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Abstract

Performance models specified using compositional algebra suffer the well-known state
space explosion problem, where a relatively small definition leads to a Markov chain with
a large state space that is problematic to solve. As a result it is widely recognised that the
development of techniques to solve performance models efficiently is of particular practical
importance. Recently the notion of behavioural independence was introduced to exploit the
structure of Markovian process algebra models in order to solve models in a compositional
manner. In this paper the opposite property, namely control, is used to solve models by sub-
stituting components in the model with simpler versions. The approach is validated through

two examples and by deriving a variety of performance measures.

1 Introduction

Stochastic process algebra are widely recognised as a good way of specifying performance models
since they allow the modeller to exploit the compositionality of systems in the specification.

However, this advantageous property for specification often leads to difficulty in solution, as a
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model with several components will generally lead to a large underlying continuous time Markov
chain (CTMC) that requires significant effort to solve. As a result a key research topic in recent
years has been to identify efficient methods for analysing and solving stochastic process algebra
models by decomposition (see [1, 2]). This means using the component structure of models to drive
the solution, ideally generating isolated solutions for individual components that can be combined
to solve the entire model without needing to generate the global state space of the complete model.
One element of this work has been the identification and characterisation of product form solutions,
using properties such as reversibility [3] and quasi-reversibility [4]. Another focus has been the
study of classes of model, which do not have a product form solution, but can nevertheless be
decomposed under certain conditions to provide solutions to certain global measures by obtaining

marginal distributions for components.

In this paper a large class of models is considered where decomposition in the classical sense
is not possible because there is a strong interaction between the elements. Our approach to this
problem is to form simpler versions of the model with far fewer states, which can be solved to
give an approximate solution of the marginal distributions for each component. The approach
described here is inspired by Gribaudi and Sereno [5] who used a similar technique when solving
certain Petri net models. A similar approach was explored by Mertziotakis [6], using the TIPP
stochastic process algebra, based on earlier Petri net work by Campos et al [7] and queueing
network results from Agrawal et al [8]. All these approaches are based on the notion of response
time preservation, which in turn is similar in concept to the notion of flow equivalent servers used
to efficiently solve certain product form queueing networks (see [9] for example). The basis for
this method is a classical divide and conquer algorithm, where a number of service centres in a
model are replaced with a single queue which has the same response time as that estimated for
the original service centres. This approach is repeated for all the service centres in the model

until a convergence is reached and hence an approximation for the response time for the network



is obtained.

Stochastic process algebra models do not generally exhibit the flow condition that queueing
network models do, hence it is necessary to introduce a notion of influence by which a concept
of sequence of actions across successive components can be observed. Mertziotakis [6] applied
a separation by identifying an interface process that provided a pivot point between interacting
components. This interface process was used to calculate a response time between interactions
in an iterative method, whereby each component was ignored in an alternating pattern until
the calculated response time reached convergence. The approach applied here uses a very similar
iterative algorithm, but we do not rely on separating the interface as in [6] but rather a component
substitution is made. Because of this distinction the class of model considered by Mertziotakis is
somewhat different to that considered here and so, although the numerical results presented here

are somewhat more impressive, the methods are applicable to subtly different scenarios.

The class of model studied here relies on a property referred to as behavioural independence,
which has recently been used by Thomas [10, 11] to give clear definitions for certain restricted
classes of model subject to decomposed solution. Essentially this property states that the be-
haviour of a particular group of components in a model is not influenced by the behaviour of
other components in the model. This non-trivial property can be a powerful tool in identifying
independent and semi-independent behaviours. If behavioural independence does not exist then
by definition another component must be exerting control. In this paper we exploit the existence
of control in models where all components not only exert control, but also have control exerted
on them. A component in the model can be replaced with a simpler version of itself, thus the
resultant model gives rise to a CTMC that is also much reduced in size and consequently easier to
solve. This simple component offers the same set of interactions as the component it replaced so
continues to exert control, but in general has far fewer states. However, in general it is not always

possible to know the rates of all transitions within the simple component. Therefore an iterative



approach is used to find a convergence between two or more reduced models. This approach
is validated through two examples; the first is a queueing system with blocking and the second
follows a case study in multimedia modelling by Bowman et al [12].

