
Tutorial 1: paradoxes

We discuss the 'paradox' of the Pn's on pages 4-5 of the notes.
Recall that P0, P1,... are     all    the programs of our Modula_2-like
programming language, in alphabetical order.  The program P
was:

1 repeat forever

2 generate the next program Pn in the list

3 run Pn as far as the nth bit of the output

4 if Pn terminated or prompted for input before the nth bit was output then

5 output 1

6 else if the nth bit of Pn's output is 0 then

7 output 1

8 else if the nth bit of Pn's output is 1 then

9 output 0

10  end if

11   end repeat

1. P must be some Pn, but for any n, its output differs from Pn at the
nth bit.  This is    impossible    .  What is wrong with our reasoning?

2. Suppose P = P19 (say).  What would happen on the 19th loop of P?
3. Suppose that H(x) is a procedure in our language, having the

following property: for any program Q (supplied as a text string),
H(Q) = 1 if Q halts when run, and H(Q) = 0 otherwise.
i) Modify P using H to obtain a genuinely paradoxical

program.  [Hint: use H(run Pn as far as the nth bit of the

output).]
ii) Deduce that H does not exist.

4. i) What is the least number that is not the answer to an English
question having fewer than 200 letters?
ii) C.C. Chang and H.J. Keisler kindly dedicated their book
‘Model Theory’ to all those people who haven't got a book
dedicated to them.  Is it dedicated to you or not?
iii) What are the implications for your reasoning powers, if the
following sentence is (a) true, or (b) false?  "The reader has no way
of convincing him/herself that this sentence is true."



Tutorial 2: basic Turing machines

1. Design a TM Z whose output is "hello world" on any input.  So
formally, the input/output function fZ of Z is: fZ(w) = hello world

for any word w of Z's input alphabet (say, the roman alphabet).
2. (a)  Design a Turing machine M to solve the following problem.

The input is a word of {1} of length n.  So before M starts its run,
its tape contains a 1 in squares 0, 1, …, n-1, and blanks (∧) in all
other squares.  The problem is to determine whether n is even or
odd.  When M halts, square 0 of the tape should contain a 0 if n is
even, and a 1 if n is odd.  Square 1 should contain a blank.
(b)  Write down the input/output function of M in mathematical
notation.

3. Describe a TM, R, that reverses a word of {0,1}.  So fR(00011) =
11000, etc.  Use ‘pseudocode’ or English description if possible.



Tutorial 3: arithmetic, multi-tape Turing machines

If n≥0 is a number let 'n' ∈ {0,1}* be the binary expansion of n, without leading

zeros,      written for your convenience with the least significant digits on the left   .

So eg. '8' = 0001 ∈ {0,1}*, and '0' = 0.
1.  Design a 2-tape Turing machine A with fA('n','m') = 'n+m' for all n, m≥0 (so

     A adds two numbers in binary    ).  You can cheat and assume that initially 'n' is

on tape 1, and 'm' on tape 2.  State the input and full alphabets of A.

2.  Explain briefly how to design a (multi-tape) Turing machine M such that
fM('n','m') = 'n.m'.  That is, M multiplies two binary numbers.  [E.g.,

remember that multiplication is repeated addition; you can use A as a

subroutine.]
3.  A palindrome (of {0,1}*) is a word w = s1s2...sn in {0,1}* such that

w = snsn–1…s1.  Eg. 0110, 010, 0 and ε are palindromes; 011 is not.

Design a flowchart or give pseudocode for a Turing machine M with input

alphabet I = {0,1} such that for all w∈I*, M halts and succeeds on w iff w is a

palindrome.  [Hint: use 2 tapes.]  What is the full alphabet of your M?



Tutorial 4:  more multi-tape Turing machines, & UTM

1. Design a Turing machine M with input alphabet {a,b}, which,
given as input a word w of this alphabet, outputs the word
obtained from w by writing out its a's, and then its b's, in order.
For example,

fM(babaa)  =  aaabb
You may use pseudo-code or a flow-chart diagram; in the latter
case you should explain your notation for instructions.  You may
use several tapes, and you can assume that square 0 of each tape is
implicitly marked.

