Mathematical Methods for Computer Science

Peter Harrison and Jeremy Bradley
Room 372.
Email: (pgh, jb)@doc.ic.ac.uk
Web page: http://www.doc.ic.ac.uk/~p/teaching/145/

Department of Computing, Imperial College London

Produced with prosper and LATEX

Methods Course Details

- Course title: Mathematical Methods
- Course lecturers:
 - Dr. J. Bradley (Weeks 2-5)
 - Prof. P. Harrison (Weeks 6-10)
- Course code: 145
- Lectures
 - Wednesdays: 11–12am, rm 308 (until 2nd November)
 - Thursdays: 10–11am, rm 308
 - Fridays: 11–12 noon, rm 308
- Tutorials
 - Thursdays: 11–12 noon OR Tuesdays 5–6pm
- Number of assessed sheets: 5 out of 8

Assessed Exercises

- Submission: through CATE
- https://sparrow.doc.ic.ac.uk/~cate/
- Assessed exercises (for 1st half of course):
 1. set 13 Oct; due 27 Oct
 2. set 19 Oct; due 3 Nov
 3. set 26 Oct; due 10 Nov

Recommended Books

You will find one of the following useful – no need to buy all of them:

Maths and Computer Science

- Why is Maths important to Computer Science?
- Maths underpins most computing concepts/applications, e.g.:
 - computer graphics and animation
 - stock market models
 - information search and retrieval
 - performance of integrated circuits
 - computer vision
 - neural computing
 - genetic algorithms

Highlighted Examples

- Search engines
 - Google and the PageRank algorithm
- Computer graphics
 - near photo realism from wireframe and vector representation

Searching with...

- How does Google know to put Imperial’s website top?

Searching for...
The PageRank Algorithm

- PageRank is based on the underlying web graph

PageRank

- So where's the Maths?
 - Web graph is represented as a matrix
 - Matrix is 9 billion \times 9 billion in size
 - PageRank calculation is turned into an eigenvector calculation
 - Does it converge? How fast does it converge?

Propagation of PageRank

Computer Graphics

- Ray tracing with: POV-Ray 3.6
Key points of model are defined through vectors

- Vectors define position relative to an origin

How can we calculate light shading/shadow?

Used in (amongst others):

- Computational Techniques (2nd Year)
- Graphics (3rd Year)
- Computational Finance (3rd Year)
- Modelling and Simulation (3rd Year)
- Performance Analysis (3rd Year)
- Digital Libraries and Search Engines (3rd Year)
- Computer Vision (4th Year)
What is a vector?

- What is a vector?
- Useful vector tools:
 - Vector magnitude
 - Vector addition
 - Scalar multiplication
 - Dot product
 - Cross product
- Useful results – finding the intersection of:
 - a line with a line
 - a line with a plane
 - a plane with a plane

Vector Contents

- What is a vector?
- Useful vector tools:
 - Vector magnitude
 - Vector addition
 - Scalar multiplication
 - Dot product
 - Cross product
- Useful results – finding the intersection of:
 - a line with a line
 - a line with a plane
 - a plane with a plane

Vector Magnitude

- The size or magnitude of a vector \(\vec{p} = (p_1, p_2, p_3) \) is defined as its length:

\[
|\vec{p}| = \sqrt{p_1^2 + p_2^2 + p_3^2} = \sqrt{\sum_{i=1}^{3} p_i^2}
\]

- e.g. \(\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \) – \(\sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2} \)

- For an \(n \)-dimensional vector, \(\vec{p} = (p_1, p_2, \ldots, p_n) \), \(|\vec{p}| = \sqrt{\sum_{i=1}^{n} p_i^2} \)
Vector Direction

Vector Angles

- For a vector, \(\vec{p} = (p_1, p_2, p_3) \):
 - \(\cos(\theta_x) = p_1/|\vec{p}| \)
 - \(\cos(\theta_y) = p_2/|\vec{p}| \)
 - \(\cos(\theta_z) = p_3/|\vec{p}| \)

Vector addition

- Two vectors (of the same dimension) can be added together:
 - e.g. \[
 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}
 \]
- So if \(\vec{p} = (p_1, p_2, p_3) \) and \(\vec{q} = (q_1, q_2, q_3) \) then:
 \[\vec{p} + \vec{q} = (p_1 + q_1, p_2 + q_2, p_3 + q_3) \]
Scalar Multiplication

- A scalar is just a number, e.g. 3. Unlike a vector, it has no direction.
- Multiplication of a vector \(\vec{v} \) by a scalar \(\lambda \) means that each element of the vector is multiplied by the scalar.
- So if \(\vec{v} = (p_1, p_2, p_3) \) then:
 \[
 \lambda \vec{v} = (\lambda p_1, \lambda p_2, \lambda p_3)
 \]

Vector notation

- All vectors in 3D (or \(\mathbb{R}^3 \)) can be expressed as weighted sums of \(\vec{i}, \vec{j}, \vec{k} \).
- i.e. \(\vec{p} = (10, 5, 7) \equiv \begin{pmatrix} 10 \\ 5 \\ 7 \end{pmatrix} \equiv 10\vec{i} + 5\vec{j} + 7\vec{k} \)
- \(|p_1\vec{i} + p_2\vec{j} + p_3\vec{k}| = \sqrt{p_1^2 + p_2^2 + p_3^2} \)

3D Unit vectors

- We use \(\vec{i}, \vec{j}, \vec{k} \) to define the 3 unit vectors in 3 dimensions.
- They convey the basic directions along \(x, y \) and \(z \) axes.
- So: \(\vec{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \)
- All unit vectors have magnitude 1; i.e. \(|\vec{v}| = 1 \)

Vector addition

- We have \(\vec{a}, \vec{b}, \vec{c} \).
- \(\vec{a} + \vec{b} = \vec{c} \).
Dot Product

- Also known as: *scalar product*
- Used to determine how close 2 vectors are to being parallel/perpendicular
- The dot product of two vectors \(\vec{p} \) and \(\vec{q} \) is:
 \[\vec{p} \cdot \vec{q} = |\vec{p}| |\vec{q}| \cos \theta \]
- where \(\theta \) is angle between the vectors \(\vec{p} \) and \(\vec{q} \)
- For \(\vec{p} = (p_1, p_2, p_3) \) and \(\vec{q} = (q_1, q_2, q_3) \) then:
 \[\vec{p} \cdot \vec{q} = p_1q_1 + p_2q_2 + p_3q_3 \]

Properties of the Dot Product

- \(\vec{p} \cdot \vec{p} = |\vec{p}|^2 \)
- \(\vec{p} \cdot \vec{q} = 0 \) if \(\vec{p} \) and \(\vec{q} \) are perpendicular (at right angles)
- Commutative: \(\vec{p} \cdot \vec{q} = \vec{q} \cdot \vec{p} \)
- Linearity: \(\vec{p} \cdot (\lambda \vec{q}) = \lambda (\vec{p} \cdot \vec{q}) \)
- Distributive over addition:
 \[\vec{p} \cdot (\vec{q} + \vec{r}) = \vec{p} \cdot \vec{q} + \vec{p} \cdot \vec{r} \]

Vector Projection

- \(\hat{n} \) is a unit vector, i.e. \(|\hat{n}| = 1 \)
- \(\hat{a} \cdot \hat{n} = |\hat{a}| \cos \theta \) represents the *amount* of \(\hat{a} \) that points in the \(\hat{n} \) direction

What can’t you do with a vector...

