Synchronisation in PEPA models

Jeremy Bradley
Stephen Gilmore
Nigel Thomas
Email: jb@doc.ic.ac.uk nigel.thomas@ncl.ac.uk
stephen.gilmore@ed.ac.uk

Department of Computing,	LFCS,	Department of Computer Science,
Imperial College London	University of Edinburgh	University of Newcastle

Produced with prosper and $\triangle T_{E} \mathrm{X}$
\qquad

In stochastic models...

Synchronisation can significantly affect performance results

Presentation

- PEPA and analysis
- The PEPA process algebra
- Synchronisation in practice
- Results

Types of Analysis

Steady-state and transient analysis in PEPA:

$$
\begin{aligned}
& \mathrm{A} 1 \stackrel{\text { def }}{=} \text { (start, } r_{1} \text {).A } 2+\left(\text { pause, } r_{2}\right) \cdot \mathrm{A} 3 \\
& \mathrm{~A} 2 \stackrel{\text { def }}{=}\left(\text { run }, r_{3}\right) \cdot \mathrm{A} 1+\left(\text { fail }, r_{4}\right) \cdot \mathrm{A} 3 \\
& \mathrm{~A} 3 \stackrel{\text { def }}{=} \text { (recover, } r_{1} \text {).A1 } \\
& \mathrm{AA} \stackrel{\text { def }}{=}(\mathrm{run}, \mathrm{~T}) .\left(\text { alert }, r_{5}\right) . \mathrm{AA} \\
& \text { Sys } \stackrel{\text { def }}{=} \text { AA } \underset{\{r u n\}}{\longrightarrow} \text { A1 }
\end{aligned}
$$

Types of Analysis

Steady-state and transient analysis in PEPA:

$\mathrm{A} 1 \stackrel{\text { def }}{=}$ (start, $\left.r_{1}\right) \cdot \mathrm{A} 2+\left(\right.$ pause, $\left.r_{2}\right) \cdot \mathrm{A} 3$
$\mathrm{A} 2 \stackrel{\text { def }}{=} \quad\left(\right.$ run,$\left.r_{3}\right) \cdot \mathrm{A} 1+\left(\right.$ fail,$\left.r_{4}\right) \cdot \mathrm{A} 3$
A3 $\stackrel{\text { def }}{=}$ (recover, r_{1}).A1
$\mathrm{AA} \stackrel{\text { def }}{=} \quad($ run,$\top) \cdot\left(\right.$ alert,$\left.r_{5}\right) \cdot \mathrm{AA}$
Sys $\stackrel{\text { def }}{=}$ AA $\underset{\{r u n\}}{ }$ A1

Types of Analysis

Steady-state and transient analysis in PEPA:

$\mathrm{A} 1 \stackrel{\text { def }}{=}$ (start, $\left.r_{1}\right) \cdot \mathrm{A} 2+\left(\right.$ pause, $\left.r_{2}\right) \cdot \mathrm{A} 3$
$\mathrm{A} 2 \stackrel{\text { def }}{=} \quad\left(\right.$ run,$\left.r_{3}\right) \cdot \mathrm{A} 1+\left(\right.$ fail,$\left.r_{4}\right) \cdot \mathrm{A} 3$
A3 $\stackrel{\text { def }}{=}$ (recover, r_{1}).A1
$\mathrm{AA} \stackrel{\text { def }}{=} \quad($ run,$\top) \cdot\left(\right.$ alert,$\left.r_{5}\right) \cdot \mathrm{AA}$
Sys $\stackrel{\text { def }}{=}$ AA $\underset{\{r u n\}}{ }$ A1

Types of Analysis

Steady-state and transient analysis in PEPA:

