Reasoning about Programs

Jeremy Bradley and Francesca Toni

Room 372. Ofice hour - Tuesdays at noon. Enmil: jb@loc.ic.ac.uk

Department of Computing, Imperial College London

Produced with prosper and IATEX

] Induction [01/2005] - p.1/64

Haskell Lectures |

Proving correctness of Haskell functions

2 Induction over natural numbers
> summing natural numbers: sumInts
> summing fractions: sumFracs
> natural number sequence: ulList
> proving induction works

9 Structural induction

2 Induction over Haskell data structures
> induction over lists: subList, revList

> induction over user-defined structures:
evalBoolExpr

] induction [01/2005] - p.2/64

Haskell Lectures | I

Proving correctness of Haskell functions
9 Failed induction: nub

2 Tree sort example: sortInts, flattenTree,
insTree

] Induction [01/2005] - p.3/64

Induction Example

Given the following Haskell program:

sumnts :: Int -> Int
sumnts 1 =1
sumints n = n + (sunmnts (n-1))

2 There are constraints on its input i.e. on the
variable r in the function call sumInts r
2> What is its output?

sumIntsr = r+(r—1)+---+2+1

r

:Zn

n=1

] Induction [01/2005] - p.4/64

sumints: Example I I sumints: Example
2 Input constraints are the pre-conditions of a Variable and output
function ‘11 S“'“I;“S n
2 Qutput requirements are the post-conditions 2 3
for a function 3 6 -~ Pre-condition: n >= 1
. . . . 4 10 -- Post-condition: sumints r = ?
2 Function should be rewritten with conditions: 5 15 sumints ;i Int -> Int
-- Pre-condition: n >=1 ° 2 sumints 1= 1
. . 7 28 sumints n = n + (sumnts (n-1))
-- Post-condition: sumnts r = ? 8 36
sumnts :: Int -> Int 9 45
sumints 1 =1 10 55
sumnts n =n + (sunints (n-1))
[o—] Induction [01/2005] - p.5 —] Induction [01/2005] - p.6/64
sumints: Example I I Induction in General
9 Let’s guess that the post-condition for The structure of an induction proof always
sumInts should be: follows the same pattern:
cumnts o — E(H +1) > State the proposition being proved: e.g. P(n)
2 > ldentify and prove the base case: e.g. show
2 How do we prove our conjecture? trueatn =1
5> We use induction 2 |dentify and state the induction hypothesis as
assumed e.g. assumed true for the case,
n==k
2 Prove the n = k + 1 case is true as long as
the n = k case is assumed true. This is the
induction step
[—] Induction [01/2005] - p.7/64 [—] Induction [01/2005] - p.8/64

sumints: Induction I

1. Base case, n = 1:

sumInts 1 =% x 2 =1 _
Trying to prove for all

2. Induction hypothesis, n> 1

n = k: Assume

sumInts k = 5(k + 1) sumInts n = g(n +1)

3. Induction step, n = k + 1:
Using assumption, we
need to show that:
sumInts (k+ 1) =

I sumints: Induction Step

2 Need to keep in mind 3 things:
> Definition: sumInts n = n + (sumInts (n — 1))
> Induction assumption: sumInts k = 5(k 4 1)
> Need to prove: sumInts (k + 1) = 52 (k + 2)

Case,n =k + 1:
sumInts (k+1) = (k+ 1)+ sumIntsk

= (k+1)+§(k:+1)

= (k+1)(1+ g)

2k +2)
- kg D
—] Induction [01/2005] - p.9/64 —] Induction [01/2005] - p.10/64
Induction Argument I I Example: sumFracs

An infinite argument:
> Base case: P(1) is true
2 Induction Step: P(k) = P(k+ 1) forall k > 1
> P(1) = P(2) is true
> P(2) = P(3) is true
> P(3) = P(4) is true

2 and so P(n)istrue forany n > 1

I] Induction [01/2005] - p.11/64

2 Given the following program:

- Pre-condition: n >=1
- Post-condition: sunfFracs n =n/ (n + 1)
sunfFracs :: Int -> Ratio Int
sunfFracs 1 1 %2
sunfFracs n (1 %(n* (n+ 1)))
+ (sunfracs (n - 1))

