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ABSTRACT

A class of queueing models is considered here
which in general do not give rise to a prod-
uct form solution but can nevertheless be de-
composed into their components, subject to a
property referred to as quasi-separability. Such
a decomposition gives rise to expressions for
marginal probabilities which may be used to
derive potentially interesting system perfor-
mance measures, such as the average number
of jobs in the system. In this paper a sim-
ple approximation for the variance of the state
of a system of quasi-separable components is
presented and compared with an alternative
method of approximate solution.

INTRODUCTION

Systems of Markovian queues which give rise to product
form solutions have been widely studied in the past. In
this paper an alternative method of model decomposi-
tion is considered that can be found in the queueing net-
work literature, quasi-separability. Quasi-separability
was developed in the study of queueing systems which
suffer breakdowns (Thomas and Mitrani 1995), more re-
cently the approach has been generalised by Thomas et
al (Thomas 1999; Thomas and Bradley 2000a) using
a Markovian process algebra PEPA. Decompositions of
this kind are extremely useful when tackling models with
large state spaces, especially when the state space grows
exponentially with the addition of further components.
Quasi-separability can be applied to a range of models
to derive numerical results very efficiently. While it does
not generally give rise to expressions for joint probabil-
ity distributions it does provide exact results for many
performance measures, possibly negating the need for
more complex numerical analysis. As such it is a very
useful means of reducing the state space of large models.

Not all performance measures of interest can be de-
rived exactly from this decomposition. In particular,
whilst the average number of jobs in the system may
be calculated exactly, in general its variance cannot.
It is clearly advantageous however, to gain some con-
fidence in the calculated mean as a useful performance
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measure without having to solve a much more compli-
cated model. Our proposed solution to this problem is
to approximate the variance of the system state by two
distinct methods which we compare by numerical exper-
iment. The first method is to estimate the joint queue
size distributions directly from exact calculations of the
marginal queue size distributions. The second method
is to approximate the behaviour of a number of sepa-
rate queues as a single multi-server queue and use this
to calculate the total number of jobs in the system at
any time.

In this paper we consider a class of models consisting
of a number of nodes in parallel which share a source of
jobs. Each node consists of a finite length queue and
one or more servers. Jobs are shared amongst the nodes
on an a priori basis according to a routing vector which
is dependent on the configuration of a scheduler. The
scheduler configuration may change independently or in
response to changes in the behaviour of the nodes. We
show that if the scheduler configuration is not dependent
on the number of jobs in the queues, then the system
may be decomposed such that each node may be studied
in isolation.

THE MODEL

Jobs arrive into the system in a Poisson stream with
rate A. There are N nodes, each consisting of one or
more servers with an associated bounded queue. All jobs
arrive at a scheduler which directs jobs to a particular
node according to its current state. Jobs sent to a queue
which is full are lost. The system model is illustrated in
Figure 1.

P

O~

Figure 1: A single source split among N nodes

If, at the time of arrival, a new job finds the scheduler in



configuration o, then it is directed to node k with prob-
ability gx(c). These decisions are independent of each
other, of past history and of the sizes of the various
queues. Thus, a routing policy is defined by specifying
M vectors, where M is the number of possible configu-
rations which the scheduler may take.

q(o) = [¢1(0),¢2(0),---,an(0)] , o CON | (1)
such that for every o,

N
D oarlo)=1. (2)
k=1

The system state at time ¢ is specified by the pair
[I(t),J(t)], where I(t) indicates the current scheduler
configuration and J(t) is an integer vector whose kth el-
ement, Ji(t), is the number of jobs in queue k (k =
1,2,...,N). Under the assumptions that have been
made, X = {[I(¢),J(t)], t > 0} is an irreducible Markov
process.

When the routing probabilities depend on the sys-
tem configuration, the process X is not separable (i.e., it
does not have a product-form solution). As the capacity
of the system becomes large, i.e. each queue has a large
bound and N is also large, the direct solution of the joint
queue size probabilities becomes increasingly costly, al-
though never intractable. The quantities of principal in-
terest are expressed in terms of averages only; they are
the steady-state mean queue sizes, Ly, and the overall
average response time, W, given by;

1 N
W:X;Lk. (3)

To determine these performance measures, it is not nec-
essary to know the joint distribution of all queue sizes;
the marginal distributions of the N queues in isola-
tion are sufficient. Unfortunately, the isolated queue
processes, {Ji(t), t > 0} (k = 1,2,...,N), are not
Markov. However, the performance measures can be
determined by studying the stochastic processes Y, =
{[L(t), Jx(t)],t >0} (k=1,2,...,N), which model the
joint behaviour of the system configuration and the size
of an individual queue. The state space of Y is depen-
dent only on the capacity of the queue at node K, which
simplifies the solution considerably and makes it feasible
for reasonably large values of N. The important obser-
vation here is that Y} is an irreducible Markov process,
for every k. This is because the arrivals into, and de-
partures from queue k during a small interval (¢, ¢+ At)
depend only on the system configuration and the size
of queue k at time ¢, and not on the sizes of the other
queues.

