A New Generation PEPA Workbench

Mirco Tribastone* Stephen Gilmoref

Abstract

We present recent developments on the implementation of a new PEPA
Workbench, a cross-platform application for editing, analysing, and out-
put management of PEPA models. The workbench is designed on top of
the Eclipse API, allowing it to be plugged into the Eclipse IDE, as well
as released as a standalone application. The new workbench employs im-
proved static and dynamic analysis features and user-friendly approach to
analysis of underlying CTMCs.

1 Introduction

Performance Evaluation Process Algebra (PEPA) [1] is an algebraic process-
oriented language for modelling concurrent systems. Performance of PEPA
models can be evaluated either by deriving the underlying Continous Time
Markov Chain (CTMC) and calculating the long-run probability of the states
of the chain or by extracting a set of Ordinary Differential Equations (ODE)
from the model [2].

The major advantage of using high-level modelling languages is that the en-
tire process of deriving and solving the underlying system can be automated by
software tools. Since 1994 PEPA modelers have been provided with the PEPA
Workbench [3], an application for managing PEPA models. The first release
written in ML relied on external tools such as Matlab or Maple for obtaining
the steady-state probability of the CTMC. The latest official version (Tabasco
release, [4]) is an open-source cross-platform application written exclusively in
Java incorporating numerical iterative solvers as well as features for performance
evaluation such as state finder, utilisation and throughput analysis. We present
a new generation PEPA Workbench which adopts the Eclipse APIL. Eclipse [5]
is an open source project, providing a powerful integrated development environ-
ment for a large variety of programming and modelling languages such as Java,
C/C++, Python, UML, etc. Moreover, Eclipse features a plug-in architecture
which makes it an extensible platform for third-party programmers to support
new tools, platforms and languages.

In this paper we show the first stages towards plugging PEPA tools into the
Eclipse platform. We first present our refactoring of the previous PEPA work-
bench source code. Then we show the Eclipse extensions we implemented and
compare them to the already existing functionalities. The paper is concluded
by discussing ongoing work on this project.

*LFCS, School of Informatics, Edinburgh University. Email: mtribast@inf.ed.ac.uk
fLFCS, School of Informatics, Edinburgh University. Email: stg@inf.ed.ac.uk

2 The PEPA Workbench

The Tabasco release consists of a single project containing both the business
model and the view model. For the sake of better manageability, a design choice
was made to divide up the entire project into three different sub-projects. The
Core project deals with the core logic for PEPA models. Services provided
by this project include, for example, parsing, state space deriving, and model
solving. A basic command-line user interface is also available within this project.
The PEPA Eclipse Plug-in project is the Plug-in project containing all the
necessary classes to provide the view logic of the workbench. Characteristics of
this sub-project are discussed in detail in this paper. Finally, the PEPA Help
project is concerned with help information to the end-user. Help is provided
in three different forms: dynamic help linked to Eclipse windows, HTML-based
help linked to the Eclipse main help section, and printer-friendly PDF reference
guide.

2.1 The PEPA Eclipse Plug-in Project

All the data managed by an Eclipse instance is organized into a workspace, i.e.
a collection of projects simultaneously managed by the Eclipse environment.
Projects contain the resources (i.e., files) which can be authored by the user.
Those resources can be manipulated using two main classes of tools, editors and
views. The former follow the traditional open-save-close cycle for resource mod-
ification. The latter are typically used to navigate resources, modify properties
of a resource and provide additional information on the resource being edited.

The Eclipse Project extends Eclipse by defining a new class of projects,
the PEPA project, capable of dealing with PEPA models. A PEPA project is
responsible for listening to events in resources and run PEPA builders, which
in turn construct model objects (parse tree, state space) from the model source
code.

Unlike the Tabasco release of the PEPA Workbench, parse tree building fol-
lows the open-save-close model of the editor holding the model. When the editor
is first opened, a parse tree is derived. The parse tree is then kept synchronised
with the user’s save action. The Eclipse Problems view is augmented to report
syntax errors to the user, and associated error markers are also shown in the
editor site to notify the position of the encountered error (see Fig. 1). A Parse
Tree view is notified of changes in the parse tree. It reacts by updating a tree
viewer consisting of the alphabets of the model processes.’