The following are classic mistakes — \(\vec{u} \) and \(\vec{v} \) are vectors, and \(\lambda \) is a scalar:
- **Don’t do it!**
 - Vector division: \(\vec{u} / \vec{v} \)
 - Divide a scalar by a vector: \(\lambda / \vec{a} \)
 - Add a scalar to a vector: \(\vec{a} + \lambda \)
 - Subtract a scalar from a vector: \(\vec{a} - \lambda \)
 - Cancel a vector in a dot product with vector:
 \[\frac{1}{\vec{a} \cdot \vec{a}} \vec{a} - \frac{1}{\vec{a}} \]
Example: Rays of light

- A ray of light strikes a reflective surface...
- Question: in what direction does the reflection travel?

Problem: find \(\vec{r}' \), given \(\vec{s} \) and \(\vec{n} \)?

- angle of incidence = angle of reflection
 \[-\vec{s} \cdot \vec{n} = \vec{r}' \cdot \vec{n} \]
- Also: \(\vec{r}' + (-\vec{s}) = \lambda \vec{n} \) thus \(\lambda \vec{n} - \vec{r}' - \vec{s} \)
- Taking the dot product of both sides:
 \[\lambda |\vec{n}|^2 = \vec{r}' \cdot \vec{n} - \vec{s} \cdot \vec{n} \]
Rays of light

- But \(\hat{n} \) is a unit vector, so \(\hat{n}^2 = 1 \)
 \[\Rightarrow \lambda = \vec{r} \cdot \hat{n} - \vec{s} \cdot \hat{n} \]
- ...and \(\vec{r} \cdot \hat{n} = -\vec{s} \cdot \hat{n} \)
 \[\Rightarrow \lambda = -2\vec{s} \cdot \hat{n} \]

- Finally, we know that: \(\vec{r} + (-\vec{s}) = \lambda \hat{n} \)
 \[\Rightarrow \vec{r} = \lambda \hat{n} + \vec{s} \]
 \[\Rightarrow \vec{r} = \vec{s} - 2(\vec{s} \cdot \hat{n})\hat{n} \]

Equation of a line

- For a general point, \(\vec{r} \), on the line:
 \[\vec{r} = \vec{a} + \lambda \vec{d} \]
- where: \(\vec{a} \) is a point on the line and \(\vec{d} \) is a vector parallel to the line

Equation of a plane

- Equation of a plane. For a general point, \(\vec{r} \), in the plane, \(\vec{r} \) has the property that:
 \[\vec{r} \cdot \hat{n} = m \]
- where:
 - \(\hat{n} \) is the unit vector perpendicular to the plane
 - \(m \) is the distance from the plane to the origin (at its closest point)
Equation of a plane

\[
\vec{r} \cdot \vec{n} = m
\]

How to solve Vector Problems

1. **IMPORTANT**: Draw a diagram!
2. Write down the equations that you are given/apply to the situation
3. Write down what you are trying to find?
4. Try variable substitution
5. Try taking the dot product of one or more equations
 - What vector to dot with?

 Answer: if eqn (1) has term \(\vec{r} \) in and eqn (2) has term \(\vec{r} \cdot \vec{s} \) in: *dot eqn (1) with \(\vec{s} \).*

Two intersecting lines

- Application: projectile interception
- Problem — given two lines:
 - Line 1: \(\vec{r}_1 = \vec{a}_1 + t_1 \vec{d}_1 \)
 - Line 2: \(\vec{r}_2 = \vec{a}_2 + t_2 \vec{d}_2 \)
- Do they intersect? If so, at what point?
- This is the same problem as: find the values \(t_1 \) and \(t_2 \) at which \(\vec{r}_1 = \vec{r}_2 \) or:
 \[
 \vec{a}_1 + t_1 \vec{d}_1 = \vec{a}_2 + t_2 \vec{d}_2
 \]

How to solve: 2 intersecting lines

- Separate \(\vec{i}, \vec{j}, \vec{k} \) components of equation:
 \[
 \vec{a}_1 + t_1 \vec{d}_1 = \vec{a}_2 + t_2 \vec{d}_2
 \]
- ...to get 3 equations in \(t_1 \) and \(t_2 \)
- If the 3 equations:
 - contradict each other then the lines do not intersect
 - produce a single solution then the lines do intersect
 - are all the same (or multiples of each other) then the lines are identical (and always intersect)
Intersection of a line and plane

- Application: ray tracing, particle tracing, projectile tracking
- Problem — given one line/one plane:
 - Line: \(\vec{r} - \vec{a} + t\vec{d} \)
 - Plane: \(\vec{r} \cdot \vec{n} = s \)
- Take dot product of line equation with \(\vec{n} \) to get:
 \[\vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n} + t(\vec{d} \cdot \vec{n}) \]

Example: intersecting planes

- Problem: find the line that represents the intersection of two planes

Intersection of a line and plane

- With \(\vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n} + t(\vec{d} \cdot \vec{n}) \) — what are we trying to find?
 - We are trying to find a specific value of \(t \) that corresponds to the point of intersection
- Since \(\vec{r} \cdot \vec{n} = s \) at intersection, we get:
 \[t = \frac{s - \vec{a} \cdot \vec{n}}{\vec{d} \cdot \vec{n}} \]
- So using line equation we get our point of intersection, \(\vec{r}^i \):
 \[\vec{r}^i = \vec{a} + \frac{s - \vec{a} \cdot \vec{n}}{\vec{d} \cdot \vec{n}} \vec{d} \]

Intersecting planes

- Application: edge detection
- Equations of planes:
 - Plane 1: \(\vec{r} \cdot \vec{n}_1 = s_1 \)
 - Plane 2: \(\vec{r} \cdot \vec{n}_2 = s_2 \)
- We want to find the line of intersection, i.e. find \(\vec{a} \) and \(\vec{d} \) in:
 \[\vec{z} = \vec{a} + \lambda \vec{d} \]
- If \(\vec{z} = x\hat{i} + y\hat{j} + z\hat{k} \) is on the intersection line:
 \[\Rightarrow \vec{z} \cdot \vec{n}_1 = s_1 \text{ and } \vec{z} \cdot \vec{n}_2 = s_2 \]
- Can use these two equations to generate equation of line
Example: Intersecting planes