In the following sections PEPA is summarised and a number of definitions are made which
are necessary to specify the class of model to which our approach applies. The class of model
to be studied is then described and the simple component and the solution method specified.
To validate the approach a simple queueing example is presented followed by a more complex

multimedia model and some concluding remarks.

2 PEPA

A formal presentation of PEPA is given in [13], in this section a brief informal summary is pre-
sented. PEPA, being a Markovian Process Algebra, only supports actions that occur with du-
rations that are negative exponentially distributed. Specifications written in PEPA represent
Markov processes and can be mapped to a continuous time Markov chain (CTMC). Systems are
specified in PEPA in terms of activities and components. An activity (a,r) is described by the
(action) type of the activity, «, and the rate of the associated negative exponential distribution,
r. This rate may be any positive real number, or given as unspecified using the symbol T. The

syntax for describing components is given as:
Pu=(a,r).P|P+Q|P/LIPBIQ|A

The component («,r).P performs the activity of type «a at rate r and then behaves like P.
The component P + () behaves either like P or like (), the resultant behaviour being given by the
first activity to complete. The component P/L behaves exactly like P except that the activities
in the set L are concealed, their type is not visible and instead appears as the unknown type .

Concurrent components can be synchronised, P DLQ @, such that activities in the cooperation set L



involve the participation of both components. In PEPA the shared activity occurs at the slowest of
the rates of the participants and if a rate is unspecified in a component, the component is passive
with respect to that activities of that type. The parallel combinator || is used as shorthand to
denote synchronisation with no shared activities, i.e. P||Q = P Dﬁ Q. AYP gives the constant

A the behaviour of the component P.

2.1 Definitions

In the following sections a number of properties of PEPA models will be referred to. Since the
definitions of these properties are presented in detail elsewhere [13], only a general description of
them is included here. Informally a derivative is the “state” of a component defining the current
behaviour of a model or component. For example, if P & (o, r).Q then @ is a derivative of P
and if Q = (8,72).R then R is a derivative of both Q and P, and so on. The deriative set,
ds(P), is the set of all the possible derivatives of a component, P. The current action type set
of a component P, A(P), contains all the action types (but not the rates) that are enabled in
the current derivative of the component P only. The complete action type set of a component P,
A(P), contains all the action types (but not the rates) that are enabled in any of the derivatives
P' € ds(P), hence A(P) = Upreaspy A(P'). The current activity multiset of a component P,
Act(P), contains all the activities (action type and rate pairs) that are enabled in the current
derivative of the component P only. In addition it is necessary to construct a number of additional

definitions.

Definition 2.1 (Fertile activity)

.
An activity of type v is said to be fertile in derivative P; if P, —— Pj and i # j.

Thus a fertile activity is one which will change the current derivative of a component. Hence,
the current behaviour of a component will only change in response to the completion of a fertile

activity. Furthermore, each of the transitions between states in the CTMC will map directly to



an occurrence of a fertile activity. Identifying fertile activities is therefore a useful objective if the
state space of the underlying CTMC is to be reduced. The following two definitions refer to sets

of fertile activities that are required to define control.

Definition 2.2 (Current fertile action type set)
The current fertile action type set of a component P, denoted Ay(P), is the set of all action types

of activities that are fertile in the current derivative of P.

Definition 2.3 (Complete fertile action type set)
The complete fertile action type set of a component P, denoted ./ff(P), is the set of all action

types of activities that are fertile in at least one derivative of P.