2. (a)  What is meant by the term "   standard     Turing machine"?
(b) What does the following standard Turing machine N do (i.e.,
what is its input/output function)?

(∧,∧,0)
q0

q1

q2

(a,a,1)
(b,b,1)

(a,∧,0)
(b,∧,0)
(∧,∧,0)N

q3

(c) Write out its code.

3. The universal Turing machine U can be made a standard Turing
machine.  So can M and N above [asssume M halts & fails if its
input word is not in {a,b}).  So they have codes, namely code(U),
code(M), code(N).
Calculate:
• fU(code(U)*code(M)*babba)

• fU(code(U)*code(N)*)       [not a misprint!]

• fU(code(U)*code(U)*code(N)*c)



Tutorial 5: Halting problem

The halting problem is very important.  If you are not sure about it,
please ask a tutor.  Then try these questions.  Remember the three Ds.1

1. Show that there is no Turing machine H' such that for all standard
Turing machines S and words w of C:

fH'(code(S)*w) = 


1 if S halts on input w; 
0 otherwise   

(The 'usual' machine H prints 1 if S     halts and succeeds    on w.)

2. Show that there is no Turing machine EO (standing for "empty
output") such that for all standard Turing machines S and words
w of C:

fEO(code(S)*w) = 


y if fS(w)=ε; 
n otherwise   

3. Show that there is no Turing machine H" such that for all standard
Turing machines S and words w of C:

fH"(code(S)) = 


1  if S halts & succeeds on input code(S);
0  otherwise   

(The 'usual' machine H takes input code(S)*w, i.e., 2 items.)

4. Can you show there is no H" as in (3) by using the method of
reduction: reducing HP to the problem that H" solves?

                                                
1  Be Defiant, and Don't forget about the Duplicator.



2.8=mc2.8 Tutorial 6: reduction

Questions 1,2,5 use the machine M[w], EDIT, and the universal Turing

machine U; all are assumed to be standard.  See §4.3 and §5.3 of the notes.

1. Let R be a standard Turing machine that reverses its input.  So, for example,
fR(abc) = cba.  Evaluate:

a) fR(alucard); b) fR[Lee](Cushing); c) fR[marb](ε)

2. Let S be any standard Turing machine, and let v, w be any words of C.  Check
that fU(fEDIT(code(S)*v)*w) = fS(v).

3. Uniform halting problem  (the problem of whether a Turing machine halts

on every input).  Show by reduction that there's no Turing machine UH such that for

all standard Turing machines S,

fUH(code(S)) = 


y    if S halts & succeeds on every input
n     otherwise   

                            

[Adapt the argument for the empty input halting problem.]

4. Inverse problem Show by reduction that there's no Turing machine INV such
that for all standard Turing machines S1, S2, and all words w of C,

fINV(code(S1)*code(S2)*w) = 


da if fS2(fS1(w))=w

nyet otherwise
  

That is, on input w, S2 inverts the effect of S1.  Note that fS2(fS1(w)) is undefined

if fS1(w) is, so fINV(code(S1)*code(S2)*w) = nyet in this case.

[You might try to transform an instance code(S)*w of HP into

code(S)*code(W)*w, for some suitable Turing machine W.  You may have to think a

bit about what W is to do.]

5. [‘Recursion theorem’, Stephen Kleene, 1938]  The Turing machine ADIT is

similar to EDIT (§5.3), but, on input code(M)*w, it outputs code(M{w}).  M{w} is a

standard TM similar to M[w], but, on input x, it writes w* in front of x (shifting x
right to make room!), then runs M.  So fM{w}(x) = fM(w*x).

Let S  be any standard TM, and consider the TM G below.

