuncts of α(F) guarantees that f is a p-morphism. Therefore, F is
a p-morphic image of G.

If L is a proper normal extension of S52, then by completeness of S52 with
respect to FS5

2 , the set FS5
2 \ FL is non-empty. Let ML = min(FS5

2 \ FL).

Theorem 2. For any proper normal extension L of S52 and G ∈ FS5
2,

G ∈ FL iff no F ∈ ML is a p-morphic image of G.

Proof. Let G ∈ FL; then since p-morphisms preserve validity of formulas,
every p-morphic image of G belongs to FL and hence can not be in ML.
Conversely, if G ∈ FS5

2 \FL then there is F ∈ ML such that F ≤ G — that
is, F is a p-morphic image of G.

Theorem 3. Every proper normal extension L of S52 is axiomatizable by
the axioms of S52 plus {χ(F) : F ∈ ML}.

Proof. Let G ∈ FS5
2 . Then by Theorem 2, G ∈ FL iff there is no F ∈ ML

with F ≤ G, iff (by Lemma 1) there is no F ∈ ML with G 6|= χ(F), iff
G |= χ(F) for all F ∈ ML. Thus, G |= {χ(F) : F ∈ ML} iff G ∈ FL.

Let L′ be the logic axiomatized by the axioms of S52 plus {χ(F) : F ∈
ML}. From the above it is clear that FL′ = FL. But L (L′) is sound and
complete with respect to FL (FL′ , respectively). So, L′ = L.

It follows that L ⊃ S52 is finitely axiomatizable whenever ML is finite.
We now proceed to show that ML is indeed finite for every proper normal
extension L of S52.

Suppose G ∈ FS5
2 . For i = 1, 2, we say that the Ei-depth of G is n, and

write di(G) = n, if the number of Ei-clusters of G is n.
Fix a proper normal extension L of S52. Since S52 is complete with

respect to {n × n : n ≥ 1}, there is n ≥ 1 such that n × n /∈ FL. Let n(L)
be the least such.

Lemma 4. Let L be as above, and write n for n(L).
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1. If G ∈ FL, then d1(G) < n or d2(G) < n.

2. If G ∈ ML, then d1(G) ≤ n or d2(G) ≤ n.

Proof. 1. If G ∈ FL and d1(G) ≥ n and d2(G) ≥ n, then by [3, Lemma 5],
n × n is a p morphic image of G. So, n × n ∈ FL, a contradiction.

2. If G ∈ ML and both depths of G are greater than n, then again n×n is
a p-morphic image of G. Therefore, n×n < G. However, G is a minimal
element of FS5

2 \FL, implying that n×n belongs to FL, which is false.

Corollary 5. ML is finite iff {F ∈ ML : di(F) = k} is finite for every
k ≤ n(L) and i = 1, 2.

Proof. By Lemma 4, ML =
⋃

k≤n(L){F ∈ ML : d1(F) = k} ∪
⋃

k≤n(L){F ∈

ML : d2(F) = k}. Thus, ML is finite if and only if {F ∈ ML : di(F) = k} is
finite for every k ≤ n(L) and i = 1, 2.

Since ML is a ≤-antichain in FS5
2 , to show that {F ∈ ML : di(F) = k}

is finite for every k ≤ n(L) and i = 1, 2, it is enough to prove that for any
k, the set {F ∈ FS5

2 : di(F) = k} does not contain an infinite ≤-antichain.
Without loss of generality we can consider the case when i = 2.

Fix k ∈ ω. For every n ∈ ω let Mn denote the set of all n × k matrices
(mij) with coefficients in ω (i < n, j < k). Let M =

⋃

n∈ω Mn. Define 4 on
M by putting (mij) 4 (m′

ij) if we have (mij) ∈ Mn, (m′
ij) ∈ Mn′ , n ≤ n′,

and there is a surjection f : n′ → n such that mf(i)j ≤ m′
ij for all i < n′ and

j < k. It is easy to see that (M, 4) is a quasi-ordered set (i.e., 4 is reflexive
and transitive).

Let Fk
S5

2 = {F ∈ FS5
2 : d2(F) = k}. For each F ∈ Fk

S5
2 we fix

enumerations F0, . . . , Fn−1 of the E1-clusters of F (where n = d1(F)) and
F 0, . . . , F k−1 of the E2-clusters of F . Define a map H : Fk

S5
2 → M by

putting H(F) = (mij) if |Fi ∩ F j| = mij for i < d1(F) and j < k.