3 Behavioural independence and control

The method proposed here to tackle the state space explosion problem relies of the properties
of behavioural independence and control. Put simply, behavioural independence requires that
components in a model behave identically regardless of the current behaviour of other components
in the model (this property is defined formally and discussed in detail in [11]). The trivial case for
behavioural independence is clearly that with no shared activities, i.e. P||@, however this is not the
only case where components may be considered to be behaviourally independent. Furthermore,
the fact that no activities are shared between two components does not mean they will always be
behaviourally independent in the presence of other components. For example, in (P||Q) DLQ R the
interaction between () and R may influence the interaction between P and R, causing P and @
to be behaviourally dependent.

If a component is not behaviourally independent then it must be dependent on some other
component to perform one or more activities during its evolution. This property is referred to as

control, and is more formally defined thus:



Definition 3.1 (Control)

The component P is said to be subject to control in the model P Df] Q if for any P; € ds(P)

Y Qj, Qk € ds(Q) s.t. (P PAQ;), (P BPAQy) € ds(P P Q);
Act (P, BAQy){A(P, BAQy)/{A; (P)N L}}) #

Act (P, BAQu) {AP: PAQU)/{A(P) N 1}})

This definition states that the fertile activities in any derivative of P (or the rates at which
those activities occur) can change as the current derivative of @) evolves. By changing the set
of fertile activities in P, ) is changing the future behaviour of P, i.e. exerting control. This
dependence is expressed by saying that component Q) controls component P over activities of type
KcLinP l>§ Q if the rate at which an activity of type k € K can happen in P; € ds(P) depends
on the current derivative of ). Clearly, if Q) controls P over K then P cannot be behaviourally
independent, but the independence, or otherwise, of @) is not given by this statement. The control
set of P, K(P) is referred to as all the action types by which it is controlled. For example, if in
the model (P BJQ) BA R, @ controls P over K and R controls P over K> then K(P) = K1 UK.

Clearly P is behaviourally independent iff X(P) = 0.

The importance of the notion of control is two-fold. Firstly it allows where a model fails to
be behaviourally independent to be explicitly stated. If the number of instances of control (the
occurrence of activities through which control is exerted) is small, then it may be possible to
create an approximate model where these instances are in some way ignored, or an approximate
solution where the intervals between controls are long enough for the model to approach steady
state behaviour. The second important use for the notion of control is in building approximations
that actually seek to exploit this property. This topic is explored in the remaining sections of this

paper.



3.1 Identifying control

Test cases have been developed for behavioural independence that capture many practical occur-
rences of that property at the component level, rather than the model level. For example, a compo-
nent P will obviously be behaviourally independent in P l>§ Q if all action types a € L are defined
in every derivative of () at the same rate. Unfortunately the conditions for behavioural indepen-
dence that can be applied at the component level are not complete, therefore the failure to identify
behavioural independence does not imply control. In theory similar tests are possible for the no-
tion of control, however, whilst it is a simple matter to show that a combination of components
does indeed exhibit control, it is another matter to prove that the model can evolve into that com-

bination of components without recourse to the global state space. Thus, even if @); = (a,).Qp

and Q; “ (a, B).Qy, the component P may still be behaviourally independent in P l>§ Q if there
is no P; € ds(P) such that both P; BIQ; € ds(P BUQ) and P; BIQ; € ds(P PIQ). The clear

exception to this problem is where it can be shown that
1. @ can evolve into ); and @); using only activities that are not shared,
2. there is a P; € ds(P) which may also be reached through internal activities,
3. a is defined passively (with rate T) in P;.

The first two of these conditions is necessary as only internal (not shared) activities can be assumed
to happen, since any shared action may be blocked and it is only possible to know whether this is
the case by exploring the derivatives of the model P l>§ (. The final condition, that a is defined
passively in P;, is necessary as a shared action may only be assumed to occur at a given symbolic
rate if one partner is passive or both partners specify the same symbolic rate.

