Why I'm always late!

Dagstuhl Seminar

Jeremy Bradley

Email: jb@doc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and LATEX

JTB [20/04/2006] - p. 1/44

With thanks to...

- Stephen Gilmore, Edinburgh
- Jane Hillston, Edinburgh
- Nigel Thomas, Newcastle
- Tom Thorne, Imperial College
- Helen Wilson, University College London

Something about genes...

Biological Circadian Clock Model

Vilar oscillations of *A*

$$\mathbf{P}$$
 ::= (\mathbf{a}, λ) . \mathbf{P} $\mathbf{P} + \mathbf{P}$ $\mathbf{P} \bowtie_{L} \mathbf{P}$ \mathbf{P}/\mathbf{L} A

PEPA syntax:

$$\mathbf{P}$$
 ::= $(\mathbf{a}, \lambda) \cdot \mathbf{P}$ | $\mathbf{P} + \mathbf{P}$ | $\mathbf{P} \bowtie_{L} \mathbf{P}$ | \mathbf{P}/\mathbf{L} | A

• Action prefix: (a, λ) .P

$$P ::= (a, \lambda).P | P + P | P \bowtie_L P | P/L | A$$

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie_L P_2$

P ::=
$$(\mathbf{a}, \lambda)$$
.P | P + P | P \bowtie_L P | P/L | A

- Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \bowtie P_2$
- **>** Action hiding: P/L

$$P ::= (a, \lambda).P | P + P | P \bowtie_L P | P/L | A$$

- **>** Action prefix: (a, λ) .P
- Competitive choice: $P_1 + P_2$
- Cooperation: $P_1 \Join P_2$
- Action hiding: P/L
- Constant label: A

$Sys \stackrel{\text{def}}{=} (AA \bigotimes_{\{\text{run}\}} A1) \bigotimes_{\{\text{alert}\}} (BB \bigotimes_{\{\text{run}\}} B1)$

Sys
$$\stackrel{\text{def}}{=}$$
 (AA $\bigotimes_{\{\text{run}\}}$ A1) $\bigotimes_{\{\text{alert}\}}$ (BB $\bigotimes_{\{\text{run}\}}$ B1)

AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA

$$Sys \stackrel{\text{def}}{=} (AA \bigotimes_{\{\text{run}\}} A1) \bigotimes_{\{\text{alert}\}} (BB \bigotimes_{\{\text{run}\}} B1)$$

$$AA \stackrel{\text{def}}{=} (\text{run}, \top).(\text{alert}, r_5).AA$$

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3

A2
$$\stackrel{\text{def}}{=}$$
 (run, r_3).A1 + (fail, r_4).A3

A3
$$\stackrel{\text{def}}{=}$$
 (recover, r_1).A1

$$Sys \stackrel{\text{def}}{=} (AA \bigotimes_{\{\text{run}\}} A1) \bigotimes_{\{\text{alert}\}} (BB \bigotimes_{\{\text{run}\}} B1)$$

AA
$$\stackrel{\text{def}}{=}$$
 (run, \top).(alert, r_5).AA

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3

A2
$$\stackrel{\text{def}}{=}$$
 (run, r_3).A1 + (fail, r_4).A3

A3
$$\stackrel{\text{def}}{=}$$
 (recover, r_1).A1

BB
$$\stackrel{\text{def}}{=}$$
 (run, \top).(alert, r_5).BB

$$Sys \stackrel{\text{def}}{=} (AA \bigotimes_{\{\text{run}\}} A1) \bigotimes_{\{\text{alert}\}} (BB \bigotimes_{\{\text{run}\}} B1)$$

$$AA \stackrel{\text{def}}{=} (\operatorname{run}, \top).(\operatorname{alert}, r_5).AA$$

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3

A2
$$\stackrel{\text{def}}{=}$$
 (run, r_3).A1 + (fail, r_4).A3

A3
$$\stackrel{\text{def}}{=}$$
 (recover, r_1).A1

BB
$$\stackrel{\text{def}}{=}$$
 (run, \top).(alert, r_5).BB
B1 $\stackrel{\text{def}}{=}$ (start, r_1).B2 + (pause, r_2).B1
B2 $\stackrel{\text{def}}{=}$ (run, r_3).B1

$$\mathbf{P} ::= \mathbf{a}_{\lambda} \cdot \mathbf{P} \mid \mathbf{P} + \mathbf{P} \mid \mathbf{P} \mid \mathbf{P} \mid \mathbf{A}$$