QUASI-SEPARABILITY

The model presented in the previous section has a prop-
erty which has become termed quasi-separability. De-
composition based on quasi-separability allows expres-

sions to be derived for marginal distributions just as
with a product form solution, however unlike product
form these marginal distributions cannot, in general, be
combined to form the joint distribution for the whole
model.

Consider an irreducible Markov process, X(t),
which consists of N separate components. The state
of each component i can be described by a set of K;
separate variables. Denote by V; the set of K; variables
which describe the state of component 3. If it is possible
to analyse the behaviour of each component, i, of the
system exactly by only considering those variables that
describe it, i.e. V;, then the system is said to be sepa-
rable. In this case all the components are statistically
independent and a product form solution exists.

For the system to be quasi-separable it is necessary
only that it is possible to analyse the behaviour of each
component, i, of the system exactly by only considering
those variables that describe it, V;, and a subset of the
variables from all the other components. Thus the ele-
ments of V; can be classified into the subsets of either
system state variables, S; or component state variables
C;, such that:

e the state of ¢(t) € C; changes at a rate which is
independent of the state of any variable v(t) € C;,

Vjst j#i.

o the state of s(t) € S; changes at a rate which is
independent of the state of any variable v(¢) € C;,
1<j<N.

If C; # 0, V i, the system can be decomposed into
N submodels such that the submodel of the system
with respect to the behaviour of component 7 specifies
the changes in the system state variables S = Ufil S;
and the component state variables C;. In general the
analysis of these submodels gives rise to expressions for
their steady-state marginal probabilities if the submod-
els have stationary distributions with state spaces which
are infinite in at most one dimension. As stated above,
these marginal probabilities do not, in general, give rise
to expressions for the joint probability of the whole sys-
tem, i.e. no product form solution exists. For quasi-
separability to be useful the state space of the submod-
els should be significantly smaller than the state space
of the entire model.

DERIVING VARIANCE FROM MARGINAL
PROBABILITIES

If the state space of a model is being reduced then
the available information is also reduced unless a prod-
uct form solution exists. The submodels consist of
the system state variables S = Ufil S; and the com-
ponent state variables C;, hence the steady-state solu-
tion of such a system gives probabilities of the form



p(S,¢) = p(S = S,C; = ¢). The solution of the en-
tire model would give rise to probabilities of the form
p(S,C) = p(S = S,C = C), where C = {C4,...,Cn}
and C = {Cy,...,Cx}. These probabilities are related
in the following way for the submodel involving compo-
nent ¢ subject to the quasi-separability condition,

pS=8.Ci=c)= ) pS=8C=0C) (4
VCs.t.C;=c
If it is possible to associate a value, x;; with each state of
a component ¢ then the average state of the component
can easily be found. In addition the average of the sum
of all components can be found exactly. Thus,

E[Z‘,] = Z Zmijp(S = S,C, = .Z'z'j) (5)
vj VS
Gives the average state of the component, which can be
used to derive the average sum,

Ele] = 3 Ela] (6)
Yi

Clearly it is an advantageous property to be able to de-
rive system performance measures from marginal prob-
abilities when they can be found. However, the mean is
a special case as the sum of the values is trivially sepa-
rated. If we consider the same example on variance the
problem is evident, in this case there is always at least
one term involving the joint probabilities which cannot
be broken down to the marginal probabilities. In the
general case where there are N components, there will
be N terms involving just the marginal probabilities, but
(N — 1)! terms involving the joint distribution. Clearly
then it is not possible to calculate the variance exactly
except when a product form solution exists.