Clearly this approach to identifying control is restrictive, indeed it is unlikely that any auto-
mated approach at the component level is able to identify 100% of cases. Furthermore, control is

subject to numerical, as well as symbolic, conditions, thus if & = 8 then no control is exerted in



this case. Clearly at the symbolic level of automated model inspection there is little that can be
done to address numerical concerns, although it seems reasonable to assume that if the modeller
has gone to the trouble of specifying different symbolic rates a and 8 for the same action type a,

then there is a significant possibility that a # .

4 Approximation using reduced components

Given a model of two components, X D§ Y, such that X controls Y it is possible to generate X’
such that the activities of Y are unaltered with respect to L in X’ D§ Y if for any derivative of

X DY there is a corresponding derivative of X' BV such that
Act(X BXY)NL = Act(X' BXY)NL
L L

In many situations, such as modelling resources, there will be little or no difference between X
and the smallest possible X'. However, when X contains many derivatives, X; where Act(X;)NL
does not change, then there is potential for substantial state space reduction. The number of
derivatives in X' is dependent on the number of action types in L and the number of distinct
rates at which they are enabled. If the rate of each shared action is the same wherever it is
enabled then the size of the reduced component X’ is 2/-l. Thus the smaller the cooperation set
the better the reduction in state space in the system X' BIY. Consider the case where L = {a},
if the rate of this action is the same in every derivative of X l{}ﬁ Y in which it is enabled then the

reduced form of X, X' is given as follows.

X! 2 (a,r1).X] + (a,r2).X} + (,73).X}

Xy = (r,rd).X]

The unknown action type 7 is used to denote all those action types internal to X such that

the derivative of X changes from X; to X; and (Act(X;) N L) # (Act(X;) N L) (for all possible



i and j. At this stage it is not possible to know the rates r1, r2, 3 and r4 in general, although
the sum of the rates r1 and r2 is clearly the rate of a in every derivative of X {D;Q} Y in which it
is enabled. If X is behaviourally independent in X D;ﬂ Y then X may be solved in isolation and
hence the rates found from the steady state probabilities. However, if Y controls X in X l>§ Y
then it is not a simple matter to solve X. Instead an iterative approach is adopted (from [5]) to

tackle this problem as follows.

1. Generate the smallest X' such that for any derivative of X D;ﬂ Y there is a corresponding

derivative of X' BJY such that Act(X BIY)N L = Act(X' BY)N L.

2. Similarly generate the smallest Y’ such that for any derivative of X Dfl Y there is a corre-

sponding derivative of X BXIY" such that Act(X PIY)NL = Act(X BIY') N L.
3. Solve X' BUY using estimates of the unknown rates in X'
4. Use the solution of X' BJY" to calculate the unknown rates in Y.
5. Solve X BJY” to find new estimates of the unknown rates in X".
6. Solve X' BUY to find new estimates of the unknown rates in Y.
7. Repeat steps 5 and 6 until convergence (or abandon).

Clearly, if one of the components is behaviourally independent then it is possible to solve this
component in isolation and use its marginal probabilities to calculate the rates in the reduced

model without the need for any iteration.

5 Example: A simple queueing network with blocking

Consider the following definition of a simple two queue network with feedback and blocking.

Queuely = (arrival, \).Queuely + (feedback, T).Queuel;



S
g

Queuel; = (arrival,\).Queuelji; + (servicel, ui).Queuel;_q
+ (feedback, T).Queuelji; , 1<j< N -1
Queuel i o (servicel, py1).Queuely_1
Queue2y, = (servicel, T).Queue2;
Queue2; = (servicel, T).Queue2; i1 + (feedback, qus).Queue2;
+ (departure, (1 — q)p2).Queue2;_1 , 1<j< N -1
Queue2y = (feedback, quz).Queue2n 1

+ (departure, (1 — q)pz).Queue2n_1

Queuely B Queueg
e

{servicel,
feedback}

Each queue has an input action which is controlled by the other queue, i.e. it is blocked when the
other queue is empty, Queuel has an additional independent arrival process. Similarly each queue
output action which is also controlled by the other queue, i.e. it is blocked when the other queue is
full, Queue2 has an additional departure process. Hence, both components in this model (Queuel
and Queue2) are controlling and controlled over the co-operation set {servicel, feedback}.