- Equations of planes:
 - Plane 1: \[\mathbf{p} \cdot (2\mathbf{i} - \mathbf{j} + 2\mathbf{k}) - 3 \]
 - Plane 2: \[\mathbf{p} \cdot \mathbf{k} = 4 \]
- Pick point \(\mathbf{s} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \)
 - From plane 1: \(2x - y + 2z = 3 \)
 - From plane 2: \(z = 4 \)
- We have two equations in 3 unknowns – not enough to solve the system
 - But... we can express all three variables in terms of one of the other variables

Cross Product

- Also known as: Vector Product
- Used to produce a 3rd vector that is perpendicular to the original two vectors
- Written as \(\mathbf{p} \times \mathbf{q} \) (or sometimes \(\mathbf{p} \land \mathbf{q} \))
- Formally: \(\mathbf{p} \times \mathbf{q} = (\mathbf{q} \cdot \mathbf{n})\mathbf{n} \)
 - where \(\mathbf{n} \) is the unit vector perpendicular to \(\mathbf{p} \) and \(\mathbf{q} \); \(\theta \) is the angle between \(\mathbf{p} \) and \(\mathbf{q} \)

Example: Intersecting planes

- From plane 1: \[2x - y + 2z = 3 \]
- From plane 2: \[z = 4 \]
- Substituting (Eqn. 2) \(\rightarrow \) (Eqn. 1) gives:
 - \(2x - y = 5 \)
- Also trivially: \(y - y \) and \(z - 4 \)
- Line: \(\mathbf{s} = -\frac{5}{2}\mathbf{i} + 4\mathbf{k} + y\left(\mathbf{i} + \frac{1}{2}\mathbf{j}\right) \)
 - ...which is the equation of a line

Cross Product

- From definition: \[|\mathbf{p} \times \mathbf{q}| = |\mathbf{p}| |\mathbf{q}| \sin \theta \]
- In coordinate form:
 \[\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \]
 \[\Rightarrow \mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k} \]
- Useful for: e.g. given 2 lines in a plane, write down the equation of the plane
Properties of Cross Product

- \(\vec{p} \times \vec{q} \) is itself a vector that is perpendicular to both \(\vec{p} \) and \(\vec{q} \), so:
 - \(\vec{p} \cdot (\vec{p} \times \vec{q}) = 0 \) and \(\vec{q} \cdot (\vec{p} \times \vec{q}) = 0 \)
- If \(\vec{p} \) is parallel to \(\vec{q} \) then \(\vec{p} \times \vec{q} = \vec{0} \)
 - where \(\vec{0} = 0\vec{i} + 0\vec{j} + 0\vec{k} \)
- NOT commutative: \(\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a} \)
 - In fact: \(\vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \)
- NOT associative: \((\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c}) \)
- Left distributive: \(\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \)
- Right distributive: \((\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a} \)

Final important vector product identity:

- \(\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} \)
- which says that: \(\vec{a} \times (\vec{b} \times \vec{c}) = \lambda\vec{b} + \mu\vec{c} \)
 - i.e. the vector \(\vec{a} \times (\vec{b} \times \vec{c}) \) lies in the plane created by \(\vec{b} \) and \(\vec{c} \)

Matrices

- Used in (amongst others):
 - Computational Techniques (2nd Year)
 - Graphics (3rd Year)
 - Performance Analysis (3rd Year)
 - Digital Libraries and Search Engines (3rd Year)
 - Computing for Optimal Decisions (4th Year)
 - Quantum Computing (4th Year)
 - Computer Vision (4th Year)

Matrix Contents

- What is a Matrix?
- Useful Matrix tools:
 - Matrix addition
 - Matrix multiplication
 - Matrix transpose
 - Matrix determinant
 - Matrix inverse
 - Gaussian Elimination
 - Eigenvectors and eigenvalues
- Useful results:
 - solution of linear systems
 - Google's PageRank algorithm
What is a Matrix?

- A matrix is a 2 dimensional array of numbers
- Used to represent, for instance, a network:

 ![Matrix diagram](image)

 \[
 \begin{pmatrix}
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 0 & 0 & 0 \\
 \end{pmatrix}
 \]

Application: Markov Chains

- Example: What is the probability that it will be sunny today given that it rained yesterday? (Answer: 0.25)

 ![Probability matrix](image)

- Example question: what is the probability that it's raining on Thursday given that it's sunny on Monday?

Matrix Addition

- In general matrices can have \(m \) rows and \(n \) columns – this would be an \(m \times n \) matrix. e.g. a \(2 \times 3 \) matrix would look like:

 \[
 A = \begin{pmatrix}
 1 & 2 & 3 \\
 0 & -1 & 2 \\
 \end{pmatrix}
 \]

- Matrices with the same number of rows and columns can be added:

 \[
 \begin{pmatrix}
 1 & 2 & 3 \\
 0 & -1 & 2 \\
 \end{pmatrix} + \begin{pmatrix}
 3 & -1 & 0 \\
 2 & 2 & 1 \\
 \end{pmatrix} = \begin{pmatrix}
 4 & 1 & 3 \\
 2 & 1 & 3 \\
 \end{pmatrix}
 \]

Scalar multiplication

- As with vectors, multiplying by a scalar involves multiplying the individual elements by the scalar, e.g.:

 \[
 \lambda A = \lambda \begin{pmatrix}
 1 & 2 & 3 \\
 0 & -1 & 2 \\
 \end{pmatrix} = \begin{pmatrix}
 \lambda & 2\lambda & 3\lambda \\
 0 & -\lambda & 2\lambda \\
 \end{pmatrix}
 \]

- Now matrix subtraction is expressible as a matrix addition operation

 \[
 A - B = A + (-B) = A + (-1 \times B)
 \]
Matrix Identities

- An identity element is one that leaves any other element unchanged under a particular operation e.g. 1 is the identity in $5 \times 1 - 5$ under multiplication.
- There are two matrix identity elements: one for addition, 0, and one for multiplication, I.
- The zero matrix:

 $\begin{pmatrix}
 1 & 2 \\
 3 & -3
 \end{pmatrix} + \begin{pmatrix}
 0 & 0 \\
 0 & 0
 \end{pmatrix} = \begin{pmatrix}
 1 & 2 \\
 3 & -3
 \end{pmatrix}$
- In general: $A + 0 = A$ and $0 + A = A$

Matrix Multiplication

- The elements of a matrix, A, can be expressed as a_{ij}, so:

 $A = \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{pmatrix}$
- Matrix multiplication can be defined so that, if $C = AB$ then:

 $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Matrix Identities

- For 2×2 matrices, the multiplicative identity, $I = \begin{pmatrix}
 1 & 0 \\
 0 & 1
 \end{pmatrix}$:

 $\begin{pmatrix}
 1 & 2 \\
 3 & -3
 \end{pmatrix} \times \begin{pmatrix}
 1 & 0 \\
 0 & 1
 \end{pmatrix} = \begin{pmatrix}
 1 & 2 \\
 3 & -3
 \end{pmatrix}$
- In general for square $(n \times n)$ matrices:

 $AI = A$ and $IA = A$

Matrix Multiplication

- Multiplication, AB, is only well defined if the number of columns of $A = $ the number of rows of B, i.e.

