Project: Internet Worm Attacks and Stochastic Agent Models

Jeremy Bradley

Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

JTB [08/2004] - p.1/21

Passage or response times are useful in an agent modelling setting

- Internet worms at work!
- A formal agent description
- Our existing techniques
- Other solutions methods

Sequence of events:

1. Malicious person infects an initial server

- 1. Malicious person infects an initial server
- 2. Each infected computer selects next victim at random

- 1. Malicious person infects an initial server
- 2. Each infected computer selects next victim at random
- 3. Worm copies itself into the next running system using one or more security loopholes in victim's defence mechanism

- 1. Malicious person infects an initial server
- 2. Each infected computer selects next victim at random
- 3. Worm copies itself into the next running system using one or more security loopholes in victim's defence mechanism
- 4. Worm optionally discharges some malicious payload

- 1. Malicious person infects an initial server
- 2. Each infected computer selects next victim at random
- 3. Worm copies itself into the next running system using one or more security loopholes in victim's defence mechanism
- 4. Worm optionally discharges some malicious payload
- 5. Repeat from (2) for each new infection

On hearing of a worm attack:

random time delay (exponentially distributed) before server's software is patched: *inoculation*

On hearing of a worm attack:

random time delay (exponentially distributed) before server's software is patched: *inoculation*

In which time...

1. server may become infected

On hearing of a worm attack:

random time delay (exponentially distributed) before server's software is patched: *inoculation*

- 1. server may become infected
- 2. server may be disabled by the worm infection

On hearing of a worm attack:

random time delay (exponentially distributed) before server's software is patched: *inoculation*

- 1. server may become infected
- 2. server may be disabled by the worm infection
- 3. server may be repaired and returned to the network unpatched

On hearing of a worm attack:

random time delay (exponentially distributed) before server's software is patched: *inoculation*

- 1. server may become infected
- 2. server may be disabled by the worm infection
- 3. server may be repaired and returned to the network unpatched
- 4. server may be repaired and patched

On hearing of a worm attack:

random time delay (exponentially distributed) before server's software is patched: *inoculation*

- 1. server may become infected
- 2. server may be disabled by the worm infection
- 3. server may be repaired and returned to the network unpatched
- 4. server may be repaired and patched
- 5. server may be rolled back, thus removing patch

Internet worms

- Code Red, Nimbda, Code Red II (2001), SQL Slammer (January 2003), Nachi and MSBlast (August 2003), Sasser (1 May 2004)
- Usually malicious autonomous program that spreads without user intervention

Internet worms

- Code Red, Nimbda, Code Red II (2001), SQL Slammer (January 2003), Nachi and MSBlast (August 2003), Sasser (1 May 2004)
- Usually malicious autonomous program that spreads without user intervention
- Emergent behaviour: causes huge network bottlenecks – brings internet to standstill for many hours, or even days

Code Red II

- Example: Code Red II
 - **•** 19th July 2001
 - 350,000 hosts infected in 14 hours
 - c.f. Sasser: 1–1.5 million hosts in 2 days
 - utilised *buffer overflow* in Microsoft IIS web server
 - infected machines would probe for other victims on port 80
 - 20th July 2001: mode changes from one of propagation to DDOS attack on the www.whitehouse.gov

- Good reasons to model Internet worms as biological agents:
 - inherently large scale dynamics

- Good reasons to model Internet worms as biological agents:
 - inherently large scale dynamics
 - computers can contact each other virtually randomly

- Good reasons to model Internet worms as biological agents:
 - inherently large scale dynamics
 - computers can contact each other virtually randomly
 - ⇒ infected computers/computers susceptible to infection will mix homogeneously

- Good reasons to model Internet worms as biological agents:
 - inherently large scale dynamics
 - computers can contact each other virtually randomly
 - ⇒ infected computers/computers susceptible to infection will mix homogeneously
 - potential to kill/disable a host, according to payload

- Good reasons to model Internet worms as biological agents:
 - inherently large scale dynamics
 - computers can contact each other virtually randomly
 - ⇒ infected computers/computers susceptible to infection will mix homogeneously
 - potential to kill/disable a host, according to payload
 - Nicol et al use hybrid model of Internet worms: epidemiological/stochastic

