Reasoning about Programs

Jeremy Bradley, Francesca Toni and Xiang Feng

Room 372. Ofice hour - Tuesdays at noon. Enmil: jb@loc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and IATEX

Haskell v Java

Cannot change values of variables in Haskell
> Not allowed: a : = a + 1;

In Java:
> Allowed: a := a + 1;

In Java: try not to let functions change values
of variables outside of scope of function

] induction [01/2005] - p.2/34

KISS Principle I

2 Reasoning will be easy if parts of program
are simple:

“There are two ways of constructing
a first rate program: one is to make it so
simple that there are obviously no
deficiencies; the other is to make it so
complicated that there are no obvious
deficiencies.” Tony Hoare

] Induction [01/2005] - p.3/34

Pre/Post/Mid Conditions

Pre-condition must be true before a method or
function is entered, if code is to operate
correctly

Post-condition Will be true after code has
executed (as long as Pre-condition was met)

Mid-condition IS true at a specific checkpoint in
the code while it is running

] Induction [01/2005] - p.4/34

Sequential reasoning |

void swaplnts (int x, int y) {
/'l pre: none
/1 post: (x ==y 0 & y == x_0)

int z = x;
X = ;
y = Z;

2 In pre/post: var refers to an input variable’s
initial value, var is intermediate/final value

> Allows reasoning about variables whose
value alters over the course of the function

2 Variables not mentioned in pre/mid/post are

assumed unchanged i.e. var =var
[—] Induction [01/2005] - p.5/34

| Conditional reasoning

int intMn(int x, int y) {
/1 pre: none
/1 post: (res == x_0 || res == y_0)

/1 &% (res <= x_0 && res <=y _0))
int res;
if (x <=vy)
res = Xx;
el se
res =y,

return res;

2 where r es is notation for return variable
[—] induction [01/2005] - p.6/34

IntMin with mid-conditions I

int intMn(int x, int y) {
/1 pre: none
/] post: (res == x 0 || res == y_0)
/1 && (res <= x_0 & res <=y 0))

int res;
if (x <=vy)

res = x;
/]l md case x <= y: (res == x_ 0 & res <=y 0)
el se

res = y;
/] mdcase x >y: (res ==y 0 & res <= x_0)
return res;

[———

] Induction [01/2005] - p.7/34

| Reasoning with mid-conditions

2 From intMin program:
> Need to reason from pre-condition to
mid-condition:
tt F (res = xo A res < yp)
V (res = yo A res < xp)

> Need to reason from mid-condition to
post-condition:

(res = xog A res < 1)
F (res = xy V res = yp)
A (res < xg A res < yg))

] Induction [01/2005] - p.8/34

Swapping variable values

class Swapl {

public static void swap (int i, int j) {
int t=i;
b=
o=t
return;
}
public static void main (String args[]) {
int a =1;
int b =2
swap(a, b);
}

| Swapping variable values

2 The method swapl. swap does not swap the
values of 7 and j

2> Why? — call-by-reference versus call-by-value
> |.e. no side-effects

2 In Java, all user classes are passed by
reference

> |.e. side-effects can happen

Call-by-reference in Java

> For the following coordinate class:
cl ass Point {
I nt Xc;
I nt yc;

Point (int i, int j) {
XC '
ycC

i ;

i
}

}

| Call-by-reference in Java

class Swap { \\ Swaps coordi nates of point Q
public static void swap (Point Q {
int t = Q xc;
Q xc=Q yc;
Qyc=t;
return;
}
public static void main (String args[]) {
Poi nt P = new Point (10, 25);
swap (P);

}

2 Correct (but complicated) swap method

N] induction [01/2005] - p.12/34

Simplified swap method I

public void swap () {
/1 Pre: none
/1l Post: xc == yc 0 & yc == xc_0
int t;
t = xc;
XC = yc;
yc = t;
return;

}

2> Simpler class-related swap implementation

e ——] induction [01/2005] - p.13/34

Simplified swap method

public void swap () {
/1 Pre: none
/1l Post: xc == yc 0 & yc == xc_0

int t,
[1] t =xc; [// a t == xc_0 && yc ==yc_0
[2] xc =yc;, /Il b. t ==xc_0 && xc == yc_0
[3] yc =t; [/ c. xc == yc_0 & yc == xc_0
return;

