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The story used to be...
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hydra Passage-time PDF

Passage-time CDF

Transient

For state spaces of less than O(109)

Very precise probabilistic results
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Now the story is...
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Rate equations

Dizzy Stochastic simulation

Numerical ODE solution

For very large state spaces, e.g. 101000+ states

Aggregate deterministic results
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Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A
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Stochastic Process Algebra

PEPA syntax:

P ::= (a, λ).P P + P P ��
L

P P/L A

Action prefix: (a, λ).P

Competitive choice: P1 + P2

Cooperation: P1 ��
L

P2

Action hiding: P/L

Constant label: A
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PEPA: Example

Sys
def
= (AA ��

{run}
A1) ��

{alert}
(BB ��

{run}
B1)
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{run}
B1)

AA
def
= (run,⊤).(alert, r5 ).AA

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

BB
def
= (run,⊤).(alert, r5 ).BB

B1
def
= (start, r1 ).B2 + (pause, r2 ).B1
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Types of Analysis

Steady-state and transient analysis in PEPA:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,⊤).(alert, r5 ).AA

Sys
def
= AA ��

{run}
A1

⇒
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Passage-time Quantiles

Extract a passage-time density from a PEPA model:

A1
def
= (start, r1 ).A2 + (pause, r2 ).A3

A2
def
= (run, r3 ).A1 + (fail, r4 ).A3

A3
def
= (recover, r1 ).A1

AA
def
= (run,⊤).(alert, r5 ).AA

Sys
def
= AA ��

{run}
A1

⇒
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Example of aggregate states

Client
def
= (compute,⊤).Client1

Client1

def
= (delay , µ).Client

Server
def
= (compute, λ).Server1

Server1

def
= (recover , ν).Server

Sys = (Client ‖ · · · ‖ Client
︸ ︷︷ ︸

N

) ��
{compute}

(Server ‖ · · · ‖ Server
︸ ︷︷ ︸

M

)

Cooperating clusters can be represented as tuples

JTB [18/07/2005] – p. 8/21



Rate Equation Translation

Action: delay
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Rate Equation Translation

Action: delay

Client1

n(Client1)µ

−−−−−−−→ Client
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Rate Equation Translation

Action: delay

Client1

n(Client1)µ

−−−−−−−→ Client

Action: recover
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Rate Equation Translation

Action: delay

Client1

n(Client1)µ

−−−−−−−→ Client

Action: recover

Server1

n(Server1)ν

−−−−−−−→ Server

Action: compute

Client + Server
θ(n(Client))n(Server)λ

−−−−−−−→ Client1 + Server1

where θ(x) = 1 if x > 0, else 0.
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Why the θ function?

There are N client cpts enabling a compute action

There are M server cpts enabling a compute action

Overall compute rate is:

rcompute(Sys) = min(N⊤,Mλ)
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Why the θ function?

There are N client cpts enabling a compute action

There are M server cpts enabling a compute action

Overall compute rate is:

rcompute(Sys) = min(N⊤,Mλ)

If N = 0 then overall rate is 0, hence:

rcompute(Sys) = θ(N) Mλ
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Dizzy setup
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Dizzy simulation
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Voter example

Election_Preparation ��
L

Electoral_Personae

Electoral_Personae
def
= Voter0[N ] ��

M
Electoral_App

Electoral_App
def
= Collector_0[N ] ‖ Counter_1[N ]

‖ Administrator [N ]
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Early voter description

Voter0
def
= (choose, c1).Voter0_1

Voter0_1
def
= (bitcommit , b1).Voter0_2

Voter0_2
def
= (blind1, b2).Voter0_3

Voter0_3
def
= (blind2, b3).Voter0_4

Voter0_4
def
= (voter_sign, s1).Voter0_5

Voter0_5
def
= (sendA, s2).Voter0_5b

Voter0_5b
def
= (sendV ,⊤).Voter1

Voter1
def
= (unblind1, u1).Voter1_1
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Voter: early stage
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High-level voter description

Voter0
def
= (choose, c1) . . . (sendV ,⊤).Voter1
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High-level voter description
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High-level voter description

Voter0
def
= (choose, c1) . . . (sendV ,⊤).Voter1

Voter1
def
= (unblind ,u1) . . . (sendC , s6).Voter2

Voter2
def
= (check , p × c4) . . . (sendCo, s7).Voter_Finished
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Voter: lifecycle
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High-level Election description

Election_Preparation

def
= (sendV ,⊤).Election_Preparation + · · ·

+ (publishA, er).Election_Voting
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High-level Election description
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High-level Election description

Election_Preparation

def
= (sendV ,⊤).Election_Preparation + · · ·

+ (publishA, er).Election_Voting

Election_Voting

def
= (sendC ,⊤).Election_Voting + · · ·

+ (publishC , er).Election_Counting

Election_Counting

def
= (sendCo,⊤).Election_Counting + · · ·

+ (final_publish, er).Election_Finished
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Election: population of 1
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Election + Voter: interaction
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Conlcusion

Novel simulation techniques based on chemical rate
equations

Orders of magnitude larger state spaces can be
analysed

Complexity of simulation method (Gibson-Bruck) is
O(log n) where n is number of rate equations
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