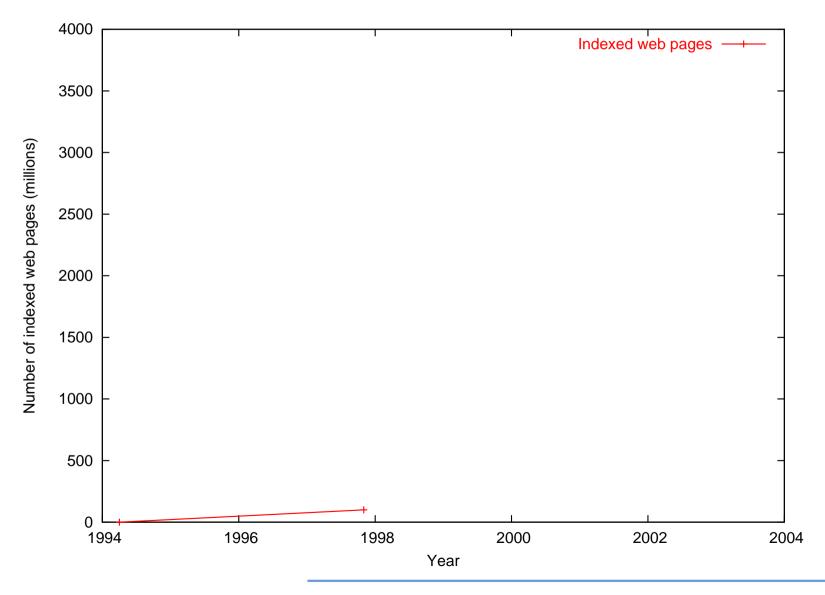
Good news: We have an exact behavioural description of an individual worm in glorious detail

- Good news: We have an exact behavioural description of an individual worm in glorious detail
- Bad news: We have an exact behavioural description of an individual worm in glorious detail

Not quite Biology!

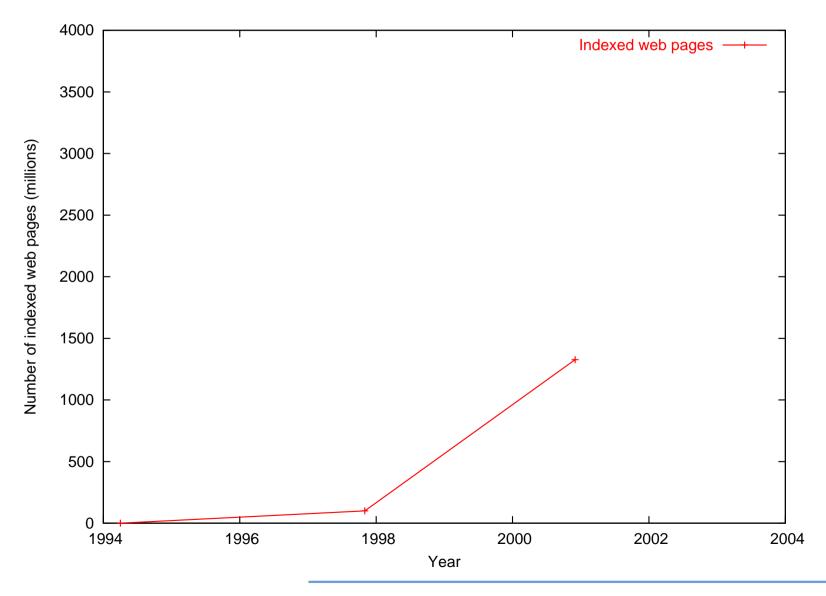
- Good news: We have an exact behavioural description of an individual worm in glorious detail
- Bad news: We have an exact behavioural description of an individual worm in glorious detail
- \Rightarrow We have to learn to prune *unimportant* behaviour