Lemma 6. H : (Fk
S5

2 ,≤) → (M, 4) is an order-reflecting injection.

Proof. Since FS5
2 consists of non-isomorphic frames, H is one-one. Now let

F = (W, E1, E2), G = (U, S1, S2), F ,G ∈ Fk
S5

2 , and (mij), (m
′
ij) ∈ M be

such that H(F) = (mij), H(G) = (m′
ij), and (mij) 4 (m′

ij). We need to
show that F ≤ G. Suppose (mij) ∈ Mn and (m′

ij) ∈ Mn′ . Then there
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is surjective f : n′ → n such that mf(i)j ≤ m′
ij for i < n′ and j < k.

Then |Gi ∩ Gj| ≥ |Ff(i) ∩ F j| for any i < n′ and j < k. Hence there exists

a surjection hj
i : Gi ∩ Gj → Ff(i) ∩ F j. Define h : U → W by putting

h(u) = hj
i (u), where i < n′, j < k, and u ∈ Gi ∩ Gj. It is obvious that h is

well defined and onto.
Now we show that h is a p-morphism. If uS1v, then u, v ∈ Gi for some

i < n′. Therefore, h(u), h(v) ∈ Ff(i), and so h(u)E1h(v). Analogously, if
uS2v, then u, v ∈ Gj for some j < k, h(u), h(v) ∈ F j, and so h(u)E2h(v).
Now suppose u ∈ Gi ∩ Gj for some i < n′ and j < k. If h(u)E2h(v), then
h(u), h(v) ∈ F j and v ∈ Gj. As both u and v belong to Gj it follows that
uS2v. Finally, if h(u)E1h(v), then h(u) ∈ Ff(i) ∩ F j and h(v) ∈ Ff(i) ∩ F j′ ,
for some j′ < k. Therefore, there exists z ∈ Gi ∩ Gj′ (since z ∈ Gi we have
uS1z) such that h(z) = h(v). Thus, h is an onto p-morphism, implying that
F ≤ G. Thus, H is order reflecting.

Corollary 7. If ∆ ⊆ Fk
S5

2 is a ≤-antichain, then H(∆) ⊆ M is a 4-
antichain.

Proof. Immediate.

Now we will show that there are no infinite 4-antichains in M. For this
we define a quasi-order ⊑ on M included in 4 and show that there are no
infinite ⊑-antichains in M. To do so we first introduce two quasi-orders ⊑1

and ⊑2 on M and then define ⊑ as the intersection of these quasi-orders.
For (mij) ∈ Mn and (m′

ij) ∈ Mn′ , we say that:

• (mij) ⊑1 (m′
ij) if there is a one-one order-preserving map ϕ : n → n′

(i.e., i < i′ < n implies ϕ(i) < ϕ(i′)) such that mij ≤ m′
ϕ(i)j for all

i < n and j < k;

• (mij) ⊑2 (m′
ij) if there is a map ψ : n′ → n such that mψ(i)j ≤ m′

ij for
all i < n′ and j < k.

Let ⊑ be the intersection of ⊑1 and ⊑2.

Lemma 8. For any (mij), (m
′
ij) ∈ M, if (mij) ⊑ (m′

ij), then (mij) 4 (m′
ij).

Proof. Suppose (mij) ∈ Mn and (m′
ij) ∈ Mn′ . If (mij) ⊑ (m′

ij), then
(mij) ⊑1 (m′

ij) and (mij) ⊑2 (m′
ij). By (mij) ⊑1 (m′

ij) there is a one-one
order-preserving map ϕ : n → n′ with mij ≤ m′

ϕ(i)j for all i < n and j < k;
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and by (mij) ⊑2 (m′
ij) there is a map ψ : n′ → n such that mψ(i)j ≤ m′

ij for
all i < n′ and j < k. Let rng(ϕ) = {ϕ(i) : i < n}. Define f : n′ → n by
putting

f(i) =

{

ϕ−1(i), if i ∈ rng(ϕ),
ψ(i), otherwise.

