Advanced Computer
Architecture:
A Google Search Engine

Jeremy Bradley

Room 372. Ofice hour - Thursdays at 3pm Enmil: jb@loc.ic.ac.uk

Course notes: http://wmv doc.ic.ac. uk/ ~jb/

Department of Computing, Imperial College London

Produced with prosper and ITEX

| JTB [01/2004] - p.1/35

| Introduction to PageRank

2> PageRank is used by Google to order pages
which have the same search terms

> Documented by Google founders: Sergey
Brin and Lawrence Page
> "The PageRank Citation Ranking: Bringing Order to
the Web" Page, Brin, Motwani and Winograd
> "The Anatomy of a Large-Scale Hypertextual Web
Search Engine" Brin and Page
> "Extrapolation Methods for Accelerating PageRank

Computations" Kamvar, Haveliwala, Manning and
Golub

JTB [01/2004] - p.2/35

[]

Motivation for PageRank I

2 PageRank introduced to solve the junk
web-page problem

2 By 1997, even a specific search query would
generate 100s of results

2> November 1997: "...only one of the top four
commercial search engines finds itself"! i.e.
places itself in its own top ten search results

| JTB [01/2004] - p.3/35

| Search Result Manipulation (I) |

9 Search engines ordered results returned for
the same query terms according to:

> page content
> URL
> page title
> user presented meta data
> frequency of occurance of search term/related
terms
> This is all user controllable data

= Web authors could manipulate it to enhance
their search ordering
[—]

JTB [01/2004] - p.4/35

Search Result Manipulation (II) I

2> Web pages that wanted to popularise
themselves:

> put repeated dummy search terms into
web pages to catch search engine traffic

> competitor web pages (even reputable
ones) had to do likewise

> web pages ballooned in size from junk
content

2 user controllable page content quickly
became no judge of page quality or relevance

— | JTB [01/2004] - p.5/35

| Solution: PageRank

O

PageRank designed to overcome problem
> pbased on research-style citations

2> A page is considered more useful if:
> many pages refer to (link) to it
> small number of important pages refer to it

2 A page is considered less useful:
> if few or no pages link to it

(V)

PageRank is independent of the page content

> |.e. importantly does not have to be
recalculated for each query

What is PageRank I

> PageRank is based on underlying web graph
> measure of page interconnectedness

> For a given web page, its PageRank is:
> proportional to the number of pages that link to it
> is a value between 0 and 1

> propagated recursively to all the pages that the
page links to

> does not bear any "linear" relationship to the quoted
PageRank fi gure (between 0 and 10) that you get
from the Google toolbar in Windows

R | JTB [01/2004] - p.7/35

| PageRank’s Shortcomings

> the accumulated PageRank for a site is much
harder to manipulate BUT...

2 dependent on link-structure i.e. links not
being broken

> works well over static web structure but
poorly over dynamic or query-driven structure
2 susceptible to Google spam

> I.e. large communities of people
collaborating to link to each others pages

R | JTB [01/2004] - p.8/35

Derivation of PageRank I

2 Consider G the underlying web graph.
> The nodes of GG are web pages

> A directed edge from page u to page v
represents a hypertext link on « which
points to v; written © — v

2 Construct transition matrix P from graph G by
letting P;; = 1/ deg(u;) if there is a link u; — wu;
in G and O otherwise.

2 |s this uniform distribution a fair assumption?

I The Random Surfer

eg. P=1|1/3 1/3 0 --- 0 1/3

> Example row shows a page linking to 3 other
pages uq, us and u,

2 What happens if a page has no out-links?
> Get an all-zero row

5 Matrix represents a random surfer who, with

equal probability, follows any of the links that
they find on a page

I | JTB [01/2004] - p.10/35

A Markov Chain I

2 P can also be viewed as a transition matrix of
a discrete-time Markov chain

2 The PageRank vector represents the
steady-state vector of the Markov chain

> |l.e. the probability that the random surfer
goes to a particular page after a large
number of transitions

2> However the pages with no out-links will
terminate the surfing (are absorbing states)
and distort the steady-state solution

| Treating cul-de-sac Pages

2 To solve absorbing page problem — if surfer
ends up in a page with no out-links:

> assign probability that surfer will go to any
other page (e.g. via bookmarks or typing in
a URL) according to personal vector, p