Stochastic π calculus syntax:

$$\mathbf{P} ::= \mathbf{a}_{\lambda} \cdot \mathbf{P} \mid \mathbf{P} + \mathbf{P} \mid \mathbf{P} \mid \mathbf{P} \mid \mathbf{A}$$

• Action prefix: a_{λ} .P

$$P ::= a_{\lambda}.P | P + P | P | P | A$$

- Action prefix: a_{λ} .P
- Summation: $P_1 + P_2$

$$\mathbf{P} ::= \mathbf{a}_{\lambda} \cdot \mathbf{P} \mid \mathbf{P} + \mathbf{P} \mid \mathbf{P} \mid \mathbf{P} \mid \mathbf{A}$$

- Action prefix: a_{λ} .P
- Summation: $P_1 + P_2$
- Parallel components: $P_1 | P_2$

$$P ::= a_{\lambda}.P | P + P | P | A$$

- Action prefix: a_{λ} .P
- Summation: $P_1 + P_2$
- Parallel components: $P_1 | P_2$
- Constant label: A

Steady-state and transient analysis in PEPA:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\stackrel{\checkmark}{[run]}$ A1

30

5

15

Time, t

20

Steady-state and transient analysis in PEPA:

0.05

10

5

15

Time, t

20

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1 \Longrightarrow
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1

PEPA model: transient X_1 -> X_1 -Steady state: X_1 -

25

30

Steady-state and transient analysis in PEPA:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1

Steady-state and transient analysis in PEPA:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigvee_{\{run\}}$ A1

Steady-state and transient analysis in PEPA:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigwedge_{\{run\}}$ A1

Passage-time Quantiles

Extract a passage-time density from a PEPA model:

A1
$$\stackrel{\text{def}}{=}$$
 (start, r_1).A2 + (pause, r_2).A3
A2 $\stackrel{\text{def}}{=}$ (run, r_3).A1 + (fail, r_4).A3
A3 $\stackrel{\text{def}}{=}$ (recover, r_1).A1
AA $\stackrel{\text{def}}{=}$ (run, \top).(alert, r_5).AA
Sys $\stackrel{\text{def}}{=}$ AA $\bigvee_{\{run\}}$ A1

Need for explicit global state space

Can we approximate the state space?

Can we approximate the state space?

In PEPA, start with a system description:

 $(A \mid \mid \dots \mid \mid A) \bowtie_{L} (B \bowtie_{M} \dots \bowtie_{M} B)$

Can we approximate the state space?

In PEPA, start with a system description:

 $(A \mid | \ldots \mid | A) \bowtie_{L} (B \bowtie_{M} \cdots \bowtie_{M} B)$

What if we just count the number of components in state A and B (and derivatives):

 $(N_A(t), N_{A'}(t), \ldots)_{\emptyset} \bowtie_L (N_B(t), N_{B'}(t), \ldots)_M$

Continuous state space approximation

• For a simple system: $(X \parallel \cdots \parallel X)$

Continuous state space approximation

- For a simple system: $(X || \cdots || X)$
- Let N_X(t) be a continuous variable represents the number of components in state X at time t

Continuous state space approximation

- For a simple system: $(X || \cdots || X)$
- Let N_X(t) be a continuous variable represents the number of components in state X at time t
- Write down a set of coupled ordinary differential equations to represent the rate of change in number of X in the system at time t:
Continuous state space approximation

- For a simple system: $(X || \cdots || X)$
- Let N_X(t) be a continuous variable represents the number of components in state X at time t
- Write down a set of coupled ordinary differential equations to represent the rate of change in number of X in the system at time t:
 - For $X \xrightarrow{(a,\lambda)} X'$ in $(X \parallel \cdots \parallel X)$:

$$\frac{\mathrm{d}N_X(t)}{\mathrm{d}t} = -\lambda N_X(t)$$

J. Vilar, H.Y. Kueh, N. Barkai and S. Leibler. "Mechanisms of noise-resistance in genetic oscillators", PNAS, vol. 90, pp. 5988–5992. April, 2002.