Then f is a surjection. Moreover, for i < n′ and j < k, if i ∈ rng(ϕ), then
mf(i)j = mϕ−1(i)j ≤ m′

ij by the definition of ⊑1; and if i /∈ rng(ϕ), then
mf(i)j = mψ(i)j ≤ m′

ij by the definition of ⊑2. Therefore, mf(i)j ≤ m′
ij for all

i < n′ and j < k. Thus, (mij) 4 (m′
ij).

Thus, it is left to show that there are no infinite ⊑-antichains in M. For
this we use the theory of better-quasi-orderings (bqos). Our main source of
reference is Laver [7].

For any set X ⊆ ω let [X]<ω = {Y ⊆ X : |Y | < ω}, and for n < ω let
[X]n = {Y ⊆ X : |Y | = n}. We say that Y is an initial segment of X if there
is n ∈ ω such that Y = {x ∈ X : x ≤ n}.

Definition 9. Let X be an infinite subset of ω. We say that B ⊆ [X]<ω is a
barrier on X if ∅ /∈ B and:

• for every infinite Y ⊆ X, there is an initial segment of Y in B;

• B is an antichain with respect to ⊆.

A barrier is a barrier on some infinite X ⊆ ω.

Note that for any n ≥ 1, [ω]n is a barrier on ω.

Definition 10.

1. If s, t are finite subsets of ω, we write s ⊳ t to mean that there are
i1 < . . . < ik and j (1 ≤ j < k) such that s = {i1, . . . , ij} and t =
{i2, . . . , ik}.

2. Given a barrier B and a quasi-ordered set (Q,≤), we say that a map
f : B → Q is good if there are s, t ∈ B such that s ⊳ t and f(s) ≤ f(t).

Let (Q,≤) be a quasi-order. We call ≤ a better-quasi-ordering (bqo) if for
every barrier B, every map f : B → Q is good.

Proposition 11. If (Q,≤) is a bqo, then there are no infinite antichains in
Q.
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Proof. Let (ξn)n∈ω be an infinite sequence of distinct elements of Q. As we
pointed out, B = [ω]1 = {{n} : n < ω} is a barrier. Define a map θ : B → Q
by putting θ({n}) = ξn. Since (Q,≤) is a bqo, θ is good. Therefore, there
are {n}, {m} ∈ B such that {n} ⊳ {m} (i.e., n < m) and ξn ≤ ξm. So, no
infinite subset of Q forms an antichain.

Thus, it suffices to show that ⊑ is a bqo. It follows from [7, Lemma 1.7]
that the intersection of two bqos is again a bqo. Hence, it is enough to prove
that both ⊑1 and ⊑2 are bqos. [7, Theorem 1.10] implies that (M,⊑1) is a
bqo.1 Therefore, we only need to show that (M,⊑2) is a bqo.

Let (Q,≤) be a quasi-ordered set and ℘(Q) be the power set of Q. The
order ≤ can be extended to ℘(Q) as follows: For Γ, ∆ ∈ ℘(Q), we say that
Γ ≤ ∆ if for all δ ∈ ∆ there is γ ∈ Γ with γ ≤ δ. It can be shown by adapting
the proof of [7, Lemma 1.3] that if (Q,≤) is a bqo, then (℘(Q),≤) is also a
bqo.2

Lemma 12. (M,⊑2) is a bqo.

Proof. For a matrix (mij) ∈ Mn let mi = (mi0, . . . , mik−1) denote the i-th
row of (mij). Note that each row of (mij) is a 1× k matrix, and so mi ∈ M1

for any i < n. We write row(mij) for the set {mi : i < n}. Obviously,
row(mij) ∈ ℘(M1) ⊆ ℘(M). Consider an arbitrary barrier B and a map
f : B → M. We need to show that f is good with respect to ⊑2. Define
g : B → ℘(M) by g(s) = row(f(s)). Since (M,⊑1) is a bqo, (℘(M),⊑1)
is also a bqo. Hence, there are s, t ∈ B such that s ⊳ t and g(s) ⊑1 g(t).
Therefore, for each δ ∈ g(t) there is γ ∈ g(s) with γ ⊑1 δ.

Now we show that f(s) ⊑2 f(t). Write (mij) for f(s) and (m′
ij) for f(t).

Suppose that (mij) ∈ Mn and (m′
ij) ∈ Mn′ . We define ψ : n′ → n as follows.