> Equivalent to asking:
1 1 1 1

n

Ix2 2x3 3x4 " ThmyD

[—]

n—+1

Induction [01/2005] - p.12/64

sumFracs: Induction I

2 Proving that post-condition holds:
9 Base case, n = 1: sumFracs 1 = 1/2 (i.e. post-condition true)
2 Assume, n = k: sumFracs k =k/(k + 1)
9 Induction step, n = k + 1:

1

sunFracs (k+1) = GGy o)

+ sumFracs k

Strong Induction

2 Induction arguments can have:

> an induction step which depends on more
than one assumption
> as long as the assumption cases are < the
induction step case
> e.g. it may be that P(k — 5) and P(k — 3) and

1 k
Tk D)(k+2) T rrT P(k — 2) have to be assumed true to show
_ P42kl P(k+1) true
(k+1)(k+2) > this is called strong induction and occasionally
__(kD? course-of-values induction
(k+1)(k +2) N :
ka1 > several base conditions if needed
= k2 - > e.g. P(1),P(2),..., P(5) may all be base cases
]] induction [01/2005] - p.13/64 1] Induction [01/2005] - p.14/64
Example: uList function I I Induction Example
Given the following program: In mathematical terms induction problem looks
uList :: Int -> Int like:
ubist 1 =1 2> We define a sequence of integers, u,,, where
uList 2 = 5

uList n =5 * (uList (n-1))
- 6 * (uList (n-2))

2 Pre-condition: call uList r with r > 1
2 Post-condition: require uList r = 3* — 27

R] Induction [01/2005] - p.15/64

u, = du,_1 — 6u,_o for n > 2 and base cases
Ul = 1, U9 = 5.

2> We want to prove, by induction, that:
U, =uList n = 3" — 2"

2 (Note that this time we have two base cases)

R] Induction [01/2005] - p.16/64

Proof by Induction I

> Start with the base cases, n = 1,2
> ulist 1 =31 -2t =1
> uList2=32-22=5

2 State induction hypothesis for n = k (that
you’re assuming is true for the next step):
> uList k = 3% — 2%

[——] induction [01/2005] - p.17/64

I Proof by Induction

> Looking to prove: uList (k 4+ 1) = 3%+t — okt
> Prove induction step for n = k£ + 1 case, by
using the induction hypothesis case:
uList (k+1) = 5*ulist k —6xulist (k—1)
— 5(3/€ . Qk) - 6(3]4}71 . 2]6—1)
= 53" —2F) —2x3F 43 x 2k
3x3F—2x2k
— 3k+1 o 2]<3+1 N

> Note we had to use the hypothesis twice

[] induction [01/2005] - p.18/64

Induction Argument |

An infinite argument for induction based on
natural numbers:

> Base case: P(0) is true

2 Induction Step: P(k) = P(k+ 1) forall k € IN
> P(0) = P(1) is true
> P(1) = P(2)is true
> P(2) = P(3) is true

2 and so P(n) is true for any n € IN

(Note: Induction can start with any value base case that is appropriate for the property

being proved. It does not have to be 0 or 1)
[e———] Induction [01/2005] - p.19/64

| Proof by Contradiction

> We have a proposition P(n) which we have
proved by induction, i.e.

> P(0) is true
> P(k)= P(k+1)forallk € N
> Taken this to mean P(n) is true for all n € IN

9 Let’s assume instead that despite using
induction on P(n), P(n) is not true for all
n € N

2 If we can show that this assumption gives us
a logical contradiction, then we will know that
the assumption was false

N] induction [01/2005] - p.20/64

Proof of Induction I

2 Proof relies on fact that:

> the set of natural numbers
IN =1{0,1,2,3,...} has a least element

> also any subset of natural numbers has a
least element: e.g. {8, 13,87,112} or
{15,17,21, 32}

> and so the natural numbers are ordered.
l.e. < is defined for all pairs of natural
numbers (e.g. 4 < 7)

[——] Induction [02/2005] - p.21/64

I Proof of Induction

2 Assume P(n) is not true for all n € IN

= There must be largest subset of natural
numbers, S C IN, for which P(n) is not true.

(0 ¢ 5)
= The set S must have a least element m > 0,
as it is a subset of the natural numbers

= P(m) is false, but P(m — 1) must be true
otherwise m — 1 would be least element of S

2> However we have proved that
P(k)= P(k+1)forallk € N

= P(m — 1) = P(m) is true. Contradiction!