1The alphabet of a process is the complete set of action the process can perform. For
example, if we consider the given model:

P Y (ar).P1+(b,s).P2
P1 Y (ct).P

P2 Y (du).P

Q ¥ (ev)Q+(£2)Q

then the computed alphabets are as follows:

Alphabet(P) = Alphabet(P1) = Alphabet(P) = Alphabet(P2) = {a,b, c,d}
Alphabet(Q) = {e, f}

(om, def).(sendl, der).57:

56 = (sendl, def).57;
57 = (gm, def).S$8 + (timel, retry).S6 + (ackl, infty).37 + (ackl, infty).S0:
38 = (timel, retry).39 + (ackD, infty).38 + [ackl, infry).33:
89 = (sendl, def).58;
RO = (recvO, infty).{cm, def).{a0, def).R1:
Ri = (recv0, infty).(al, def).Ri + (recvi, infry).R2:
Rz = (cm, def).(al, def).R3;
@ R3 = (recvl, inftyl.(al, def).R3 (recvO, inftyl.Ra;
R4 = (cm, def).(ad, def).R1:
MO = (gendD, infty).Ml + (sendl, infty).M2 + (a0, infty).M3 + (al, infty).Id;
M1 = (drop, loss).MO + (recvD, def).MO;

MEclarat\nn ‘ Search | Analysis View | State Space ‘

1 error, O warrings, 0 infos
Description | Resource [path | Location_|
© Curent symbel: (. Expected :) 1 || < +] } dentifier’ | world.pepatest hell atline 25...

Figure 1: The Eclipse Problems view highlights a PEPA syntax error

& Java - world.pepatest - Eclipse 50K EEE]
Fie Edt Mavigate Search Project Run Window Help
| i v [#-0-Q- | BH#EG-|®F &0 -GG 0 05| &aava
Parse Tvee‘Nawgatm‘Packﬂge ExD\urer‘Ermr Lm;ﬂ State Space &2 W EYy=ad m tesk2, pepatest ‘ =0
Tracking model uk.ac.ed.inf pepa. eclipse. model ConcretePepatodelai 67 48c /¢ the paper "Process Llgebras for Protocol Validation and hnalysis®, [+
/4 Proceedings of PREP 2001
State |1 |2 B | Prob [Al || | // should have 94 states

3 56 e R3 0.002519775120...

2 0 o R3 2.712139970941 /{ an exawple file for use with the Java Edition of the PEPA Vorkbench 0.9 and |
& 57 [R 5.773219252669,

& 5 nz R2 5600038422201, def = 1.0

&7 E e (a1, def).R3 0.021130565689, iy

& e e R3 0051921702030, retry=1.0:

[53 [R3 0,015508334260, ., loss = 1.0;

n £ o R3 0055438304609,

b £ [(a1, def) 3 0.001132709400, S0 = (gm, def.{sendn, def).3i

z Z"Emn sensi " r oot 81 = (om, def).$2 + (time0, retry)§33 + (ackD, infy).S5 + (ackl, infty) .51

74 e e L, denRs ot S2 = (time0, retry).S4 + [ackD, infry).S6 + (ackl, infry].S2;

® 5 o R3 0.129008473457... 3 = (send0, def).S1:

7 E i R3 0003944834137, S4 = (send0, def).S2:

kel E2d ez R 3838976529395, S5 = (gm, def).{sendl, def).S7:

s £ nz R3 0.043297532901... 6 - (sendi, dof) .87

79 51 o R 0001467694312, ’ <A

13 5 i Rs £.003944033015, S7 = (gm, def].S8 + (vimel, retry) .56 + (ack, infey).S7 + (ackl, infty).S0;

a1 53 M R 0.001972257245. ., S8 = (timel, retry).S9 + [ackD, infry).S8 + (ackl, infry].S3;

3 51 [R3 0001972257295, S5 = (cend1, def).ss:

& E [R 4.416784655299,

2 5 nz R3 0021645912199,

o 2 o o s RO - (recvd, infty).(cm, def]. (a0, def).Ri

86 53 Mo R4 0.001834764533, R1 = (recvO, infry).(al, def).R1l + (recvi, infry).R2;

& 5t i R3 0.001972068568... R2 = (em, def].ial, def].R3;

£ 52 m R3 0.005316302782. R3 = (recvi, infry).(al, def).R3 + (recvd, infry).Rd;

& 54 [Ra 0002898961967,

R4 = def]. (a0, def].Rl:

a0 1 m R4 4,567093360116, ., (em, def). (a0, def)

o1 Bl [R3 0 007EETBE4A14,

%2 52 i Ra 0.001118975985, HD = (send0, infty) .Ml + [sendl, infty).Mz + (a0, infty).M3 + (al, infry) .4

% 53 m R 2,293087270463. . M1 - (drop, loss).MD + (recvd, def).HD; a
% £ [R e S - - - 5