Internet Growth



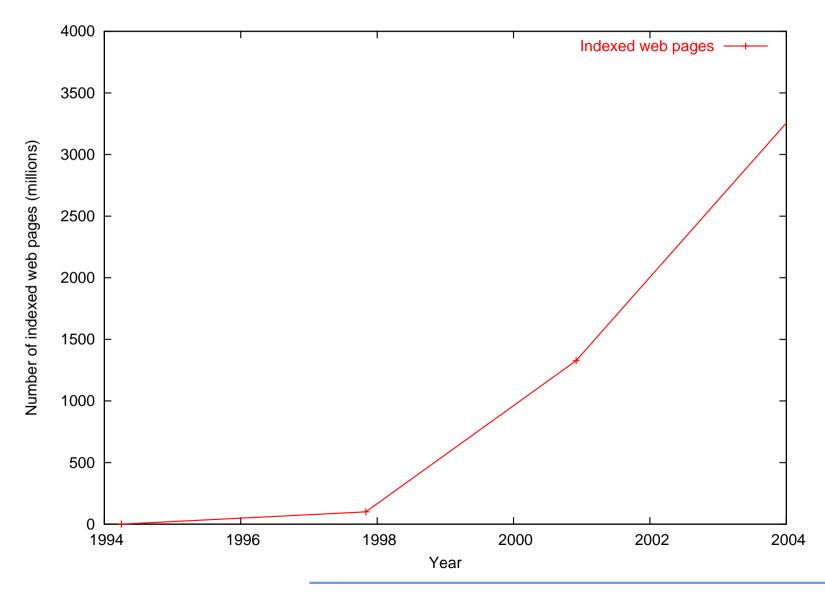
JTB [08/2004] - p.10/21

Internet Growth



JTB [08/2004] - p.10/21

Internet Growth



JTB [08/2004] - p.10/21

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P $\bowtie_L P$ | P/L | A

PEPA syntax:

$$\mathbf{P} ::= (\mathbf{a}, \lambda) \cdot \mathbf{P} \mid \mathbf{P} + \mathbf{P} \mid \mathbf{P} \bowtie_{L} \mathbf{P} \mid \mathbf{P} / \mathbf{L} \mid \mathbf{A}$$

> Action prefix: (a, λ) .P

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie_L P_2$

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie P_2$
- Action hiding: P/L

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie P_2$
- Action hiding: P/L
- Constant label: A

Biological PEPA Agent Modelling

Require a pairwise cooperation paradigm:

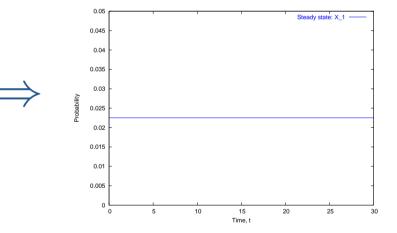
P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bigoplus_{L} P | P/L | A

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Pairwise agent cooperation: $P_1 \oplus P_2$
- Action hiding: P/L
- Constant label: A

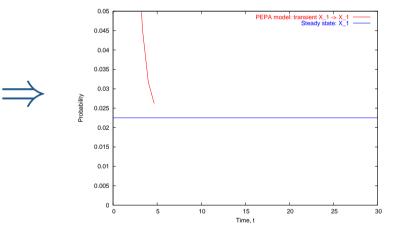
Types of Analysis

Steady-state and transient analysis in PEPA:

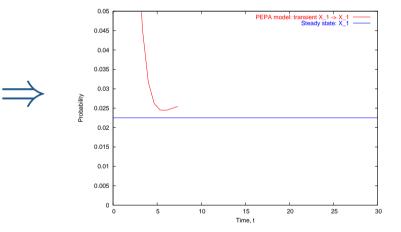
A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1



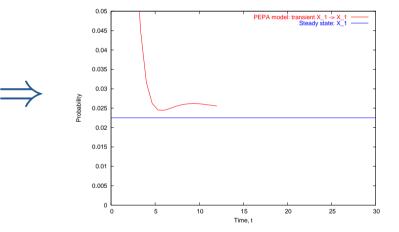
A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigvee_{\{run\}}$ A1



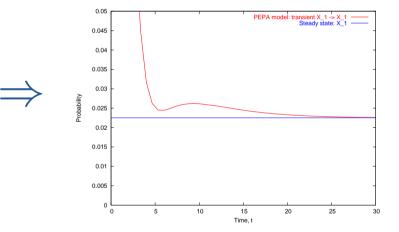
A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\underset{\{run\}}{\overset{\text{def}}{\overset{\text{f}}}{\overset{\text{f}}{\overset{\text{f}}{\overset{\text{f}}{\overset{\text{f}}{\overset{\text{f}}{\overset{\text{f}}}}}}}}}$ A1