It is a simple matter to construct the reduced versions of Queuel and Queue2, Queuel’ and

Queue2' respectively.

Queuel!, = (arrival, \).Queuely + (feedback, T).Queuel}
Queuel, = (arrival,pi\).Queuell + (servicel, (1 — pa)u1).Queuel;
!

+ (servicel, papy).Queuel!, + (feedback, p1qus).Queuel.,

+ (feedback, (1 — p1)qus).Queuel],

2
S

(servicel, pu1).Queuel],

Queuel,



Queue2!, = (servicel, T).Queue2,

Queue2;, = (servicel, (1 — ps)u1).Queue2,
+ (servicel, psu1).Queue2., + (feedback, psqus).Queue2!,
+ (feedback, (1 — ps)qus).Queue)
+ (departure, ps(1 — q)pu2).Queune2!,

Queue2, = (feedback,qus).Queue2,

+ (departure, (1 — q)p2).Queue2;

In this example the reduced form of the components have only three derivatives as there is
no possible state where both the input and output activities are blocked. Clearly the derivatives
Queuel,, Queuel., Queue2, and Queue2., are analogous to each queue being either empty or full
and the derivatives Queuel, and Queue2; correspond to all the non-empty and non-full conditions

of each queue respectively. This approximation has introduced four new probabilities:

e p; is the probability that an additional job entering Queuel will cause it to become full,

p1 = Pr[Queuely_1]/(1 — PrlQueuel ] — Pr[Queuely)).

e p, is the probability that a serwvicel action causes Queuel to become empty,

p2 = Pr[Queuely]/(1 — Pr[Queuely] — Pr[Queuely)).

e ps3 is the probability that a servicel action causes Queue2 to become full,

p3 = Pr[Queue2n_1]/(1 — PrlQueue2n] — Pr{Queue2y)).

e py is the probability that a job leaving Queue2 will cause it to become empty,

py = Pr[Queue2;]/(1 — Pr[Queue2y] — PrlQueue2y)).



The optimal values for these probabilities must be found by iteratively solving the two reduced

models:

Queuely DX Queue2),
{servicel,

Feedback}

and

Queuel!, {Dﬂl Queue2
Jeedback}

Each of these reduced models has a CTMC with 3(V + 1) states whereas the original model
has a CTMC with (N +1)? states. Clearly there is a potentially significant saving on computation
in each iteration, however the overall computational efficiency of this approach is dependent not
only on the value of N, but the number of iterations required to achieve convergence over the

introduced probabilities. Therefore in the following subsection the accuracy of the approximation

and the number of iterations required are both investigated.

5.1 Numerical results

The complete model and the reduced (iterative solution) models were solved using the PEPA
Workbench [14], to derive the generator matrices, and XMaple was used to solve these numerically.
In all cases 20 iterations of the algorithm were used, however in most instances a good degree of
convergence (6 decimal places) was achieved in 7 or 8 iterations. Two performance measures are
derived for comparison, idleness and the average number of jobs in the system, and both these
measures are compared with exact results computed directly from the complete model. In the first
two plots the maximum sizes of the queues, N, was 9. This figure was chosen as a compromise
between ease of solution of the complete model (for comparison) and significance of the model
reduction.