$\mathrm{A} 1 \stackrel{\text { def }}{=}$ (start, $\left.r_{1}\right) \cdot \mathrm{A} 2+\left(\right.$ pause, $\left.r_{2}\right) \cdot \mathrm{A} 3$
$\mathrm{A} 2 \stackrel{\text { def }}{=} \quad\left(\right.$ run,$\left.r_{3}\right) \cdot \mathrm{A} 1+\left(\right.$ fail,$\left.r_{4}\right) \cdot \mathrm{A} 3$
A3 $\stackrel{\text { def }}{=}$ (recover, r_{1}).A1
$\mathrm{AA} \stackrel{\text { def }}{=} \quad($ run,$\top) \cdot\left(\right.$ alert,$\left.r_{5}\right) \cdot \mathrm{AA}$
Sys $\stackrel{\text { def }}{=}$ AA $\underset{\{r u n\}}{ }$ A1

Types of Analysis

Steady-state and transient analysis in PEPA:

$$
\begin{aligned}
& \mathrm{A} 1 \stackrel{\text { def }}{=} \text { (start, } r_{1} \text {).A } 2+\text { (pause, } r_{2} \text {).A3 } \\
& \mathrm{A} 2 \stackrel{\text { def }}{=}\left(\text { run }, r_{3}\right) \cdot \mathrm{A} 1+\left(\text { fail }, r_{4}\right) \cdot \mathrm{A} 3 \\
& \mathrm{~A} 3 \stackrel{\text { def }}{=} \text { (recover, } r_{1} \text {).A1 } \\
& \mathrm{AA} \stackrel{\text { def }}{=}(\mathrm{run}, \mathrm{~T}) .\left(\text { alert }, r_{5}\right) . \mathrm{AA} \\
& \text { Sys } \stackrel{\text { def }}{=} \text { AA } \underset{\{r u n\}}{\longrightarrow} \text { A1 }
\end{aligned}
$$

Passage-time Quantiles

Extract a passage-time density from a PEPA model:

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \mathrm{D}_{\mathrm{L}} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{\mathrm{~L}}{\mathrm{M}} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

- Action prefix: $(\mathrm{a}, \lambda) . \mathrm{P}$

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{\mathrm{~L}}{\mathrm{M}} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

๑ Action prefix: $(a, \lambda) . \mathrm{P}$

- Competitive choice: $\mathrm{P}_{1}+\mathrm{P}_{2}$

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) . \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{L}{\triangle} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

- Action prefix: $(\mathrm{a}, \lambda) . \mathrm{P}$
- Competitive choice: $\mathrm{P}_{1}+\mathrm{P}_{2}$
- Cooperation: $\mathrm{P}_{1} \underset{L}{ } \triangle \mathrm{P}_{2}$

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{L}{\longrightarrow} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

๑ Action prefix: $(\mathrm{a}, \lambda) . \mathrm{P}$

- Competitive choice: $\mathrm{P}_{1}+\mathrm{P}_{2}$
- Cooperation: $\mathrm{P}_{1} \underset{L}{\triangle} \mathrm{P}_{2}$
- Action hiding: P/L

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) . \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{L}{\longrightarrow} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

- Action prefix: $(\mathrm{a}, \lambda) . \mathrm{P}$
- Competitive choice: $\mathrm{P}_{1}+\mathrm{P}_{2}$
- Cooperation: $\mathrm{P}_{1} \underset{L}{ } \underset{L}{ } \mathrm{P}_{2}$
- Action hiding: P/L
- Constant label: A

State of the Art

- PEPA model: passage time/transient analysis $O\left(10^{8}\right)$ states

っ Semi-Markov PEPA: passage time/transient analysis - $O\left(10^{7}\right)$ states

PEPA: A Transmitter-Receiver

System	$\stackrel{\text { def }}{=}$	(Transmitter $\underset{\emptyset}{Z}$ Receiver) $\underset{\{\text { transmit, receive\} }}{ }$ Network
Transmitter Receiver Network	$\stackrel{\text { def }}{=}$ def def	(transmit, λ_{1}). ($\mathrm{t}-$ recover, λ_{2}).Transmitter (receive, T).(r - recover, μ).Receiver (transmit, \top).(delay, ν_{1}).(receive, $\left.\nu_{2}\right)$.Network