}

2> Here we have 2 mid-conditions (a) and (b),
and the post-condition (c)

> Important lines of code are numbered [n]

1] induction [01/2005] - p.14/34

Using natural deduction |

> From pre-condition to mid-condition (a):
°> =t =uzco A yc = yc

1. zc = ¢y varZ
2. yc = yc, varZ
3. t=uzxc code[l]Z
4. t = zc =trans(1, 3)

5.t=uxcoNyc=ycy, NI(2,4)

N] Induction [01/2005] - p.15/34

New reasoning tools

2 varZ

> used to introduce implicit pre-condition
assumptions

> not needed if pre-condition is stated in full
> code[n] T

> used to introduce line n from the program
3 trans

> transitivity property, e.g.
o iffa=bandb=cthena=-c
o ffr<yandy < zthenz <z

-]] induction [01/2005] - p.16/34

New reasoning tools |

Also require:

2 def
> when using a definition e.g.

a<b=a=bVa<hb

9 =subs
> using an equality to replace a variable e.g.
1. x=2+41
2. :
3. z2=1yp
4. x =y +1 =subs(1, 3)

] induction [01/2005] - p.17/34

e ————

I Back to intMin

int intMn(int x, int y) {
/1 pre: none
/1 post: (res == x_0 || res == y_0)

Il && (res <= x_0 && res <=y_0))
int res;
if (x <=vy)
[1] res = x;
/] mdcase x <= y: (res == x 0 & res <=y 0)
el se
[2] res =y;
/] mdcase x >y: (res ==y 0 & res <= x_0)

return res;

}

] Induction [01/2005] - p.18/34

e ———————

Pre-condition to mid-condition I

2 Require to show:
F (res = xg A res < yo) V (res = yo A res < xg)

1. z=ux varZ
2. y=uyo varZ
3. z<yVvVz>y lem
.z <ly ass 10. z >y ass
. res=x code[1]Z 11. res=y code[2]Z

4
5
6. res = xg
7
8
9

.res<y =subs(4,5) 13. res<z =subs(10,11)
. res < yo =subs(2,7) 14. res < xo =subs(1,13)
. res =z Ares < yo AIZ(6,8) 15. res < zq V res = o VZ(14)

16. res < zg <def(15)

=trans(1,5) 12. res = yo =trans(2,11)

17. res =yo Ares <zo AZ(12,16)

18. (res = zo A res < yo) V (res = yo A res < xg)

]

VE(3,4,9,10,17)

] induction [01/2005] - p.19/34

I How to cope withx = x + 1

2> How do we deal with statements that modify
an input variable = based on the old value of

x. e.g.
> X =X + 1

> X = 2 * X

> X =3 * 2z %X

2> Answer: need to introduce a sequence of x
variables as well as xy: 1.e. z1, 29,23, ..

> Extra variables keep track of all the
intermediary values of = before the final
version is calculated

e ——

] Induction [01/2005] - p.20/34

Example: extra variables I

public int

[
[

}

intinc (int x) {

[l Pre: none
/] Post: x == 2*x 0 + 2
1] X =X + 1;
2] X =2 * X;
return Xx;

9 Extra variables needed as x has 3 values
during method execution

2> We will see that we also need to modify the
behaviour of VAR and CODE keywords...

] induction [01/2005] - p.21/34

I Example: extra variables

2 Reasoning for i nt | nc method:
1. 21 =29 varZ
2. 19 =x1+1 code[1]Z
3. 13 =2% 19 code[2] 7T
4, v = x3 varZ
5. z9=x¢+1 =subs(1, 2)
6. 13 =2x%(rg+1) =subs(3,5)
7. v3=2%x9+ 2 distributivity def(6)
8. x=2xx9+2 =subs(7,4)

Modifications to var I

2 var
> IS used to introduce the first extra variable
in terms of the initial value: x; = x
> IS used to set the final value, z, to the last
in the sequence of extra z-variables, in this
case: r = 13

] induction [01/2005] - p.23/34

I Modifications to code

> code[n]
> Is used to introduce code from line n

> if a variable undergoes a change of value
during reasoning e.g. x = f(x), then extra
variables must be used, i.e.