$$D_{A} \stackrel{\text{def}}{=} bind_{A_{\gamma_{A}}}.AD_{A} + \tau_{\alpha_{A}}.(D_{A} \mid M_{A})$$

$$AD_{A} \stackrel{\text{def}}{=} \tau_{\theta_{A}}.(D_{A} \mid A) + \tau_{\alpha_{A'}}.(AD_{A} \mid M_{A})$$

$$D_{R} \stackrel{\text{def}}{=} bind_{R_{\gamma_{R}}}.AD_{R} + \tau_{\alpha_{R}}.(D_{R} \mid M_{R})$$

$$AD_{R} \stackrel{\text{def}}{=} \tau_{\theta_{R}}.(D_{R} \mid A) + \tau_{\alpha_{R'}}.(AD_{R} \mid M_{R})$$

$$M_{A} \stackrel{\text{def}}{=} \tau_{\delta_{MA}}.\emptyset + \tau_{\beta_{A}}.(M_{A} \mid A)$$

$$M_{R} \stackrel{\text{def}}{=} \tau_{\delta_{MR}}.\emptyset + \tau_{\beta_{R}}.(M_{R} \mid R)$$

$$A \stackrel{\text{def}}{=} bind_{A_{\gamma_{A}}}.\emptyset + bind_{R_{\gamma_{R}}}.\emptyset + bind_{C_{\gamma_{C}}}.\emptyset + \tau_{\delta_{A}}.\emptyset$$

$$R \stackrel{\text{def}}{=} bind_{C_{\gamma_{C}}}.C + \tau_{\delta_{R}}.$$

$$C \stackrel{\text{def}}{=} \tau_{\delta_{A}}.R$$

Circadian clock: as a Petri net!

Note the different modelling styles in the use of *stochastic* π and *PEPA*

Modelling with $\pi\text{-}Calculus$

$$D_A \stackrel{\text{def}}{=} bind_{A_{\gamma_A}}.AD_A + \tau_{\alpha_A}.(D_A \mid M_A)$$

$$D_A \stackrel{\text{def}}{=} bind_{A_{\gamma_A}}.AD_A + \tau_{\alpha_A}.(D_A \mid M_A)$$
$$AD_A \stackrel{\text{def}}{=} \tau_{\theta_A}.(D_A \mid A) + \tau_{\alpha_{A'}}.(AD_A \mid M_A)$$

$$D_A \stackrel{\text{def}}{=} bind_{A_{\gamma_A}}.AD_A + \tau_{\alpha_A}.(D_A \mid M_A)$$
$$AD_A \stackrel{\text{def}}{=} \tau_{\theta_A}.(D_A \mid A) + \tau_{\alpha_{A'}}.(AD_A \mid M_A)$$
$$M_A \stackrel{\text{def}}{=} \tau_{\delta_{MA}}.\emptyset + \tau_{\beta_A}.(M_A \mid A)$$

$$D_{A} \stackrel{\text{def}}{=} bind_{A_{\gamma_{A}}}.AD_{A} + \tau_{\alpha_{A}}.(D_{A} \mid M_{A})$$

$$AD_{A} \stackrel{\text{def}}{=} \tau_{\theta_{A}}.(D_{A} \mid A) + \tau_{\alpha_{A'}}.(AD_{A} \mid M_{A})$$

$$M_{A} \stackrel{\text{def}}{=} \tau_{\delta_{MA}}.\emptyset + \tau_{\beta_{A}}.(M_{A} \mid A)$$

$$A \stackrel{\text{def}}{=} \overline{bind_{A_{\gamma_{A}}}}.\emptyset + \overline{bind_{R_{\gamma_{R}}}}.\emptyset + \overline{bind_{C_{\gamma_{C}}}}.\emptyset + \tau_{\delta_{A}}.\emptyset$$

$$D_{A} \stackrel{\text{def}}{=} bind_{A_{\gamma_{A}}}.AD_{A} + \tau_{\alpha_{A}}.(D_{A} \mid M_{A})$$

$$AD_{A} \stackrel{\text{def}}{=} \tau_{\theta_{A}}.(D_{A} \mid A) + \tau_{\alpha_{A'}}.(AD_{A} \mid M_{A})$$

$$M_{A} \stackrel{\text{def}}{=} \tau_{\delta_{MA}}.\emptyset + \tau_{\beta_{A}}.(M_{A} \mid A)$$

$$A \stackrel{\text{def}}{=} \overline{bind_{A_{\gamma_{A}}}}.\emptyset + \overline{bind_{R_{\gamma_{R}}}}.\emptyset + \overline{bind_{C_{\gamma_{C}}}}.\emptyset + \tau_{\delta_{A}}.\emptyset$$

$$D_{R} \stackrel{\text{def}}{=} bind_{R_{\gamma_{R}}}.AD_{R} + \tau_{\alpha_{R}}.(D_{R} \mid M_{R})$$

$$M_{R} \stackrel{\text{def}}{=} \tau_{\delta_{MR}}.\emptyset + \tau_{\beta_{R}}.(M_{R} \mid R)$$