[——] Induction [01/200] - p.22/64

Induction in General I

2 In general we can perform induction across
data structures (i.e. the same or similar proof
works) if:

1. the data structure has a least element or
set of least elements

2. an ordering exists between the elements of
the data structure
> For example for a list:
> [] is the least element
> xs < ys If length xs < length ys

I] Induction [01/2005] - p.23/64

I Induction over Data Structures

Given a conjecture P(xs) to test:
2 Induction on [a]:

> Base case: test true for xs = []
2 Assume true for xs = zs :: [a]

2 Induction step: prove for xs = (z : zs)

2 For structure MyList:
data MyList a = EnptyList | Cons a (MyList a)
> Base case: test true for xs = EmptyList

> Assume true for general xs = zs :: MyList a

2 Induction step: prove for xs = Cons z zs for any z

N] induction [01/2005] - p.24/64

Induction over Data Structures I

Given a conjecture P(xs) to test:
2 For a binary tree:

data BTree a

= BTenpty

| BTnode (BTree a) a (BTree a)
> Base case: test true for xs = BTempty

2> Assume true for general cases: xs = t1 :: BTree a
and xs = t2 :: BTree a

> Induction step: prove true for xs = BTnode t1 z t2

I Structural Induction in General |

The structure of an structural induction proof
always follows the same pattern:

2 For generic data structure:

data DataS a
= Recl (DataS a) | Rec2 (DataS a) (DataS a) |...

| Basel | BaseZ2 |

> State the proposition being proved: e.g.
P(xs :: Datas a)

> |dentify and prove the base cases: e.g. show P(xs)
frue at xs = Basel,Base2,...

for any z
] induction [01/2005] — p.25/64] Induction [01/2005] - p.26/64
Structural Induction in General Il I I Example: subList
> For generic data structure: 2 subList xs ys removes any elementin ys
data DataS a from xs
= Recl (DataS a) | Rec2 (DataS a) (DataS a) |... subList :: Eq a => [a] -> [a] -> [a]

| Basel | BaseZ2 |

> |dentify and state the induction hypothesis as
assumed e.g. assume P(xs) true for all cases,
X8 = Zs

> Finally, assuming all the xs = zs cases are true.
Prove the induction step P(xs) true for the cases

xs = Recl zsl, xs = Rec2 zs1 zs2, ...

] Induction [01/2005] - p.27/64

subList [] ys =]
subLi st (x:xs) ys
| elemx ys = subList xs ys
| otherw se (x:subLi st xs ys)

> P(xs) = for any ys, no elements of ys exist in
subList xs ys

2 |s this a post-condition for subList?

] Induction [01/2005] - p.28/64

Induction: subList I

> Base case, xs = []:

> P([]) = for any ys, no elements of ys exist in
(subList [] ys) = []. i.e. True.

9 Assume case xs = zs:
> P(zs) = for any ys, no elements of ys exist in
(subList zs ys)

2 Induction step, (require to prove) case

I Induction: subList

2 Induction step, xs = (z : zs):

° P(z:zs) = for any ys, no elements of ys exist in
(subList (z : zs) ys)
subList (z : zs) ys
subList zs ys cifz eys

B { (z : subList zsys) : ifz €ys

xs = (z : z8): Pl) P(zs) L ifz € ys
> P(z:zs) =for any ys, no elements of ys exist in (z:28) = (2 € ys) ANDP(zs) : ifz¢ys
(subList (z: zs) ys)
[
] Induction [01/2005] ~ p.29/64] induction [01/2005] - p.30/64
Example: revList I I Induction: revList
2 Given the following program: > Program:
revList :: [a] -> [4] revList :: [a] -> [a]

revList [] =[]
revLi st (x:xs) = (revList xs) ++ [X]

2 We want to prove the following property:
° P(xs) =foranyys:

revList (xs++ys) = (revList ys)++(revList xs)

] induction [01/2005] - p.31/64

reviList [] = []
revii st (x:xs) = (revList xs) ++ [X]
> Base case, xs =[]
o P([]) = for any ys,
revlist ([]++ys) = (revlListys)
= (revList ys)++[]

= (revList ys)++(revlist [])

