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Contention...

Passage or response times are
useful in an agent modelling

setting
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Presentation

Internet worms at work!

A formal agent description

Our existing techniques

Other solutions methods
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Lifecycle of an Internet Worm

Sequence of events:

1. Malicious person infects an initial server

2. Each infected computer selects next victim at random

3. Worm copies itself into the next running system using
one or more security loopholes in victim’s defence
mechanism

4. Worm optionally discharges some malicious payload

5. Repeat from (2) for each new infection
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Lifecycle of an Internet server

On hearing of a worm attack:

random time delay (exponentially distributed) before
server’s software is patched: inoculation

In which time...

1. server may become infected

2. server may be disabled by the worm infection

3. server may be repaired and returned to the network
unpatched

4. server may be repaired and patched

5. server may be rolled back, thus removing patch
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Internet worms

Code Red, Nimbda, Code Red II (2001), SQL
Slammer (January 2003), Nachi and MSBlast
(August 2003), Sasser (1 May 2004)

Usually malicious autonomous program that spreads
without user intervention

Emergent behaviour: causes huge network bottlenecks
– brings internet to standstill for many hours, or even
days
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Code Red II

Example: Code Red II
19th July 2001
350,000 hosts infected in 14 hours
c.f. Sasser: 1–1.5 million hosts in 2 days
utilised buffer overflow in Microsoft IIS web server
infected machines would probe for other victims
on port 80
20th July 2001: mode changes from one of
propagation to DDOS attack on the
www.whitehouse.gov
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Epidemiological model

Good reasons to model Internet worms as biological
agents:

inherently large scale dynamics

computers can contact each other virtually
randomly

⇒ infected computers/computers susceptible to
infection will mix homogeneously
potential to kill/disable a host, according to
payload
Nicol et al use hybrid model of Internet worms:
epidemiological/stochastic
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Not quite Biology!

Good news: We have an exact behavioural
description of an individual worm in glorious detail

Bad news: We have an exact behavioural description
of an individual worm in glorious detail

⇒ We have to learn to prune unimportant behaviour
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Internet Growth
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Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P¤¢
L
P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

Cooperation: P1¤¢
L
P2

Action hiding: P/L

Constant label: A
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Biological PEPA Agent Modelling

Require a pairwise cooperation paradigm:

P ::= (a, λ).P P + P P ⊕
L
P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

Pairwise agent cooperation: P1 ⊕
L
P2

Action hiding: P/L

Constant label: A
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Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,>).(alert, r5 ).AA

Sys
def
= AA¤¢

{run}
A1

⇒
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Steady state: X_1
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Passage-time Quantiles

Extract a passage-time density from a PEPA model:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,>).(alert, r5 ).AA

Sys
def
= AA¤¢

{run}
A1

⇒
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State of the Art

Good news
PEPA model: passage time/transient analysis -
O(108) states
Semi-Markov PEPA: passage time/transient
analysis - O(107) states

Bad news
This only represents 8 agents with 10 states each!
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Ways forward for PEPA Agent
modelling

Either:
selective model aggregation

⇒ allows use of passage/transient

Or:
development of approximate techniques

⇒ automated generation of MFA/ODE equations
from PEPA model [c.f. Sumpter 2000, Hillston
2004]
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SIR: Epidemiological model

Consider fixed population of N computers

Partition population into, computers that are:
susceptible to infection, s(t)
infected, i(t)
removed, r(t)

Deterministic system:
ds(t)
dt = −βs(t)i(t)

di(t)
dt = βs(t)i(t)− γi(t)

dr(t)
dt = γi(t)
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Agent worm model

Susceptible = (infect,>).Infected

+ (patch, λp).Removed

Infected = (infect, λi ).Infected

+ (repair, λr ).Removed

Removed = (rollback, λs).Susceptible
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Agent worm model

Susceptible = (infect,>).Infected

+ (patch, λp).Removed

Infected = (infect, λi ).Infected

+ (repair, λr ).Removed

Removed = (rollback, λs).Susceptible

System(p, q) =

p
⊕

i=1

Infectedi

q
⊕

i=1

Susceptiblei

N−p−q
⊕

i=1

Removedi
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Analysis possibilities

Sumpter Look to count numbers of agents, A(t), in a given
state by solving a derived mean field equation (MFE)

f(t, i) = IE(A(t+∆t) | A(t) = i)

Hillston Approximate number of components with a real
numbered function

remodel using bimodal assumption
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Agent Count-based Model

Bimodal characterisation of variables:

SH
def
= (infect,>).SL

+ (patch, r2 ).SL

SL
def
= (rollback, λs).SH

...
...

⇒
ds(t)
dt

= −βs(t)i(t)
di(t)
dt

= βs(t)i(t)− γi(t)
dr(t)
dt

= γi(t)
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Conclusion

Internet worms have a reasonable biological analogy

State spaces too large for traditional temporal
modelling

The answer: Selective aggregation/agent counting

Passage times in an agent setting
a useful cost function for a model
probability of extinction within a given time
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