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Background

The modelling of chemical reactions using deterministic rate
laws has proven extremely successful in both chemistry and
biochemistry for many years.

This deterministic approach has at its core the law of mass
action, an empirical law giving a simple relation between
reaction rates and molecular component concentrations.

Given knowledge of initial molecular concentrations, the law
of mass action provides a complete picture of the component
concentrations at all future time points.
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Background: Law of Mass Action

The law of mass action considers chemical reactions to be
macroscopic under convective or diffusive stirring, continuous
and deterministic.

These are evidently simplifications, as it is well understood
that chemical reactions involve discrete, random collisions
between individual molecules.

As we consider smaller and smaller systems, the validity of a
continuous approach becomes ever more tenuous.

As such, the adequacy of the law of mass action has been
questioned for describing intracellular reactions.
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Background: Application of Stochastic Models

Arguments for the application of stochastic models for chemical
reactions come from at least three directions, since the models:

1 take into consideration the discrete character of the quantity
of components and the inherently random character of the
phenomena;

2 are in accordance with the theories of thermodynamics and
stochastic processes; and

3 are appropriate to describe “small systems” and instability
phenomena.
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Background: Simulation

Stochastic simulation methods

Nothing new?

Not just discrete-event simulation

Specialist method well-suited to large-scale systems
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Deterministic: The law of mass action

The fundamental empirical law governing reaction rates in
biochemistry is the law of mass action.

This states that for a reaction in a homogeneous, free medium, the
reaction rate will be proportional to the concentrations of the
individual reactants involved.
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Deterministic: Michaelis-Menten kinetics

Consider the simple Michaelis-Menten reaction

S + E
k1



k−1

C
k2

→ E + P

For example, we have

dC

dt
= k1SE − (k−1 + k2)C

Hence, we can express any chemical system as a collection of
coupled non-linear first order differential equations.

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Deterministic: Michaelis-Menten kinetics

Consider the simple Michaelis-Menten reaction

S + E
k1



k−1

C
k2

→ E + P

For example, we have

dC

dt
= k1SE − (k−1 + k2)C

Hence, we can express any chemical system as a collection of
coupled non-linear first order differential equations.

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Deterministic: Michaelis-Menten kinetics

Consider the simple Michaelis-Menten reaction

S + E
k1



k−1

C
k2

→ E + P

For example, we have

dC

dt
= k1SE − (k−1 + k2)C

Hence, we can express any chemical system as a collection of
coupled non-linear first order differential equations.

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Stochastic: Random processes

Whereas the deterministic approach outlined above is
essentially an empirical law, derived from in vitro experiments,
the stochastic approach is far more physically rigorous.

Fundamental to the principle of stochastic modelling is the
idea that molecular reactions are essentially random processes;
it is impossible to say with complete certainty the time at
which the next reaction within a volume will occur.
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Stochastic: Predictability of macroscopic states

In macroscopic systems, with a large number of interacting
molecules, the randomness of this behaviour averages out so
that the overall macroscopic state of the system becomes
highly predictable.

It is this property of large scale random systems that enables a
deterministic approach to be adopted; however, the validity of
this assumption becomes strained in in vivo conditions as we
examine small-scale cellular reaction environments with
limited reactant populations.
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Stochastic: Propensity function

As explicitly derived by Gillespie, the stochastic model uses basic
Newtonian physics and thermodynamics to arrive at a form often
termed the propensity function that gives the probability aµ of
reaction µ occurring in time interval (t, t + dt).

aµdt = hµcµdt

where the M reaction mechanisms are given an arbitrary index µ
(1 ≤ µ ≤ M), hµ denotes the number of possible combinations of
reactant molecules involved in reaction µ, and cµ is a stochastic
rate constant.
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Stochastic: Fundamental hypothesis

The rate constant cµ is dependent on the radii of the molecules
involved in the reaction, and their average relative velocities – a
property that is itself a direct function of the temperature of the
system and the individual molecular masses.

These quantities are basic chemical properties which for most
systems are either well known or easily measurable. Thus, for a
given chemical system, the propensity functions, aµ can be easily
determined.
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Stochastic: Grand probability function

The stochastic formulation proceeds by considering the grand
probability function Pr(X; t) ≡ probability that there will be
present in the volume V at time t, Xi of species Si , where
X ≡ (X1,X2, . . . XN) is a vector of molecular species populations.

Evidently, knowledge of this function provides a complete
understanding of the probability distribution of all possible states
at all times.
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Stochastic: Infinitesimal time interval

By considering a discrete infinitesimal time interval (t, t + dt) in
which either 0 or 1 reactions occur we see that there exist only
M + 1 distinct configurations at time t that can lead to the state
X at time t + dt.