$$R \stackrel{\text{def}}{=} bind_{C_{\gamma_{C}}}.C + \tau_{\delta_{R}}.\emptyset$$

$$AD_{R} \stackrel{\text{def}}{=} \tau_{\theta_{R}}.(D_{R} \mid A) + \tau_{\alpha_{R'}}.(AD_{R} \mid M_{R})$$

$$C \stackrel{\text{def}}{=} \tau_{\delta_{A}}.R$$

$$D_A \stackrel{\text{def}}{=} (bind_{AD_A}, \gamma_A).AD_A + (mk_{MA}, \alpha_A).D_A$$

$$D_A \stackrel{\text{def}}{=} (bind_{AD_A}, \gamma_A).AD_A + (mk_{MA}, \alpha_A).D_A$$
$$AD_A \stackrel{\text{def}}{=} (unbind_{AD_A}, \theta_A).D_A + (mk_{MA}, \alpha_{A'}).AD_A$$

$$D_A \stackrel{\text{def}}{=} (bind_{AD_A}, \gamma_A).AD_A + (mk_{MA}, \alpha_A).D_A$$
$$AD_A \stackrel{\text{def}}{=} (unbind_{AD_A}, \theta_A).D_A + (mk_{MA}, \alpha_{A'}).AD_A$$
$$M'_A \stackrel{\text{def}}{=} (mk_{MA}, \top).M_A$$

$$D_{A} \stackrel{\text{def}}{=} (bind_{AD_{A}}, \gamma_{A}).AD_{A} + (mk_{MA}, \alpha_{A}).D_{A}$$
$$AD_{A} \stackrel{\text{def}}{=} (unbind_{AD_{A}}, \theta_{A}).D_{A} + (mk_{MA}, \alpha_{A'}).AD_{A}$$
$$M'_{A} \stackrel{\text{def}}{=} (mk_{MA}, \top).M_{A}$$
$$M_{A} \stackrel{\text{def}}{=} (decay_{M_{A}}, \delta_{MA}).M'_{A} + (mk_{A}, \beta_{A}).M_{A}$$

$$D_{A} \stackrel{\text{def}}{=} (bind_{AD_{A}}, \gamma_{A}).AD_{A} + (mk_{MA}, \alpha_{A}).D_{A}$$

$$AD_{A} \stackrel{\text{def}}{=} (unbind_{AD_{A}}, \theta_{A}).D_{A} + (mk_{MA}, \alpha_{A'}).AD_{A}$$

$$M'_{A} \stackrel{\text{def}}{=} (mk_{MA}, \top).M_{A}$$

$$M_{A} \stackrel{\text{def}}{=} (decay_{M_{A}}, \delta_{MA}).M'_{A} + (mk_{A}, \beta_{A}).M_{A}$$

$$A' \stackrel{\text{def}}{=} (mk_{A}, \top).A$$

$$D_{A} \stackrel{\text{def}}{=} (bind_{AD_{A}}, \gamma_{A}).AD_{A} + (mk_{MA}, \alpha_{A}).D_{A}$$

$$AD_{A} \stackrel{\text{def}}{=} (unbind_{AD_{A}}, \theta_{A}).D_{A} + (mk_{MA}, \alpha_{A'}).AD_{A}$$

$$M'_{A} \stackrel{\text{def}}{=} (mk_{MA}, \top).M_{A}$$

$$M_{A} \stackrel{\text{def}}{=} (decay_{M_{A}}, \delta_{MA}).M'_{A} + (mk_{A}, \beta_{A}).M_{A}$$

$$A' \stackrel{\text{def}}{=} (mk_{A}, \top).A$$

$$A \stackrel{\text{def}}{=} (bind_{AD_{A}}, \gamma_{A}).A_{D_{A}} + (bind_{AD_{R}}, \gamma_{R}).A_{D_{R}}$$

$$+ (bind_{AR}, \gamma_{C}).A_{C} + (decay_{A}, \delta_{A}).A'$$
PEPA model: Circadian Clock

