Performance analysis of Stochastic Process Algebra models using Stochastic Simulation

Jeremy Bradley

Stephen Gilmore

Nigel Thomas

Email: jb@doc.ic.ac.uk stephen.gilmore@ed.ac.uk nigel.thomas@ncl.ac.uk
Department of Computing,
LFCS,
Imperial College London
University of Edinburgh
School of Computing Science,
Univerity of Newcastle

The story used to be...

- For state spaces of less than $O\left(10^{9}\right)$
- Very precise probabilistic results

Now the story is...

- For very large state spaces, e.g. $10^{1000}+$ states
- Aggregate deterministic results

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{\mathrm{~L}}{ } \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{\mathrm{~L}}{\mathrm{M}} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

- Action prefix: $(\mathrm{a}, \lambda) . \mathrm{P}$

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P}{\underset{L}{A}}^{\mathrm{P}}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

- Action prefix: $(a, \lambda) . \mathrm{P}$
- Competitive choice: $\mathrm{P}_{1}+\mathrm{P}_{2}$

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{\mathrm{~L}}{\underset{\mathrm{P}}{\mathrm{P}}|\mathrm{P} / \mathrm{L}| \mathrm{A}, ~}
$$

- Action prefix: $(a, \lambda) . \mathrm{P}$
- Competitive choice: $\mathrm{P}_{1}+\mathrm{P}_{2}$
- Cooperation: $\mathrm{P}_{1} \underset{L}{\underset{L}{a}} \mathrm{P}_{2}$

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{\mathrm{~L}}{\triangle} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

- Action prefix: $(a, \lambda) . P$
- Competitive choice: $\mathrm{P}_{1}+\mathrm{P}_{2}$
- Cooperation: $\mathrm{P}_{1} \underset{L}{\underset{L}{2}} \mathrm{P}_{2}$
- Action hiding: P/L

Stochastic Process Algebra

PEPA syntax:

$$
\mathrm{P}::=(\mathrm{a}, \lambda) \cdot \mathrm{P}|\mathrm{P}+\mathrm{P}| \mathrm{P} \underset{\mathrm{~L}}{\triangle} \mathrm{P}|\mathrm{P} / \mathrm{L}| \mathrm{A}
$$

- Action prefix: $(\mathrm{a}, \lambda) . \mathrm{P}$
- Competitive choice: $\mathrm{P}_{1}+\mathrm{P}_{2}$
- Cooperation: $\mathrm{P}_{1} \underset{L}{\Delta} \mathrm{P}_{2}$
- Action hiding: P/L

๑ Constant label: A

PEPA: Example

$$
\text { Sys } \stackrel{\text { def }}{=}(\mathrm{AAA} \underset{\text { trun\} }}{\sim} \mathrm{A} 1) \underset{\text { talert\} }}{\mathbb{O}}(\mathrm{BB} \underset{\text { \{run\} }}{\sim} \mathrm{B} 1)
$$

PEPA: Example

$$
\begin{aligned}
& \text { Sys } \stackrel{\text { def }}{=}(\mathrm{AA} \underset{\{\text { run }\}}{\longrightarrow} \mathrm{A} 1) \underset{\{\text { alert }\}}{\infty}(\mathrm{BB} \underset{\{\text { run }\}}{\infty} \mathrm{B} 1) \\
& \mathrm{AA} \stackrel{\text { def }}{=}(\text { run }, T) \cdot\left(\text { alert }, r_{5}\right) \cdot \mathrm{AA}
\end{aligned}
$$