= replace all zero rows in P with p’
s P' = P+ D where D = dp*

1 : if deg(u;) =0
d; = _
0 : otherwise

Personalisation Vector

1
2 Assumption that p taken as:
1
2 Quter pr0dUCt: (_i?_T)ZJ = leszl dikpkj = dipj
(111 1 \
0 0O 0
=eg.D=| :
0 00 0
111 1
\ 000 - 0)
e ——] [

Teleportation Matrix

2 Have not yet represented surfer that ignores
links on a given page and randomly goes to
another (unlinked) page anyway

2 This behaviour is given by the teleportation
matrix, £

> Now: A = cP' 4 (1 — ¢)E where E = 1p"
L !
11 1 1

>ojeE=| " " "fforl=1| .
;% 1 1

] | JTB [01/2004] — p.14/35

Teleportation

2 Inequation A =cP' +(1—-¢)E
> ¢ = IP(link/redirection on page is taken)
> (1 — ¢) = IP(random page is visited)
> ¢~ (0.85

2 In Markov chain terms:

> Prevents process getting livelocked in
cliques of states

> Process with transition matrix A is now
irreducible (can reach any state from any
other state)

PageRank Solution

2> PageRank represented by iterative technique,
Power method:

8y

T(h1) = T(p) A

2 Until convergence is achieved
> Need to solve equation:

T =TA

where @ = limy,_, f(k) = limp_, f(O)Ak

PageRank Solution (Il)

7= lim 7 A"
7= Jlim Fo
2> PageRank algorithm depends crucially on the
sparsity of the original matrix P:
> to keep the matrix—vector multiplication
efficient

> to ensure quick convergence of algorithm

> For a sparse system matrix—vector
multiplication can be O(n) rather than O(n?)

> Even for a web graph of 3 billion nodes,
convergence can be achieved within about 80
iterations

| JTB [01/2004] - p.17/35

PageRank Algorithm

O

Basic operation: ;1) = Z(;)A

¥

A is dense matrix — so need to transform this
operation into a sparse matrix calculation
involving P

O

Trying to show that:

Ty = oy P+ (|2l — cl|Z Pll)p"

O

Need definition of 1-norm of a vector:

lll = lai]
1

PageRank Algorithm |

f(k+1) = C.f(k)Pl + (1 — C)f(k)E
= Cf(k)P + Cf(k)D + (1 - C) f(k)l ﬁT

7 %) |1

2 Now look at cZ(;) D term:

— R I

Cf(k)D = C(:L’(k)d)p

> Lideg <uz>0}f’fi> P

1Zwllh = Iideg (ui)>0}xi> P

= C

= C

/N~

| JTB [01/2004] - p.19/35

PageRank Algorithm Il

> Consider term Z,y P = Y. z;p;i

1Zw Pl = szﬁjpji

i=1 j=1

n n
= Z%’iji

j=1 =1

=) ;. sum of prob. in row j of P
j=1

= > il{deg (uy)>0}

j=1

PageRank Algorithm Il

> Now i) D = c(||Z)|[1 — ||Zw Pll)p"
> Back to (k + 1)th iterate, (1)
= Ty P + ey D + (1 — c)||f(k)HlﬁT
= @ P + ([Zwll — cllZw Plh)p"
> Proof by induction on £ for 7.1y = Z(;;) A that
||Zw)| |1 = 1 for all k, so:

f(k+1) == Cf(k)P + (1 - Cllf(k)PHl)ﬁT

e] JTB [01/2004] - p.21/35

I PageRank Algorithm IV

2 Gives rise to quoted algorithm:
1. Start with ;) = any vector
Lety = Cf(k)P
Setw = [[Z)l1 — (|71
Next iterate: 7 1) = § + wp"
Repeat from 2. until |[Z;11) — Z(p)|[1 <€
> Why notw =1 — ||¢]|:?
2 What's the complexity of this?

o~ b

2 How does it improve over direct ;1) = Z(;)A
approach?

e —] JTB [01/2004] - p.22/35

PageRank Analysis

2 Complexity/operation count

1. ij = c¥ () P: sparse multiplication = O(n)

2. w=||Zwl — ||¥]li: 1-norm of one (or two)
1 x n vectors = O(n)

3. wp?: scalar multiplication of 1 x n vector
= O(n)

4. (1) = § +wp’ : addition of two 1 x n
vectors = O(n)

5. [|Z(x41) — Zw||1 < € vector subtraction and
1-norm = O(n)