• • •

$$D_{A} \stackrel{\text{def}}{=} (bind_{AD_{A}}, \gamma_{A}).AD_{A} + (mk_{MA}, \alpha_{A}).D_{A}$$

$$AD_{A} \stackrel{\text{def}}{=} (unbind_{AD_{A}}, \theta_{A}).D_{A} + (mk_{MA}, \alpha_{A'}).AD_{A}$$

$$M'_{A} \stackrel{\text{def}}{=} (mk_{MA}, \top).M_{A}$$

$$M_{A} \stackrel{\text{def}}{=} (decay_{M_{A}}, \delta_{MA}).M'_{A} + (mk_{A}, \beta_{A}).M_{A}$$

$$A' \stackrel{\text{def}}{=} (mk_{A}, \top).A$$

$$A \stackrel{\text{def}}{=} (bind_{AD_{A}}, \gamma_{A}).A_{D_{A}} + (bind_{AD_{R}}, \gamma_{R}).A_{D_{R}}$$

$$+ (bind_{AR}, \gamma_{C}).A_{C} + (decay_{A}, \delta_{A}).A'$$

$$A_{D_{A}} \stackrel{\text{def}}{=} (unbind_{AD_{A}}, \top).A$$

PEPA Combination

Part of PEPA system combination looks like:

$$((D_A \bowtie_L M'_A[500]) \bowtie_M A'[2500]) \bowtie_N \cdots$$

where:

- $\bullet L = \{mk_{MA}\}$
- $\bullet M = \{mk_A, bind_{AD_A}\}$

Vilar oscillations of *A***: reminder**

Stochastic π model results

Results: π **v PEPA**

Results: π **v PEPA**

Results: π **v PEPA**

PEPA model explcitly represents the available resources:

$((D_A \Join_{L} M'_{A}[500]) \Join_{M} A'[2500]) \Join_{N} \cdots$

...so what happens if we limit the number of molecules in the system

Limiting protein A: PEPA

Limiting protein A: PEPA

Limiting protein R: PEPA

Limiting protein R: PEPA

Obviously not enough R repressor!

The Nature of Synchronisation (in Nature)

- The type of synchronisation/reaction between sets of molecules determines:
 - ODE translation
 - stochastic simulaton
- Synchronisation/reaction rate is affected by:
 - Location of molecules
 - Shape of molecules
 - How molecules are moving during reaction phase

- Reaction between e.g. well-mixed fluids and gases
- Molecules diffuse (Brownian motion)
- Molecules can potentially react with any other co-reagant molecule
- Example reaction:

$$A + B \xrightarrow{\lambda} AB$$

Initially m A molecules, n B molecules

Total number of possible interactions: *mn*

Total number of actual AB products: $\min(m, n)$

Synchronisation: Local action

- Reaction between e.g. surface of two solids, two jellies, two very viscous fluids
- No molecule diffusion
- Molecules react with closest local neighbour
- No reaction competition
- Example reaction:

 $A + B \xrightarrow{\lambda} AB$

Initially *m* A molecules, *n* B molecules

Synchronisation: Local action

• Total number of possible reactions: $\min(m, n)$

JTB [20/04/2006] - p. 37/44

Synchronisation: Local action

• Total number of AB products: $\min(m, n)$

- Reaction catalysed by one or more passive molecules
- Heavily spatially dependent on catalyst shape/configuration
- Example reaction:

$$A + B \xrightarrow{\lambda} A + B'$$

Initially 1 A molecule, n B molecules

• Total number of possible reactions: I(m > 0) n

JTB [20/04/2006] - p. 40/44

Synchronisation: Catalyst

• Total number of B' products: I(m > 0) n

Synchronisation and ODEs

- For a reaction, starting: $A + B \xrightarrow{\lambda}$
 - Mass action leads to ODEs of form:

$$\frac{\mathrm{d}}{\mathrm{d}t}[A] = -\lambda[A][B]$$

Local action leads to ODEs of form:

$$\frac{\mathrm{d}}{\mathrm{d}t}[A] = -\lambda \min([A], [B])$$

Passive action leads to ODEs of form:

$$\frac{\mathrm{d}}{\mathrm{d}t}[A] = -\lambda I([A] > 0) \left[B\right]$$

Synchronisation and SPA

Local action maps well onto active synchronisation in PEPA

$$Sys \stackrel{\text{def}}{=} A[m] \Join_{\{a\}} B[n]$$
$$A \stackrel{\text{def}}{=} (a, \lambda) \cdot A'$$
$$B \stackrel{\text{def}}{=} (a, \lambda) \cdot B'$$

Synchronisation and SPA

Passive action maps well onto passive synchronisation in PEPA

$$Sys \stackrel{\text{def}}{=} A[m] \bigotimes_{\{a\}} B[n]$$
$$A \stackrel{\text{def}}{=} (a, \lambda) \cdot A'$$
$$B \stackrel{\text{def}}{=} (a, \top) \cdot B'$$

Mass action, until now, has not been used in SPA world (not TIPP!)