(assume 
input is 
code(M)*w) G

Duplicator
(as in notes) SADIT

U

*w

code(M)

*w

code(M)*
code(M)

G is assumed standard by scratch character elimination.  On input code(M)*w, G

splits off code(M), duplicates it, and runs ADIT, then S; G then tacks on *w to the
output, and runs U.  So fG(code(M)*w) = fU(fS(fADIT(fDuplicator(code(M))))*w).

(a) Let K = G{code(G)}.  Check that for any word w of C, we have
fK(w) = fU(fS(code(K))*w).

(b) Deduce that, given     any     algorithm to modify TMs (i.e., their codes) in any way

whatever, there's always some TM whose input-output function is

    unchanged     by the modification.



2.8=mc2.8 Tutorial 7: graphs

1. Consider the following graph:

1 2 3

4 5 6

7 8

9

10

11

(a)  How many connected components are there?

(b)  Now use the algorithm of §7 (below) on this graph in (i) depth-first mode

(priority = current time), and (ii) breadth-first mode (priority =  12 – current

time).  What are the fringe contents at each stage of execution in the depth

first case?

1 Visited(n): global Boolean array, initially all false; x: integer

2 repeat with x=1 to n

3 if not visited(x) then visit(x)

4 end repeat

5 procedure visit(x)

6 x,y,z: integer --- to represent vertices

7 empty the fringe (priority queue)

8 push x into fringe, with label *, and any priority

9 repeat until fringe is empty

10 pop (x,y,p) from fringe  [So x was the queue entry; y was

its label; and p was the (highest possible) priority.]

11 visited(x) := true

12 repeat for all nodes z connected to x by an edge

13 if not visited(z) then

14 push z into fringe, with label x, and chosen priority

15 end if

16 end repeat

17 end repeat

18  end visit

(c)  Which spanning trees for the connected components do you come up with in

each case?

(d)  How many times is visit  called (line 3) in each case?  Is it the same no. as (a)?

(e)  Give a value of x for which visited(z) is true more than once during the loop in

lines 12–16.  What is the significance of this?

2. Show that any graph with n nodes and < n-1 edges (for any n≥1) is not

connected.

3. Show that any    connected     graph with n nodes and n-1 edges (any n≥1) is a

tree.  Find a graph with n nodes and n-1 edges (some n) that's     not    a tree.



Tutorial 8: weighted graphs

1. Run Prim's algorithm to find a minimal spanning tree of the following

weighted graph G (starting at node A).  What tree do you get?  What is its total

length?

A
B C

D
E

F

G H

4

3

1
4

9 4

22

8

3

G

8

2

2.  Run it     again    , starting somewhere else.  Do you get the same total length of

tree?  Or the same tree?!

3. Let's check that     our algorithm finds a MST even in a graph where some edges

    have equal weight   .  We can use G = (V,E,w) above, as some of its edges have equal

weight.      The idea is to disturb the weights in G just a little, enough to make all the

    edges different, so that the algorithm definitely works, but not enough to alter the

     MSTs.     Follow these easy steps:

(i)      Lengthen     each of the 12 edges of G a little, so that:

(a) for each n = 1,…,7, the nth edge chosen by the algorithm (when you

ran it in Q1) is lengthened by n/100 (i.e., by 0.01, 0.02, …, 0.07);

(b) the numbers 0.08, 0.09, 0.10, 0.11 and 0.12 are added randomly to

the remaining 5 edges (a different number to each!).

You get a new weighted graph G* = (V,E,w*), with the same nodes and edges

as G, but slightly different weights.  No edge is altered by more than 0.12: we

have w*(e) ≤ w(e)+0.12 for all e∈E.

(ii) Let (V,T) be     any     spanning tree of G.  (The nodes are V, the edges T⊆ E.)
(a)  How many edges does T have?
(b) Let m = ∑t∈T w(t), and  m*  = ∑t∈T w*(t), be the total weights of the

edges of T, measured in G, G*, respectively.  Show that m ≤ m* < m+1.

