
Functional Performance Specification with
Stochastic Probes

Ashok Argent-Katwala Jeremy T. Bradley

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, United Kingdom.

{ashok,jb}@doc.ic.ac.uk

Abstract. In this paper, we introduce FPS, a mechanism to define
performance measures for stochastic process algebra models. FPS is a
functional performance specification language which describes passage-
time, transient, steady-state and continuous state space performance
questions. We present a generalisation of stochastic probes, a formalism-
independent specification of behaviour in stochastic process algebra mod-
els. Stochastic probes select the performance-critical paths for which the
measures are required; increasing their expressiveness in turn gives us
greater expressive power to represent performance questions. We end by
demonstrating these tools on an RSS syndication architecture of up to
1.5× 1051 states.

1 Introduction

In this paper, we introduce functional performance specification (FPS) over
stochastic probes: a mechanism to define performance measures for stochas-
tic process algebra models, with a unified description to capture passage-time,
transient, steady-state and continuous state space quantities.

These four kinds of soft performance bounds are an integral part of system
performance validation. For example, we might have a service-level agreement
(SLA) that a particular type of SQL query must return a result within 0.35
seconds 99% of the time; this would be derived from a passage-time quantile,
based on an underlying stochastic model. Alternatively, we might need to assure
ourselves that the probability that a just-in-time compiler is running native
code exactly 5 seconds after loading a Java applet is at least 0.8; this would
be a transient constraint. Finally, we might have to demonstrate that the long-
term probability that our software is in a particular failure mode is less than
0.002; this is a steady-state measure. Continuous state space analysis is used
to quantify massively parallel agent-based architectures, by providing counts of
agent states at particular time points, e.g. there are 5221 copies of a web client
component in a queue for the web server at time 150 seconds.

When measuring the performance of a system, we see a need to separate the
logic that specifies the performance query from the logic that defines the model;
a modelling requirement described in [1]. Without such separation, it is common
to see many distinct versions of the same system being created explicitly to cap-
ture distinct measurement-centred behaviour. Stochastic probes are one method
of making this separation of model and query. A stochastic probe [2] is a mea-
surement device that defines arbitrary start and end events for a performance
measure over a stochastic process algebra model.

We base the stochastic probe specification on an action-based regular expression
syntax. We provide a further separation between the behavioural properties that
make up our performance measure (as described by the stochastic probe) and
the quantitative questions that we typically need to ask, using the functional
performance specification framework.

This work builds on many performance specification methodologies: the NICE
performance measurement system [3] of Woodside et al.; the regular expression
style behavioural specification of asCSL [4] and TIPPtool [5]; the path-based
reward structures described by Obal and Sanders [1]. FPS and stochastic probes
are, however, unique in offering the combination of functional-style performance
questions and a simple regular-expression based behavioural specification.

In this paper, we show how stochastic probes can be used to specify expressive
behavioural constraints (Section 2.1), while the functional performance specifi-
cation layer uses the stochastic probes to define passage-time, transient, steady-
state or continuous state-based measures (Section 4). We significantly augment
the expressiveness of the stochastic probe language from the introduction pre-
sented in [2] and present a new formal semantic translation of probe operators
to underlying stochastic process algebra components (Section 6). We conclude
by demonstrating the use of functional performance specification and stochastic
probes over a PEPA model of the publish–subscribe mechanism, Really Simple
Syndication or RSS (Section 7).

2 Stochastic Probes

We use a regular expression [6] specification to describe the start and end points
of a performance measurement. The atoms of the regular expression are action
names in the target system, drawn from the alphabet of the underlying process
algebra model. This specification is turned into a fragment of stochastic process
algebra, for our purposes PEPA [7], but we could equally apply probes to other
stochastic process algebras such as EMPA [8] or SFSP [9] according to our
modelling requirements. These probe fragments are composed with the original
model to produce a model–probe system from which the performance measure
can be easily extracted using tools native to the formalism.

The precise meaning of the probe will depend on the semantics of the underlying
process algebra, in particular how choice works. In principle the translation
offered in Section 6 will apply for any stochastic process algebra which has
choice, a passive cooperation and supports CSP-style multiway synchronisation.