 - A can be $m \times n$
 - B has to be $n \times p$
 - the result, AB, is $m \times p$
- Example:

 $\begin{pmatrix}
 0 & 1 & 2 \\
 3 & 4 & 5
 \end{pmatrix} \begin{pmatrix}
 6 & 7 \\
 8 & 9 \\
 10 & 11
 \end{pmatrix} = \begin{pmatrix}
 0 \times 6 + 1 \times 8 + 2 \times 10 & 0 \times 7 + 1 \times 9 + 2 \times 11 \\
 3 \times 6 + 4 \times 8 + 5 \times 10 & 3 \times 7 + 4 \times 9 + 5 \times 11
 \end{pmatrix}$
Matrix Properties

- $A + B = B + A$
- $(A + B) + C = A + (B + C)$
- $\lambda A = A\lambda$
- $\lambda(A + B) = \lambda A + \lambda B$
- $(AB)C = A(BC)$
- $(A + B)C = AC + BC; C(A + B) = CA + CB$

But... $AB \neq BA$ i.e. matrix multiplication is NOT commutative

\[
\begin{pmatrix}
0 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}
\neq
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & -1
\end{pmatrix}
\]

Matrices in Graphics

- Matrix multiplication is a simple way to encode different transformations of objects in computer graphics, e.g.:
 - reflection
 - scaling
 - rotation
 - translation (requires 4×4 transformation matrix)

Reflection

The matrix which represents a reflection in the x-axis is:

\[
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\]

This is applied to the coordinate matrix to give the coordinates of the reflected object:

\[
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
5 & 9 & 8 \\
3 & 3 & 9
\end{pmatrix}
= \begin{pmatrix}
5 & 9 & 8 \\
-3 & -3 & -9
\end{pmatrix}
\]
Scaling

- Scaling matrix by factor of λ:
 \[
 \begin{pmatrix}
 \lambda & 0 \\
 0 & \lambda
 \end{pmatrix}
 \begin{pmatrix}
 1 \\
 2
 \end{pmatrix}
 =
 \begin{pmatrix}
 2\lambda \\
 2\lambda
 \end{pmatrix}
 \]

- Here triangle scaled by factor of 3

Rotation

- Rotation by angle θ about origin takes $\langle x, y \rangle \rightarrow \langle x', y' \rangle$

- Initially: $x = r \cos \psi$ and $y = r \sin \psi$

- After rotation: $x' = r \cos (\psi + \theta)$ and $y' = r \sin (\psi + \theta)$

Rotation

- Require matrix R s.t.: $\begin{pmatrix} x' \\ y' \end{pmatrix} = R \begin{pmatrix} x \\ y \end{pmatrix}$

- Initially: $x = r \cos \psi$ and $y = r \sin \psi$

- Start with $x' = r \cos (\psi + \theta)$
 \[
 \Rightarrow x' = r \frac{\cos \psi \cos \theta - \sin \psi \sin \theta}{x} \\
 \Rightarrow x' = x \cos \theta - y \sin \theta
 \]

- Similarly: $y' = x \sin \theta + y \cos \theta$

- Thus $R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

3D Rotation

- Anti-clockwise rotation of θ about z-axis:
 \[
 \begin{pmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
 \end{pmatrix}
 \]

- Anti-clockwise rotation of θ about y-axis:
 \[
 \begin{pmatrix}
 \cos \theta & 0 & \sin \theta \\
 0 & 1 & 0 \\
 -\sin \theta & 0 & \cos \theta
 \end{pmatrix}
 \]

- Anti-clockwise rotation of θ about z-axis:
 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & \cos \theta & -\sin \theta \\
 0 & \sin \theta & \cos \theta
 \end{pmatrix}
 \]}
Transpose

- For a matrix \(P \), the transpose of \(P \) is written \(P^T \) and is created by rewriting the \(i \)th row as the \(i \)th column.
- So for:
 \[
 P = \begin{pmatrix}
 1 & 3 & -2 \\
 2 & 5 & 0 \\
 -3 & -2 & 1
 \end{pmatrix} \Rightarrow P^T = \begin{pmatrix}
 1 & 2 & -3 \\
 3 & 5 & -2 \\
 -2 & 0 & 1
 \end{pmatrix}
 \]
- Note that taking the transpose leaves the leading diagonal, in this case \((1, 5, 1)\), unchanged.

Application of Transpose

- Main application: allows reversal of order of matrix multiplication.
- If \(AB = C \) then \(B^T A^T = C^T \)
- Example:
 \[
 \begin{pmatrix}
 1 & 2 \\
 3 & 4
 \end{pmatrix}
 \begin{pmatrix}
 5 & 6 \\
 7 & 8
 \end{pmatrix}
 = \begin{pmatrix}
 19 & 22 \\
 43 & 50
 \end{pmatrix}
 \]

Matrix Determinant

- The determinant of a matrix, \(P \):
 - represents the expansion factor that a \(P \) transformation applies to an object.
 - tells us if equations in \(P \bar{x} = \bar{b} \) are linearly dependent.
- If a square matrix has a determinant 0, then it is known as singular.
- The determinant of a \(2 \times 2 \) matrix:
 \[
 \begin{vmatrix}
 a & b \\
 c & d
 \end{vmatrix} = ad - bc
 \]

3 \times 3 Matrix Determinant

- For a \(3 \times 3 \) matrix:
 \[
 A = \begin{pmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3
 \end{pmatrix}
 \]
- ...the determinant can be calculated by:
 \[
 \begin{vmatrix}
 b_2 & b_3 \\
 c_2 & c_3
 \end{vmatrix} - a_2 \begin{vmatrix}
 b_1 & b_3 \\
 c_1 & c_3
 \end{vmatrix} + a_3 \begin{vmatrix}
 b_1 & b_2 \\
 c_1 & c_2
 \end{vmatrix}
 \]
 \[
 = a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)
 \]
The Parity Matrix

- Before describing a general method for calculating the determinant, we require a parity matrix.
- For a 3×3 matrix this is:

$$\begin{pmatrix}
+1 & -1 & +1 \\
-1 & +1 & -1 \\
+1 & -1 & +1
\end{pmatrix}$$

- We will be picking pivot elements from our matrix A which will end up being multiplied by $+1$ or -1 depending on where in the matrix the pivot element lies (e.g. a_{12} maps to -1).