Figure 1 shows idleness plotted against arrival rate on a logarithmic scale to more clearly show

the degree of divergence. This plot clearly shows the extremely good approximation gained at low



load, but the reduction in quality as the arrival rate increases. Idleness, the percentage of time
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Figure 1: Idleness varied with arrival rate for exact solution and approximation

(1 = p2 = 60,9 = 0.5)

during which both queues are empty simultaneously, is calculated directly from the approximations
as the average of Pr[Queuel!, & Queue2y] and Pr[Queuely & Queue2)]. It has been observed
that when these two probabilities are very close to one another the estimated idleness is a very
good approximation, and that when the degree of separation between them is larger it indicates a
poor approximation. However, it has not been possible to accurately predict the error in this way
and it has generally been observed that the degree of error is actually far greater than the degree
of separation between the estimations. For example, in the worst case in Figure 1 the difference
between the two approximations is aproximately 20%, whereas the error is approximate 420%.
The second measure is the average number of jobs in the system, shown in Figure 2, which is
calculated from the marginal queue size distributions derived from each of the approximations. It

is clear that, whereas there was a significant error for the estimation of idleness, even at average



load, there is no discernible error for the calculation of the average number of jobs.
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Figure 2: Average number of jobs varied with arrival rate

(1 = p2 = 60,9 = 0.5)

This is reiterated by Figure 3, which shows the percentage error from the data in Figure 2
for various values of the maximum queue size, N. Nowhere in this plot is the error worse than
0.7 percent and in most cases it is much smaller. It is perhaps surprising that an approximate
model (in this case two approximate models) should give rise to a poor approximation when used
directly but a very good approximation when using marginal probabilities. However, it is clear
from the results presented here that, in this case at least, the errors introduced in the reduced
models are almost entirely attributable to the approximated queues. Therefore that part of the
reduced models which is modelled completely is actually behaving in an almost exact manner

despite a crude approximation to the rest of the system.
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6 Example: A multimedia stream

The model shown here was proposed by Bowman et al [12] as part of an investigation into quality
of service of multimedia systems. The model consists of four components; a source which generates
traffic (multimedia frames), a channel which carries that traffic, a sink which receives the traffic

and a timer which tests whether the frames are displayed within acceptable time intervals.

lef .
Source = (lransmit, Tirans).Source

Channel = Channel,
Channely = (transmit, T).Channely
Channel; = (transmit, T).Channel; 11 + (receive, re.).Channel;_,

+(loss, ripss).Channel;_1 1 <i<4



Channels = (receive, rpec).Channely + (10ss,11055).Channely

Sink = Sink
Sinky = (receive, T).Sink,
Sink; = (receive, T).Sink;41 + (display, raisp)-SinkR;—1 1 <i < 2

Sinks = (display,rdisp)-Sink R

SinkR; ¥ (reset, Treset )-Sink;
Timer < Timery
Timero = (reset,T).Timer,
Timer; = (tick, ryicr)-Timer;eq + Timerg 1 <i <5
Timerg o (error, repror)-Timery + Timerg

Source B Channel B Sink B Timer
transmit receive reset

Clearly the Source component in this simple model does not contribute to the global state
space and can easily be considered to be part of the Channel component. Furthermore, whilst
the Timer is clearly controlled by the Sink through the reset action, it does not itself exert any
control. Both the Channel and Sink components exert control through the receive action. Hence,

it is necessary to consider only reduced forms for the Channel and Sink components as follows.

Channely, < (transmit, Tirans).Channel g

Channelg < (transmit, p17irans).-Channel o
+(loss, paTioss)-Channel 4

+(receive, parye.).Channel 4

+(receive, (1 — p2)rpec).Channelg



Channele < (receive, ryrec).Channelp + (10ss, 11055 ).Channelg

iy

I

Sinka (receive, T).Sinkpg

Sinkg ¥ (receive, p3rrec).Sinkc + (receive, (1 — p3)rrec)-Sinkp
+(display, parqisp)-SinkR 4
+(display, (1 — ps)Taisp)-SinkRp