PEPA: Example

$$
\begin{aligned}
\text { Sys } & \stackrel{\text { def }}{=}(\mathrm{AA} \underset{\{\text { run }\}}{\mathbb{O}} \mathrm{A} 1) \underset{\{\text { alert }\}}{\infty}(\mathrm{BB} \underset{\{\text { run }\}}{\infty} \mathrm{B} 1) \\
\mathrm{AA} & \stackrel{\text { def }}{=}(\text { run }, \top) \cdot\left(\text { alert }, r_{5}\right) \cdot \mathrm{AA} \\
\mathrm{~A} 1 & \stackrel{\text { def }}{=}\left(\text { start }, r_{1}\right) \cdot \mathrm{A} 2+\left(\text { pause }, r_{2}\right) \cdot \mathrm{A} 3 \\
\mathrm{~A} 2 & \stackrel{\text { def }}{=}\left(\text { run }, r_{3}\right) \cdot \mathrm{A} 1+\left(\text { fail }, r_{4}\right) \cdot \mathrm{A} 3 \\
\mathrm{~A} 3 & \stackrel{\text { def }}{=}\left(\text { recover }, r_{1}\right) \cdot \mathrm{A} 1
\end{aligned}
$$

PEPA: Example

$$
\begin{aligned}
& \text { Sys } \stackrel{\text { def }}{=}(\mathrm{AA} \underset{\{\text { run }\}}{\underset{\sim}{2}} \mathrm{~A} 1) \underset{\{\text { alert }\}}{\infty}(\mathrm{BB} \underset{\{\text { run }\}}{\underset{\sim}{2}} \mathrm{~B} 1) \\
& \mathrm{AA} \stackrel{\text { def }}{=} \text { (run, } T \text {). (alert, } r_{5} \text {).AA } \\
& \mathrm{A} 1 \stackrel{\text { def }}{=} \text { (start, } r_{1} \text {). } \mathrm{A} 2+\text { (pause, } r_{2} \text {) } \cdot \mathrm{A} 3 \\
& \mathrm{~A} 2 \stackrel{\text { def }}{=}\left(\text { run }, r_{3}\right) \cdot \mathrm{A} 1+\left(\text { fail }, r_{4}\right) \cdot \mathrm{A} 3 \\
& \mathrm{~A} 3 \stackrel{\text { def }}{=} \quad\left(\text { recover }, r_{1}\right) . \mathrm{A} 1 \\
& \mathrm{BB} \stackrel{\text { def }}{=} \text { (run, } T \text {). (alert, } r_{5} \text {). BB }
\end{aligned}
$$

PEPA: Example

$$
\begin{aligned}
\mathrm{Sys} & \stackrel{\text { def }}{=}(\mathrm{AA} \underset{\{\text { run }\}}{\mathbb{O}} \mathrm{A} 1) \underset{\{\text { alert }\}}{\infty}(\mathrm{BB} \underset{\{\text { run }\}}{\infty} \mathrm{B} 1) \\
\mathrm{AA} & \stackrel{\text { def }}{=}(\text { run }, \top) \cdot\left(\text { alert }, r_{5}\right) \cdot \mathrm{AA} \\
\mathrm{~A} 1 & \stackrel{\text { def }}{=}\left(\text { start }, r_{1}\right) \cdot \mathrm{A} 2+\left(\text { pause }, r_{2}\right) \cdot \mathrm{A} 3 \\
\mathrm{~A} 2 & \stackrel{\text { def }}{=}\left(\text { run, } r_{3}\right) \cdot \mathrm{A} 1+\left(\text { fail }, r_{4}\right) \cdot \mathrm{A} 3 \\
\mathrm{~A} 3 & \stackrel{\text { def }}{=}\left(\text { recover }, r_{1}\right) \cdot \mathrm{A} 1 \\
\mathrm{BB} & \stackrel{\text { def }}{=}(\text { run }, \top) \cdot\left(\text { alert }, r_{5}\right) \cdot \mathrm{BB} \\
\mathrm{~B} 1 & \stackrel{\text { def }}{=}\left(\text { start }, r_{1}\right) \cdot \mathrm{B} 2+\left(\text { pause, } r_{2}\right) \cdot \mathrm{B} 1 \\
\mathrm{~B} 2 & \stackrel{\text { def }}{=}\left(\text { run }, r_{3}\right) \cdot \mathrm{B} 1
\end{aligned}
$$

Types of Analysis

Steady-state and transient analysis in PEPA:

Types of Analysis

Steady-state and transient analysis in PEPA:

Types of Analysis

Steady-state and transient analysis in PEPA:

