
Advanced Computer Architecture: Google 2

Jeremy Bradley

8 March 2004

Figure 1: Graph G1 Figure 2: Graph G2

1. The graph G1 represents a set of connected web pages. Taking c = 4/5,
write down:

(a) The transition matrix P

(b) The personalisation vector ~p

(c) The modified transition matrix A

(d) Two iterations of ~x(k+1) = ~x(k)A, i.e. ~x(1), ~x(2) with ~x(0) = (0, 1, 0)

(e) Two iterations of the PageRank algorithm for comparison

(f) The value δ = || |~x(k+1) − ~x(k)| ||1 for each iteration

If you have access to a machine you can implement the PageRank algo-
rithm on slide 17 using an ε-value of 0.01, instead of doing parts (d) and
(e) by hand. How many iterations does it take to converge?

• For graph G1, P =





0 1 0
1/2 0 1/2
1/2 1/2 0





• Personalisation vector, ~p =





1/3
1/3
1/3





• A = cP ′ + (1− c)E = 2
5





0 2 0
1 0 1
1 1 0



+ 1
15





1 1 1
1 1 1
1 1 1





1

• Two iterations of ~x(k)A/PageRank:

~x(1) =
1

15
(7, 1, 7); ~x(2) =

1

225
(63, 141, 21)

• After one iteration: δ = 28
15 . After two, δ = 252

225

2. Repeat question 1 for the graph G2, this time with ~x(0) = (1, 0, 0, 0). How
does the answer/convergence vary if you alter c?

• For graph G2, P = 1
2









0 2 0 0
0 0 1 1
0 0 0 0
0 0 2 0









• Personalisation vector, ~p =









1/4
1/4
1/4
1/4









• A = cP ′ + (1− c)E = 1
5









0 4 0 0
0 0 2 2
1 1 1 1
0 0 4 0









+ 1
20









1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1









• Two iterations of ~x(k)A/PageRank:

~x(1) =
1

20
(1, 17, 1, 1); ~x(2) =

1

50
(3, 5, 22, 20)

• After one iteration: δ = 19
10 . After two, δ = 3

2

3. Suggest scalable techniques for implementing each of the vector operations
below across several processors, where as necessary each processor has the
same partitioned set of rows for each vector ~v1 and ~v2

(a) v1 + v2

(b) ||v1||1

(c) αv1 for some scalar multiplier, α

This uses a technique know as row-striping where processor 1
stores the first k entries of the vectors ~v1 and ~v2, processor 2
stores the next k and so on. Where a vector is the result of
the distributed calculation, each processor should store the ap-
propriate k entries of the result vector. Where there is a single
scalar result, you can assume a central master machine to collate
the distributed calculation.

Processor i holds elements k(i − 1) + 1 to ki of ~v1 and ~v2. Call
these (v1k(i−1)+1

, . . . , v1ki
) and (v2k(i−1)+1

, . . . , v2ki
).

2

(a) Processor i calculates and stores (~v1+~v2)k(i−1)+j = v1k(i−1)+j
+

v2k(i−1)+j
for 1 ≤ j ≤ k.

(b) Processor i calculates si =
∑k

j=1 |v1k(i−1)+j
|. Master processor

collects si values and performs
∑n

i=1 si for n processors.

(c) Processor i calculates and stores (αv1)k(i−1)+j = αv1k(i−1)+j
for

1 ≤ j ≤ k.

3

