
List Induction: Tutorial sheet 2

Jeremy Bradley

16 January 2005

Assessed Exercise 2: Question 3 is assessed and is due in to the SAO by
4.30pm on 1 February 2005. This is a hardcopy submission but you still
need to register your submission using CATE which will also provide you with
your submission cover sheet: https://sparrow.doc.ic.ac.uk/∼cate/

1. The post-condition in the function sumExample is incorrect for one value
of x. Suggest a modification to the post-condition so that it is correct for
all x-values and prove the new post-condition by induction.

-- Pre-condition: n >= 1

-- Post-condition: sumExample n x = (x^(n+1) - x) / (x-1)

sumExample :: Int -> Int -> Int

sumExample 1 x = x

sumExample n x = x + (x * (sumExample (n-1) x))

2. (a) The power set of a set, S, is the set of all subsets of S. For example,
the power set of {1, 2} is {∅, {1}, {2}, {1, 2}}, where ∅ is the empty
set. Complete the following function which takes an input set and
calculates its power set.
[Here we use a Haskell list to represent a set and the order in which the

set is generated is not important.]

powerSet :: [a] -> [[a]]

powerSet [] = [[]]

powerSet (x:xs) = ...

(b) Show by induction on the input list of powerSet that

length (powerSet xs) = 2(length xs)

You may use the length definition and property from question 3 with-
out proof.

1



3. ASSESSED Given the following definition of the length function,

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + (length xs)

Prove that for all lists xs, ys:

length (xs++ys) = (length xs) + (length ys)

[Hint: you only need to perform an induction on one list variable, say xs]

4. Prove that foldrMin produces the minimum element of a list of integers.

foldrMin :: [Int] -> Int

foldrMin [] = error "no elements in input"

foldrMin (x:[]) = x

foldrMin (x:xs) = min x (foldrMin xs)

5. [This is slightly different from previous inductions you may have seen, as it

involves induction with a picture. The induction structure is still the same

though.]

Figure 1: 1 L-shaped piece
in a 2× 2 grid Figure 2: 5 L-shaped pieces in a 4× 4 grid

(a) Given an L-shaped tile, shown if Fig. 1, show using induction on n

that a 2n×2n grid can be filled with L-shaped tiles in such a way that
a square is left empty in the bottom left hand corner of the grid. The
cases n = 1 and n = 2 are shown in Fig. 1 and Fig. 2, respectively.

(b) State a formula in terms of n for the number of L-tiles in a 2n × 2n

grid.

(c) Using your understanding of the induction step from part (a), com-
plete the following Haskell function for recursively calculating the
number of L-tiles in a 2n × 2n grid. Prove by induction that your
answer to part (b) is a post-condition for the function, numTiles.

numTiles :: Int -> Int

numTiles 1 = 1

numTiles n = ...

2


