
Mid-conditions: Tutorial sheet 4

Jeremy Bradley

31 January 2005

PMT Exercise 10: Questions 1(c) and 3 are assessed and are due in to the
SAO by 4.30pm on 8 February 2005. This is a hardcopy submission but you
still need to register your submission using CATE which will also provide you
with your submission cover sheet: https://sparrow.doc.ic.ac.uk/∼cate/

1. For the intMax program below:

int intMax(int x, int y) {

// pre: none

// post: (res == x_0 || res == y_0)

// && (res >= x_0 && res >= y_0))

int res;

if (x >= y)

[1] res = x;

// mid (a): (res == x_0) && (res >= y_0)

else

[2] res = y;

// mid (b): (res == y_0) && (res >= x_0)

return res;

}

Construct the following:

(a) The combined mid-condition

(b) A natural deduction proof from the pre-condition to the combined
mid-condition

(c) (Assessed) A natural deduction proof from mid-condition (b) to the
post-condition

1

2. For the method weird, a specification would take the form: ` x = 7

int weird (int x) {

// pre: none

// post: x == 7

[1] x = x * 2;

[2] x = 7;

return x;

}

Using extra variables where necessary, prove the specification is satisfied
by the method.

[continued. . .

2

3. (Assessed) As in the notes, the class Point is defined with methods up

and right as follows.

class Point {

int xc;

int yc;

Point (int i, int j) {

xc = i;

yc = j;

}

public void up (int n) {

// Pre: none

// Post: xc == xc_0 && yc == yc_0 + n

yc = yc + n;

}

public void right (int n) {

// Pre: none

// Post: xc == xc_0 + n && yc == yc_0

xc = xc + n;

}

}

class Square {

public static upleft (Point P, int n) {

// Pre: none

// Post: xc == xc_0 - n && yc == yc_0 + n

[1] P.up(n);

[2] P.right(-n);

}

}

Assuming that the post-conditions of Point.up and Point.right are
true. Show, by natural deduction, that the pre-condition entails the post-
condition for the method, Square.upleft.

3

4. Given the following definition of a Sphere class which also calculates the
volume and surface area:

class Sphere {

int r; \\ sphere radius

double volume () {

// Pre: r_0 >= 0

// Post: res == 4/3 * PI * r_0^3 && r == r_0

[1] double res = r / 3;

[2] res = res * this.area();

return res;

}

double area () {

// Pre: r_0 >= 0

// Post: res == 4 * PI * r_0^2 && r == r_0

double res = 4 * PI * r * r;

return res;

}

}

(a) State the specification of Sphere.volume from the pre- and post-
condition comments

(b) Use natural deduction to justify that Sphere.volume meets its spec-
ification, given that Sphere.area has been validated.

4