Pr(X; t + dt)

= Pr(X; t) Pr(no state change over dt)

+
∑M

µ=1 Pr(X− vµ; t) Pr(state change to X over dt)

where vµ is a stoichiometric vector defining the result of reaction µ
on state vector X, i.e. X→ X + vµ after an occurrence of
reaction µ.
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Stochastic: State change probabilities

Pr(no state change over dt)

1−
M∑

µ=1

aµ(X)dt

Pr(state change to X over dt)

M∑
µ=1

Pr(X− vµ; t)aµ(X− vµ)dt
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Stochastic: Partial derivatives

∂ Pr(X; t)

∂t
= lim

dt→0

Pr(X; t + dt)− Pr(X; t)

dt
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Stochastic: Chemical Master Equation

Applying this, and re-arranging the former, leads us to an
important partial differential equation (PDE) known as the
Chemical Master Equation (CME).

∂ Pr(X; t)

∂t
=

M∑
µ=1

aµ(X− vµ) Pr(X− vµ; t)− aµ(X) Pr(X; t)
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The problem with the Chemical Master Equation

The CME is really a set of nearly as many coupled ordinary
differential equations as there are combinations of molecules
that can exist in the system!

The CME can be solved analytically for only a very few very
simple systems, and numerical solutions are usually
prohibitively difficult.

D. Gillespie and L. Petzold.

chapter Numerical Simulation for Biochemical Kinetics, in System
Modelling in Cellular Biology, editors Z. Szallasi, J. Stelling and V.
Periwal.

MIT Press, 2006.
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Breakthrough: Gillespie’s Stochastic simulation algorithms
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Biography: Daniel T. Gillespie

1960 BA from Rice University

1968 PhD from Johns Hopkins University

1968–1971 Postdoc at the University of Maryland’s Institute for
Molecular Physics.

1971–2001 Research Physicist in the Earth & Planetary Sciences
Division of the Naval Air Warfare Center in China
Lake, California.

2001 Retirement from Civil Service. Begins consultancy for
California Institute of Technology and the Molecular
Sciences Institute, working mostly with Linda Petzold
and her group at the University of California at Santa
Barbara.
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Books by Daniel T. Gillespie

A Quantum Mechanics Primer (1970)

Markov Processes: An Introduction for Physical Scientists
(1992)

Biography of radio comedy writer Tom Koch (2004)
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Stochastic simulation algorithms

Gillespie’s Stochastic Simulation Algorithm (SSA) is essentially an
exact procedure for numerically simulating the time evolution of a
well-stirred chemically reacting system by taking proper account of
the randomness inherent in such a system.

It is rigorously based on the same microphysical premise that
underlies the chemical master equation and gives a more realistic
representation of a system’s evolution than the deterministic
reaction rate equation (RRE) represented mathematically by ODEs.

As with the chemical master equation, the SSA converges, in the
limit of large numbers of reactants, to the same solution as the law
of mass action.
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Gillespie’s exact SSA (1977)

The algorithm takes time steps of variable length, based on
the rate constants and population size of each chemical
species.

The probability of one reaction occurring relative to another is
dictated by their relative propensity functions.

According to the correct probability distribution derived from
the statistical thermodynamics theory, a random variable is
then used to choose which reaction will occur, and another
random variable determines how long the step will last.

The chemical populations are altered according to the
stoichiometry of the reaction and the process is repeated.
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stoichiometry of the reaction and the process is repeated.
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Stochastic simulation: Job done!
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Stochastic simulation: realisations and ensembles

The SSA computes one realisation of a dynamic trajectory of a
chemically reacting system. Often an ensemble of trajectories is
computed, to obtain an estimate of the probability density function
of the system.

The dynamic evolution of the probability density function is given
by the Chemical Master Equation.
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Gillespie’s SSA is a Monte Carlo Markov Chain simulation

The SSA is a Monte Carlo type method. With the SSA one may
approximate any variable of interest by generating many
trajectories and observing the statistics of the values of the
variable. Since many trajectories are needed to obtain a reasonable
approximation, the efficiency of the SSA is of critical importance.
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Computational cost of Gillespie’s exact algorithm

The cost of this detailed stochastic simulation algorithm is the
likely large amounts of computing time.

The key issue is that the time step for the next reaction can be
very small indeed if we are to guarantee that only one reaction can
take place in a given time interval.

Increasing the molecular population or number of reaction
mechanisms necessarily requires a corresponding decrease in the
time interval. The SSA can be very computationally inefficient
especially when there are large numbers of molecules or the
propensity functions are large.
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Gibson and Bruck (2000)

Gibson and Bruck refined the first reaction SSA of Gillespie by
reducing the number of random variables that need to be
simulated.

This can be effective for systems in which some reactions occur
much more frequently than others.

M.A. Gibson and J. Bruck.

Efficient exact stochastic simulation of chemical systems with many
species and many channels.

