Differential Equations: Contents

- What are differential equations used for?
- Useful differential equation solutions:
 - 1st order, constant coefficient
 - 1st order, variable coefficient
 - 2nd order, constant coefficient
 - Coupled ODEs, 1st order, constant coefficient
- Useful for:
 - Performance modelling (3rd year)
 - Simulation and modelling (3rd year)

Differential Equations: Background

- Used to model how systems evolve over time:
 - e.g. computer systems, biological systems, chemical systems
- Terminology:
 - Ordinary differential equations (ODEs) are first order if they contain a $\frac{dy}{dx}$ term but no higher derivatives
 - ODEs are second order if they contain a $\frac{d^2y}{dx^2}$ term but no higher derivatives

Ordinary Differential Equations

- First order, constant coefficients:
 - For example, $2\frac{dy}{dx} + y = 0$ (*)
 - Try: $y = e^{mx}$
 $\Rightarrow 2me^{mx} + e^{mx} = 0$
 $\Rightarrow e^{mx}(2m + 1) = 0$
 $\Rightarrow e^{mx} = 0$ or $m = -\frac{1}{2}$
 - $e^{mx} \neq 0$ for any x, m. Therefore $m = -\frac{1}{2}$
 - General solution to (*):
 $$y = Ae^{-\frac{1}{2}x}$$
Ordinary Differential Equations

- First order, variable coefficients of type:
 \[\frac{dy}{dx} + f(x)y = g(x) \]

- Use integrating factor (IF): \(e^{\int f(x) \, dx} \)
 - For example: \(\frac{dy}{dx} + 2xy = x (\ast) \)
 - Multiply throughout by IF: \(e^{\int 2x \, dx} = e^{x^2} \)
 \[e^{x^2} \frac{dy}{dx} + 2xe^{x^2}y = xe^{x^2} \]
 \[\frac{d}{dx}(e^{x^2}y) = xe^{x^2} \]
 \[e^{x^2}y = \frac{1}{2}e^{x^2} + C \]
 - So, \(y = Ce^{-x^2} + \frac{1}{2} \)

Ordinary Differential Equations

- Second order, constant coefficients:
 - For example, \(\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0 (\ast) \)
 - Try: \(y = e^{mx} \)
 \[m^2e^{mx} + 5me^{mx} + 6e^{mx} = 0 \]
 \[e^{mx}(m^2 + 5m + 6) = 0 \]
 \[e^{mx}(m + 3)(m + 2) = 0 \]
 \(m = -3, -2 \)
 - i.e. two possible solutions
 - General solution to (\ast):
 \[y = Ae^{-2x} + Be^{-3x} \]

Ordinary Differential Equations

- Second order, constant coefficients (repeated root):
 - For example, \(\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0 (\ast) \)
 - Try: \(y = e^{mx} \)
 \[m^2e^{mx} - 6me^{mx} + 9e^{mx} = 0 \]
 \[e^{mx}(m^2 - 6m + 9) = 0 \]
 \[e^{mx}(m - 3)^2 = 0 \]
 \(m = 3 \text{ (twice)} \)
 - General solution to (\ast) for repeated roots:
 \[y = (Ax + B)e^{3x} \]
Applications: Coupled ODEs

- Coupled ODEs are used to model massive state-space physical and computer systems.
- Coupled Ordinary Differential Equations are used to model:
 - chemical reactions and concentrations
 - biological systems
 - epidemics and viral infection spread
 - large state-space computer systems (e.g. distributed publish-subscribe systems)

Coupled ODEs

- Coupled ODEs are of the form:
 \[
 \begin{align*}
 \frac{dy_1}{dx} &= ay_1 + by_2 \\
 \frac{dy_2}{dx} &= cy_1 + dy_2
 \end{align*}
 \]

- If we let \(\vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \), we can rewrite this as:
 \[
 \frac{d\vec{y}}{dx} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \vec{y} \quad \text{or} \quad \frac{d\vec{y}}{dx} = \begin{pmatrix} a \\ c \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}
 \]

Coupled ODE solutions

- For coupled ODE of type: \(\frac{d\vec{y}}{dx} = A\vec{y} \) \((*)\)
- Try \(\vec{y} = \vec{v}e^{\lambda x} \) so, \(\frac{d\vec{y}}{dx} = \lambda \vec{v}e^{\lambda x} \)
- But also \(\frac{d\vec{y}}{dx} = A\vec{y} \), so \(A\vec{v}e^{\lambda x} = \lambda \vec{v}e^{\lambda x} \)
- Now solution of \((*)\) can be derived from an eigenvector solution of \(A\vec{v} = \lambda \vec{v} \)
- For \(n \) eigenvectors \(\vec{v}_1, \ldots, \vec{v}_n \) and corresponding eigenvalues \(\lambda_1, \ldots, \lambda_n \), the general solution of \((*)\) is \(\vec{y} = B_1\vec{v}_1e^{\lambda_1 x} + \cdots + B_n\vec{v}_n e^{\lambda_n x} \)