Tiy1 = f(xz)

where i is the index of the last extra
variable used

] Induction [01/2005] - p.24/34

Modifications to code I

2 code[n]
> code[n] statements must be introduced in

program order so that correct variable
names can be set

> code[n] statements in while/if clauses can
only be introduced if associated
branch/loop tests are true

] induction [01/2005] - p.25/34

I Summary: Extra variables

> Note that the final result value is still z and is
equal to the last supplementary variable

2 We should not need many extra variables if
we create sufficient mid-conditions

> mid-conditions help to break up the
reasoning into smaller easier chunks

2 The result value x might be the value in a
mid-condition or a post-condition depending
on which we are trying to derive

Induction [01/2005] - p.26/34

More mid-conditions... I

2 Need to augment Point class with up and
right methods:

public void up (int n) {
/1 Pre: none
/1 Post: xc == xc_0 && yc == yc_0 + n
yc = yc +n

}

public void right (int n) {
/'l Pre: none
/'l Post: xc == xc_0 + n & yc == yc_0
XC = XC + n;

] Induction [01/2005] - p.27/34

I More mid-conditions...

2 Can reason about evolution of coordinates
from method call to method call

public static square (Point P, int n) {
/1 Pre: none
/1 Post: xc == xc_0 && yc == yc_0

[1] P.right(n); // xc == xc_0+n && yc == yc_0
[2] P. up(n); /] xc == xc_0+n && yc == yc_0+n
[3] P.right(-n); // xc == xc_0 && yc == yc_0+n
[4] P.up(-n); /'l xc == xc_0 && yc == yc_0
}
[| induction [01/2005] - p.28/34

Using lower level post-conditions |

2 We are going to assume that Poi nt . | ef t
and Poi nt . ri ght have been proved correct

2> We now have to prove that squar e meets its
post-condition

2 i.e.F zc = xco A ye = ye

1. zc1 = zco varZ
2. yc, = yc, varZ
3. zco = zc1 + N A Yy = Yo,y pc[1l]Z
4. xc3 = xCo NYc = ycy +n pc[2]Z
5. :

1] Induction [01/2005] - p.29/34

I Some more extra notation

> pe[n]
> Introduces the post condition of the method
atline n

2 Same behaviour as code[n] when creating
intermediate variables between the initial
value zcy and final value zc
> hence introduction zc¢; between start of
squar e and beginning of P. ri ght (n)

> might optionally need zc», zcs, . ..
depending on how many post-conditions
we are using

Induction [01/2005] - p.30/34

Important rules |

> For pc/code statements:

> Introduce lines into reasoning in program
order

> only introduce pc/code statements from

if/while clauses if branch/loop tests met

2 |If variable changes value during reasoning
then will require extra variables

> applies to local and global method
variables

] Induction [01/2005] - p.31/34

I Class invariants

2 Reasoning specific to an OO paradigm

2 Class invariant

> is a logical property that is true of a class
and its data at all times

> needs to be true for after each constructor
method

> needs to be shown that invariant is
reestablished after each (non-constructor)
method call

] Induction [01/2005] - p.32/34

Class invariant example

class Total {
/] Cass invariant: i >= 0
int i;

Total () {
i = 0;
}
void addto(int x) {
/Il Pre: x 0 >0
/] Post: i == (i_0 + x_0)
i += X

Class invariant

o> AfterTotal ():i=0>0+/

2 Invariant re-established after addup(x) :
> Show: ig > 0Axg>0A (29 >0— (i =
> In general:

variant beforeApreA(pre — post) - variant after

	Haskell v Java
	KISS Principle
	Pre/Post/Mid Conditions
	Sequential reasoning
	Conditional reasoning
	intMin with mid-conditions
	Reasoning with mid-conditions
	Swapping variable values
	Swapping variable values
	Call-by-reference in Java
	Call-by-reference in Java
	Simplified swap method
	Simplified swap method
	Using natural deduction
	New reasoning tools
	New reasoning tools
	Back to intMin
	Pre-condition to mid-condition
	How to cope with {	t x = x + 1}
	Example: extra variables
	Example: extra variables
	Modifications to var
	Modifications to code
	Modifications to code
	Summary: Extra variables
	More mid-conditions...
	More mid-conditions...
	Using lower level post-conditions
	Some more extra notation
	Important rules
	Class invariants
	Class invariant example
	Class invariant

