
Performance analysis of Stochastic
Process Algebra models using

Stochastic Simulation

Jeremy Bradley Stephen Gilmore Nigel Thomas

Email: jb@doc.ic.ac.uk stephen.gilmore@ed.ac.uk nigel.thomas@ncl.ac.uk

Department of Computing,

Imperial College London

LFCS,

University of Edinburgh

School of Computing Science,

Univerity of Newcastle

Produced with prosper and LATEX

JTB [18/07/2005] – p. 1/21

The story used to be...

- -�
�

�
�1

P
P

P
Pq

PEPA
ipc

HYDRA

hydra Passage-time PDF

Passage-time CDF

Transient

For state spaces of less than O(109)

Very precise probabilistic results

JTB [18/07/2005] – p. 2/21

Now the story is...

- �
�

�
�1

P
P

P
Pq

PEPA
ipc/pwb

Rate equations

Dizzy Stochastic simulation

Numerical ODE solution

For very large state spaces, e.g. 101000+ states

Aggregate deterministic results

JTB [18/07/2005] – p. 3/21

Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A

JTB [18/07/2005] – p. 4/21

Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A

Action prefix: (a, λ).P

JTB [18/07/2005] – p. 4/21

Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

JTB [18/07/2005] – p. 4/21

Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

Cooperation: P1 ��
L

P2

JTB [18/07/2005] – p. 4/21

Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

Cooperation: P1 ��
L

P2

Action hiding: P/L

JTB [18/07/2005] – p. 4/21

Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

Cooperation: P1 ��
L

P2

Action hiding: P/L

Constant label: A

JTB [18/07/2005] – p. 4/21

PEPA: Example

Sys
def
= (AA ��

{run}
A1) ��

{alert}
(BB ��

{run}
B1)

JTB [18/07/2005] – p. 5/21

PEPA: Example

Sys
def
= (AA ��

{run}
A1) ��

{alert}
(BB ��

{run}
B1)

AA
def
= (run,⊤).(alert, r5).AA

JTB [18/07/2005] – p. 5/21

PEPA: Example

Sys
def
= (AA ��

{run}
A1) ��

{alert}
(BB ��

{run}
B1)

AA
def
= (run,⊤).(alert, r5).AA

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

JTB [18/07/2005] – p. 5/21

PEPA: Example

Sys
def
= (AA ��

{run}
A1) ��

{alert}
(BB ��

{run}
B1)

AA
def
= (run,⊤).(alert, r5).AA

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

BB
def
= (run,⊤).(alert, r5).BB

JTB [18/07/2005] – p. 5/21

PEPA: Example

Sys
def
= (AA ��

{run}
A1) ��

{alert}
(BB ��

{run}
B1)

AA
def
= (run,⊤).(alert, r5).AA

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

BB
def
= (run,⊤).(alert, r5).BB

B1
def
= (start, r1).B2 + (pause, r2).B1

B2
def
= (run, r3).B1

JTB [18/07/2005] – p. 5/21

Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

AA
def
= (run,⊤).(alert, r5).AA

Sys
def
= AA ��

{run}
A1

⇒

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

Steady state: X_1

JTB [18/07/2005] – p. 6/21

Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

AA
def
= (run,⊤).(alert, r5).AA

Sys
def
= AA ��

{run}
A1

⇒

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

JTB [18/07/2005] – p. 6/21

Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

AA
def
= (run,⊤).(alert, r5).AA

Sys
def
= AA ��

{run}
A1

⇒

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

JTB [18/07/2005] – p. 6/21

Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

AA
def
= (run,⊤).(alert, r5).AA

Sys
def
= AA ��

{run}
A1

⇒

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

JTB [18/07/2005] – p. 6/21

Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

AA
def
= (run,⊤).(alert, r5).AA

Sys
def
= AA ��

{run}
A1

⇒

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Time, t

PEPA model: transient X_1 -> X_1
Steady state: X_1

JTB [18/07/2005] – p. 6/21

Passage-time Quantiles

Extract a passage-time density from a PEPA model:

A1
def
= (start, r1).A2 + (pause, r2).A3

A2
def
= (run, r3).A1 + (fail, r4).A3

A3
def
= (recover, r1).A1

AA
def
= (run,⊤).(alert, r5).AA

Sys
def
= AA ��

{run}
A1

⇒

JTB [18/07/2005] – p. 7/21

Example of aggregate states

Client
def
= (compute,⊤).Client1

Client1

def
= (delay , µ).Client

Server
def
= (compute, λ).Server1

Server1

def
= (recover , ν).Server

Sys = (Client ‖ · · · ‖ Client
︸ ︷︷ ︸

N

) ��
{compute}

(Server ‖ · · · ‖ Server
︸ ︷︷ ︸

M

)

Cooperating clusters can be represented as tuples

JTB [18/07/2005] – p. 8/21

Rate Equation Translation

Action: delay

JTB [18/07/2005] – p. 9/21

Rate Equation Translation

Action: delay

Client1

n(Client1)µ

−−−−−−−→ Client

JTB [18/07/2005] – p. 9/21

Rate Equation Translation

Action: delay

Client1

n(Client1)µ

−−−−−−−→ Client

Action: recover

Server1

n(Server1)ν

−−−−−−−→ Server

JTB [18/07/2005] – p. 9/21

Rate Equation Translation

Action: delay

Client1

n(Client1)µ

−−−−−−−→ Client

Action: recover

Server1

n(Server1)ν

−−−−−−−→ Server

Action: compute

Client + Server
θ(n(Client))n(Server)λ

−−−−−−−→ Client1 + Server1

where θ(x) = 1 if x > 0, else 0.