J. Comp. Phys., 104:1876–1889, 2000.
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Variants of SSA

Gillespie developed two different but equivalent formulations of the
SSA: the Direct Method (DM) and the First Reaction Method
(FRM). A third formulation of the SSA is the Next Reaction
Method (NRM) of Gibson and Bruck. The NRM can be viewed as
an extension of the FRM, but it is much more efficient than the
latter.

It was widely believed that Gibson and Bruck’s method (the Next
Reaction Method) was more efficient than Gillespie’s Direct
Method (DM). This conclusion is based on a count of arithmetic
operations.
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Gibson and Bruck challenged (2004)

It was established by Cao, Li and Petzold (2004) that Gibson and
Bruck’s analysis misses the dominant cost of the NRM, which is
maintaining the priority queue data structure of the tentative
reaction times and that good implementations of DM such as the
Optimised Direct Method (ODM) have lower asymptotic
complexity than Gibson and Bruck’s method.

Y. Cao, H. Li, and L. Petzold.

Efficient formulation of the stochastic simulation algorithm for
chemically reacting systems.

J. Chem. Phys, 121(9):4059–4067, 2004.
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Enhanced stochastic simulation techniques

If the system under study possesses a macroscopically infinitesimal
timescale so that during any dt all of the reaction channels can fire
many times, yet none of the propensity functions change
appreciably, then the discrete Markov process as described by the
SSA can be approximated by a continuous Markov process.

This Markov process is described by the Chemical Langevin
Equation (CLE), which is a stochastic ordinary differential equation
(SDE).
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Stochastic Differential Equations

A stochastic differential equation (SDE)

dXt = a(t,Xt)dt + b(t,Xt)dWt

is interpreted as a stochastic integral equation

Xt = Xt0 +

∫ t

t0

a(s,Xs)ds +

∫ t

t0

b(s,Xs)dWs

where the first integral is a Lebesgue (or Riemann) integral for
each sample path and the second integral is usually an Ito integral.
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Chemical Langevin Equation

The Langevin equation

dXt = −aXtdt + dWt

is a linear SDE with additive noise. The solution for t0 = 0 is

Xt = X0e
−at + e−at

∫ t

0
easdWs
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Gillespie’s tau-leap method (2001)

Gillespie proposed two new methods, namely the τ -leap method
and the midpoint τ -leap method in order to improve the efficiency
of the SSA while maintaining acceptable losses in accuracy.

Daniel T. Gillespie.

Approximate accelerated stochastic simulation of chemically reacting
systems.

J. Comp. Phys., 115(4):1716–1733, 2001.

The key idea here is to take a larger time step and allow for more
reactions to take place in that step, but under the proviso that the
propensity functions do not change too much in that interval. By
means of a Poisson approximation, the tau-leaping method can
“leap over” many reactions.
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Gillespie’s tau-leap method (significance)

For many problems, the tau-leaping method can approximate the
stochastic behaviour of the system very well.

The tau-leaping method connects the SSA in the discrete
stochastic regime to the explicit Euler method for the chemical
Langevin equation in the continuous stochastic regime and the
RRE in the continuous deterministic regime.

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Gillespie’s tau-leap method (significance)

For many problems, the tau-leaping method can approximate the
stochastic behaviour of the system very well.

The tau-leaping method connects the SSA in the discrete
stochastic regime to the explicit Euler method for the chemical
Langevin equation in the continuous stochastic regime and the
RRE in the continuous deterministic regime.

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Gillespie’s tau-leap method (significance)

For many problems, the tau-leaping method can approximate the
stochastic behaviour of the system very well.

The tau-leaping method connects the SSA in the discrete
stochastic regime to the explicit Euler method for the chemical
Langevin equation in the continuous stochastic regime and the
RRE in the continuous deterministic regime.

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Gillespie’s tau-leap method (significance)

For many problems, the tau-leaping method can approximate the
stochastic behaviour of the system very well.

The tau-leaping method connects the SSA in the discrete
stochastic regime to the explicit Euler method for the chemical
Langevin equation in the continuous stochastic regime and the
RRE in the continuous deterministic regime.

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Gillespie’s tau-leap method (significance)

For many problems, the tau-leaping method can approximate the
stochastic behaviour of the system very well.

The tau-leaping method connects the SSA in the discrete
stochastic regime to the explicit Euler method for the chemical
Langevin equation in the continuous stochastic regime and the
RRE in the continuous deterministic regime.

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Gillespie’s tau-leap method (drawback)

The use of approximation in Poisson methods leads to the
possibility of negative molecular numbers being predicted —
something with no physical explanation.
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Gillespie’s Modified Poisson tau-leap methods (2005)

Gillespie’s modified Poisson tau-leaping method introduces a
second control parameter whose value dials the procedure from the
original Poisson tau-leaping method at one extreme to the exact
SSA at the other.