The general method...

- The 3×3 matrix determinant $|A|$ is calculated by:
 1. pick a row or column of A as a pivot.
 2. for each element x in the pivot, construct a 2×2 matrix, B, by removing the row and column which contain x.
 3. take the determinant of the 2×2 matrix, B.
 4. let v = product of determinant of B and x.
 5. let u = product of v with $+1$ or -1 (according to parity matrix rule – see previous slide).
 6. repeat from (2) for all the pivot elements x and add the u-values to get the determinant.

Example

- Find determinant of:

$$A = \begin{pmatrix}
1 & 0 & -2 \\
4 & 2 & 3 \\
-2 & 5 & 1
\end{pmatrix}$$

- $|A| = +1 \times 1 \times \begin{vmatrix}
2 & 3 \\
5 & 1
\end{vmatrix} + (-1) \times 0 \times \begin{vmatrix}
4 & 3 \\
-2 & 1
\end{vmatrix} + 1 \times -2 \times \begin{vmatrix}
4 & 2 \\
-2 & 5
\end{vmatrix}$

$$= -13 + (-2 \times 24) - 61$$

Matrix Inverse

- The inverse of a matrix describes the reverse transformation that the original matrix described.

- A matrix, A, multiplied by its inverse, A^{-1}, gives the identity matrix, I.

- That is: $AA^{-1} = I$ and $A^{-1}A = I$.
Matrix Inverse Example

- The reflection matrix, \(A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)
- The transformation required to undo the reflection is another reflection.
- \(A \) is its own inverse \(\Rightarrow A = A^{-1} \) and:
 \[
 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
 \]

2 \times 2 Matrix inverse

- As usual things are easier for 2 \times 2 matrices. For:
 \[
 A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
 \]
- The inverse exists only if \(|A| \neq 0 \) and:
 \[
 A^{-1} = \frac{1}{|A|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
 \]
- \(\Rightarrow \) if \(|A| = 0 \) then the inverse \(A^{-1} \) does not exist (very important: true for any \(n \times n \) matrix).

n \times n Matrix Inverse

- First we need to define \(C \), the cofactors matrix of a matrix, \(A \), to have elements \(c_{ij} = \pm \) minor of \(a_{ij} \), using the parity matrix as before to determine whether is gets multiplied by \(+1 \) or \(-1 \)
 - (The minor of an element is the determinant of the matrix formed by deleting the row/column containing that element, as before)
- Then the \(n \times n \) inverse of \(A \) is:
 \[
 A^{-1} = \frac{1}{|A|} C^T
 \]

Linear Systems

- Linear systems are used in all branches of science and scientific computing
- Example of a simple linear system:
 - If 3 PCs and 5 Macs emit 151W of heat in 1 room, and 6 PCs together with 2 Macs emit 142W in another. How much energy does a single PC or Mac emit?
 - Here we have: \(3p + 5m = 151 \) and \(6p + 2m = 142 \)
Linear Systems as Matrix Equations

Our PC/Mac example can be rewritten as a matrix/vector equation:
\[
\begin{pmatrix}
3 & 5 \\
6 & 2
\end{pmatrix}
\begin{pmatrix}
p \\
m
\end{pmatrix}
- \begin{pmatrix}
151 \\
142
\end{pmatrix}
\]

Then a solution can be gained from inverting the matrix, so:
\[
\begin{pmatrix}
p \\
m
\end{pmatrix}
- \begin{pmatrix}
3 & 5 \\
6 & 2
\end{pmatrix}^{-1}
\begin{pmatrix}
151 \\
142
\end{pmatrix}
\]

Gaussian Elimination

For larger \(n \times n\) matrix systems finding the inverse is a lot of work

A simpler way of solving such systems in one go is by Gaussian Elimination. We rewrite the previous model as:
\[
\begin{pmatrix}
3 & 5 \\
6 & 2
\end{pmatrix}
\begin{pmatrix}
p \\
m
\end{pmatrix}
- \begin{pmatrix}
151 \\
142
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & 5 & 151 \\
6 & 2 & 142
\end{pmatrix}
\]

We can perform operations on this matrix:
- multiply/divide any row by a scalar
- add/subtract any row to/from another

Gaussian Elimination

Using just these operations we aim to turn:
\[
\begin{pmatrix}
3 & 5 & 151 \\
6 & 2 & 142
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & x \\
0 & 1 & y
\end{pmatrix}
\]

Why? ...because in the previous matrix notation, this means:
\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
p \\
m
\end{pmatrix}
- \begin{pmatrix}
x \\
y
\end{pmatrix}
\]

So \(x\) and \(y\) are our solutions

Example Solution using GE

\((r1) \rightarrow 2 \times (r1):\)
\[
\begin{pmatrix}
3 & 5 & 151 \\
6 & 2 & 142
\end{pmatrix}
\rightarrow
\begin{pmatrix}
3 & 10 & 302 \\
6 & 2 & 142
\end{pmatrix}
\]

\((r2) \rightarrow (r2) - (r1):\)
\[
\begin{pmatrix}
3 & 10 & 302 \\
6 & 2 & 142
\end{pmatrix}
\rightarrow
\begin{pmatrix}
6 & 10 & 302 \\
0 & -8 & -160
\end{pmatrix}
\]

\((r2) \rightarrow (r2)/(-8):\)
\[
\begin{pmatrix}
6 & 10 & 302 \\
0 & -8 & -160
\end{pmatrix}
\rightarrow
\begin{pmatrix}
6 & 10 & 302 \\
0 & 1 & 20
\end{pmatrix}
\]
Example Solution using GE

1. \((r1) := (r1) - 10 \times (r2):\)

 \[
 \begin{pmatrix}
 6 & 10 & 102 \\
 0 & 1 & 20
 \end{pmatrix} \Rightarrow \begin{pmatrix}
 6 & 0 & 102 \\
 0 & 1 & 20
 \end{pmatrix}
 \]

2. \((r1) := (r1)/6:\)

 \[
 \begin{pmatrix}
 6 & 0 & 102 \\
 0 & 1 & 20
 \end{pmatrix} \Rightarrow \begin{pmatrix}
 1 & 0 & 17 \\
 0 & 1 & 20
 \end{pmatrix}
 \]