Let i < n′. Then m′
i ∈ g(t). By the above, we may choose ψ(i) < n such that

mψ(i) ⊑1 m′
i. This defines ψ, and we have mψ(i)j ≤ m′

ij for any i < n′ and
j < k. Thus, f(s) ⊑2 f(t), f is a good map, and so (M,⊑2) is a bqo.

It follows that (M,⊑) is a bqo. Therefore, there are no infinite ⊑-
antichains in M. Thus, by Lemma 8 there are no infinite 4-antichains in
M.

Now we are in a position to prove the main theorem of this paper.

1To apply this theorem, we needed to require in the definition of ⊑1 on M that ϕ is
order preserving. This is the only time this assumption is used.

2This last statement fails for well-quasi-orders. An example of Rado [8] can be used to
show this.
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Theorem 13. Every normal extension of S52 is finitely axiomatizable.

Proof. Clearly, S52 is finitely axiomatizable. Suppose L is a proper normal
extension of S52. Then by Theorem 3 L is axiomatizable by the S52 axioms
plus {χ(F) : F ∈ ML}. Since there are no infinite 4-antichains in M, by
Corollary 7 there are no infinite antichains in Fk

S5
2 , for each k ∈ ω. Therefore,

{F ∈ ML : di(F) = k} is finite for every k ≤ n(L) and i = 1, 2. Thus, ML

is finite by Corollary 5. It follows that L is finitely axiomatizable.

Corollary 14. The lattice of normal extensions of S52 is countable.

Proof. Immediately follows from Theorem 13 since there are only countably
many finitely axiomatizable normal extensions of S52.

Remark 15. In algebraic terminology, Corollary 14 says that the lattice
of subvarieties of the variety Df2 of two-dimensional diagonal-free cylindric
algebras is countable. This is in contrast with the variety CA2 of two-
dimensional cylindric algebras (with diagonals), since, as was shown in [2],
the cardinality of the lattice of subvarieties of CA2 is that of continuum.

Note that Theorem 13, and the fact that every normal extension L of
S52 is complete with respect to a class of finite frames (FL) for which (up
to isomorphism) membership is decidable, imply that L is decidable. The
final part of the paper will be devoted to showing that if L is a proper
normal extension, then it is NP-complete. Fix such an L. We will see in
Corollary 18 below that NP-completeness of L follows from the poly-size
model property if we can decide in time polynomial in |W | whether a finite
structure A = (W, R1, R2) is in FL (up to isomorphism). It suffices to decide
in polynomial time (1) whether A is a (rooted S52-) frame; (2) whether a
given frame is in FL. The first is easy. We concentrate on the second.

By Lemma 4(1), there is n(L) ∈ ω such that for each frame G = (U, S1, S2)
in FL we have d1(G) < n(L) or d2(G) < n(L). So, if both depths of a given
frame G are greater than or equal to n(L) (which obviously can be checked in
polynomial time in the size of G), then G /∈ FL. So, without loss of generality
we can assume that d1(G) < n(L).

By Theorem 2, G is in FL iff it has no p-morphic image in ML. Because
ML is a fixed finite set, it suffices to provide, for an arbitrary fixed frame
F = (W, E1, E2), an algorithm that decides in time polynomial in the size
of G whether there is a p-morphism from G onto F . If we considered every
map f : U → W and checked whether it is a p-morphism, it would take
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exponential time in the size of G (since there are |W ||U | different maps from
U to W ). Now we will give a different algorithm to check in polynomial
time in |U | whether the fixed frame F is a p-morphic image of a given frame
G = (U, S1, S2) with d1(G) < n(L).

Recall that a map f : U → W is a p-morphism iff the f -image of every
Si-cluster of G is an Ei-cluster of F , for i = 1, 2.

Lemma 16. F is a p-morphic image of G iff there is a partial surjective
map g : U → W with the following properties:

1. For each u ∈ U , there is v ∈ dom(g) such that uS1v.

2. For each v ∈ dom(g), the restriction g ↾ (dom(g) ∩ S1(v)) is one-one
and has range E1(g(v)).

3. For each u ∈ U there is w ∈ W such that

(a) g(v)E2w for all v ∈ dom(g) ∩ S2(u),

(b) for each w′ ∈ W ,
∣

∣

∣

(

E1(w
′) ∩ E2(w)

)

\ rng(g ↾ S2(u))
∣

∣

∣
≤

∣

∣

∣

(

S2(u) ∩ S1(g
−1(E1(w

′)))
)

\ dom(g)
∣

∣

∣
.