] Induction [01/2005] - p.32/64

Induction: revList |

2 Assume case, xs = zs!
2 P(zs) = for any ys:
revList (zs++ys) = (revList ys)++(revList zs)
2 Induction step, xs = (z : zs):
2 P(z:zs)=foranyys,
revList ((z: zs)++ys)
= revlist (z: (zs++ys))
= (revList (zs++ys))++[z]
= ((revList ys)++(revList zs))++|z]
= (revList ys)++((revList zs)++[z])
(

revList ys)++(revlist (z:zs)) O

e —————

] induction [01/2005] - p.33/64

I Example: BoolExpr

2 Given the following representation of a
Boolean expression:

dat a Bool Expr
= Bool And Bool Expr Bool Expr
| Bool O Bool Expr Bool Expr
| Bool Not Bool Expr
| Bool True
| Bool Fal se

] induction [01/2005] - p.34/64

Example: BoolExpr I

2 The following function attempts to simplify a
BoolExpr:

eval Bool Expr Bool Expr -> Bool Expr
eval Bool Expr Bool True = Bool True
eval Bool Expr Bool Fal se = Bool Fal se

eval Bool Expr (Bool And x y)
= (eval Bool Expr x) ‘bool And* (eval Bool Expr vy)

eval Bool Expr (Bool O x vy)
= (eval Bool Expr x) ‘bool O* (eval Bool Expr y)

eval Bool Expr (Bool Not x)
= bool Not (eval Bool Expr x)

e ——

] induction [01/2005] - p.35/64

I Example: BoolExpr

2 Definition of boolNot:

-- Pre-condition: input Bool True or Bool Fal se
bool Not :: Bool Expr -> Bool Expr

bool Not Bool True = Bool Fal se

bool Not Bool Fal se = Bool True

bool Not

= error ("bool Not: input should be"
++ " Bool True or Bool Fal se")

] Induction [01/2005] - p.36/64

Example: BoolExpr

2 Definitions of boolAnd and bool0Or:

bool And ::
bool And x vy
| isBool True x =y
| otherw se = Bool Fal se

Bool Expr -> Bool Expr -> Bool

bool O

bool O x vy
| isBool True x = Bool True
| otherwise =y

i sBool True :: Bool Expr -> Bool
i sBool True Bool True = True
i sBool True _ = Fal se

Expr

Bool Expr -> Bool Expr -> Bool Expr

e ———————

] induction [01/2005] - p.37/64

I Induction: BoolExpr

2 Trying to prove statement:
> For all ex, P(ex) = (evalBoolExpr ex) evaluates to
BoolTrue Or BoolFalse
> Base cases:. ex = BoolTrue; ex = BoolFalse:
© P(BoolTrue) = (evalBoolExpr BoolTrue) =

BoolTrue

© P(BoolFalse) = (evalBoolExpr BoolFalse) =
BoolFalse

] Induction [01/2005] - p.38/64

Induction: BoolExpr

92 Assume cases, ex = kx, kx1, kx2:

> e.g. P(kx) = (evalBoolExpr kx) evaluates to
BoolTrue Or BoolFalse

2 Three inductive steps:
1. Case ex = BoolNot kx

P(BoolNot kx)
= (evalBoolExpr (BoolNot kx))
= boolNot (evalBoolExpr kx)

BoolFalse

BoolTrue : otherwise

. if (evalBoolExpr kx) = BoolTrue

e ————

] induction [01/2005] - p.39/64

I Induction: BoolExpr

9 Assume cases, ex = kx, kx1, kx2:

> e.g. P(kx1) = (evalBoolExpr kx1) evaluates to
BoolTrue Or BoolFalse

2. Case ex = BoolAnd kx1 kx2
P(BoolAnd kx1 kx2)
= (evalBoolExpr (BoolAnd kx1 kx2))
= (evalBoolExpr kx1) ‘boolAnd‘ (evalBoolExpr kx2)

(evalBoolExpr kx2) : if (evalBoolExpr kx1)
= = BoolTrue
BoolFalse

(e ———

. otherwise

] Induction [01/2005] - p.40/64

Induction: BoolExpr I

9 Assume cases, ex = kx, kx1, kx2:

> e.g. P(kx2) = (evalBoolExpr kx2) evaluates to
BoolTrue Or BoolFalse

3. Case ex = BoolOr kx1 kx2

P(Bool0Or kx1 kx2)
= (evalBoolExpr (BoolOr kx1 kx2))
= (evalBoolExpr kx1) ‘boolOr‘ (evalBoolExpr kx2)

{ BoolTrue : if (evalBoolExpr kx1) = BoolTrue

(evalBoolExpr kx2) : otherwise

O

] induction [01/2005] — p.41/64

I Example: nub

2> What happens if you try to prove something
that is not true?