So we can say that our solution is \(p = 17\) and \(m = 20\)

Gaussian Elimination: 3 \times 3

1. \[
\begin{pmatrix}
 a & * & * \\
 * & * & * \\
 * & * & *
\end{pmatrix} \rightarrow \begin{pmatrix}
 1 & * & * \\
 * & * & * \\
 * & * & *
\end{pmatrix}
\]

2. \[
\begin{pmatrix}
 0 & b & * \\
 0 & * & * \\
 0 & * & *
\end{pmatrix} \rightarrow \begin{pmatrix}
 0 & 1 & * \\
 0 & * & * \\
 0 & * & *
\end{pmatrix}
\]

3. \[
\begin{pmatrix}
 0 & 1 & * \\
 0 & 0 & c \\
 0 & 0 & *
\end{pmatrix} \rightarrow \begin{pmatrix}
 0 & 1 & * \\
 0 & 0 & 1 \\
 0 & 0 & *
\end{pmatrix}
\]

* represents an unknown entry

Linear Dependence

- System of \(n\) equations is linearly dependent:
 - if one or more of the equations can be formed from a linear sum of the remaining equations
 - For example – if our Mac/PC system were:
 1. \(3p + 5m = 151\) \((1)\)
 2. \(6p + 10m = 302\) \((2)\)
 - This is linearly dependent as:
 - \(\text{eqn}\ (2) - 2 \times \text{eqn}\ (1)\)
 - i.e. we get no extra information from eqn (2)
 - ...and there is no single solution for \(p\) and \(m\)
Linear Dependence

- If P represents a matrix in $P\vec{x} = \vec{b}$ then the equations generated by $P\vec{x}$ are linearly dependent
 - iff $|P| = 0$ (i.e. P is singular)
- The rank of the matrix P represents the number of linearly independent equations in $P\vec{x}$
- We can use Gaussian elimination to calculate the rank of a matrix

Calculating the Rank

- If after doing GE, and getting to the stage where we have zeroes under the leading diagonal, we have:

 $$
 \begin{pmatrix}
 1 & * & * \\
 0 & 1 & * \\
 0 & 0 & *
 \end{pmatrix}
 $$
- Then we have a linearly dependent system where the number of independent equations or rank is 2

Rank and Nullity

- If we consider multiplication by a matrix M as a function:
 - $M : \mathbb{R}^3 \rightarrow \mathbb{R}^3$
 - Input set is called the domain
 - Set of possible outputs is called the range
- The Rank is the dimension of the range (i.e. the dimension of right-hand sides, \vec{b}, that give systems, $M\vec{x} = \vec{b}$, that don’t contradict)
- The Nullity is the dimension of space (subset of the domain) that maps onto a single point in the range.
 (Alternatively, the dimension of the space which solves $M\vec{x} = \vec{0}$).

Rank/Nullity theorem

- If we consider multiplication by a matrix M as a function:
 - $M : \mathbb{R}^3 \rightarrow \mathbb{R}^3$
 - If rank is calculated from number of linearly independent rows of M: nullity is number of dependent rows
 - We have the following theorem:

 Rank of M + Nullity of $M = \dim(\text{Domain of } M)$
PageRank Algorithm

- Used by Google (and others?) to calculate a ranking vector for the whole web!
- Ranking vector is used to order search results returned from a user query
- PageRank of a webpage, r_v, is proportional to:

$$
sum \frac{\text{PageRank of } v}{\text{Number of links out of } v} \times \text{pages with links to } v
$$

- For a PageRank vector, r', and a web graph matrix, P:

$$
P r' = \lambda r'
$$

PageRank and Eigenvectors

- PageRank vector is an eigenvector of the matrix which defines the web graph
- An eigenvector, \tilde{r}, of a matrix A is a vector which satisfies the following equation:

$$
A \tilde{r} = \lambda \tilde{r} \quad (*)
$$

- where λ is an eigenvalue of the matrix A
- If A is an $n \times n$ matrix then there may be as many as n possible interesting \tilde{r}, λ eigenvector/eigenvalue pairs which solve equation $(*)$

Calculating the eigenvector

- From the definition $(*)$ of the eigenvector,

$$
A \tilde{r} = \lambda \tilde{r}
$$

$$
\Rightarrow A \tilde{r} - \lambda \tilde{r} = 0
$$

$$
\Rightarrow (A - \lambda I) \tilde{r} = 0
$$

- Let M be the matrix $A - \lambda I$ then if $|M| \neq 0$ then:

$$
\tilde{r} = M^{-1} \tilde{0}
$$

- This means that any interesting solutions of $(*)$ must occur when $|A - \lambda I| = 0$ thus:

$$
|A - \lambda I| = 0
$$

Eigenvector Example

- Find eigenvectors and eigenvalues of

$$
A = \begin{pmatrix}
4 & 1 \\
2 & 3
\end{pmatrix}
$$

- Using $|A - \lambda I| = 0$, we get:

$$
\begin{vmatrix}
4 - \lambda & 1 \\
2 & 3 - \lambda
\end{vmatrix} = 0
$$

$$
\Rightarrow \begin{vmatrix}
1 - \lambda & 0 \\
0 & 1 - \lambda
\end{vmatrix} = 0
$$

$$
\Rightarrow \begin{vmatrix}
4 - \lambda & 1 \\
2 & 3 - \lambda
\end{vmatrix} = 0
$$
Eigenvector Example

Thus by definition of a 2×2 determinant, we get:

$(4 - \lambda)(3 - \lambda) - 2 - 0$

This is just a quadratic equation in λ which will give us two possible eigenvalues

$\lambda^2 - 7\lambda + 10 - 0$

$\Rightarrow (\lambda - 5)(\lambda - 2) - 0$

$\Rightarrow \lambda = 5 \text{ or } 2$

We have two eigenvalues and there will be one eigenvector solution for $\lambda = 5$ and another for $\lambda = 2$

Finding Eigenvectors

Given an eigenvalue, we now use equation (*) in order to find the eigenvectors. Thus $A\vec{v} = \lambda \vec{v}$ and $\lambda = 5$ gives:

\[
\begin{pmatrix}
4 & 1 \\
2 & 3
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix}
= 5
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix}
\]

\[
\begin{pmatrix}
4 & 1 \\
2 & 3
\end{pmatrix} - 5I
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix}
= \vec{0}
\]

\[
\begin{pmatrix}
-1 & 1 \\
2 & -2
\end{pmatrix}
\begin{pmatrix}
v_1 \\
v_2
\end{pmatrix}
= \begin{pmatrix}0 \\
0\end{pmatrix}
\]