Any reaction channel with a positive propensity function which is
within nc firings of exhausting its reactants is termed a critical
reaction.

Y. Cao, D. Gillespie, and L. Petzold.

Avoiding negative populations in explicit tau leaping.

J. Chem. Phys, 123(054104), 2005.
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Gillespie’s Modified Poisson tau-leap methods (2006)

The modified algorithm chooses τ in such a way that no more than
one firing of all the critical reactions can occur during the leap.
The probability of producing a negative population is reduced to
nearly zero.

If a negative population does occur the leap can simply be rejected
and repeated with τ reduced by half, or the entire simulation can
be abandoned and repeated for larger nc .

Y. Cao, D. Gillespie, and L. Petzold.

Efficient stepsize selection for the tau-leaping method.

J. Chem. Phys, 2006.

To appear.
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Family of stochastic simulation algorithms

FASTEST, BEST

Discrete, exact Continuous, approximate

Modified Poisson τ leap (2005)

τ leap (2001)

Logarithmic Direct Method (2006)

Sorting Direct Method (2005)

Optimised Direct Method (2004)

Next Reaction Method (2000)

Direct Method (1977)

First Reaction Method (1977)

SLOWEST, WORST
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Comparing stochastic simulation and ODEs

We know that stochastic simulation can allow us to observe
phenomena which ODEs cannot.

Are there places where they agree?
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A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]
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A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]

CTMC interpretation
Processors (P) Resources (R) States (2P+R )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]

ODE interpretation
dProc0

dt = −r1 min(Proc0,Res0)

+r2 Proc1
dProc1

dt = r1 min(Proc0,Res0)

−r2 Proc1
dRes0

dt = −r1 min(Proc0,Res0)

+s Res1
dRes1

dt = r1 min(Proc0,Res0)

−s Res1
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Processors and resources (SSA run A)
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Processors and resources (SSA run B)

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Processors and resources (SSA run C)
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Processors and resources (SSA run D)
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Processors and resources (average of 10 runs)
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Processors and resources (average of 100 runs)

Stephen Gilmore. Informatics, University of Edinburgh. An Introduction to Stochastic Simulation



The deterministic and stochastic approaches
Stochastic simulation algorithms

Comparing stochastic simulation and ODEs
Modelling challenges

Processors and resources (average of 1000 runs)
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Processors and resources (average of 10000 runs)
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Processors and resources (ODE solution)
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From realisations to ensembles

As we repeatedly sample from the underlying random number
distributions the average of the samples tends to the mean.
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Processors and resources: scaling out

What effect does increasing the number of copies have?
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Processors and resources (single SSA run, 100/80)
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Processors and resources (single SSA run, 1,000/800)
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Processors and resources (single SSA run, 10,000/8,000)
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Processors and resources (single SSA run, 100,000/80,000)
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From the microscopic to the macroscopic domain

Each specific run is individually in closer and closer agreement with
the deterministic approach as the number of molecules in the
system increases.

This is a direct effect of the inherent averaging of macroscopic
properties of a system of many particles.
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Conclusions from the comparison

1 These results provide clear verification of the compatibility of
the deterministic and stochastic approaches.

2 They also illustrate the validity of the deterministic approach
in systems containing as few as 100 copies of components.
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Modelling challenges: stiffness

A problem for modelling temporal evolution is stiffness. Some
reactions are much faster than others and quickly reach a stable
state. The dynamics of the system is driven by the slow reactions.

Most chemical systems, whether considered at a scale appropriate
to stochastic or to deterministic simulation, involve several widely
varying time scales, so such systems are nearly always stiff.
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Modelling challenges: multiscale populations

The multiscale population problem arises when some species are
present in relatively small quantities and should be modelled by a
discrete stochastic process, whereas other species are present in
larger quantities and are more efficiently modelled by a
deterministic ordinary differential equation (or at some scale in
between). SSA treats all of the species as discrete stochastic
processes.
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Gillespie’s multiscale SSA methods (2005)

SSA is used for slow reactions or species with small populations.
The multiscale SSA method generalizes this idea to the case in
which species with small population are involved in fast reactions.
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Gillespie’s slow-scale SSA methods (2005)

The setting for Gillespie’s slow-scale SSA method is

S + E
k1



k−1

C
k2

→ E + P

where
k−1 � k2

Slow-scale SSA explicitly simulates only the relatively rare
conversion reactions, skipping over occurrences of the other two
less interesting but much more frequent reactions.
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Comparing SSA and Slow-Scale SSA results
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Comparing SSA and Slow-Scale SSA results
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Conclusions

Stochastic simulation is a well-founded method for simulating
in vivo reactions.

Gillespie’s SSA can be more accurate than ODEs at low
molecular numbers; compatible with them at large molecular
numbers.

Recent explosion of interest in the subject with many new
variants of the SSA algorithm.
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Stochastic simulation software
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