2 nub [from Haskell List library] removes
duplicate elements from an arbitrary list

nub :: Eq a =>[a] -> [a]
nub [] =[]
nub (x:xs) = x : filter (x /=) (nub xs)

> We are going to attempt to prove:
> For all lists, xs, P(xs) = for any ys :

nub (xs++ys) = (nub xs)++(nub ys)

] Induction [01/2005] - p.42/64

Induction: nub I

> False proposition:
> For all lists, xs, P(xs) = for any ys :

nub (xs++ys) = (nub xs)++(nub ys)
> Base case, xs = ||

P([]) = for any ys,
nub ([]++ys)
= nubys
= [J++(nubys)
= (nub [])++(nub ys)

] induction [01/2005] - p.43/64

I Induction: nub

92 Assume case, xs = ks:
° P(ks) = for any ys,
nub (ks++ys) = (nub ks)++(nub ys)
> Inductive step, xs = (k : ks):
2> P(k:ks)=foranyys,
nub ((k : ks)++ys)
= nub (k: (kst+ys))
= k: (filter (k /=) (nub (ks++ys)))
= k:filter (k /=) ((nub ks)++(nub ys))
= (k:filter (k /=) (nub ks))++(filter (k /=) (nub ys))
= (nub (k: ks))++(filter (k /=) (nubys))

——————]

] induction [01/2005] - p.44/64

Example: nub I

2 Review of failed induction:

> Our proposition was: P(ks) = for any ys,
nub (ks++ys) = (nub ks)++(nub ys)

> |f true, we would expect the inductive step to give
us: P(k : ks) = for any ys,
nub ((k : ks)++ys) = (nub (k : ks))++(nub ys)

> In fact we actually got: P(k : ks) = for any ys,
nub ((k : ks)++ys) =
(nub (k : ks))++(filter (k /=) (nub ys))

2 Hence the induction failed

]] Induction [01/2005] - p.45/64

Induction: Beware!

2 Good news:
> If you can prove a statement by induction —
then it’s true!
> Bad news!
> If an induction proof fails — it's not
necessarily false!
2 i.e. induction proofs can fail because:
> the statement is not true

> induction is not an appropriate proof
technique for a given problem

] Induction [01/2005] - p.46/64

Fermat’s Last Theorem I

2 Fermat stated and didn’t prove that:

n

had no positive integer solutions for n > 3

> Base case: it's been proved that 23 + 3 = 23
has no solutions

> Assuming: =¥ + y* = 2z* has no solutions for
n>3

> There is no way of showing that z#+! + /1
does not have (only) £ + 1 identical factors,
from the assumption for the n = k case

]] Induction [01/2005] - p.47/64

Induction over Data Structures

Given a conjecture P(xs) to test:
> For a binary tree:
data BTree a
= BTenmpty
| BTnode (BTree a) a (BTree a)
> Base case: test true for xs = BTempty

> Assume true for general cases: xs = t1 :: BTree a
and xs = t2 :: BTree a

> Induction step: prove true for xs = BTnode t1 z t2
for any z

]] induction [01/2005] - p.48/64

Induction in General I

2 In general we can perform induction across
data structures (i.e. the same or similar proof
works) if:

1. the data structure has a least element or
set of least elements

2. an ordering exists between the elements of
the data structure
2 For example for a list:
> [] is the least element
> xs < ys if length xs < length ys

e —————————————————————————————————— 00000] nducion [01/2005) - p.49/64

I Well-founded Induction

2 For this induction we need an ordering
function < for trees (as we already have for
lists)

2 < is a well-founded relation on a set/datatype
S if there is no infinite decreasing sequence.
l.e.t] <ty < t3 < --- where t; IS a minimal
element