(iii) Use Prim's algorithm (starting at node A) to find a MST of G*.  Call it T.  As

all edges of G* are different in length, T really is a MST of G*.

(iv)       Why     did you get the same tree T as in Q1?  (I hope you did!)

(v)  We know that T is a MST of G*.      Show that T is also a MST of G     .  [Use (ii).]

Deduce that the algorithm finds a MST even in graphs with some equal edges

(or at least on G!!)

(vi) If G had 100 or 1,000 nodes, say, ii(b) would not be true any more.  Why?

How would we alter our proof in such a case?

(vii) In i(a) we divided n by 100.  Find the smallest divisor that would have done.

PROBLEM: use the separation property to show that the algorithm works on any

weighted graph.



Tutorial 9: basic complexity theory

1.(i) What does the Turing machine M do?  (Its input alphabet is {a,b}.)

(a,∧,1)

(x,x,1)

 if x≠∧
(∧,∧,-1)

(∧,∧,0)

(∧,∧,0)

(∧,∧,-1)

(b,b,-1)

(a,a,-1)

(a,∧,-1)

(x,x,-1)

if x≠∧

(∧,∧,1)

(∧,∧,0)

(b,∧,1)
(b,∧,-1)

(x,x,1)

 if x≠∧

0

1 2

3 4

567

M

(ii) How many steps does M take to run on the following inputs:
•   abab •   abaa •   abba

(iii) What are the worst case inputs?  Give one of length 4.  And of
length 5.

(iv) Show that
timeM(n) = (n2 + 3n + 2)/2     for all n,

so that M runs in polynomial (quadratic) time.  [E.g., find an
equation for timeM(n) in terms of timeM(n-2), and use induction on
n.  The base cases of even- and odd-length inputs are different.]

2. Design (flowchart or pseudo-code) a 2-tape Turing machine M2

that is equivalent to M above, and runs in    linear    time (i.e., for
some constants a, b, we have timeM2(n) ≤ a + bn for all n).  Check

that it does run in linear time.

3. There is a deterministic Turing machine BU that, given the binary
representation of a number as input, outputs the unary
representation.  Show that BU    can't    have polynomial time
complexity.
[Hint: how long does BU take to output the answer if the input is
the binary representation of n?]



Extra tutorial: miscellaneous

A single exam style question (35 min) might consist of 1 and 2 together.

1. Using either pseudocode or a 'flowchart diagram', design a Turing machine M

whose input alphabet I consists of the following three symbols:

]  a [

such that M halts and succeeds on an input word w of I (M accepts w) if and only

if w contains the same number of left brackets ' [ ' as right brackets ' ] '.

Example:  the words [ a a ] and  [ ] a ] ] a [ [  are accepted; the words  [ [  and  a [

are rejected.

Hint: it may help to use three tapes.  You may assume that square 0 of each tape

is implicitly marked.

2. Briefly explain how you could modify M in (1) to make it accept exactly those
words w = a1a2...an such that:

- w has the same number of left and right brackets, and
- for all 1≤i≤n, a1a2...ai has at least as many left brackets as right brackets.  [E.g.,

a well-formed formula of  logic has brackets like this.]

3. What does the following standard Turing machine M do?  (It has input

alphabet {a,b} and full alphabet {a,b,∧}.)  What is its input-output function?  How

could we simplify the diagram using a parameter x ∈ {a,b}?  Write out code(M) (see

§4.2.1 of notes).

(a,á,1)

(x,x,1)
 if x±á

(á,á,-1)

(á,á,0)

(á,á,0)

(á,á,-1)

(b,b,-1)

(a,a,-1)

(a,á,-1)

(x,x,-1)
if x±á

(á,á,1)

(á,á,0)

(b,á,1)
(b,á,-1)

(x,x,1)
 if x±á

0

1 2

3 4

567

M