Coupled ODEs: Example

- Example coupled ODEs:
 \[
 \begin{align*}
 \frac{dy_1}{dx} &= 2y_1 + 8y_2 \\
 \frac{dy_2}{dx} &= 5y_1 + 5y_2
 \end{align*}
 \]
- So \(\frac{d\vec{y}}{dx} = \begin{pmatrix} 2 & 8 \\ 5 & 5 \end{pmatrix} \vec{y} \)
- Require to find eigenvectors/values of \(A = \begin{pmatrix} 2 & 8 \\ 5 & 5 \end{pmatrix} \)
Coupled ODEs: Example

- Eigenvalues of A:

 $\begin{vmatrix} 2 - \lambda & 8 \\ 5 & 5 - \lambda \end{vmatrix} = 0$

 $\lambda^2 - 7\lambda - 30 = (\lambda - 10)(\lambda + 3) = 0$

- Thus eigenvalues $\lambda = 10, -3$

- Giving:

 $\lambda_1 = 10, \vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; $\lambda_2 = -3, \vec{v}_2 = \begin{pmatrix} 8 \\ -5 \end{pmatrix}$

- Solution of ODEs:

 $\vec{y} = B_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{10x} + B_2 \begin{pmatrix} 8 \\ -5 \end{pmatrix} e^{-3x}$

Partial Derivatives

- Used in (amongst others):
 - Computational Techniques (2nd Year)
 - Optimisation (3rd Year)
 - Computational Finance (4th Year)

Differentiation Contents

- What is a (partial) differentiation used for?

- Useful (partial) differentiation tools:
 - Differentiation from first principles
 - Partial derivative chain rule
 - Derivatives of a parametric function
 - Multiple partial derivatives

Optimisation

- Example: look to find best predicted gain in portfolio given different possible shareholdings in portfolio
Differentiation

- Gradient on a curve $f(x)$ is approximately:

$$\frac{\delta y}{\delta x} = \frac{f(x + \delta x) - f(x)}{\delta x}$$

Definition of derivative

- The derivative at a point x is defined by:

$$\frac{df}{dx} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x}$$

- Take $f(x) = x^n$

We want to show that:

$$\frac{df}{dx} = nx^{n-1}$$

Partial Differentiation

- Ordinary differentiation $\frac{df}{dx}$ applies to functions of one variable i.e. $f \equiv f(x)$

- What if function f depends on one or more variables e.g. $f \equiv f(x_1, x_2)$

- Finding the derivative involves finding the gradient of the function by varying one variable and keeping the others constant

- For example for $f(x, y) = x^2y + xy^3$; partial derivatives are written:

$$\frac{\partial f}{\partial x} = 2xy + y^3 \quad \text{and} \quad \frac{\partial f}{\partial y} = x^2 + 3xy^2$$
Partial Derivative: example

- \(f(x, y) = x^2 + y^2 \)

Further Examples

- \(f(x, y) = (x + 2y)^2 \)
 \[\frac{\partial f}{\partial x} = 2(x + 2y) \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial x} \right) = 2(x + 2y) \]
- If \(x \) and \(y \) are themselves functions of \(t \) then:
 \[\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \]
- So if \(f(x, y) = x^2 + 2y \) where \(x = \sin t \) and \(y = \cos t \) then:
 \[\frac{df}{dt} = 2x \cos t - 2 \sin t = 2 \sin t \cos t - 1 \]

Extended Chain Rule

- If \(f \) is a function of \(x \) and \(y \) where \(x \) and \(y \) are themselves functions of \(s \) and \(t \) then:
 \[\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \]
- which can be expressed as a matrix equation:
 \[\begin{pmatrix} \frac{\partial f}{\partial s} \\ \frac{\partial f}{\partial t} \end{pmatrix} = \begin{pmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} \]
- Useful for changes of variable e.g. to polar coordinates
The modulus of this matrix is called the **Jacobian**:

\[
J = \begin{vmatrix}
\frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \\
\frac{\partial x}{\partial t} & \frac{\partial y}{\partial t}
\end{vmatrix}
\]

Just as when performing a substitution on the integral:

\[
\int f(x) \, dx
\]

we would use: \(du \equiv \frac{df(x)}{dx} \, dx \)

So if converting between multiple variables in an integration, we would use \(du \equiv J \, dx \).

Formal Definition

Similar to ordinary derivative. For a two variable function \(f(x, y) \):

\[
\frac{\partial f}{\partial x} = \lim_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta x}
\]

and in the \(y \)-direction:

\[
\frac{\partial f}{\partial y} = \lim_{\delta y \to 0} \frac{f(x, y + \delta y) - f(x, y)}{\delta y}
\]

Further Notation

Multiple partial derivatives (as for ordinary derivatives) are expressed:

- \(\frac{\partial^2 f}{\partial x^2} \) is the second partial derivative of \(f \)
- \(\frac{\partial^2 f}{\partial x \partial y} \) is the \(n \)th partial derivative of \(f \)
- \(\frac{\partial f}{\partial x \partial y} \) is the partial derivative obtained by first partial differentiating by \(y \) and then \(x \)
- \(\frac{\partial f}{\partial y \partial x} \) is the partial derivative obtained by first partial differentiating by \(x \) and then \(y \)

If \(f(x, y) \) is a *nice* function then:

\[
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}
\]