JTB [18/07/2005] – p. 9/21

Why the θ function?

There are N client cpts enabling a compute action

There are M server cpts enabling a compute action

Overall compute rate is:

rcompute(Sys) = min(N⊤,Mλ)

JTB [18/07/2005] – p. 10/21

Why the θ function?

There are N client cpts enabling a compute action

There are M server cpts enabling a compute action

Overall compute rate is:

rcompute(Sys) = min(N⊤,Mλ)

If N = 0 then overall rate is 0, hence:

rcompute(Sys) = θ(N) Mλ

JTB [18/07/2005] – p. 10/21

Dizzy setup

JTB [18/07/2005] – p. 11/21

Dizzy simulation

JTB [18/07/2005] – p. 12/21

Voter example

Election_Preparation ��
L

Electoral_Personae

Electoral_Personae
def
= Voter0[N] ��

M
Electoral_App

Electoral_App
def
= Collector_0[N] ‖ Counter_1[N]

‖ Administrator [N]

JTB [18/07/2005] – p. 13/21

Early voter description

Voter0
def
= (choose, c1).Voter0_1

Voter0_1
def
= (bitcommit , b1).Voter0_2

Voter0_2
def
= (blind1, b2).Voter0_3

Voter0_3
def
= (blind2, b3).Voter0_4

Voter0_4
def
= (voter_sign, s1).Voter0_5

Voter0_5
def
= (sendA, s2).Voter0_5b

Voter0_5b
def
= (sendV ,⊤).Voter1

Voter1
def
= (unblind1, u1).Voter1_1

JTB [18/07/2005] – p. 14/21

Voter: early stage

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30

N
um

be
r

Time, t

Number of Voter components in derivative states

Voter0
Voter0_4

Voter0_5b
Voter1

JTB [18/07/2005] – p. 15/21

High-level voter description

Voter0
def
= (choose, c1) . . . (sendV ,⊤).Voter1

JTB [18/07/2005] – p. 16/21

High-level voter description

Voter0
def
= (choose, c1) . . . (sendV ,⊤).Voter1

Voter1
def
= (unblind ,u1) . . . (sendC , s6).Voter2

JTB [18/07/2005] – p. 16/21

High-level voter description

Voter0
def
= (choose, c1) . . . (sendV ,⊤).Voter1

Voter1
def
= (unblind ,u1) . . . (sendC , s6).Voter2

Voter2
def
= (check , p × c4) . . . (sendCo, s7).Voter_Finished

JTB [18/07/2005] – p. 16/21

Voter: lifecycle

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60

N
um

be
r

Time, t

Number of Voter components in derivative states

Voter0
Voter1
Voter2

Voter_Finished

JTB [18/07/2005] – p. 17/21

High-level Election description

Election_Preparation

def
= (sendV ,⊤).Election_Preparation + · · ·

+ (publishA, er).Election_Voting

JTB [18/07/2005] – p. 18/21

High-level Election description

Election_Preparation

def
= (sendV ,⊤).Election_Preparation + · · ·

+ (publishA, er).Election_Voting

Election_Voting

def
= (sendC ,⊤).Election_Voting + · · ·

+ (publishC , er).Election_Counting

JTB [18/07/2005] – p. 18/21

High-level Election description

Election_Preparation

def
= (sendV ,⊤).Election_Preparation + · · ·

+ (publishA, er).Election_Voting

Election_Voting

def
= (sendC ,⊤).Election_Voting + · · ·

+ (publishC , er).Election_Counting

Election_Counting

def
= (sendCo,⊤).Election_Counting + · · ·

+ (final_publish, er).Election_Finished

JTB [18/07/2005] – p. 18/21

Election: population of 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30

N
um

be
r

Time, t

Election component in derivative states

Election_Preparation
Election_Voting

Election_Counting
Election_Finished

JTB [18/07/2005] – p. 19/21

Election + Voter: interaction

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50 60

N
um

be
r

Time, t

Number of Voter derivatives against Election state

Election_Preparation
Election_Voting

Election_Counting
Election_Finished

Voter0
Voter1
Voter2

Voter_Finished

JTB [18/07/2005] – p. 20/21

Conlcusion

Novel simulation techniques based on chemical rate
equations

Orders of magnitude larger state spaces can be
analysed

Complexity of simulation method (Gibson-Bruck) is
O(log n) where n is number of rate equations

JTB [18/07/2005] – p. 21/21

	The story used to be...
	Now the story is...
	Stochastic Process Algebra
	Stochastic Process Algebra
	Stochastic Process Algebra
	Stochastic Process Algebra
	Stochastic Process Algebra
	Stochastic Process Algebra

	PEPA: Example
	PEPA: Example
	PEPA: Example
	PEPA: Example
	PEPA: Example

	Types of Analysis
	Types of Analysis
	Types of Analysis
	Types of Analysis
	Types of Analysis

	Passage-time Quantiles
	Example of aggregate states
	Rate Equation Translation
	Rate Equation Translation
	Rate Equation Translation
	Rate Equation Translation

	Why the $	heta $ function?
	Why the $	heta $ function?

	Dizzy setup
	Dizzy simulation
	Voter example
	Early voter description
	Voter: early stage
	High-level voter description
	High-level voter description
	High-level voter description

	Voter: lifecycle
	High-level Election description
	High-level Election description
	High-level Election description

	Election: population of 1
	Election + Voter: interaction
	Conlcusion