Types of Analysis

Steady-state and transient analysis in PEPA:

Types of Analysis

Steady-state and transient analysis in PEPA:

Passage-time Quantiles

Extract a passage-time density from a PEPA model:

Example of aggregate states

$$
\begin{aligned}
& \text { Client } \stackrel{\text { def }}{=}(\text { compute, } \top) \cdot \text { Client }_{1} \\
& \text { Client }_{1} \stackrel{\text { def }}{=}(\text { delay, } \mu) . \text { Client } \\
& \text { Server } \stackrel{\text { def }}{=}(\text { compute, } \lambda) . \text { Server }_{1} \\
& \text { Server }_{1} \stackrel{\text { def }}{=}(\text { recover }, \nu) . \text { Server } \\
& \text { Sys }=(\underbrace{\text { Client }\|\cdots\| \text { Client }}_{N}) \underset{\{\text { compute }\}}{D}(\underbrace{\text { Server }\|\cdots\| \text { Server }}_{M})
\end{aligned}
$$

- Cooperating clusters can be represented as tuples

Rate Equation Translation

- Action: delay

Rate Equation Translation

- Action: delay

$$
\text { Client }_{1} \xrightarrow{n(\text { Client } 1) \mu} \text { Client }
$$

Rate Equation Translation

- Action: delay

$$
\text { Client }_{1} \xrightarrow{n(\text { Client } 1) \mu} \text { Client }
$$

- Action: recover

Server $_{1} \xrightarrow{n\left(\text { Server }_{1}\right) \nu}$ Server

Rate Equation Translation

- Action: delay

$$
\text { Client }_{1} \xrightarrow{n(\text { Client } 1) \mu} \text { Client }
$$

- Action: recover

$$
\text { Server }_{1} \xrightarrow{n\left(\text { Server }_{1}\right) \nu} \text { Server }
$$

- Action: compute

$$
\begin{aligned}
\text { Client }+ \text { Server } \xrightarrow{\theta(n(\text { Client }) n(\text { Server }) \lambda} & \text { Client }_{1}+\text { Server }_{1} \\
& \text { where } \theta(x)=1 \text { if } x>0, \text { else } 0 .
\end{aligned}
$$

Why the θ function?

- There are N client cpts enabling a compute action
- There are M server cpts enabling a compute action
- Overall compute rate is:

$$
r_{\text {compute }}(S y s)=\min (N \top, M \lambda)
$$

Why the θ function?

- There are N client cpts enabling a compute action
- There are M server cpts enabling a compute action
- Overall compute rate is:

$$
r_{\text {compute }}(S y s)=\min (N \top, M \lambda)
$$

- If $N=0$ then overall rate is 0 , hence:

$$
r_{\text {compute }}(S y s)=\theta(N) M \lambda
$$

Dizzy setup

Dizzy simulation

Voter example

Election_Preparation $\underset{\mathcal{L}}{ }$ Electoral_Personae

$$
\begin{aligned}
\text { Electoral_Personae } \stackrel{\text { def }}{=} & \text { Voter } 0[N] \underset{\mathcal{M}}{\underset{M}{A}} \text { Electoral_App } \\
\text { Electoral_App } \stackrel{\text { def }}{=} & \text { Collector_0[} N] \| \text { Counter_1[N] } \\
& \| \text { Administrator }[N]
\end{aligned}
$$