I Teleporting Probability

The effect of changing the parameter, c:
2 If ¢ < 0.85: convergence is fast
2> As ¢ — 1: convergence is slowed

2 Howeuver, if ¢ is decreased too far:

> Google spam becomes more of a problem.
I.e. clusters of interlinked pages that are
trying to gain high PageRank have a higher
probability of being visited at random

PageRank Assumptions

2 Uniform distribution of choice of link on a
given page

2 Personalisation vector p assumes uniform
distribution across all web pages

2 The same personalisation vector is used at
page cul-de-sacs as well as in teleportation

2 Probability of teleporting, 1 — ¢, at a given
page is the same at each page

Google Enhancements |

9 User classes

> Different categories of user might have
different values of p'and ¢

> Requires a separate PageRank calculation
for each user class

> With for example 10 user classes:

= 800 iterations of 3 billion by 3 billion
matrix in 4 weeks

= 37,000 matrix calculations per second
per computer across 2000 computers
(assuming 15 links per page)

-] | JTB [01/2004]

] - p.26/35

Google Enhancements Il

> |deally have a user class per individual but
not scalable
2 Base calculation of p, c on:

> Observed link-following behaviour from a
Google search

> Cookie analysis (set expiry date to 2039!)
> Google toolbar (record every URL visited?)

Implementation on a Cluster

2 Vector addition, subtraction, 1-norm, scalar
multiplication are perfectly parallelisable

2 Require parallel/distributed matrix—vector
multiplication:
> Graph partitioning
> Hypergraph partitioning

> Parallel graph partitioners exist

2 No existing open-source parallel hypergraph
partitioners

Hypergraph Research

2 Currently done at DoC:
> Will Knottenbelt
> Nick Dingle
> Alex Trifunovic

2 Graph partitioning balances computational

load

2 Hypergraph partitioning minimises
communication overhead as well

JTB [01/2004] - p.29/35

I Unpartitioned Graph
1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
1| X X
2 X X X
3| X X X X
4 X
5 X
6 X
7| X X
8 X X X
9 X X
10 X X X
11 X X
12 X X X
13 X X
14 X X X
15| X X X X
16| X X X

[——————— |

JTB [01/2004] - p.30/35

Hypergraph Partition

13 7 161015 9 1 3 14 8 11 4 2 12 5 6 X

X X X X

X X X
X X

X X

JTB [01/2004] - p.31/35

| Speedup over 32 Processors

30

25

20

speedup

15

10

e — |

Speedup —+—

16 32
processors

JTB [01/2004] - p.32/35

Efficiency over 32 Processors I I Where Next?

L : T — > Web as a Peer-to-peer network, a distributed
[N database of documents
08 I I 2> Web servers keep track of own PageRank
\ statistics

06 -

= Distributed development of PageRank
algorithm (see proposed student project)

> http://ww. doc.ic.ac. uk/ ~j b/ projects. htnl

efficiency

04

2 BUT... harder to guarantee:
> availability
O - > response-time of query

12 4 8 16 32
processors

02

Acknowledgements

2 For comments, discussions and keeping the
course on the architectural straight and
narrow — thanks go to:

> Paul Kelly

> Nick Dingle

> Ashok Argent-Katwala

> Tony Field

> Olav Beckmann

> Jeyarajan Thiyagalingam

> all the students who took 332 and who
asked insightful questions!

] JTB [01/2004] — p.35/35

	Introduction to PageRank
	Motivation for PageRank
	Search Result Manipulation (I)
	Search Result Manipulation (II)
	Solution: PageRank
	What is PageRank
	PageRank's Shortcomings
	Derivation of PageRank
	The Random Surfer
	A Markov Chain
	Treating cul-de-sac Pages
	Personalisation Vector
	Teleportation Matrix
	Teleportation
	PageRank Solution
	PageRank Solution (II)
	PageRank Algorithm
	PageRank Algorithm I
	PageRank Algorithm II
	PageRank Algorithm III
	PageRank Algorithm IV
	PageRank Analysis
	Teleporting Probability
	PageRank Assumptions
	Google Enhancements I
	Google Enhancements II
	Implementation on a Cluster
	Hypergraph Research
	Unpartitioned Graph
	Hypergraph Partition
	Speedup over 32 Processors
	Efficiency over 32 Processors
	Where Next?
	Acknowledgements