Figure 2: The State Space View

As in the Tabasco release, the state space derivation stage is not synchronised
with the state of the editor. This design choice was made in order to cope with
large models more efficiently. In fact, state space derivation of such models may
be a long-running task which may dramatically reduce the responsiveness of the
user interface. A State Space view is notified by changes in the state space of
the model (see Fig. 2). The view allows the user to navigate, sort and filter the
state space. Filters are provided in the form of user-friendly, high-level rules
such as Filter states which do/do not contain reference or Filter states which
can perform outgoing/incoming activities (see Fig. 3). The PEPA Eclipse Plug-
in project provides decorators to export the generated state space into various
formats. An Eclipse wizard is already available to generate input data for the
MRMC (Markov Reward Model Checker) tool [6].

The PEPA Eclipse Plug-in project uses the Matrix for Java Toolkit [7] as
the engine for iterative solution of the underlying Markov chain of the model.
An Eclipse wizard is provided to guide the user through the process of model
solving (see Fig. 4). A monitor is also implemented in order to report to the
user information about the current iteration (iteration number, residual and
other metrics). The State Space view is also designed to listen to changes in the

LLULDT O LD
§.835975529345..,
0043297532981,

o4 = |SEndu, OdeI].od;
35 = (gm, def).(sendl, def).37:

& State Filters (%) T
[states which cortain M3 > fnfey) -
[V States which DO NOT cantain M3 v
[~ stakes which match regular expression I » def)

+ (rec
[™ stakes which do not conkain unnamed processes
¥ sStates whose steady-state probability is Igreater than j |D + [(re
Ok I Cancel
infty)
AL n T gD ML = aropn,; loo=l .00 T lfeowd, de=tf) . .Mo;
5504675175833, ¥ - - P [—
e —— T T T

Figure 3: Filtering rules available with the State Space View

J[a0,de...

.(a0,de... | Set solver parameters
(a0de intry) .5
R1 k1, infr

Iter ation manikor parameter settings
‘éalozde--‘ Maximum number of iterations | 100000
Jfal,de... | Relative tolerance | 10E5 fnfty) .S
R1

Absalute tolerance [LoEso [l iREE
(a0,de.., || DivereEnce tolerance [100000.0
R1 Reset to defaults

1.RZ:
(a0,de... | Select the preconditioner
AL -) .Ra;
(a0, de... , infty
R1
= N©) < Bark net> |[Frish | cancel |

Description | resource

Figure 4: Page of the solver wizard gathering information about solver param-
eters and preconditioner

solution of the model, reacting by updating a sortable and filterable Probability
column which shows the long-running probability of each state.

3 Conclusion and Ongoing Work

In this paper a brief overview of the current development state of a new Eclipse-
based version of the PEPA Workbench has been provided. We envisage two
main areas regarding the future work on this project. With regards to the Core
project, we aim at improving the static and dynamic analysis features. The
purpose is to help the user discover potential errors in the model as early as
possible. We are currently working on issues such as the automatic detection of
self-loops, unused or unreachable definitions (dead code), and early identification
of transient states. As for the PEPA Eclipse Plug-in project, our goal is to
incorporate tools to automatically map PEPA models to the underlying ODE
representation.

References

[1]

2]

[7]

J. Hillston, A Compositional Approach to Performance Modelling. Cam-
bridge University Press, 1996.

M. Calder, S. Gilmore, and J. Hillston, “Automatically deriving ODEs from
process algebra models of signalling pathways,” in Proceedings of Computa-
tional Methods in Systems Biology (CMSB 2005) (G. Plotkin, ed.), (Edin-
burgh, Scotland), pp. 204-215, Apr. 2005.

S. Gilmore and J. Hillston, “The PEPA Workbench: A Tool to Support
a Process Algebra-based Approach to Performance Modelling,” in Proceed-
ings of the Seventh International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, no. 794 in Lecture Notes in
Computer Science, (Vienna), pp. 353-368, Springer-Verlag, May 1994.

“PEPA Workbench Tabasco release.” http://www.dcs.ed.ac.uk/pepa/
tools/.

“Eclipse.” http://www.eclipse.org.

J.-P. Katoen, M. Khattri, and 1. S. Zapreev, “A Markov Reward Model
Checker,” in Proceedings of the Second International conference Quantitative
Evaluation of Systems (QEST), pp. 243-244, IEEE CS Press, 2005.

“Matrix Toolkit for Java.” http://rs.cipr.uib.no/mtj/.