2.1 Stochastic Probe Definition

In this enhanced version of stochastic probes, we add the without operator, R/L.
This specifies that, for a given path, a set of behaviours R should be observed
without seeing any of the actions in the set, L. This is a significant generalisation
over [10], where the modeller is only allowed to specify start and stop actions
actions with no additional constraints on intermediate behaviour. It also gener-
alises [2] where the modeller is only allowed to specify behaviour that should be
seen along a particular path. A stochastic probe definition, R, has the following
syntax:

R ::= A T, T S

S ::= T |S T

T ::= R R{n} R{m,n} R+ R? R? R/act
A ::= act act :start act :stop (1)

act is an action label that matches a label in the system being measured. Any
action specified in the probe has to be observed in the model before the probe
can advance a state. An action, act , can also be distinguished or tagged as
a start or stop action in a probe and signifies an action which will start or
stop a measurement, respectively.

R1, R2 is the sequential operation. R1 is matched against the system’s opera-
tion, then R2 is matched.

R1 | R2 is the choice operation. Either R1 or R2 is matched against the system
being probed.

R? is the closure operation, where zero or more copies of R are matched against
the system.

R? is the optional operation, matching zero or one copy of R against the sys-
tem.

R{n} is the iterative operation. A fixed number of sequential copies of R are
matched against the system e.g. R{3} is simply shorthand for R,R,R.

R{m,n} is the range operation. Between m and n copies of R are matched
against the system’s operation. R{m,n} is equivalent to R{n,m}, and we
consider the canonical form to have the smaller index first.

R+ is the positive closure operation, where one or more copies of R are
matched against the system. It is syntactic sugar for R,R?.

R/act is the without operation. R must begin again whenever the probe sees
an act action that is not matched by R.

3 PEPA Stochastic Process Algebra

PEPA is used as the stochastic process algebra of choice for defining the probe
semantics of Section 6 and the modelling example of Section 7. PEPA is a par-
simonious stochastic process algebra that can describe compositional stochastic
models and has been used for many performance modelling case studies. These
models consist of components whose actions incorporate random exponential
delays. Full details of the PEPA process algebra can be found in [7]. In brief, the
syntax of a PEPA component, P , is represented by:

P ::= (a, λ).P P + P P ¤¢
S
P P/L A

(a, λ).P is an action prefix operation. It represents a process which does an
action, a, and then becomes a new process, P . The time taken to perform a
is described by an exponentially distributed random variable with parameter
λ. The rate parameter may also take a >-value, which makes the action
passive in a cooperation (see below).

P1 + P2 is a choice operation between two components. A race is entered into
between components P1 and P2. If P1 evolves first then any behaviour of P2

is discarded and vice-versa.
P1 ¤¢

S
P2 is the cooperation operator between two components which synchro-

nise over a set of actions, S. P1 and P2 run in parallel and synchronise over
the set of actions in the set S. If P1 is to evolve with an action a ∈ S, then it
must first wait for P2 to reach a point where it is also capable of producing
an a-action, and vice-versa. In an active cooperation, the two components
then jointly produce an a-action with a rate that reflects the slower of the
two components (usually the minimum of the two individual a-rates). In a
passive cooperation, where P1, say, can evolve with an (a,>)-transition, the
joint a-action inherits its rate from the P2 component alone.

P/L is a hiding operator of a set of actions, L. where actions in the set L
that emanate from the component P are rewritten as silent τ actions (with
the same appropriate delays). The actions in L can no longer be used in
cooperation with other components.

A is a constant label. and allows, amongst other things, recursive definitions to
be constructed.

Regarding related performance specification in PEPA, itself, Gilmore and Hill-
ston [11] have developed their own feature interaction logic which explores a
PEPA model, assigning rewards to component states for use in steady-state and
transient-state analysis. This is an alternative technique to the one we are try-
ing to achieve here. Instead of using a logic to interrogate a model, we use the
language’s own cooperation operator to observe the key events that we wish
to measure. By selectively sampling a model’s behaviour in this way, we can
simplify the task of picking the states that are relevant to our measure.