Finding Eigenvectors

This gives us two equations in v_1 and v_2:

$-v_1 + v_2 = 0 \quad (1.a)$

$2v_1 - 2v_2 = 0 \quad (1.b)$

These are linearly dependent: which means that equation (1.b) is a multiple of equation (1.a) and vice versa

$(1.b) = -2 \times (1.a)$

This is expected in situations where $|M| = 0$ in $M\vec{v} = \vec{0}$

Eqn. (1.a) or (1.b) $\Rightarrow v_1 = v_2$

First Eigenvector

$v_1 - v_2$ gives us the $\lambda = 5$ eigenvector:

\[
\begin{pmatrix}
v_1 \\
v_1
\end{pmatrix}
= v_1 \begin{pmatrix}1 \\
1\end{pmatrix}
\]

We can ignore the scalar multiplier and use the remaining vector as the eigenvector

Checking with equation (*) gives:

\[
\begin{pmatrix}
4 & 1 \\
2 & 3
\end{pmatrix}
\begin{pmatrix}1 \\
1\end{pmatrix}
= 5 \begin{pmatrix}1 \\
1\end{pmatrix}
\]
Second Eigenvector

- For $A \vec{v} - \lambda \vec{v}$ and $\lambda = 2$:
 \[
 \begin{pmatrix}
 2 & 1 \\
 2 & 1
 \end{pmatrix}
 \begin{pmatrix}
 v_1 \\
 v_2
 \end{pmatrix} =
 \begin{pmatrix}
 0 \\
 0
 \end{pmatrix}
 \]
 \[
 2v_1 + v_2 = 0 \text{ (and } 2v_1 + v_2 = 0) \\
 v_2 = -2v_1
 \]
 - Thus second eigenvector is $\vec{v} = v_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix}$
 - ...or just $\vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

Differential Equations: Contents

- What are differential equations used for?
 - Useful differential equation solutions:
 - 1st order, constant coefficient
 - 1st order, variable coefficient
 - 2nd order, constant coefficient
 - Coupled ODEs, 1st order, constant coefficient
 - Useful for:
 - Performance modelling (3rd year)
 - Simulation and modelling (3rd year)

Differential Equations: Background

- Used to model how systems evolve over time:
 - e.g. computer systems, biological systems, chemical systems
- Terminology:
 - Ordinary differential equations (ODEs) are first order if they contain a $\frac{dy}{dx}$ term but no higher derivatives
 - ODEs are second order if they contain a $\frac{d^2y}{dx^2}$ term but no higher derivatives

Ordinary Differential Equations

- First order, constant coefficients:
 - For example, $2 \frac{dy}{dx} + y = 0 \quad \text{(1)}$
 - Try: $y = e^{mx}$
 \[
 2me^{mx} + e^{mx} = 0 \\
 e^{mx} (2m + 1) = 0 \\
 e^{mx} = 0 \text{ or } m = -\frac{1}{2}
 \]
 - $e^{mx} \neq 0$ for any x, m. Therefore $m = -\frac{1}{2}$
 - General solution to (1):
 \[
 y = Ae^{\frac{-x}{2}}
 \]
Ordinary Differential Equations

- First order, variable coefficients of type:
 \[\frac{dy}{dx} + f(x)y = g(x) \]

- Use integrating factor (IF): \(e^{\int f(x) \, dx} \)

 - For example: \(\frac{dy}{dx} + 2xy - x = 0 \)

 - Multiply throughout by IF: \(e^{\int 2x \, dx} = e^{x^2} \)

 \[e^{x^2} \frac{dy}{dx} + 2xe^{x^2}y - xe^{x^2} = 0 \]

 \[\frac{d}{dx}(e^{x^2}y) - xe^{x^2} = 0 \]

 \[e^{x^2}y - \frac{1}{2}e^{x^2} + C \]

 So, \(y = Ce^{-x^2} + \frac{1}{2} \)

Ordinary Differential Equations

- Second order, constant coefficients:

 - For example, \(\frac{d^2y}{dx^2} + \frac{5}{2} \frac{dy}{dx} + 6y = 0 \)

 - Try: \(y = e^{mx} \)

 \[m^2e^{mx} + 5me^{mx} + 6e^{mx} = 0 \]

 \[e^{mx}(m^2 + 5m + 6) = 0 \]

 \[e^{mx}(m + 3)(m + 2) = 0 \]

 \[m = -3, -2 \]

 i.e. two possible solutions

 - General solution to \((*) \):

 \[y = A e^{-2x} + Be^{-3x} \]

Ordinary Differential Equations

- Second order, constant coefficients (repeated root):

 - For example, \(\frac{d^2y}{dx^2} - \frac{6}{5} \frac{dy}{dx} + 9y = 0 \)

 - Try: \(y = e^{mx} \)

 \[m^2e^{mx} - 6me^{mx} + 9e^{mx} = 0 \]

 \[e^{mx}(m^2 - 6m + 9) = 0 \]

 \[e^{mx}(m - 3)^2 = 0 \]

 \[m = 3 \) (twice)

 - General solution to \((*) \) for repeated roots:

 \[y = (Ax + B)e^{3x} \]
Applications: Coupled ODEs

- Coupled ODEs are used to model massive state-space physical and computer systems
- Coupled Ordinary Differential Equations are used to model:
 - chemical reactions and concentrations
 - biological systems
 - epidemics and viral infection spread
 - large state-space computer systems (e.g. distributed publish-subscribe systems)

Coupled ODEs

- Coupled ODEs are of the form:
 \[
 \begin{align*}
 \frac{dy_1}{dx} &= a_{11}y_1 + a_{12}y_2 \\
 \frac{dy_2}{dx} &= a_{21}y_1 + a_{22}y_2
 \end{align*}
 \]

- If we let \(\vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \), we can rewrite this as:
 \[
 \begin{pmatrix}
 \frac{dy_1}{dx} \\
 \frac{dy_2}{dx}
 \end{pmatrix} =
 \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{pmatrix}
 \begin{pmatrix}
 y_1 \\
 y_2
 \end{pmatrix}
 \quad \text{or}
 \quad \frac{d\vec{y}}{dx} = \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{pmatrix} \vec{y}
 \]