The obvious (traditional) solution to this problem is
to generate an approximate solution to variance by sub-
stituting a product based approximation for the joint
distribution. In the case of quasi-separability the situa-
tion is slightly complicated since the submodels give rise
to marginal probabilities involving not only component
variables but also system state variables. The simplest
solution (henceforth referred to as the component state
approzimation) would be to eliminate the system state
variables by summing over all possible values:

N

p(e) ~ [ 3 (S, i) (7)
i=1 VS

where ¢ = {ec1,...,en}.  An alternative approach

(henceforth referred to as the system state approxima-
tion) is to attempt to derive approximations for every
possible system state:

Héil p(Sa ci)

p(S,0) S ®)

In our earlier study (Thomas and Bradley 2000b) we
observed that the component state approximation con-
sistently performs better than the system state approx-
imation. However, the latter has some value as when

the two approximations give close values they are ob-
served to be accurate, but when they are diverse they
are observed to be somewhat less accurate.

AN ALTERNATIVE APPROXIMATION

It has been shown that in some situations these approx-
imations for the joint probability distribution based on
quasi-separability worked well in some situations and
less well in others (Thomas and Bradley 2000b). In
general we were unable to predict the situations where
the approximations worked well, but concluded that if
the two approximations gave very close values then they
were generally accurate. Clearly there are many other
methods which could be applied to this class of mod-
els and it is therefore worth considering if any of these
can improve on the results we have already for more
complex metrics, such as the variance of the number of
jobs in the system. The approximation we present here
is inspired by an approach presented by Gribaudi and
Sereno (Gribaudi and Sereno 2000). It is based on the
observation that, for the measures of interest, it is not
generally necessary to know the joint queue size distri-
bution, but only the distribution of the total number of
jobs in the system.

The quasi-separability decomposition presented in
this paper relies on considering each of the queues in
isolation to derive the marginal queue size distributions,
as such, the information necessary to derive measures
based on the total number of jobs in the system is
not available. However, if we consider an alternative
whereby an individual queue is studied in a model with
another queue representing all the remaining queues in
the system, we not only derive the marginal queue size
distributions exactly, but also the distribution of the to-
tal number of jobs in the system approximately. The ap-
proximating queue is an amalgamation of all the queues
in the system except the one represented explicitly and
has a maximum size equal to the sum of all those queues.
The total number of available servers are associated with
the amalgamated queue and an arrival rate equal to the
total effective arrival rate into those queues, i.e. the
blocking probability is taken into account. The approx-
imated model is shown in Figure 2.
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Figure 2: An approximate model of a single source split
among N nodes
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The entire model has (K + 1)V M states, whereas the
quasi-separability solution involves solving N separate
models each with (K + 1) M states, where K is the max-
imum size of each queue. This new approximation in-
volves a model with (K?(N —1)+ NK +1) M states, one
queue with K +1 places and one with (N —1) K +1 places.
Thus, if K is large and N is small, this new approxima-
tion is far more complicated to solve than the quasi-
separability case, for example, if M = 2V, K = 999 and
N = 3 then the entire model has 8 thousand million
states, the sub-models under quasi-separability have 8
thousand states and the approximate model has a lit-
tle under 16 million states. If, however, N is large and
K less so, then the difference is less pronounced but
still significant, e.g. M =2V, K =9 and N = 10 gives
the entire model 10240 thousand million states, the sub-
models 10240 states, and the approximate model 839680
states.

The accuracy of this approximation is dependent
on how accurately the amalgamated queue mimics the
flow of jobs through the system. A naive application
of this model would involve using the combined arrival
and service rates. However, this leads to a distortion
as the larger queue size will generally accept more jobs
than the sum of the individual queues. We can poten-
tially reduce this problem by matching the sum of the
effective arrival rates (the arrival rate of successful jobs)
in the complete model with the effective arrival rate in
the amalgamated queue. This means resetting the ar-
rival rate in each configuration, o, and for each number
of jobs in the amalgamated queue. As yet we do not
have an efficient mechanism for calculating the effec-
tive arrival rate into the approximating queue without
first deriving the marginal queue size probabilities using
quasi-separability and hence finding the blocking prob-
abilities, p;(o, K), for each queue, i, and every possible
scheduler state, o.