Our method has the benefit of not requiring the user to learn an entirely different
paradigm, being based on the process algebra in which the model is described.
At the moment, it has the downside that, being observationally-based, it cannot
distinguish actions that are generated by different copies of the same component.
This is possible in a logic setting such as that set up by Gilmore et al. [12] for
steady-state measure specification.

4 FPS: Functional Performance Specification

A functional performance specification is presented here as a contrast to well-
established logical performance specification formalisms that have some from
CSL [13]. Logical formalisms reduce all performance questions to a truth value,
for instance in a later version of CSL [14], the expression s |= S<0.3(ψ) means:

Is the state s the initial state of a path that ends in the set of states
defined by ψ where the total steady-state probability of being in those ψ
states is less than 0.3?

This is how a performance modeller might phrase the same question:

Is the steady-state probability of the states defined by ψ less than 0.3?

If we were to require the precise value of the steady-state probability in CSL, we
would have to ask the more general question s |= S<p(ψ) and observe the value
of p at which the formula moves from being true to false. Of late, this situation
has been in part remedied by the support of tools such as PRISM [15], which
allow questions such as:

Find p such that, given a start state s, s |= S<p(ψ) is true.

However, we still feel that the question is not as directly or succinctly stated as it
might be. Despite this, logical performance specification offers a very expressive
and very powerful environment, especially in being able to construct composi-
tional performance queries, due in a large part to its well-explored CTL pedigree.
In developing a functional performance paradigm, we seek to be able to ask the
quantitative performance question more directly, as in:

What is the steady-state probability of being in a set of states, ψ?

while maintaining the compositional power of logical performance specification.
However in this paper, since we favour a process framework for our underlying
model, we use stochastic probes rather than logical atomic propositions of CSL
to specify our state sets.

4.1 Performance Specification Syntax

With this motivation, we present a functional specification, which takes an input
native to a stochastic process algebra model – i.e. a stochastic probe or com-
ponent label – and generates a performance function, e.g. a passage time CDF,

which can itself be sampled or composed into higher-order performance queries.
A functional performance specification, M, over a stochastic probe, R, has the
following grammar:

M ::= Steady(R) Passage(R) Transient(R) Number(C)

and Steady(R) represents a steady-state measure; Passage(R) represents a passage-
time cumulative distribution function; Transient(R) represents a transient-state
distribution function; and Number(R) represents a deterministic component
counting function. C is a component type from the process model.

4.2 Definitions

Let the joint probe–model system, R ¤¢
L
M , be a Markov process, {Z(t) : t ≥ 0},

where Z(t) is the state of the system at time t. We can define the counting
process, N(t) = |{|Z(u) : 0 ≤ u ≤ t|}| − 1, to be the number of state transitions
that have occurred by time t.

In order to define the performance measure operators, Passage and Transient ,
we will need to specify sets of source states, F , and target states, G, based on
the instants after probe start and probe stop actions have occurred respectively.
So we define:

F (R) = {R′′ ¤¢
L
M ′′ : R′ ¤¢

L
M ′ (a:start,·)−−−→ R′′ ¤¢

L
M ′′} (2)

G(R) = {R′′ ¤¢
L
M ′′ : R′ ¤¢

L
M ′ (a:stop,·)−−−→ R′′ ¤¢

L
M ′′} (3)

where R′ and R′′ are derivative or successor states of the probe, R. M represents
the model being measured and M ′ and M ′′ are derivative states of M . It is
worth noting, that although we have used PEPA notation to highlight the joint
probe–model process, these definitions could easily be expressed in other process
algebras.

In the following descriptions prob ≡ [0, 1], the set of probability values and C is
a component type from the process model.

Steady-state, Steady(R) : prob. Applying the steady-state operator to a probe,
R, generates the steady-state probability for being in one of the states reach-
able by a probe stop action. For irreducible state spaces, this can be expressed
as:

Steady(R) =
∑

x∈G(R)

π(x) (4)

where π(x) is the steady-state probability of being in the state x in the
process Z(t).