A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1



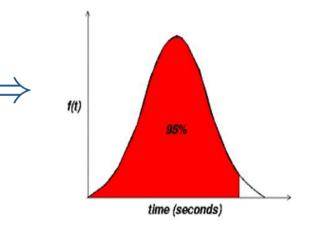
A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1



Passage-time Quantiles

Extract a passage-time density from a PEPA model:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1



State of the Art

- Good news
 - PEPA model: passage time/transient analysis -O(10⁸) states
 - Semi-Markov PEPA: passage time/transient analysis $O(10^7)$ states

State of the Art

- Good news
 - PEPA model: passage time/transient analysis -O(10⁸) states
 - Semi-Markov PEPA: passage time/transient analysis $O(10^7)$ states
- Bad news
 - This only represents 8 agents with 10 states each!

Ways forward for PEPA Agent modelling

- Either:
 - selective model aggregation
 - \Rightarrow allows use of passage/transient
- or:
 - development of approximate techniques
 - ⇒ automated generation of MFA/ODE equations from PEPA model [c.f. Sumpter 2000, Hillston 2004]

SIR: Epidemiological model

- Consider fixed population of N computers
- Partition population into, computers that are:
 - susceptible to infection, s(t)
 - infected, i(t)
 - removed, r(t)
- Deterministic system:

•
$$\frac{\mathrm{d}s(t)}{\mathrm{d}t} = -\beta s(t)i(t)$$

•
$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} = \beta s(t)i(t) - \gamma i(t)$$

•
$$\frac{\mathrm{d}r(t)}{\mathrm{d}t} = \gamma i(t)$$

Susceptible = $(infect, \top)$.Infected + $(patch, \lambda_p)$.Removed

Agent worm model

Susceptible = $(infect, \top)$.Infected + $(patch, \lambda_p)$.Removed Infected = $(infect, \lambda_i)$.Infected + $(repair, \lambda_r)$.Removed

Agent worm model

Susceptible = (infect, \top).Infected + (patch, λ_p).Removed Infected = (infect, λ_i).Infected + (repair, λ_r).Removed Removed = (rollback, λ_s).Susceptible System = $\bigoplus_{i=1}^{N}$ Susceptible_i

Agent worm model

Susceptible =
$$(infect, \top)$$
.Infected
+ $(patch, \lambda_p)$.Removed
Infected = $(infect, \lambda_i)$.Infected
+ $(repair, \lambda_r)$.Removed
Removed = $(rollback, \lambda_s)$.Susceptible

$$System(p,q) = \bigoplus_{i=1}^{p} Infected_{i} \bigoplus_{i=1}^{q} Susceptible_{i}$$
$$\bigcup_{i=1}^{N-p-q} Removed_{i}$$

Sumpter Look to count numbers of agents, A(t), in a given state by solving a derived mean field equation (MFE)

$$f(t,i) = \mathbb{E}(A(t + \Delta t) \mid A(t) = i)$$

Sumpter Look to count numbers of agents, A(t), in a given state by solving a derived mean field equation (MFE)

 $f(t,i) = \mathbb{E}(A(t + \Delta t) \mid A(t) = i)$

Hillston Approximate number of components with a real numbered function

Sumpter Look to count numbers of agents, A(t), in a given state by solving a derived mean field equation (MFE)

 $f(t,i) = \mathbb{E}(A(t + \Delta t) \mid A(t) = i)$

Hillston Approximate number of components with a real numbered function
remodel using *bimodal assumption*

Agent Count-based Model

Bimodal characterisation of variables:

 $S_{H} \stackrel{\text{def}}{=} (\text{infect}, \top).S_{L} + (\text{patch}, r_{2}).S_{L} + (\text{patch}, r_{2}).S_{L} \Rightarrow \frac{\frac{ds(t)}{dt}}{\frac{di(t)}{dt}} = -\beta s(t)i(t) - \gamma i(t) \frac{\frac{di(t)}{dt}}{\frac{dt}{dt}} = \beta s(t)i(t) - \gamma i(t) \frac{\frac{dr(t)}{dt}}{\frac{dt}{dt}} = \gamma i(t)$

Conclusion

- Internet worms have a reasonable biological analogy
- State spaces too large for traditional temporal modelling
- The answer: Selective aggregation/agent counting
- Passage times in an agent setting
 - a useful cost function for a model
 - probability of extinction within a given time