Sinkc = (display,raisp)-SinkRp

SinkRs = (reset,Treset)-Sinka

SinkRp < (reset,Treset).Sinkp
Where,

e p; is the probability that a transmit action causes the Channel to become full,

p1 = Pr[Channely]/(1 — Pr[Channels] — Pr[Channelp)),

e po is the probability that a loss or receive action causes the Channel to become empty,

p2 = Pr[Channel;]/(1 — Pr[Channels] — Pr[Channely)),

e ps is the probability that a receive action causes Sink to become full,

ps = Pr[Sinks]/(Pr[Sink:] + Pr[Sink,]),

e p,4 is the probability that a display action causes Sink to become empty,

ps = Pr[Sink,]/(Pr[Sink:] + Pr[Sinks]).
And,

e Pr[Sink;] is the probability of being in a system state where the Sink component is behaving

as Sink;,

e Pr[Channel;] is the probability of being in a system state where the Channel component is

behaving as Channel;.



These components are then used in the following model descriptions using the iterative method

described above,

Channel 4 TESM Sink
Channel TES_M Sinka

and then subsequently to find the marginal probabilities for the Timer component.
Channely, B Sinka l><]t Timer

These models have 21, 30 and 105 states respectively, whereas the complete model has 294 states.
Further reduction in the model involving the Timer is clearly possible, but this is not within the
scope of this paper. In addition, if the capacity of the system were increased then the state space
saving would be greater in all three reduced models, however we have used the parameters given

in [12] to ensure continuity.

6.1 Numerical results

It is interesting to note that most of the performance measures employed in [12] are derived from
the marginal probabilities, and hence can be repeated here without further approximation. The
measures of interest are latency, throughput, jitter and error rate. These are calculated by finding
the observed rates of activities, referred to as the true rates by Bowman et al [12]. The observed
rate is the rate at which activities actually occur in the model and this differs from the given
rate because activities periodically become blocked. It is a simple matter to identify all the states
where an action can occur, calculate the probability of being in any of those states and multiply
that probability by the given rate to obtain the observed rate. Thus,

3
true-raisp = Tdisp X E Pr[Sink;]
i=1



Only true_r,.. is derived from global states, but these are easily identified directly in the reduced
solutions.
The stream latency can then be found as the sum of the source latency, channel latency and

sink latency, which can be found using Little’s law.

Source latency = (t’f’ue_'f’trans)il

ave_frames_channel

Channel latency =
4 (true_ripss + truerrec)

ave_frames_sink

Sink_ latency ;
TUET disp

Where, ave_frames_channel and ave_frames_sink are the average number of frames in the Chan-
nel and Sink respectively.
The stream jitteris similarly the sum of the source variance, channel variance and sink variance.

These are calculated by assuming that the observed activities are exponential.

source_variance = (true_r,gmm)f2
channel wariance = (true_rpec) -2
sinkvariance = (true_rq;sp) -2

Figure 1 shows results for all these measures calculated from the exact model and the approxi-
mate models using two values for the loss rate, r;,s5. All the parameters are set to be the same as
used by Bowman et al [12]; r¢rans = 60.0, 7rec = 30.0, 74isp = 200.0, r4icr = 100.0, rerror = 2000.0,
Treset = 2000.0.

It is clear that the results presented are of a consistent level of accuracy as the approximation
of average queue size in the previous example. The calculation of true_r,.. is derived from global
states and yet the error is small (0.04%). However, the results from the first example would
indicate that as the load (r¢qns) increases then the error in true_r,.. will increase, perhaps to
a significant degree. The largest errors occur in the calculation of jitter (around 0.09%). This

occurs due to variance being calculated as the square of the true rate for each component, hence