Passage-time CDF, Passage(R) : IR+ → prob. A passage-time measure over
a probe R returns a cumulative distribution function for the passage-time
that starts from a state reachable by a probe start action and finishes at a
state reachable by a probe stop action. More precisely, using λ-notation to
define the cumulative distribution function, we can say:

Passage(R) = λt .
∑

x∈F (R)

π(x) IP(PxG(R) ≤ t) (5)

where PiJ is the random variable representing the passage-time starting
from a state i and terminating in one of the states in J , as given by:

PiJ = inf{u > 0 : Z(u) ∈ J , N(u) > 0, Z(0) = i} (6)

In Eq. (5), we weight the passage with the steady-state probabilities of start-
ing in any of the start states, as defined by the start actions in the probe. It
is our intention to generalise this in future versions, so that we can specify
a time-point from which we can generate a transient distribution to weight
the passage with.
Clearly, the associated density function, f(t), for this passage-time measure-
ment can be obtained by differentiating the CDF, f(t) = Passage(R)′(t).

Transient-state function, Transient(R) : IR+ → prob. A transient-state mea-
sure over a probe R returns the transient-state distribution function for hav-
ing just completed the probe stop action at time t, having completed a probe
start action at time, t = 0. It is defined as follows, again using the steady-
state vector to weight the multiple start states that might arise from the
stochastic probe:

Transient(R) = λt .
∑

x∈F (R)

π(x) IP(Z(t) ∈ G(R) | Z(0) = x) (7)

Component count function, Number(C) : IR+ → IR+. Applying the compo-
nent count function to a component C in the model yields a function which
counts the number of that components in the system in the state C at time t.
It relates to the recent innovations in continuous state space approximation
of stochastic process algebra models [16], which solve systems of coupled of
ODEs for systems with huge and otherwise computationally infeasible state
spaces.
The model M is regarded as consisting of a cooperation of n classes of com-
ponent, Ci, 1 ≤ i ≤ n and with each component class having mi derivative
states. At any time, there may be many components of the same class, but
in a different state in the system. We let vij(t) represent the number of com-
ponents of type Ci in state j at time t for 1 ≤ j ≤ mi. This is found by
solving a set of coupled ODEs of the form v′ij(t) = g(v11(t), . . . , vnmn(t)). In
effect:

Number(Cij) = λt . vij(t) (8)

5 Stochastic Probe Examples

We give a few examples of stochastic probes as specified by regular expressions
over a simple PEPA model. Consider a Bartender and a few customers, specified
in PEPA:

Bartender def= (serve, rs).Bartender + (restock , rr).Bartender

Person def= (life, r).Person + (thirst , s).Thirsty

Thirsty def= (serve,>).Drinking

Drinking def= (drink , r0).(resume, r1).Person + (drink , r0).Thirsty

Sys def= Bartender ¤¢
{serve}

(Person || Person || Person)

Let us ask a few simple questions of this model:

– How long between the first drink is served and the tenth?

serve:start, serve{8}, serve:stop

– Measure the time from the tenth serving till any of the drinkers returns to
their normal life.

serve{9}, serve:start, resume:stop

– If the bar holds stocks for 100 drinks, and is restocked to back to 100 drinks
every time the Bartender performs restock action, how long till the bar runs
dry?

serve:start, serve{99}/restock , serve:stop

It is important to realise that the probe will never block the behaviour of the
model it is synchronising with. As described in the next section, the probe will
absorb behaviour (without altering state) which it sees that is not part of its
next specified action. A probe that does not use the without construct asks the
question “will I ever see this behaviour?”. Using without, a modeller may also
ask “will I see exactly this behaviour next?”, if not then skip back to a particular
point in the measure.

6 Stochastic Probe Translation

Fig. 1 depicts the conversion of the individual regular expression elements to
process algebra components pictorially. The without operator acts at a different
level to the other operators, and is concerned with the actions within a particular
sub-expression, and not with composing expressions together. Dotted arrows

Fig. 1. The representation of the distinct regular expression terms as state-transitions
in the underlying process algebra.

denote that there is an immediate choice (with no prefix action) to continue in
the successor state.

Note that the representation for R{m,n} is not the same as (R{m}|R{m +
1}| . . . |R{n}). That would be one way to translate it, but would mean commit-
ting, through random choice to matching a particular number of repetitions of
R. This could be surprising to a modeller who has asked the probe to match any
of the range of repetitions. Instead we treat R{m,n} as R{m}, R?{m − n} (or
R?{n} where m = 0).