Early voter description

$$
\begin{aligned}
\text { Voter0 } & \stackrel{\text { def }}{=}\left(\text { choose }, c_{1}\right) \cdot \text { Voter } 0 _1 \\
\text { Voter0_1 } & \stackrel{\text { def }}{=}\left(\text { bitcommit }, b_{1}\right) \cdot \text { Voter } 0 _2 \\
\text { Voter } 0 _2 & \stackrel{\text { def }}{=}\left(\text { blind }_{1}, b_{2}\right) \cdot \text { Voter } 0 _3 \\
\text { Voter } 0 _3 & \stackrel{\text { def }}{=}\left(\text { blind }_{2}, b_{3}\right) \cdot \text { Voter } 0 _4 \\
\text { Voter } 0 _4 & \stackrel{\text { def }}{=}\left(\text { voter_sign }, s_{1}\right) \cdot \text { Voter } 0 _5 \\
\text { Voter } 0 _5 & \stackrel{\text { def }}{=}\left(\text { sendA, } s_{2}\right) \cdot \text { Voter } 0 _5 b \\
\text { Voter } 0 _5 b & \stackrel{\text { def }}{=}(\text { sendV }, \top) \cdot \text { Voter } 1 \\
\text { Voter } 1 & \stackrel{\text { def }}{=}\left(\text { unblind }_{1}, u_{1}\right) \cdot \text { Voter } 1 _1
\end{aligned}
$$

Voter: early stage

High-level voter description

```
Voter 0
\(\stackrel{\text { def }}{=}\left(\right.\) choose,\(\left.c_{1}\right) \ldots(\operatorname{sen} d V, \top) . \operatorname{Voter} 1\)
```


High-level voter description

$$
\begin{aligned}
& \text { Voter } 0 \\
& \stackrel{\text { def }}{=}\left(\text { choose }, c_{1}\right) \ldots(\operatorname{sen} d V, \top) \cdot \operatorname{Voter} 1 \\
& \text { Voter } 1 \\
& \stackrel{\text { def }}{=}\left(\text { unblind }, u_{1}\right) \ldots\left(\operatorname{sen} d C, s_{6}\right) \cdot \operatorname{Voter} 2
\end{aligned}
$$

High-level voter description

Voter 0

$$
\stackrel{\text { def }}{=}\left(\text { choose }, c_{1}\right) \ldots(\operatorname{sen} d V, \top) . \text { Voter } 1
$$

Voter 1

$$
\stackrel{\text { def }}{=}\left(\text { unblind }, u_{1}\right) \ldots\left(\operatorname{sen} d C, s_{6}\right) \cdot \text { Voter } 2
$$

Voter 2

$$
\stackrel{\text { def }}{=}\left(\text { check }, p \times c_{4}\right) \ldots\left(\operatorname{sen} d C o, s_{7}\right) \text {.Voter_Finished }
$$

Voter: lifecycle

High-level Election description

Election_Preparation
$\stackrel{\text { def }}{=}($ send $V, \top) . E l e c t i o n _P r e p a r a t i o n ~+~ \cdots ~$
$+(p u b l i s h A$, er $)$.Election_Voting

High-level Election description

$$
\left.\begin{array}{rl}
\text { Election_Preparation } \\
\stackrel{\text { def }}{=} & (\text { sendV, } \top) \cdot \text { Election_Preparation }+\cdots \\
& +(\text { publishA, er }) \cdot \text { Election_Voting }
\end{array}\right\} \begin{aligned}
& \text { Election_Voting } \\
& \stackrel{\text { def }}{=}(\text { sendC }, \top) \cdot \text { Election_Voting }+\cdots \\
&+(\text { publishC, er }) \text {.Election_Counting }
\end{aligned}
$$

High-level Election description

$$
\begin{aligned}
& \text { Election_Preparation } \\
& \stackrel{\text { def }}{=}(\text { send } V, \top) . E l e c t i o n _P r e p a r a t i o n ~+\cdots \\
& +(\text { publishA, er).Election_Voting } \\
& \text { Election_Voting } \\
& \stackrel{\text { def }}{=}(\operatorname{send} C, \top) . E l e c t i o n _V o t i n g+\cdots \\
& +(\text { publishC, er).Election_Counting } \\
& \text { Election_Counting } \\
& \stackrel{\text { def }}{=}(\text { sendCo, } T) \text {.Election_Counting }+\cdots \\
& \text { + (final_publish, er).Election_Finished }
\end{aligned}
$$

Election: population of 1

Election component in derivative states

Election + Voter: interaction

Conlcusion

- Novel simulation techniques based on chemical rate equations
- Orders of magnitude larger state spaces can be analysed
- Complexity of simulation method (Gibson-Bruck) is $O(\log n)$ where n is number of rate equations