> Fortrees, t1,t2 :: BTree a, t1 < t2 if
numBTelem t1 < numBTelem t2

nunBTel em :: BTelema -> Int
nunBTel em BTenpty = 0
nunBTel em (BTnode | hs x rhs)

=1 + (nunBTelem | hs) + (nunBTel emrhs)
[——]| nduction [01/2005] - p.50/64

Example: Tree Sort I

2 We are going to sort a list of integers using
the tree data structure:

data BTree a
= BTenpty
| BTnode (BTree a) a (BTree a)

2 and function, sortInts:

sortints :: [Int] -> [Int]
sortlnts xs = flattenTree ts where
ts = foldr insTree BTenpty xs

I Example: Tree Sort

92 flattenTree creates an inorder list of all
elements of t

-- pre-condition: input tree is sorted
flattenTree :: BTree a -> [a]
flattenTree BTenpty = []
flattenTree (BTnode | hs i rhs)
= (flattenTree | hs) ++ [i]
++ (flattenTree rhs)

2 inorder: = lhs ++ element ++ rhs
2 preorder: = element ++ Ihs ++ rhs
9 postorder: = Ihs ++ rhs ++ element

Induction [01/2005] - p.52/64

Example: Tree Sort I

2 insTree inserts an integer into the correct
place in a sorted tree

-- pre-condition: input tree is pre-sorted,
-- i is arbitrary Int
-- post-condition: output is sorted tree
-- containing all previous elenents and
insTree :: Int -> BTree Int -> BTree Int
insTree i BTenpty = (BTnode BTenpty i BTenpty)
insTree i (BTnode t1 x t2)
| i <x = (BTnode (insTree i t1l) x t2)
| otherw se (BTnode t1 x (insTree i t2))

Induction [01/2005] - p.53/64

I Example: Tree Sort

2 |n order to show that sortints does sort the
integers — we need to show:

> flattenTree does produce an inorder
traversal of a tree

> insTree
> inserts the relevent element
> keeps the tree sorted
> does not modify any of the pre-existing
elements

e ———————————————= | induction [01/2005] - p54/64

Induction: flattenTree I

> Proposition: P(t) = (flattenTree t) creates
inorder listing of all elements of t

2 Base case, t = BTempty:
P(BTempty) = (flattenTree BTempty) = [|

2 Assume cases, t = t1 and t2, e.g. :
P(t1) = (flattenTree t1) creates inorder
listing of all elements of t1

I Induction: flattenTree

> Proposition: P(t) = (flattenTree t) creates
inorder listing of all elements of t

2 Inductive step, t = BTnode t1 i t2:
P(BTnode t1 i t2)

= (flattenTree (BTnode t1 i t2))
= (flattenTree t1)++[i]++(flattenTree t2)

Induction: insTree |

2 We can split the proof of correctness of
insTree into two inductions:

1. keeps the tree sorted after the element is
inserted

2. inserts the relevent element and does not
modify any of the pre-existing elements

e Induction [01/2005] - p.57/64

| Induction 1: insTree

> Atree (BTnode t1 x t2) is sorted if
> t1 and t2 are sorted
> all elements in t1 are less than x
> all elements in t2 are greater than or equal
to x

> Define induction hypothesis to be:

P(t) =forany i, (insTree i t) is sorted

e Induction [01/2005] - p.58/64

Induction 1: insTree I

2 Base case, t = BTempty:
> P(BTempty) = for any i,

insTree i BTempty — BTnode BTempty i BTempty

IS sorted

2 Assume P(t) true for cases,
BTempty < t < BTnode t1 i’ t2

> e.g. P(t1) =for any i,
(insTree i t1) is sorted

] Induction [01/2005] - p.59/64

I Induction 1: insTree

> |nduction step, case t = BTnode t1 i’ t2:
> P(BTnode t1 i’ t2) = for any i,

insTree i (BTnode t1 i’ t2)

| BTnode (insTree i t1)i’t2 : ifi < i’
| BTnode t1 i’ (insTree i t2) : otherwise

> By our assumptions, we know that t1, t2,
(insTree i t1), (insTree i t2) are sorted

-] Induction [01/2005] - p.60/64

Induction 2: insTree |

2 @Q(t) = there exist some ms, ns such that:
© (ms++[i]++ns) = (flattenTree (insTree i t))
> (flattenTree t) = (ms++ns)