Before translating the probe at all, we first build a parse tree, during which all
the syntactic sugar is removed. We convert: R+ to R,R?; R{n} to R, . . . , R to
give n explicit copies of R; and R{m,n} to R{m}, R?{m − n} or R?{n} where
m = 0. Now, we are left with probes which fit a smaller syntactic form, which
we need to convert to our target process algebra. In particular, the syntax of the
T component of the regular expression definition from Eq. (1) is reduced to:

T ::= R R? R? R/act

6.1 Mapping Probes to PEPA

In the definitions below, we take as input the component name, P, we are to
define, the component name, Q, we are to end at and a reset-list of action names
and the component-label to which we return when we absorb that action. The

reset-list is initially empty. We introduce new, intermediate component labels
Ni, as required.

Throughout the conversion, only the topmost operator in the tree is considered,
and the subtrees are handled recursively. First, a few definitions:

Definition 1. F(R) denotes the first names of the probe expression R. These
are the action names that are explicitly used at the beginning of R. It is defined
over the terms for regular expressions.

The sequence operator needs careful handling; where the first term is optional
(R? or R? or R{0, n}) then the first actions of the second term are also imme-
diately available. We take the first (which is also the most specific) definition
below that matches the current situation:

F(a:start) = a

F(a:stop) = a

F(a) = a

F(R?
1, R2) = F(R1) ∪ F(R2)

F(R1?, R2) = F(R1) ∪ F(R2)
F(R1, R2) = F(R1)

F(R1 | R2) = F(R1) ∪ F(R2)
F(R?) = F(R)
F(R+) = F(R)
F(R?) = F(R)
F(R/a) = F(R)

Definition 2. N (R) denotes the names that are not explicitly enabled at the
beginning of R. For a probe that acts over the alphabet A, N (R) = A−F(R).

At every state, the probe will offer every action to lead somewhere. If not to move
the probe forward, or to reset it to some prior state due to an enclosing without
operator, then the probe absorbs the action and remains in the same state. To
abstract this from the translation that follows, we define the function S, which
provides the sum (choice) of all the reset and self-loops for an expression R,
being translated running from label P , with the set of pairs for resets X. Note
that this procedure adds a transition for every action in N (R):

S(R,P,X) =
∑

(b,E)∈X : b∈N (R)

(b,>).E +
∑

c∈N (R) : @x : (c,x)∈X

(c,>).P

We now define the full translation, T , which produces a set of PEPA definitions,
and is a formal version of the English descriptions above. The first argument to T
is always a probe expression, which is underlined, to avoid confusing the expres-
sion’s sequence operator for the argument separator. The Ni are new process
names for each recursive call.

The initial call to translate a probe is to T (R,Probe, Probe, ∅). This creates a
cyclic PEPA component, Probe, so when composed with an irreducible system,
that may be preserved.

Action T (a, P,Q,X) = P def= (a,>).Q + S(a,P,X)
Grouping T ((R), P,Q,X) = T (R,P,Q,X)

Choice T (R1|R2, P,Q,X) = P def= N1 + N2 + S(R1|R2,P,X);
T (R1, N1, Q,X); T (R2, N2, Q,X)

Sequence T (R1, R2, P,Q,X) = T (R1, P,N1, X); T (R2, N1, Q,X)

Closure T (R?, P,Q,X) = P def= N1 + Q
+ S(R?, P,X); T (R,N1, P,X)

Optional T (R?, P,Q,X) = P def= N1 + Q
+ S(R?, P,X); T (R,N1, Q,X)

Without T (R/a, P,Q,X) = T (R,P,Q,X ′)
where X ′ = {(c, x) ∈ X | c 6= a} ∪ (a, P)

Note that the intention of the “;” operator here is as a separator between defi-
nitions. T (. . .); T (. . .) means the PEPA system contains all the definitions from
both calls.

Or in words (omitting the passive loops and resets):

Action a: is always a leaf node and translates to:

P def= (a,>).Q

Choice R1 | R2: translates to P def= N1 + N2 and the algorithm is repeated for
the sub-trees with R1 running from N1 to Q and R2 running from N2 to Q.