Proof. Suppose there is a surjective p-morphism f : U → W . Then for each
S1-cluster C ⊆ U , the map f ↾ C is a surjection from C onto E1(f(u)) for
any u ∈ C, so we may choose C ′ ⊆ C such that f ↾ C ′ is a bijection from C ′

onto E1(f(u)). Let U ′ =
⋃

{C ′ : C is an S1-cluster of G}. Then it is easy to
check that g = f ↾ U ′ satisfies conditions 1–3 of the lemma.

Conversely, let g be as stated. We will extend g to a surjective p-morphism
f : U → W . Since U is a disjoint union of S2-clusters, it is enough to define
f on an arbitrary S2-cluster of G. Pick u ∈ U . We will extend g ↾ S2(u)
to the whole of S2(u). Pick w ∈ W according to condition 3 of the lemma.
By condition 3(a), rng(g ↾ S2(u)) ⊆ E2(w). Now we extend g to f such
that rng(f ↾ S2(u)) = E2(w) and f(x)E1g(v) whenever v ∈ dom(g) and
x ∈ S2(u) ∩ S1(v).

Pick any w′ ∈ W and consider Xw′ = S2(u) ∩ S1(g
−1(E1(w

′)). By con-
ditions 1 and 2, S2(u) =

⋃

{Xw′ : w′ ∈ W} and Xw′ ∩ Xw′′ = ∅ whenever
¬(w′E1w

′′). We take the restriction of g to Xw′ (this restriction may be
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empty), and extend it to a surjection from Xw′ onto E1(w
′) ∩ E2(w). By

condition 3, we have |Xw′ \ dom(g)| ≥ |E1(w
′)∩E2(w) \ rng(g ↾ S2(u))|. So,

there exists a surjection fXw′
: Xw′ → E1(w

′)∩E2(w) extending g. Repeating
this for a representative w′ of each E1-cluster in turn yields an extension of
g to S2(u). Repeating for a representative u of each S2-cluster in turn yields
an extension of g to U as required.

It is left to show that f is a p-morphism. But it follows immediately from
the construction of f that f ↾ Si(u) : Si(u) → Ei(f(u)) is surjective for each
u ∈ U and each i = 1, 2. As we pointed out above this implies that f is a
p-morphism.

Corollary 17. It is decidable in polynomial time in the size of G, whether
F is a p-morphic image of G.

Proof. By Lemma 16 it is enough to check whether there exists a partial
map g : U → W satisfying conditions 1–3 of the lemma. There are at most
n(L) E1-clusters in G, and the restriction of g to each E1-cluster is one-one;
hence, d = |dom(g)| ≤ n(L) · |W |, and this is independent of G. There are
at most d|W | maps from a set of size at most d onto W . Obviously, there are
(

|U |
d

)

≤ |U |d subsets of U of size d. Hence there are at most d|W ||U |d partial
maps which may satisfy conditions 1 and 2 of the lemma. Our algorithm
enumerates all partial maps from U to W with domain of size at most d,
and for each one, checks whether it satisfies conditions 1–3 or not. It is not
hard to see that this check can be done in p-time; indeed, it is clear that
conditions 1 and 2 can be checked in time polynomial in |U | and there is
a first-order sentence σF such that G |= σF iff G satisfies condition 3. The
algorithm states that F is a p-morphic image of G if and only if it finds a
map satisfying the conditions. Therefore, this is a p-time algorithm checking
whether F is a p-morphic image of G.

Corollary 18. Let L be a proper normal extension of S52.

1. It can be checked in polynomial time in |U | whether a finite S52-frame
G = (U, S1, S2) is an L-frame.

2. L is NP-complete.

Proof. 1. Follows directly from Theorem 2, Corollary 17, and the fact that
ML is finite.
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2. It is a well-known result of modal logic (see, e.g., [4, Lemma 6.35])
that if L is a consistent normal modal logic having the poly-size model
property, and the problem of whether a finite structure A is an L-frame
is decidable in time polynomial in the size of A, then the satisfiability
problem of L is NP-complete. The poly-size model property of every
L ⊃ S52 is proven in [3, Corollary 9]. (1) implies that the problem
G ∈ FL can be decided in polynomial time in the size of G. The result
follows.
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