Proving Probabilistic Properties of the Itai Rodeh leader election protocol for any Number of Processes

Douglas Graham

Department of Computing Science
University of Glasgow
Overview

- Parameterised model checking
 - Classical parameterised model checking problem
 - Proof by induction: Firewire example
 - Extending Firewire & proof probabilistically

- Itai Rodeh leader election protocol
 - Application of induction proof to Itai Rodeh
Parameterised Model Checking

- For system $M(N) = p(1) \parallel p(2) \parallel \ldots \parallel p(N)$ can only model check property P for fixed N
- What if we want to verify for any N?
- Undecidable in general but techniques apply for subclasses of system
- E.g. proof by induction [Miller & Calder]
 - Firewire leader election protocol
Parameterised Model Checking
Parameterised Model Checking
Parameterised Model Checking

0
P
1
C
2
Parameterised Model Checking

0 \quad \rightarrow \quad P \quad \rightarrow \quad A \quad \rightarrow \quad 2

0 \quad \rightarrow \quad \rightarrow \quad P \quad \rightarrow \quad A \quad \rightarrow \quad 2

1

0 \quad \rightarrow \quad \rightarrow \quad P \quad \rightarrow \quad A \quad \rightarrow \quad 2

1

0 \quad \rightarrow \quad \rightarrow \quad P \quad \rightarrow \quad A \quad \rightarrow \quad 2

1

0 \quad \rightarrow \quad \rightarrow \quad P \quad \rightarrow \quad A \quad \rightarrow \quad 2

1
Parameterised Model Checking
Parameterised Model Checking

0

1

C
Parameterised Model Checking
Parameterised Model Checking
Parameterised Model Checking

- Notice that once a child node has sent an `ack`, it no longer takes part.
- System is described as *degenerative*.
- Can exploit this behaviour.
- Prove by induction that certain types of property hold for any number of nodes [Miller & Calder]
Parameterised Model Checking

- Show property holds for `base` system – star topology e.g. "leader will always be elected"
- For any configuration and size of system, every execution of model is related (stutter equivalent) to execution in model of smaller system
Probabilistic Parameterised Model Checking

- Can we apply degenerative approach to probabilistic systems?
- Extend Firewire probabilistically
 - Resolve "contention" situations with coin flip
 - Model as MDP in PRISM
- Extend induction proof
 - "Executions" are DTMCs not paths
 - Weak bisimulation instead of stutter equivalence
Probabilistic Parameterised Model Checking

- Can we apply induction approach to any other degenerative probabilistic systems?
- Itai Rodeh leader election protocol for rings?
Probabilistic Parameterised Model Checking

- Unidirectional ring of processes:
Each process flips coin and chooses 0 or 1 with equal probability.
Each process then passes choice to neighbour; if chosen 0 and receive 1 become passive
Counter is then passed around ring by each active process; counter is incremented by any passive process.
Probabilistic Parameterised Model Checking

Counter is then passed around ring by each active process; counter is incremented by any passive process.
Probabilistic Parameterised Model Checking

- If any process receives counter of value N-1 then he becomes leader, else active processes choose again.
Probabilistic Parameterised Model Checking

- Itai Rodeh is partially degenerative
 - When process becomes passive it only passes on messages...
 - ...but it can increment counter, whose max value is dependent on N
- Modelled in PRISM as an MDP [Kwiatkowska et al., Fokkink et al.]
- Our model is variation of these using buffers of size N
Probabilistic Parameterised Model Checking

- Apply same approach as for Firewire:
 - Base system is ring of size 3, say (could be anything that we can model check)
For \(N > 2 \) show that \(M_N \sim M_{N+1} \) where:
- \(\sim \) is some relationship between executions of MDPs
- \(M_N \) is model of system of size \(N \)
Probabilistic Parameterised Model Checking

- Introduce series of “intermediate” models
- Define model Mc_N as for M_N but with buffer length $N+1$
- For system of size N, never more than N messages in buffers [Fokkink et al]
- Mc_N is isomorphic to M_N

$M_N = Mc_N$
Probabilistic Parameterised Model Checking

- Define model Mp_N
- As for M_{N+1} except initial nondeterministic choice over processes with one selected as passive
- Passive process does not increment counter
Probabilistic Parameterised Model Checking

- In Mp_N buffers never contain $> N$ messages.
- If p initial passive, number of messages between $p-1$ and $p+1$ never $> N$
 - NB count p as a “buffer”
- Assume process $N+1$ initial passive.
- For Mp_N relate buffers between N and 1 to buffer between N and 1 in Mc_N.
Probabilistic Parameterised Model Checking

Mc_3

$\begin{array}{c}
1 \\
2 \\
3
\end{array}$

$\begin{array}{c}
[0,0,2,] \\
[,,] \\
[,,]
\end{array}$

Mc_3

$\begin{array}{c}
1 \\
2 \\
3
\end{array}$

$\begin{array}{c}
[0,0,2,] \\
[,,] \\
[,,]
\end{array}$

Mp_3

$\begin{array}{c}
1 \\
2 \\
3
\end{array}$

$\begin{array}{c}
[0,0,] \\
[,] \\
[,] \\
[2,] \\
[,,]
\end{array}$
Probabilistic Parameterised Model Checking

For each execution of Mp_N there exists execution of Mc_N that is weakly bisimilar (under relation) and vice versa.

$$M_N = Mc_N \approx Mp_N$$
Probabilistic Parameterised Model Checking

- Define Mp_N' as for Mp_N but initial passive increments counter
- Assume process p initial passive
- If counter has passed through p then relate state in Mp_N' to state in Mp_N with counter -1
Probabilistic Parameterised Model Checking

Mp_3

Mp_3'

\[P(2) \xrightarrow{A} P \xrightarrow{A} P(3) \]

\[P(2) \xrightarrow{A} P(3) \xrightarrow{A} P \]
Probabilistic Parameterised Model Checking

M_{p_3}

$M_{p_3'}$

P

A

$P(1)$
Probabilistic Parameterised Model Checking

- Again relation gives weak bisimulation between executions of models

\[M_N = M_{cN} \approx M_{pN} \approx M_{pN'} \]
Probabilistic Parameterised Model Checking

- Finally want to show that Mp_N' and M_{N+1} are related.
- But choice of initial passive probabilistic in M_{N+1} and nondeterministic in Mp_N'.
- Definition of relation between states is more complex and remains to be resolved.
Probabilistic Parameterised Model Checking

- Hence we have:
 \[M_N = M_{c_N} \approx M_{p_N} \approx M_{p_N'} \approx? M_{N+1} \]

- So assuming
 \[M_{p_N'} \approx M_{N+1} \]
 then by induction,
 \[M_3 | = \Phi \Rightarrow \text{for all } N, \ M_N | = \Phi \]
 where \(\Phi \) is a PCTL property that
 - does not index any process id
 - does not contain next time or time bounded until operators

- \textit{E.g.} “with probability 1, a leader is elected”
Further Work

- Complete proof for Itai Rodeh leader election
- Apply to other degenerative systems
 - Randomised consensus weak shared coin protocol (Aspnes & Herlihy)