Sequence R1, R2: translates to R1 running from P to N1 and R2 from N1 to
Q.

Closure R?: becomes P def= N1 + Q, where R is translated running from N1 to
P.

Optional R?: becomes P def= N1 +Q, where R is translated running from N1 to
Q.

Without R/a: R is translated running from P to Q and at every stage between,
offers a choice of (a,>).P wherever R does not explicitly offer one. We do
this by adding the pair (a,P) to the reset-list and removing any other a-reset
pair. This ensures we use the most specific reset action that the modeller
has chosen, should they choose to exclude the same action more than once.

The procedure above gives us a valid PEPA fragment which will behave properly
as a probe. However, for our analysis with ipc/DNAmaca [10] we also need to
be able to tell, purely from the state of the probe, whether it is running or
stopped. To achieve this, we create an observationally equivalent probe which
has a partition in its state space to enable ipc to specify the start and stop states
for DNAmaca. The details of this procedure can be found in Argent-Katwala et
al. [2].

7 Worked Example: An RSS Publish–Subscribe System

To demonstrate our functional performance specification framework, we intro-
duce a simplified PEPA model of an RSS publish–subscribe system.

The RSS system under consideration consists of NC RSS clients and a single
RSS server comprising NS virtual servers running in parallel. The clients and
server are connected by a network capable of sustaining NN concurrent network
connections. This is described by the top-level system equation below:

RSS System def= (RSS Client [NC] ¤¢
L

RSS Server [NS ,M])

¤¢
L

RSS Network [NN]

where:

L = {subscribe, unsubscribe, rss poll , rss update, rss cache hit}
M = {new feed , rss refresh}

describes the set of actions that the RSS client and server cooperate over via the
network. Note that in the above description, the A[N] construction is shorthand
for A[N, ∅] and A[N,M] represents N components of type A cooperating over
the set of actions M , as in:

A[N,M] ≡ A ¤¢
M
A ¤¢

M
· · · ¤¢

M
A

︸ ︷︷ ︸
N

The RSS client can subscribe to a server feed, after which it can poll the RSS
server for the current feed information. With some rate, λ2, a client can with-
draw from the system by unsubscribing. After polling, the client is given a newer
version of the RSS feed or told that the cached version that the client has is cur-
rent and no update is necessary (achieved through a choice between rss update
and rss cache hit actions in component RSS Client1). At this stage, the client
will poll at different rates according to whether it has just been handed a new
version of the feed or not. If an older cached version exists, it will poll more
frequently, with λ4 > λ3.

RSS Client def= (subscribe, λ1).RSS Clientn

RSS Clientn
def= (rss poll , λ3).RSS Client1 + (unsubscribe, λ2).RSS Client

RSS Clientc
def= (rss poll , λ4).RSS Client1 + (unsubscribe, λ2).RSS Client

RSS Client1
def= (rss update,>).RSS Clientn + (rss cache hit ,>).RSS Clientc

+ (unsubscribe, λ2).RSS Client

The RSS virtual servers, of which there will be several working in parallel to
update the feed information, keep track of the subscription list (not explicitly

represented in this model). A current feed has a lifetime determined by the
new feed action at rate µ1, which, together with the rss refresh action, represent
a feed content change on a shared disk, say. A client polling one of the servers
receives either an rss update or an rss cache hit with probabilities µu

µu+µc
and

µc

µu+µc
respectively, where µc > µu representing that sending a message that the

feed has not modified is quicker than sending the whole body of the feed. This
represents a type of HTTP conditional request, without greatly increasing the
size of the model.

RSS Server def= (subscribe,>).RSS Server + (unsubscribe,>).RSS Server
+ (rss poll ,>).RSS Server2 + (new feed , µ1).RSS Server1

RSS Server1
def= (rss refresh, µ2).RSS Server

RSS Server2
def= (rss update, µu).RSS Server + (rss cache hit , µc).RSS Server

Finally, a simple network model keeps track of limited bandwidth by capping
the total number of connections within a given network window to NN . The
duration of the network window is governed by the net recover action and the
γ parameter.