> Base case, t = BTempty:
2 (BTempty) = there exist some ms, ns such that:
(ms++[i]++ns)
= (flattenTree (insTree i BTempty))
= flattenTree (BTnode BTempty i BTempty)
= (flattenTree BTempty)++[i]++(flattenTree BTempty)
= [l
2 j.e.ms =ns =[]
9 (flattenTree BTempty) = [] = (ms++ns)
Inducton 01/2005] - p 6164

| Induction 2: insTree

2 @Q(t) = there exist some ms, ns such that:

© (ms++[i]++ns) = (flattenTree (insTree i t))

(
© (flattenTree t) = (ms++ns)

9 Assume cases, t = t1,t2:

° ((t1) = there exist some ms1,ns1 such that:
o (msl++[i]++nsl) = (flattenTree (insTree i t1))
° (flattenTree t1) = (msl++ns1)

> (Q(t2) = there exist some ms2,ns2 such that:
° (ms2++[i]++ns2) = (flattenTree (insTree i t2))
> (flattenTree t2) = (ms2++ns2)

Induction [01/2005] - p.62/64

Induction 2: insTree I

5 (Part 1) Case t = BTnode t1 i’ t2:
2 Q(BTnode t1 i’ t2) = there exist some ms, ns such that:
2 it <
(ms++[i]++ns)
= (flattenTree (insTree i (BTnode t1 i’ t2)))
= flattenTree (BTnode (insTree i t1) i’ t2)

= (flattenTree (insTree i t1))++[i']++(flattenTree t2)

9 j.e.ms =msl and ns = ns1++[i’|++ms2++ns2
flattenTree (BTnode t1 i’ t2)

= (flattenTree t1)++[i']++(flattenTree t2)

msl++nsi++[i’|++ms2++ns2

= ms++ns

I Induction 2: insTree

5 (Part 2) Case t = BTnode t1 i’ t2:
2 Q(BTnode t1 i’ t2) = there exist some ms, ns such that:
2 ifi>d
(ms++[i]++ns)
= (flattenTree (insTree i (BTnode t1 i’ t2)))
= flattenTree (BTnode t1 i’ (insTree i t2))

= (flattenTree t1)++[i']++(flattenTree (insTree i t2))

9 j.e.ms = msl++nsl++[i’]++ms2 and ns = ns2
flattenTree (BTnode t1 i’ t2)
= (flattenTree t1)++[i’]++(flattenTree t2)
= msl++nsi++[i’]++ms2++ns2

= ms++ns [

Induction [01/2005] ~ p.64/64

	Haskell Lectures I
	Haskell Lectures II
	Induction Example
	sumInts: Example
	sumInts: Example
	sumInts: Example
	Induction in General
	sumInts: Induction
	sumInts: Induction Step
	Induction Argument
	Example: sumFracs
	sumFracs: Induction
	Strong Induction
	Example: uList function
	Induction Example
	Proof by Induction
	Proof by Induction
	Induction Argument
	Proof by Contradiction
	Proof of Induction
	Proof of Induction
	Induction in General
	hspace {-1cm}Induction over Data Structures
	hspace {-1cm}Induction over Data Structures
	hspace {-5mm}Structural Induction in General I
	hspace {-5mm}Structural Induction in General II
	Example: subList
	Induction: subList
	Induction: subList
	Example: revList
	Induction: revList
	Induction: revList
	Example: BoolExpr
	Example: BoolExpr
	Example: BoolExpr
	Example: BoolExpr
	Induction: BoolExpr
	Induction: BoolExpr
	Induction: BoolExpr
	Induction: BoolExpr
	Example: nub
	Induction: nub
	Induction: nub
	Example: nub
	Induction: Beware!
	Fermat's Last Theorem
	hspace {-1cm}Induction over Data Structures
	Induction in General
	Well-founded Induction
	Example: Tree Sort
	Example: Tree Sort
	Example: Tree Sort
	Example: Tree Sort
	Induction: flattenTree
	Induction: flattenTree
	Induction: insTree
	Induction 1: insTree
	Induction 1: insTree
	Induction 1: insTree
	Induction 2: insTree
	Induction 2: insTree
	Induction 2: insTree
	Induction 2: insTree