- A simple transmitter-receiver over a network

Apparent Rate

- Apparent rate of a component P is given by $r_{a}(\mathrm{P})$

Apparent Rate

- Apparent rate of a component P is given by $r_{a}(\mathrm{P})$
- Apparent rate describes the overall observed rate that P performs an a-action

Apparent Rate

- Apparent rate of a component P is given by $r_{a}(\mathrm{P})$
- Apparent rate describes the overall observed rate that P performs an a-action
- Apparent rate is given by:

$$
r_{a}(\mathrm{P})=\sum_{\mathrm{P} \xrightarrow[\left(\mathrm{a}, \lambda_{i}\right)]{ }} \lambda_{i}
$$

Apparent Rate Examples

$$
\stackrel{r}{a}(\mathrm{P} \xrightarrow{(a, \lambda)})=\lambda
$$

Apparent Rate Examples

$$
\begin{aligned}
& \text { } \quad r_{a}(\mathrm{P} \stackrel{(\mathrm{a}, \lambda)}{\longrightarrow})=\lambda \\
& \supset \quad r_{a}(\mathrm{P} \xrightarrow{(\mathrm{a}, \mathrm{~T})})=\top
\end{aligned}
$$

Apparent Rate Examples

๑ $r_{a}(\mathrm{P} \xrightarrow{(\mathrm{a}, \lambda)})=\lambda$

- $r_{a}(\mathrm{P} \xrightarrow{(\mathrm{a}, \mathrm{T})})=\top$
$\rightarrow r_{a}(\mathrm{P})=\lambda_{1}+\lambda_{2}$

Apparent Rate Examples

๑ $r_{a}(\mathrm{P} \xrightarrow{(\mathrm{a}, \lambda)})=\lambda$

- $r_{a}(\mathrm{P} \xrightarrow{(\mathrm{a}, \mathrm{T})})=\top$
$r_{a}(\mathrm{P})=\lambda_{1}+\lambda_{2}$
$\rightarrow r_{a}(\mathrm{P}$

$$
=2 \top
$$

Synchronisation Rate

- In PEPA, when synchronising two model components, P and Q where both P and Q enable many a-actions:

Synchronisation Rate

- In PEPA, when synchronising two model components, P and Q where both P and Q enable many a-actions:

- The synchronised rate for $\mathrm{P} \underset{a}{\triangle} \mathrm{Q} \xrightarrow{(\mathrm{a}, R)} \mathrm{P}^{\prime} \underset{a}{a} \mathrm{Q}^{\prime}$ is:

$$
R=\frac{\lambda}{r_{a}(\mathrm{P})} \frac{\mu}{r_{a}(\mathrm{Q})} \min \left(r_{a}(\mathrm{P}), \mathrm{r}_{\mathrm{a}}(\mathrm{Q})\right)
$$

Approximate Synchronisation

- Some tools such as: Möbius, PRISM, PWB use an approximate synchronisation model

Approximate Synchronisation

- Some tools such as: Möbius, PRISM, PWB use an approximate synchronisation model
- With two model components, P and Q where both P and Q enable many a-actions:

Approximate Synchronisation

ง Some tools such as: Möbius, PRISM, PWB use an approximate synchronisation model

- With two model components, P and Q where both P and Q enable many a-actions:

- The approximated rate for $\mathrm{P} \underset{a}{ } \downarrow \mathrm{Q} \xrightarrow{(a, R)} \mathrm{P}^{\prime} \underset{a}{a} \mathrm{Q}^{\prime}$ is:

$$
R=\min (\lambda, \mu)
$$

Example

- As an example:
- Client $\stackrel{\text { def }}{=}($ data, $\lambda)$. Client $^{\prime}$
- Network $\stackrel{\text { def }}{=}$ (data, T).NetworkGo + (data, \top).NetworkStall

Example

- As an example:
- Client $\stackrel{\text { def }}{=}($ data, $\lambda)$. Client $^{\prime}$
- Network $\stackrel{\text { def }}{=}($ data, $T)$.NetworkGo + (data, \top).NetworkStall
- The combination Client $\underset{\text { data }}{\unlhd}$ Network should evolve with an overall data rate parameter of λ

Example

- As an example:
- Client $\stackrel{\text { def }}{=}($ data, $\lambda)$. Client $^{\prime}$
- Network $\stackrel{\text { def }}{=}$ (data, T).NetworkGo + (data, \top).NetworkStall
- The combination Client $\underset{\text { data }}{\longrightarrow}$ Network should evolve with an overall data rate parameter of λ
- Under the tool approximation the overall synchronised rate becomes 2λ

Results: Multiple Passive

$$
\begin{aligned}
\mathrm{A} & \stackrel{\text { def }}{=}\left(\text { run }, \lambda_{1}\right) \cdot\left(\text { stop }, \lambda_{2}\right) \cdot \mathrm{A} \\
\mathrm{~B} & \stackrel{\text { def }}{=}(\text { run } T) \cdot\left(\text { pause }, \lambda_{3}\right) \cdot \mathrm{B} \\
\text { Sys }_{\mathrm{A}} & \stackrel{\text { def }}{=} \mathrm{A} \underset{\{r u n\}}{\longrightarrow}(\mathrm{B} \| \mathrm{B})
\end{aligned}
$$

- Multiple passive (T-rate) actions are enabled against a single real rate

Results: Multiple Passive

- Passage time density between consecutive stop actions

Results: Multiple Passive

- Percentage difference in CDF functions over passage time between consecutive stop actions

Results: Multiple Active

$$
\begin{aligned}
\mathrm{A} & \stackrel{\text { def }}{=}\left(\text { run }, \lambda_{1}\right) \cdot\left(\text { stop }, \lambda_{2}\right) \cdot \mathrm{A} \\
\mathrm{~B} & \stackrel{\text { def }}{=}\left(\text { run, } \mu_{1}\right) \cdot\left(\text { pause }, \lambda_{3}\right) \cdot \mathrm{B} \\
\mathrm{Sys}_{\mathrm{C}} & \stackrel{\text { def }}{=} \mathrm{A} \underset{\{\text { run\} }}{\infty}(\mathrm{B} \| \mathrm{B})
\end{aligned}
$$

- Multiple real-rate actions (in (B || B)) are synchronised against a single real-rate action (in A)

Results: Multiple Active

- Percentage difference in CDF functions over passage time between consecutive stop actions (for decreasing μ)

Isn't this really unusual?

- Q: How common is this kind of modelling problem? Isn't this bizarre non-determinism to see in a component?
- A: Having an explicit individual component with either:

$$
\begin{aligned}
& \rho \mathrm{P} \stackrel{\text { def }}{=}(\mathrm{a}, \lambda) \cdot \mathrm{P}^{\prime}+(\mathrm{a}, \mu) \cdot \mathrm{P}^{\prime \prime} \quad \text { (multiple active) } \\
& \circ \mathrm{Q} \stackrel{\text { def }}{=}(\mathrm{a}, \top) \cdot \mathrm{Q}^{\prime}+(\mathrm{a}, \top) \cdot \mathrm{Q}^{\prime \prime} \quad \text { (multiple passive) }
\end{aligned}
$$

- ...might be unusal, but simple multi-agent synchronisation of $S \underset{\{a\}}{\backslash(R\|R\| \cdots \| R) \text { for some } S}$ where $\mathrm{R} \stackrel{\text { def }}{=}(\mathrm{a}, \mathrm{T}) \cdot(\mathrm{b}, \mu) \cdot \mathrm{R}^{\prime}$ causes just this problem
- This is a very common client-server architecture

Conclusion

- Synchronisation style makes a big difference to performance results!
- To summarise, using the tool approximation:
- with multiple passive actions - sees an overestimation of passage-time results
- with multiple active actions - sees an underestimation of passage-time results - why?