RSS Network def= (subscribe,>).RSS Network1

+ (unsubscribe.>).RSS Network1

+ (rss poll ,>).RSS Network1

+ (rss update,>).RSS Network1

+ (rss cache hit ,>).RSS Network1

RSS Network1
def= (net recover , γ).RSS Network

7.1 Functional Performance Queries

We present some questions and analysis of the RSS model in the functional
performance specification style:

Steady-state query What is the steady-state probability of seeing 4 consecu-
tive rss poll actions in the RSS model without having an rss update action?
This is translates into the formal functional performance query:

Steady((rss poll :start, rss poll{2}, rss poll :stop)/rss update) (9)

We solved this query for a 1,494,288 state system of 7 clients, 3 servers and
2 network connections. S(R1) = 0.19273, for R1 taken to be the probe of
Eq. (9).

Passage-time query What is the probability that the time between consecu-
tive rss update actions is between 2 and 4 time units? This translates into

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2 4 6 8 10 12 14

P
ro

ba
bi

lit
y

de
ns

ity
, f

p(
t)

Time, t

fp(t)

Fig. 2. The PDF for the passage time,
fp(t) = Passage(R2)

′(t), with NC =
4, NS = 2, NN = 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n,

 F
p(

t)

Time, t

Fp(t)

Fig. 3. The CDF for the passage time,
FP (t) = Passage(R2)(t), with NC =
4, NS = 2, NN = 2.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

C
om

po
ne

nt
 n

um
be

r

Time, t

Number(RSS_Client)
Number(RSS_Client_C)
Number(RSS_Client_N)

Fig. 4. The component counting functions, (top) Number(RSS Client)(t), (middle)
Number(RSS ClientC)(t) and (bottom) Number(RSS ClientN)(t), for RSS model
NC = 100, NS = 3, NN = 2.

the formal functional performance query on the cumulative distribution func-
tion of the equivalent passage time, Passage(R2)(4)−Passage(R2)(2) where
R2 = rss update:start, rss update:stop
We solved this for a 11,232 state system of 4 clients, 2 servers and 2 network
connections. Fig. 2 shows a probability density function of the appropri-
ate passage fp(t) = Passage(R2)′(t). Fig. 3 shows the cumulative distribu-
tion function for the appropriate passage FP (t) = Passage(R2)(t). From
this second plot we can calculate the required probability FP (4)− FP (2) =
0.1072793.

Component counting How many RSS Client components are there at time
60, for a system with NC = 100, NS = 3, NN = 2? This translates into the
formal functional performance query on the component counting function
Number(RSS Client)(60). Although this query is not based on a stochastic
probe, it is of fundamental interest as a quantitative measure to a perfor-
mance modeller.

For parameters NC = 100, NS = 3, NN = 2, the RSS model has approxi-
mately 1.5×1051 states. For this magnitude of calculation, the only practical
option is to resort to the continuous state space techniques of Hillston [16].
The result of Number(RSS Client)(60) = 77.4 is derived from the appropri-
ate counting function in Fig. 4.

8 Conclusion

In this paper, we have developed FPS, a functional performance specification lan-
guage which allows the modeller to derive quantitative performance functions
using stochastic probes. We have also extended stochastic probes as a means
of measuring soft performance characteristics of systems. We demonstrated a
regular expression language which specifies the stochastic probe and is itself
converted into a stochastic process algebra component. The probe is composed
with the target system for the purposes of extracting the performance measure-
ment.

We showed how this joint FPS/stochastic probe environment could be used to
specify quantitative performance and reliability bounds on stochastic process
algebra based systems. Finally, we applied these techniques to a model of an
RSS system where we analysed PEPA models of 11 thousand, 1.5 million and
1.5× 1051 states in size for quantitative performance measures.

Future improvements include allowing the specification of initial state distribu-
tions for passage-time and transient measures. We would also like to find an
intuitive but unrestrictive way of using probes to define the continuous state
space measure, in addition to or maybe as an alternative to using the SPA com-
ponent type.

Acknowledgements

The authors would like to thank anonymous referees for their insightful com-
ments and suggestions. AAK is supported by EPSRC under the PerformDB
grant EP/D054087/1. JB is supported in part by EPSRC under the GRAIL
grant EP/D505933/1 and the PerformDB grant EP/D054087/1.