In the infinite buffer case this approximation will al-
ways form a lower bound on the total number of jobs, i.e.
there will always be no more jobs in the amalgamated
queue than in the constituent queues. This is because
in the approximation there will never be less service ca-
pacity available to a particular job, therefore the server
utilisation will always be greater in the approximation,
except where utilisation is one for all servers when the
approximation becomes exact. This would suggest that
if we were to perform this approximated solution con-
sidering each queue separately in turn, then the best
approximation will be found by selecting a marginal dis-
tribution on each scheduler state o such that the average
number of jobs in that state is maximised (since the ap-
proximation is always a lower bound). Hence the best
approximation will generally be found by combining, on
o, parts of solutions of several the possible approximate
models. We could additionally attempt to adjust the
offered service rate to approximate the amount of ser-
vice capacity available, however we have not evaluated

either of those approaches as yet.

NUMERICAL RESULTS

For the purposes of numerical comparison we are princi-
pally interested in the effectiveness of the amalgamated
queue. Hence the results we present are a comparison
between a quasi-separability solution and a single amal-
gamated queue, rather than the complete approximation
presented above. The calculation we use for the variance
of the number of jobs in the amalgamated queue makes
use of the exact calculation for the marginal queue size
distributions where possible and only uses the approxi-
mation to calculate the unresolvable terms involving the
joint queue size distributions.

The majority of known examples of quasi-
separability are models of parallel queues, such as the
model presented in this paper. The simplest example of
these is the case of two queues, 0 and 1, in parallel where
the arrival process is controlled by a scheduler which di-
rects jobs to one or other of the queues according to
its own internal state, o, which varies independently of
the arrival process and the state of the queues. Hence,
0=0,1,¢(0) =1 and ¢1(1) = 1. The scheduler config-
uration changes from 0 to 1 and from 1 to 0 according
to negative exponential rates of £ and 7 respectively.
Such a model has previously been studied to evaluate
the accuracy of the quasi-separability approximation for
variance under various conditions (Thomas and Bradley
2000Db).

In Figures 3 and 4 we present some numerical re-
sults of this same scenario. For reasons of simplicity in
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Figure 3: Mean and variance of the total number of jobs
against switch rate
with constant proportion of jobs to each queue
A=12,8=n, 1 = p2 =10

solution we have taken the maximum size of each queue
to be one, giving the entire model just 8 states. Al-
though this gives rise to a trivial model the comparison
is still valid. In Figure 3 we show the three approxima-
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tions and exact calculation of variance plotted against
the switching rate. In this scenario if the switching rate
is high then the model is almost product form: in such
cases the scheduler changes configuration so frequently
relative to other actions that its configuration is seem-
ingly irrelevant and the system is analogous to one hav-
ing two independent Poisson arrival streams (or a priori
splitting). At the other extreme, when the switching
rate is very low, the probability that there is a job in
both queues is very small, since any job left in the queue
after the scheduler has switched away from it will be
served relatively quickly. One queue will see a great
many jobs before the other queue receives another job.
The quasi-separability based approximations work from
the premise that the probability of there being a job in
a queue is independent of the probability that there is
a job in the other, and so the component based approx-
imation shown here performs well when the switching
rate is high and poorly when the switching rate is slow.

In Figure 4 we show the various calculations of vari-
ance plotted against arrival rate when the switching
rate is constant. We can clearly see that the quasi-
separability based approximation diverges from the ex-
act result as the arrival rate increases. Again this is due
to the fact that this approach assumes that the number
of jobs in each queue to be independent of the other, so
as the probability of a job being present increases, so
does the error. In both cases the single queue approx-
imation performs exceptionally well, indeed any error
observed is mainly due to numerical rounding in cal-
culating the effective arrival rate. In this instance we
have take the arrival rate when the queue is empty to
be A and calculated the arrival rate when one job is
present such that the effective arrival rate in the sin-
gle queue approximation matches that derived from the
quasi-separability solution.

CONCLUDING REMARKS

In this paper we have continued a line of research we
have been pursuing for a number of years. Earlier work
had identified some potential methods for approximat-
ing variance in models exhibiting the quasi-separable
property and shown that those methods might give
an upper bound to variance. In this paper we have
compared those earlier results with a further method
whereby the behaviour of the entire model is approx-
imated and the total number of jobs in the system is
calculated.

The results we present, based on the evaluation of a
very simple model, are exceedingly promising and give a
strong indication that this approach is one worth pursu-
ing further. Clearly though, there is much that remains
to be done to convince us that the approximation pre-
sented here is accurate for more complex models. In
particular we need to develop a reliable and efficient
method for calculating the effective arrival rates. As in-
dicated by our earlier work we have also been applying
these technique to much more general models specified
using a Markovian process algebra and we are working
towards a general model of state space reduction and
model approximation for models subject to the quasi-
separability conditions.
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