Ezxact Model| Approzmation| Exact Model| Approzmation|Masx %% error
rloss 0.0 0.0 40.00 40.0 nfa
trie_rloss 0.0 0.0 30.6407580 | 30.6414347 | 0.002208%%
triie_rtrans 290896933 | 290746183 | 533446637 533413548 | 0.044947%%
trug_rrec 290896933 | 29.0769569 | 227039068 | 22.6996509 | 0.043753%
triverdisp 290896932 | 290772955 | 2277039065 | 22.6993517 | 0.042619%
tricerhick 994545994 | 994544165 | 99.3795085 | 953794498 | 0.000154%
true rerrar 10.9080074 | 109116621 | 124095107 124110033 | 0.0335055%%
ave. Bo. iR source 1.0 1.a 1.0 1.0 0.0%%
ave. no. in channel| 41272616 4. 1268218 2.0714651 20718012 | 0.016222%
ave. e, in sink 01712637 01711826 01285243 01285634 | 0.047345%
ave. Bo. in stream 52985253 52980045 31999554 3.2003646 | 0.011723%
source latency 0.0343784 0.0343919 0.0187460 0.0187472 | 0.044967%%
chanrel latency 0.1418505 01419274 0.0338317 0.03538406 | 0.033144%
sink latency 0.0058874 0.0058872 0.0056609 0.0056637F | 0.050357%
siream latency 0.1821444 0.18220646 0.0632386 0.0632515 | 0.034151%
throughput jittar 0.0011817 0.0011827 | 0.0019400 0.0019408 | 0.085292%
channel jitter D.OD11817 000118258 0.0012400 0.0012407 | 0.087624%
source fitter 00011817 00011825 0.0003514 0.0003515 | 0.059955%
stream jitter 0.0035452 0.0035483 0.0042314 0.0042329 | 0.087624%

Figure 4: Analysis of multimedia stream

the error present in the true rate is increased. These observations would suggest that metrics can
only really be trusted to any degree of satisfaction when calculated directly from the marginal
component probabilities only (unlike ¢rue_r...) and the errors are not subject to multiplication

within this calculation (unlike jitter).

7 Conclusions and further work

In this paper we have presented an iterative approximation technique that can be applied to models
in which all the components exhibit the property of control. The class of models considered here
includes many models that are not subject to any previous decomposition technique, hence this

approach, despite being approximate, is a useful addition to the armoury of the performance



modeller. Although the examples presented here use only two components in the iterative part,
the technique is also applicable to multiple compound components. In addition the heart of this
technique could easily be applied to cases where one component is behaviourally independent but
controls another component, with consequently large savings in computation. In the examples
the accuracy of the approximation for calculating marginal component distributions is shown to
be extremely good, although the approximations themselves give more variable accuracy when
used directly to derive measures of interest. It is interesting to note however, that most of the
performance measures of interest here are derived from the marginal probabilities and not the

global probabilities.

The approach taken so far in attempting to automate the construction of reduced components
has been pragmatic. If no behavioural independence is identified then the ideal form for a reduced
component is attempted at the component level. The global state space is explored only if it
is not possible to form such a component and derive the necessary rates. In theory it should
be possible to examine the model in advance to determine whether or not the global state space
needs to be explored, however this has not yet been achieved. In addition it is possible to calculate
in advance the state space saving that can be achieved and hence inform the modeller as to the
most profitable approach to take. The conditions for convergence have yet to be explored and,
although this has not been a practical issue, it would be desirable to prove that a class of models
will achieve convergence under this technique. It would also be desirable to develop heuristics to
predict the probabilities involved. However, experience with the examples here has shown that
accuracy to two or three decimal places is achieved within one or two iterations, so it is unlikely

that a heuristic would save much computation in practice.

A further line of investigation concerns a slightly more flexible condition we have termed, weak
control. A component () is said to weakly control component P over K C L in the model P DLQ Q if

the occurrence of an action a € K affects only the rate of subsequent activities in P but not their



existence, i.e. A(P) does not change as () evolves, but the rates of its activities can. In this instance
a reduced model of the kind presented in Section 4 could be constructed with average rates for
activities in @, rather than a different derivative of the reduced component @' for every different
rate of a. This can be thought of as analogous to the queueing scenario of approximating Markov
modulated arrivals with a Poisson stream. Clearly the accuracy of this kind of approximation is
likely to be much less predictable than that presented in this paper, however the computational

saving is potentially significant.
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