References

1. W. D. Obal and W. H. Sanders, “State-space support for path-based reward vari-
ables,” Performance Evaluation, vol. 35, pp. 233–251, May 1999.

2. A. Argent-Katwala, J. T. Bradley, and N. J. Dingle, “Expressing performance
requirements using regular expressions to specify stochastic probes over process
algebra models,” in WOSP 2004, Proceedings of the 4th International Workshop

on Software and Performance (V. Almeida and D. Lea, eds.), (Redwood City,
California), pp. 49–58, ACM, January 2004.

3. C. M. Woodside and C. Shramm, “Complex performance measurements with NICE
(notation for interval combinations and events),” Software—Practice and Experi-
ence, vol. 24, pp. 1121–1144, December 1994.

4. C. Baier, L. Cloth, B. R. Haverkort, M. Kuntz, and M. Siegle, “Model checking
action- and state-labelled Markov chains,” DSN’04, Proceedings of International
Conference on Dependable Systems and Networks, pp. 701–710, June 2004.

5. H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle, “Com-
positional performance modelling with the TIPPtool,” Performance Evaluation,
vol. 39, no. 1–4, pp. 5–35, 2000.

6. S. C. Kleene, “Representation of events in nerve nets and finite automata,” in
Automata Studies (C. E. Shannon and J. McCarthy, eds.), pp. 3–41, Princeton,
New Jersey: Princeton University Press, 1956.

7. J. Hillston, A Compositional Approach to Performance Modelling, vol. 12 of Dis-
tinguished Dissertations in Computer Science. Cambridge University Press, 1996.

8. M. Bernardo and R. Gorrieri, “Extended Markovian Process Algebra,” in CON-
CUR’96, Proceedings of the 7th International Conference on Concurrency Theory
(U. Montanari and V. Sassone, eds.), vol. 1119 of Lecture Notes in Computer Sci-
ence, pp. 315–330, Springer-Verlag, Pisa, August 1996.

9. T. Ayles, A. J. Field, and J. N. Magee, “Adding performance evaluation to the
LTSA tool,” in Proceedings of 13th International Conference on Computer Perfor-
mance Evaluation: Modelling Techniques and Tools, 2003.

10. J. T. Bradley, N. J. Dingle, S. T. Gilmore, and W. J. Knottenbelt, “Derivation of
passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler,”
in MASCOTS’03, Proceedings of the 11th IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunications Systems
(G. Kotsis, ed.), (University of Central Florida), pp. 344–351, IEEE Computer
Society Press, October 2003.

11. S. Gilmore and J. Hillston, “Feature interaction in PEPA,” in Process Algebra and
Performance Modelling Workshop (C. Priami, ed.), pp. 17–26, Università Degli
Studi di Verona, Nice, September 1998.

12. S. Gilmore, J. Hillston, and G. Clark, “Specifying performance measures for
PEPA,” in Proceedings of the 5th International AMAST Workshop on Real-Time
and Probabilistic Systems, vol. 1601 of Lecture Notes in Computer Science, (Bam-
berg), pp. 211–227, Springer-Verlag, 1999.

13. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying continuous-time
Markov chains,” in Computer-Aided Verification, vol. 1102 of Lecture Notes in
Computer Science, pp. 269–276, Springer-Verlag, 1996.

14. C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate symbolic model check-
ing of continuous-time Markov chains,” in CONCUR’99, Proceedings of the 10th
International Conference on Concurrency Theory, vol. 1664 of Lecture Notes in
Computer Science, pp. 146–162, Springer-Verlag, 1999.

15. M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic symbolic
model checker,” in TOOLS’02, Proceedings of the 12th International Conference
on Modelling Techniques and Tools for Computer Performance Evaluation (A. J.
Field et al., ed.), vol. 2324 of Lecture Notes in Computer Science, (London),
pp. 200–204, Springer-Verlag, 2002.

16. J. Hillston, “Fluid flow approximation of PEPA models,” in QEST’05, Proceed-
ings of the 2nd International Conference on Quantitative Evaluation of Systems,
(Torino), pp. 33–42, IEEE Computer Society Press, September 2005.