Coupled ODE solutions

- For coupled ODE of type: \(\frac{d\vec{y}}{dx} = A\vec{y} \) \((*) \)
- Try \(\vec{y} = \vec{v}e^{\lambda x} \) so \(\frac{d\vec{v}}{dx} = \lambda \vec{v}e^{\lambda x} \)
- But also \(\frac{d\vec{y}}{dx} = A\vec{y} \), so \(A\vec{v}e^{\lambda x} = \lambda \vec{v}e^{\lambda x} \)
- Now solution of \((*) \) can be derived from an eigenvector solution of \(A\vec{v} = \lambda \vec{v} \)
- For \(n \) eigenvectors \(\vec{v}_1, \ldots, \vec{v}_n \) and corresp. eigenvalues \(\lambda_1, \ldots, \lambda_n \): general solution of \((*) \) is \(\vec{y} = B_1\vec{v}_1e^{\lambda_1x} + \cdots + B_n\vec{v}_n e^{\lambda_nx} \)

Coupled ODEs: Example

- Example coupled ODEs:
 \[
 \begin{align*}
 \frac{dy_1}{dx} &= 2y_1 + 8y_2 \\
 \frac{dy_2}{dx} &= 5y_1 + 5y_2
 \end{align*}
 \]
- So \(\frac{d\vec{y}}{dx} = \begin{pmatrix} 2 & 8 \\ 5 & 5 \end{pmatrix} \vec{y} \)
- Require to find eigenvectors/values of
 \[
 A = \begin{pmatrix} 2 & 8 \\ 5 & 5 \end{pmatrix}
 \]
Coupled ODEs: Example

- Eigenvalues of A: $\begin{pmatrix} 2 - \lambda & 8 \\ 5 & 5 - \lambda \end{pmatrix}$

 $\lambda^2 - 7\lambda - 30 = (\lambda - 10)(\lambda + 3) = 0$

- Thus eigenvalues $\lambda = 10, -3$

- Giving:

 $\lambda_1 = 10, \bar{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; $\lambda_2 = -3, \bar{v}_2 = \begin{pmatrix} 8 \\ -5 \end{pmatrix}$

- Solution of ODEs:

 $\vec{y} = B_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{10x} + B_2 \begin{pmatrix} 8 \\ -5 \end{pmatrix} e^{-3x}$

Partial Derivatives

- Used in (amongst others):

 - Computational Techniques (2nd Year)
 - Optimisation (3rd Year)
 - Computational Finance (3rd Year)

Differentiation Contents

- What is a (partial) differentiation used for?

- Useful (partial) differentiation tools:

 - Differentiation from first principles
 - Partial derivative chain rule
 - Derivatives of a parametric function
 - Multiple partial derivatives

Optimisation

- Example: look to find best predicted gain in portfolio given different possible shareholdings in portfolio
Differentiation

- Gradient on a curve $f(x)$ is approximately:
 \[
 \frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}
 \]

Definition of derivative

- The derivative at a point x is defined by:
 \[
 \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
 \]

- Take $f(x) = x^n$
 - We want to show that:
 \[
 \frac{df}{dx} = nx^{n-1}
 \]

Derivative of x^n

- \[
 \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
 \]
- \[
 = \lim_{\Delta x \to 0} \frac{\sum_{k=0}^{n} \binom{n}{k} x^{n-k} \Delta x^k}{\Delta x}
 \]
- \[
 = \lim_{\Delta x \to 0} \sum_{k=0}^{n} \binom{n}{k} x^{n-k} \Delta x^{k-1}
 \]
- \[
 = \lim_{\Delta x \to 0} \left(\binom{n}{0} x^n + \sum_{k=1}^{n} \binom{n}{k} x^{n-k} \Delta x^{k-1} \right)
 \]
- \[
 = \frac{n!}{(n-1)!} x^{n-1} \quad \text{as} \quad \Delta x \to 0
 \]

Partial Differentiation

- Ordinary differentiation $\frac{df}{dx}$ applies to functions of one variable i.e. $f \equiv f(x)$
- What if function f depends on one or more variables e.g. $f \equiv f(x_1, x_2)$
- Finding the derivative involves finding the gradient of the function by varying one variable and keeping the others constant
- For example for $f(x, y) = x^2 y + xy^3$; partial derivatives are written:
 \[
 \frac{\partial f}{\partial x} = 2xy + y^3 \quad \text{and} \quad \frac{\partial f}{\partial y} = x^2 + 3xy^2
 \]
Partial Derivative: example

- $f(x, y) = x^2 + y^2$

Extended Chain Rule

- If f is a function of x and y where x and y are themselves functions of s and t then:
 \[\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \]
 \[\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \]

- which can be expressed as a matrix equation:
 \[
 \begin{pmatrix}
 \frac{\partial f}{\partial s} \\
 \frac{\partial f}{\partial t}
 \end{pmatrix}
 =
 \begin{pmatrix}
 \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
 \end{pmatrix}
 \begin{pmatrix}
 \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\
 \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t}
 \end{pmatrix}
 \]

- Useful for changes of variable e.g. to polar coordinates

Further Examples

- $f(x, y) = (x + 2y^3)^2$
 \[\Rightarrow \frac{\partial f}{\partial x} = 2(x + 2y^3) \frac{\partial}{\partial x} (x + 2y^3) - 2(x + 2y^3) \]
- If x and y are themselves functions of t then
 \[\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \]
- So if $f(x, y) = x^2 + 2y$ where $x = \sin t$ and $y = \cos t$ then:
 \[\frac{df}{dt} = 2x \cos t - 2\sin t - 2\sin t (\cos t - 1) \]
Jacobian

- The modulus of this matrix is called the Jacobian:
 \[
 J = \begin{vmatrix}
 \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
 \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
 \end{vmatrix}
 \]
- Just as when performing a substitution on the integral:
 \[
 \int f(x) \, dx
 \]
 we would use: \(du \equiv \frac{\partial f(x)}{\partial x} \, dx \)
- So if converting between multiple variables in an integration, we would use \(du \equiv J \, dx \).

Formal Definition

- Similar to ordinary derivative. For a two variable function \(f(x, y) \):
 \[
 \frac{\partial f}{\partial x} = \lim_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta x}
 \]
 and in the \(y \)-direction:
 \[
 \frac{\partial f}{\partial y} = \lim_{\delta y \to 0} \frac{f(x, y + \delta y) - f(x, y)}{\delta y}
 \]

Further Notation

- Multiple partial derivatives (as for ordinary derivatives) are expressed:
 \- \(\frac{\partial^2 f}{\partial x^2} \) is the second partial derivative of \(f \)
 \- \(\frac{\partial^2 f}{\partial y^2} \) is the \(n \)-th partial derivative of \(f \)
 \- \(\frac{\partial^2 f}{\partial x \partial y} \) is the partial derivative obtained by first partial differentiating by \(y \) and then \(x \)
 \- \(\frac{\partial^2 f}{\partial y \partial x} \) is the partial derivative obtained by first partial differentiating by \(x \) and then \(y \)
- If \(f(x, y) \) is a \textit{nice} function then: \(\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \)