Synchronisation in PEPA models

Jeremy Bradley

Stephen Gilmore

Nigel Thomas

Email: jb@doc.ic.ac.uk

nigel.thomas@ncl.ac.uk

stephen.gilmore@ed.ac.uk

Department of Computing, Imperial College London

University of Edinburgh

LFCS,

Department of Computer Science, University of Newcastle

Produced with prosper and LATEX

Synchronisation can significantly affect performance results

- PEPA and analysis
- The PEPA process algebra
- Synchronisation in practice
- Results

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1

Passage-time Quantiles

Extract a passage-time density from a PEPA model:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1

$$\mathbf{P}$$
 ::= (\mathbf{a}, λ) . \mathbf{P} | $\mathbf{P} + \mathbf{P}$ | $\mathbf{P} \bowtie_L \mathbf{P}$ | \mathbf{P}/\mathbf{L} | A

PEPA syntax:

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

• Action prefix: (a, λ) .P

P ::=
$$(\mathbf{a}, \lambda)$$
.P P P P P P P A

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- **Action prefix:** (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie_L P_2$

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- **Action prefix:** (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie P_2$
- Action hiding: P/L

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- **Action prefix:** (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie P_2$
- Action hiding: P/L
- Constant label: A

State of the Art

- PEPA model: passage time/transient analysis - $O(10^8)$ states
- Semi-Markov PEPA: passage time/transient analysis
 O(10⁷) states

PEPA: A Transmitter-Receiver

A simple transmitter-receiver over a network

• Apparent rate of a component P is given by $r_a(P)$

- Apparent rate of a component P is given by $r_a(P)$
- Apparent rate describes the overall observed rate that P performs an *a*-action

Apparent Rate

- Apparent rate of a component P is given by $r_a(P)$
- Apparent rate describes the overall observed rate that P performs an *a*-action
- Apparent rate is given by:

$$r_{a}(\mathbf{P}) = \sum_{\mathbf{P} \xrightarrow{(\mathbf{a},\lambda_{i})}} \lambda_{i}$$

$$\cdot r_a(\mathbf{P} \xrightarrow{(\mathbf{a},\lambda)}) = \lambda$$

$$r_a(\mathbf{P} \xrightarrow{(\mathbf{a},\lambda)}) = \lambda$$

$$r_a(\mathbf{P} \xrightarrow{(\mathbf{a}, \top)}) = \top$$

Synchronisation Rate

In PEPA, when synchronising two model components, P and Q where both P and Q enable many *a*-actions:

Synchronisation Rate

In PEPA, when synchronising two model components, P and Q where both P and Q enable many *a*-actions:

• The synchronised rate for $P \bowtie_a Q \xrightarrow{(a,R)} P' \bowtie_a Q'$ is:

$$R = \frac{\lambda}{r_a(\mathbf{P})} \frac{\mu}{r_a(\mathbf{Q})} \min(r_a(\mathbf{P}), \mathbf{r_a}(\mathbf{Q}))$$

Approximate Synchronisation

Some tools such as: Möbius, PRISM, PWB use an approximate synchronisation model

Approximate Synchronisation

- Some tools such as: Möbius, PRISM, PWB use an approximate synchronisation model
- With two model components, P and Q where both P and Q enable many *a*-actions:

Approximate Synchronisation

- Some tools such as: Möbius, PRISM, PWB use an approximate synchronisation model
- With two model components, P and Q where both P and Q enable many *a*-actions:

Example

- As an example:
 - Client $\stackrel{\text{def}}{=}$ (data, λ).Client'
 - Network ^{def} = (data, ⊤).NetworkGo
 + (data, ⊤).NetworkStall

Example

- As an example:
 - Client $\stackrel{\text{def}}{=}$ (data, λ).Client'
 - Network ^{def} = (data, ⊤).NetworkGo
 + (data, ⊤).NetworkStall
- The combination Client \bigotimes_{data} Network should evolve with an overall data rate parameter of λ

Example

- As an example:
 - Client $\stackrel{\text{def}}{=}$ (data, λ).Client'
 - Network ^{def} = (data, ⊤).NetworkGo
 + (data, ⊤).NetworkStall
- The combination Client \bigotimes_{data} Network should evolve with an overall data rate parameter of λ
- Under the tool approximation the overall synchronised rate becomes 2λ

Results: Multiple Passive

$$A \stackrel{\text{def}}{=} (\operatorname{run}, \lambda_1).(\operatorname{stop}, \lambda_2).A$$
$$B \stackrel{\text{def}}{=} (\operatorname{run}, \top).(\operatorname{pause}, \lambda_3).B$$
$$\operatorname{Sys}_A \stackrel{\text{def}}{=} A \underset{\{run\}}{\overset{\text{def}}{\overset{\text{fun}}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}{\overset{fun}}{\overset{fun}}{\overset{fun}{\overset{fun}}{$$

Multiple passive (T-rate) actions are enabled against a single real rate

Results: Multiple Passive

Passage time density between consecutive stop actions

Results: Multiple Passive

Percentage difference in CDF functions over passage time between consecutive stop actions

Results: Multiple Active

Multiple real-rate actions (in (B || B)) are synchronised against a single real-rate action (in A)

Results: Multiple Active

Percentage difference in CDF functions over passage time between consecutive stop actions (for decreasing µ)

Isn't this really unusual?

- Q: How common is this kind of modelling problem? Isn't this bizarre non-determinism to see in a component?
- A: Having an explicit individual component with either:
 - $P \stackrel{\text{def}}{=} (\mathbf{a}, \lambda) . P' + (\mathbf{a}, \mu) . P''$ (multiple active)
 - $Q \stackrel{\text{def}}{=} (\mathbf{a}, \top).Q' + (\mathbf{a}, \top).Q''$ (multiple passive)
- ...might be unusal, but simple multi-agent synchronisation of S $\underset{a}{\overset{[a]}{\overset{[a}}{\overset{[a]}{\overset{[a}}{\overset{[a]}{\overset{[a}}{\overset{[a]}{\overset{[a}}$
- This is a very common client—server architecture

Conclusion

- Synchronisation style makes a big difference to performance results!
- To summarise, using the tool approximation:
 - with multiple passive actions sees an overestimation of passage-time results
 - with multiple active actions sees an underestimation of passage-time results – why?